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Abstract. Anthropogenic carbon dioxide (CO2) emissions and their observed growing trends raise awareness in scientific, 

political and public sectors of the society as the major driver of climate-change. For an increased understanding of the CO2 

emission sources, patterns and trends, a link between the emission inventories and observed CO2 concentrations is best 

established via Earth system modelling and data assimilation. In this study anthropogenic CO2 emission inventories are 

processed into gridded maps to provide an estimate of prior CO2 emissions for 7 main emissions groups: 1) power generation 15 

super-emitters and 2) energy production average-emitters, 3) manufacturing, 4) settlements, 5) aviation, 6) transport and 7) 

others, with estimation of their uncertainty and covariance to be included in the European Centre for Medium-Range 

Weather Forecasts (ECMWF) Integrated Forecasting System (IFS). The emission inventories are sourced from the 

Intergovernmental Panel on Climate Change (IPCC) 2006 Guidelines for National Greenhouse Gas Inventories and revised 

information from its 2019 Refinements, and the global grid-maps of Emissions Database for Global Atmospheric Research 20 

(EDGAR) inventory. The anthropogenic CO2 emissions for 2012 and 2015, (EDGAR versions 4.3.2 and 4.3.2_FT2015 

respectively) are considered, updated with improved apportionment of the energy sector, energy usage for manufacturing 

and diffusive CO2 emissions from coal mines. These emissions aggregated into 7 ECMWF groups with their emission 

uncertainties are calculated per country considering its statistical infrastructure development level and sector considering the 

most typical fuel type and use the IPCC recommended error propagation method assuming fully uncorrelated emissions to 25 

generate covariance matrices of parsimonious dimension (7×7). While the uncertainty of most groups remains relatively 

small, the largest contribution to the total uncertainty is determined by the group with usually the smallest budget, consisting 

of oil refineries and transformation industry, fuel exploitation, coal production, agricultural soils and solvents and products 

use emissions. Several sensitivity studies are performed: for country type (with well-/less well-developed statistical 

infrastructure), for fuel type specification, and for national emission source distribution (highlights the importance of 30 

accurate point source mapping). Uncertainties are compared with United Nations Framework Convention on Climate 

Change (UNFCCC) and the Netherlands Organisation for Applied Scientific Research (TNO) data. Upgraded anthropogenic 
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CO2 emission maps with their yearly and monthly uncertainties are combined into the CHE_EDGAR-ECMWF_2015 dataset 

(Choulga et al., 2020) available from doi:10.5281/zenodo.3712339. 

1 Introduction 35 

Carbon dioxide (CO2) is the most abundant greenhouse gas (GHG) (NOAA, 2019) contributing to the Earth’s radiative 

balance and climate stability. This study focuses on anthropogenic (man-made) long carbon cycle (period between carbon 

release to and capture from the atmosphere is longer than a year) CO2 emissions, that occur on top of an active natural 

carbon cycle, and generation of a reliable uncertainty band globally for different emission types that can be used in Earth 

system modelling and data assimilation. 40 

The CO2 growth rate varies from year to year with a tendency toward higher growth rates since the early 2002s. The added 

CO2 has a long life-time and only a portion of it transfers each year from the atmosphere to the oceans and to vegetation on 

land. The atmosphere exchanges carbon mainly between: (i) the terrestrial biosphere – is influenced through deforestation 

and other forms of land management; (ii) the oceans – marine ecosystems have implications due to CO2 in the form of 

carbonic acid absorption in surface waters and their mix with deep ocean waters; (iii) the fossil fuels and cement and other 45 

CO2 process emissions – around 1920 fossil fuel burning became the dominant source of anthropogenic emissions to the 

atmosphere and there is a clear increase of 91 ppm since 1959 (316 ppm) till 2018 (407.4 ± 0.1 ppm), according to NOAA 

(2019).  

Accurate assessment of anthropogenic CO2 emissions is important to better understand the global carbon cycle. Efforts 

towards a global anthropogenic CO2 monitoring and verification support capacity as described by Janssens-Maenhout et al. 50 

(2020), rely on atmospheric modelling and atmospheric observations (in-situ from e.g. the Integrated Carbon Observatory 

System, air-borne from e.g. aircraft campaigns, or space-borne from e.g. the Orbiting Carbon Observatory, OCO-2, and the 

Greenhouse gases Observing Satellite, GOSAT). All measurements are assimilated by global tracer transport models to infer 

atmospheric CO2 changes or by flux inversion systems to estimate the large-scale surface CO2 fluxes. ECMWF applies both 

inverse modelling and direct modelling of global concentrations of CO2 in the atmosphere assimilating several types of 55 

observations.  

The global transport models require an initial best estimate of the CO2 emission fields with uncertainties, the so-called prior 

information. The intensity of the emission fields is corrected through minimization of the difference between the modelled 

and measured concentration values for CO2. The uncertainty of these corrected CO2 fluxes based on inverse modelling will 

be lower with the increase of CO2 observations and its accuracy. The disentanglement of the fossil CO2 emissions from the 60 

total atmospheric CO2 concentration remains challenging, e.g. in 2018 total anthropogenic CO2 concentrations (42.5 ± 3.3 Gt 

CO2) represented only 1.3 % of the global atmospheric CO2 concentration (407.4 ± 0.1 ppm) (Friedlingstein et al., 2019; 

Mitchell, 1984), which states the need for high accuracy of measurements (≥ 1.0 %). 
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Global tracer transport models also require input of emission data, which is often supplied through emission inventories. 

Bottom-up emission inventories start from human activity statistics and emission factors (EF) are defined for each activity 65 

and provided at international or country level (e.g. National greenhouse gas Inventory Report, NIR). Such bottom-up 

inventories need to be gridded and characterised with uncertainties in order to represent a prior data set useful for numerical 

modelling. Table 1 shows some examples of global gridded CO2 emission datasets, for more details see Andrew (2020), 

Janssens-Maenhout et al. (2019, Table 3) and Cong et al. (2018, Table 1).  

 70 

Table 1: Some examples of global gridded CO2 emission datasets  

Name Resolution Period Note Source 

Carbon Dioxide 

Information Analysis 

Center (CDIAC) 

Spatial: 1.0º×1.0º 

Temporal: annual, 

monthly 

1751-

2013 

Use population density to disaggregate emissions, 

the mass-emissions data based on fossil-fuel 

consumption estimates. Provide gridded annual and 

monthly uncertainty estimates for 1950-2013 

Andres et al., 1996; 

Andres et al., 2016 

Open-Data Inventory for 

Anthropogenic Carbon 

dioxide (ODIAC) 

Spatial: 1×1 km2, 

0.1º×0.1º 

Temporal: monthly 

1979-

2018 

First introduced the combined use of nightlight data 

and individual power plant emission/location 

profiles  

Oda and 

Maksyutov, 2011; 

ODIAC, 2020 

Emissions Database for 

Global Atmospheric 

Research (EDGAR) 

Spatial: 0.1º×0.1º 

Temporal: annual, 

monthly 

1970-

(year-1) 

Based on international statistics, covers all IPCC 

(2006) reporting categories, consistent 

methodology applied to all the world countries 

Janssens-Maenhout 

et al., 2019 

Fossil Fuel Data 

Assimilation System 

(FFDAS) 

Spatial: 0.1º×0.1º 

Temporal: annual 

1997-

2012 

Provide gridded posterior uncertainty (version 2.2); 

in addition, provide monthly, weekly, and hourly 

fractions from annual CO2 emissions 

Asefi-Najafabady 

et al., 2014 

Community Emissions 

Data System (CEDS) 

Spatial: 0.1º×0.1º 

Temporal: annual, 

monthly 

1750-

2014 

Provide emissions of CO2 and other GHGs and 

pollutants 

Hoesly et al., 2018 

Peking University Fuel 

combustion inventory 

(PKU-FUEL) 

Spatial: 0.1º×0.1º 

Temporal: monthly 

1960-

2014 

By request provide daily emissions and the results 

of Monte Carlo simulation-based uncertainty 

analyses 

Chen et al., 2016; 

Liu et al., 2015 

 

Global emission budget values from different datasets are never the same, therefore it is important to identify why estimates 

differ between datasets (e.g. differences in sources and methods used or emission double counting and omissions). Though 

there are global anthropogenic emission gridded datasets, most of them have scarce evaluation of uncertainties, which needs 75 

enhancement with the relative errors for sector-specific country totals and the uncertainties in trends with the appropriate 

probability density functions. Global gridded uncertainties used in an independent atmospheric inversion method might also 

increase level of confidence in a certain emission dataset (Andrew, 2020). 

In this study, we focus on fossil emissions (from fossil fuel combustion, use and production, and process emissions from 

cement production and others such as glass, chemicals, urea) with long carbon cycle and we distinguish between point 80 

sources and sources with wider spatial distribution. The scope of this research is to generate a reliable uncertainty band with 

global coverage based on emission type for the yearly and monthly emission budgets, that are the composite of 

anthropogenic fossil fluxes. Uncertainty characterisation is key for optimally combining the bottom-up inventories with the 

top-down data assimilation.  
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In this study 2015 is chosen as a base year to analyse anthropogenic CO2 budgets (i.e. global, regional, national) from 85 

different sources (i.e. global statistics, national reports). Main reason for this choice is the presence of observations (both in-

situ and space-borne), and that all available information is already verified and reported. Global CO2 emissions from fossil 

fuel and industrial processes such as cement production reached a total of 36.2 Pg CO2 in 2015 according to EDGAR 

inventory version 4.3.2_FT2015 (Olivier et al., 2016a). This result shows a stagnation of the fossil emissions growth, also 

thanks to the curbing of China’s emissions. Largest contribution to this global total originates from China (with a 29 % share 90 

in the global total), the United States (14 %), the European Union (28 members till end of 2019) (10 %), India (7 %), the 

Russian Federation (5 %). The use of energy represents by far the largest source of emissions (89 % share globally). The 

energy industry sector includes emissions from fuel combustion (the large majority, with 38 % share) and fugitive emissions, 

which are intentional or unintentional releases of gas from production, processes, transmission, storage and use of fuels. 

Other sectors manufacturing, transport and buildings show a share of 22 %, 20 % and 9 % respectively in 2015. More details 95 

are given in Olivier et al. (2016b). Another reason for choosing 2015 is that it’s the year of the Paris Agreement and the 

reference year for several Nationally Determined Contributions (NDCs) (most countries in their NDCs also mention years 

1990, 2005, 2025 and 2030). On 12th December 2015 at the twenty-first session of the Conference of the Parties to the 

United Nations Framework Convention on Climate Change the Paris Agreement was agreed, and currently it is ratified by 

189 countries (CarbonBrief, 2020; Paris Agreement - Status of Ratification, 2020). It aims to limit the increase in global 100 

average temperature to 1.5 ºC, since this would significantly reduce risks and the impacts of climate change (Paris 

Agreement, 2020). Countries have submitted their pledges to the United Nations (UN), setting out how far they plan to 

reduce their GHG emissions – NDCs (CarbonBrief, 2020). For example, the European Union’s NDC under the Paris 

Agreement is to reduce GHG emissions by at least 40 % by 2030 compared to 1990 (Paris Agreement, 2020). Yet 

concentrations are still growing. In 2015, the average concentration of CO2 (399 ppm) was about 40 % higher than in the 105 

mid-1800s, with an average growth of 2 ppm/yr in the last ten years. CO2 resulting from the oxidation of carbon in fuels 

during combustion dominates total GHG emissions. Furthermore, according to JRC 2019 Report (Crippa et al., 2019) 

between 2015 till 2018, just in three years global CO2 emissions have raised by 4.3 % (1575.2 Mt CO2/yr), while 

international shipping and aviation CO2 emissions have raised by 6.1 % and 6.6 % (40.2 and 34.9 Mt CO2/yr) respectively. 

Following the Intergovernmental Panel on Climate Change (IPCC) 2006 Guidelines for National Greenhouse Gas 110 

Inventories and revised information from its 2019 Refinements (IPCC-TFI, 2019) we start from the global fossil CO2 grid-

maps of EDGAR inventory versions 4.3.2 (Janssens-Maenhout et al., 2019) and 4.3.2_FT2015 (Olivier et al., 2016a), for 

2012 and 2015 respectively, and derive an updated emission dataset as prior input to the ECMWF model: CHE_EDGAR-

ECMWF_2015 (CHE stands for the CO2 Human Emissions project (CHE, 2020)). We improve the apportionment of the 

energy sector and the energy used for manufacturing, add the diffusive CO2 emissions from coal mines and aggregate the 115 

sectors in 7 emission groups while tracking 232 countries separately. Uncertainties are calculated per country and sector 

considering the most typical fuel type using the error propagation method of the IPCC (2006) guidelines. According to the 

IPCC (2006) guidance all emissions are considered to be fully uncorrelated; this assumption is further used to calculate 
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uncertainty and covariance matrices. The country-based uncertainties and the share to the total uncertainty are presented for 

the 7 ECMWF emission groups, with calculations based on 20 EDGAR sectors for two distinct country types with well- and 120 

less well-developed statistical infrastructure. While the uncertainty of most groups (i.e. power industry, combustion for 

manufacturing, and road transport) remains small, the largest contribution to the total uncertainty is determined by rather 

small but relative uncertain sectors (i.e. non energy use of fuels, chemical processes, fuel exploitation, and coal production) 

emissions. 

This paper is organised as follows. Section 2 describes the data sources and includes the description of the anthropogenic 125 

CO2 emission datasets used to calculate emission uncertainties, data pre-processing, emission sectors and groups, and 

geographical treatment of emissions. Section 3 discusses the uncertainty calculation methodology applied to the datasets, to 

calculate both yearly and monthly uncertainties. Emission country and sector budgets comparison with other institute data 

and discussion of the results and further developments are covered in Section 4 dedicated to comparison and discussion. The 

main results, a discussion and further research guidance are covered in the conclusion in Section 5. This paper also has 130 

Supplementary Information with details on methods and assumptions used. 

2 Data 

2.1 Update of fossil CO2 emissions as input for the ECMWF model 

Main requirements for datasets in order to be used in global numerical models are being global and gridded, and preferably 

with continuous update. In this study it was decided to use EDGARv4.3.2 (and EDGARv4.3.2_FT2015) because it is based 135 

on international statistics, mainly International Energy Agency (IEA) data, has a unique global geo-coverage with 228 

countries/regions and continuous updates with time-series from 1970 onwards, till the year-1. EDGAR distributes 

anthropogenic emissions for each source category over a uniform, global 0.1º×0.1º grid defined with lower left coordinates 

and provides annual and monthly global emissions grid-maps. In emission inventories the emissions can be emitted either 

from a single point source (e.g. power plants, factories) or distributed over a linear source (e.g. roads) or over an area source 140 

(e.g. agricultural fields), depending on the source sector or subsector. The bottom-up emissions calculation methodology and 

(mainly default) EFs are consistently applied to all countries in order to achieve comparability and full transparency. Region-

specific EFs are selected, when these are recommended by IPCC (2006) guidelines or when these are justified by robust 

information on significant differences in economic activities, in customs or in geographical ambient conditions and proven to 

be more representative than the global average. All sectors based on fuel or product consumption statistics are considered. 145 

We focus on long carbon cycle CO2 and therefore consider the CO2 from fossil fuel use (combustion and other use) and from 

industrial processes (cement production, carbonate use of limestone and dolomite, non-energy use of fuels and other 

combustion, chemical and metal processes, solvents, agricultural liming and urea, waste and fossil fuel fires). Excluded are 

consumption of biofuels and short-cycle biomass burning (such as agricultural waste burning), large-scale biomass burning 

(such as forest fires, Savannah burning, woodland and peatland fires) and carbon emissions/removals of land-use, land-use 150 
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change and forestry (LULUCF)1. Based on the Global Carbon Budget 2018 findings this sector showed no significant trend 

since 1960s, only high year-to-year variability and high uncertainty (Bastos et al., 2020; Le Quéré et al., 2018; Arneth et al., 

2017). We excluded also the fossil fuel fires, because we do not focus on historical time series but on 2015 (so the Kuwait 

oil fires of 1991 are of no importance) and the coal mine fires data are considered to be very uncertain. The most relevant 

activity data (AD) for our CHE_EDGAR-ECMWF_2015 are the energy statistics from IEA (2014), which has been 155 

corrected for few outliers and for the revised Chinese coal statistics of 2015.  

While EDGARv4.3.2 provides emissions of 150 activities, and 42 fossil fuels, there was a need to re-attribute part of the 

energy sector to the manufacturing industry in order to match the United Nations Framework Convention on Climate Change 

(UNFCCC) reporting. EDGARv4.3.2_FT2015 energy sector emissions were divided into autoproducers and the rest. The 

autoproducing energy part was added to the industry sector as it is generated purposely for manufacturing, and not for power 160 

generation in general. The autoproducers part reported in the energy statistics by every country separately (IEA, 2016) was 

reattributed to the manufacturing in CHE_EDGAR-ECMWF_2015 but the correction remained limited to 30 % of the total 

energy sector. More details are given in the Supplementary Information, section S.1. 

Another update resulted in the expansion of the emissions with the fugitive CO2 from coal mines, following the 

recommendations from IPCC-TFI (2019). Even though this emission source is not that large globally, it is a highly uncertain 165 

emission source that was detected by space-borne images over the United States of America. An additional map for 

CHE_EDGAR-ECMWF_2015 with coal mining emissions from underground mines has been generated, following the 

IPCC-TFI (2019) default values and the coal mining activity of the methane (CH4) emission grid-maps from hard and brown 

coal production of EDGARv4.3.2. More details are given in the Supplementary Information, section S.2. 

The detailed EDGARv4.3.2 spatial distribution is used for mapping the updated 2015 emission values. For the update from 170 

2012 to 2015 we used the fast track approach of Olivier et al. (2016b), with IEA (2016) energy statistics and BP (2017) 

statistics. The relative changes per sector, fuel type and country from 2012 to 2015 are then applied on the EDGARv4.3.2 

reference maps to obtain EDGARv4.3.2_FT2015.  

For non-energy use of fuels, chemical processes, and solvents and products use we used directly the EDGARv4.3.2 maps. 

Also, the CO2 emission maps from coal production are based on the 2012 maps of CH4 from EDGARv4.3.2. Gridded 175 

monthly multiplication factors are obtained from 2010 monthly gridded emissions and applied to the final set of yearly 

emission maps of CHE_EDGAR-ECMWF_2015.  

For the full list of differences between EDGARv4.3.2_FT2015 and CHE_EDGAR-ECMWF_2015, we refer to the 

Supplementary Information, section S.2 Table S3.  

 
1 Following the UNFCCC national inventory reporting guidelines, emissions of biofuel combustion are only a memo item and have to be 

reported under the LULUCF sector. Together with all short-cycle carbon emissions they are excluded from this study. 
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2.2 Aggregation of CO2 emission groups for the ECMWF model 180 

EDGARv4.3.2_FT2015 (as well as EDGARv4.3.2) has 20 global maps with anthropogenic long carbon cycle CO2 flux 

values for energy, fugitives, industrial processes, solvents and products use, agriculture and waste involved sectors. In this 

study these sectors had to be grouped for the use of global flux inversion and ensemble perturbation systems. Grouping was 

done keeping in mind possible future evolution of present systems and sector common features: activity type (point sources, 

3D field, etc.), amount of knowledge for the activity (uncertainty value), geographical distribution (e.g. over urban areas 185 

only), size of sector covariance matrix. An adequate size for the inversion system of the ECMWF model is less than 50 and a 

covariance matrix of 7×7 has been chosen. Table 2 shows additional grouping of 20 EDGAR sectors into 7 ECMWF groups. 

The remaining energy sector (after autoproducers part separation) was divided into one produced by super power plants, and 

one produced by average (non-super) power plants. As super power plants are considered grid-cells with annual flux 7.9·10-6 

kg·m-2·s-1 and higher. In total there are 30 super power plant grid-cells, all the remaining energy sector grid-cells are 190 

assumed to have emissions from the average power plants. For the detailed ranking of the power plant sites in function of 

their emission intensity, we refer to the Supplementary Information, section S.1.  

3 Uncertainty calculation methodology 

3.1 Overview 

The IPCC (2006) Guidelines for NIR for fossil CO2 uncertainty calculations and updated IPCC-TFI (2019) provide vast 195 

information about numerous human activities emitting CO2 and how certain these values are. Use of the IPCC-TFI (2019) 

permitted to consider the 2019 EF and AD uncertainties for petroleum refining, solid fuel manufacturing, transformation, 

processing and transport and oil and gas production, which differed significantly from the 2006 defaults. In order to use the 

same methodology globally and because CO2 emissions are not technologically dependant, it was decided to omit regional 

(e.g. Europe) detailed information and use only information required for the most basic and simplest (Tier 1) approach for 200 

emission reporting. The Tier 1 methodology to estimate CO2 emissions from fossil fuel combustion follows the concept of 

carbon conservation (from the fuel combusted into CO2). Uncertainties for all emission activities, sectors and groups can be 

derived following two different approaches of IPCC (2006): (Approach 1) propagation of error – gives informative results 

even if the criterion “standard deviation divided by the mean value is less than 0.3” is not strictly met and data still have 

some correlation. The advantages are that it only needs uncertainty ranges for AD and EF, that are provided by IPCC and 205 

that it is relatively easy to improve in case of large and asymmetric uncertainties; (Approach 2) Monte Carlo simulation or 

similar techniques – suitable only if detailed category-by-category uncertainty information is available and complex 

calculations can be done. In order to use the same methodology for all world countries/geographical entities (i.e. not needing 

detailed information for each emission activity) it was decided to use the error propagation method (Approach 1).  

 210 

https://doi.org/10.5194/essd-2020-68

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 6 April 2020
c© Author(s) 2020. CC BY 4.0 License.



8 

 

Table 2: Additional grouping of anthropogenic long carbon cycle CO2 emission EDGAR sectors (with global emission budgets for 

2015 in Mton) into ECMWF groups 

№ ECMWF group IPCC (2006) activities per EDGAR sector Note 

Emission 

budget, 

Mton 

1 ENERGY_S 1.A.1.a (subset) 
Power industry (without autoproducers): 

super emitting power plants 
896.7 

2 ENERGY_A 
1.A.1.a (rest) 

Power industry (without autoproducers): 

average emitting power plants 
11671.6 

4.C Solid waste incineration 137.2 

3 MANUFACTURING 

1.A.2 Combustion for manufacturing (including 

autoproducers) 
7320.4 

2.C.1, 2.C.2 Iron and steel production 233.6 

2.C.3, 2.C.4, 2.C.5, 2.C.6, 2.C.7 Non-ferrous metals production 91.4 

2.D.1, 2.D.2, 2.D.4 Non energy use of fuels 24.6 

2.A.1, 2.A.2, 2.A.3, 2.A.4 Non-metallic minerals production 1749.0 

2.B.1, 2.B.2, 2.B.3, 2.B.4, 2.B.5, 2.B.6, 2.B.8 Chemical processes 677.0 

4 SETTLEMENTS 1.A.4, 1.A.5.a, 1.A.5.b.i, 1.A.5.b.ii Energy for buildings 3322.7 

5 AVIATION 

1.A.3.a_CRS Aviation cruise 412.2 

1.A.3.a_CDS Aviation climbing & descent 305.5 

1.A.3.a_LTO Aviation landing & take off 97.7 

6 TRANSPORT 

1.A.3.b Road transportation 5530.6 

1.A.3.d Shipping 819.1 

1.A.3.c, 1.A.3.e Railways, pipelines, off-road transport 255.2 

7 OTHER 

1.A.1.b, 1.A.1.c, 1.A.5.b.iii, 1.B.1.c, 

1.B.2.a.iii.4, 1.B.2.a.iii.6, 1.B.2.b.iii.3 
Oil refineries and Transformation industry 1917.8 

1.B.2.a.ii, 1.B.2.a.iii.2, 1.B.2.a.iii.3, 1.B.2.b.ii, 

1.B.2.b.iii.2, 1.B.2.b.iii.4, 1.B.2.b.iii.5, 1.C 
Fuel exploitation 258.4 

1.B.1.a Coal production 7.0 

3.C.2, 3.C.3, 3.C.4, 3.C.7 Agricultural soils 99.1 

2.D.3, 2.B.9, 2.E, 2.F, 2.G Solvents and products use 168.3 

 

To summarize, the final uncertainties per geographical entity per ECMWF fossil CO2 emission group are based on: emission 

budgets calculated from CHE_EDGAR-ECMWF_2015 maps (upgraded combination of EDGARv4.3.2 and 215 

EDGARv4.3.2_FT2015), uncertainty default values from IPCC (2006) and IPCC-TFI (2019), Tier 1 approach (error 

propagation method) and the definition of a log-normal distribution (needed for non-negative anthropogenic CO2 emissions). 

It should be noted that all uncertainty calculations were done per country (geographical entity) and only then for comparison 

purposes aggregated to Europe (28 members till end 2019) or global values assuming no correlation following IPCC (2006). 

Figure 1 shows a simplified scheme of the uncertainty calculation roadmap, followed by a detailed description below on how 220 

exactly yearly and monthly uncertainties are calculated. 
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Figure 1: Simplified roadmap for yearly uncertainty calculation  

 225 

3.2 Yearly uncertainties  

Uncertainties in the emissions per IPCC activity from Table 2 – Combined Uncertainties UCIPCCi – were calculated using 

uncertainties for emission factors EFIPCCi and activity data ADIPCCi in % provided in IPCC (2006) and IPCC-TFI (2019) 

following Eq. (1): 

𝑈𝐶𝐼𝑃𝐶𝐶𝑖 = √𝐸𝐹𝐼𝑃𝐶𝐶𝑖
2 + 𝐴𝐷𝐼𝑃𝐶𝐶𝑖

2 .          (1) 230 

It should be noted that IPCC (2006) and IPCC-TFI (2019) provide upper and lower limits of EF and AD, which are not 

always symmetrical. In order to preserve as much initial information as possible (and not to inflate artificially lower or upper 

limits of log-normal emission distributions) all calculations were performed for upper and lower uncertainty limits separately 

although it is not required by the Approach 1 methodology. Moreover, IPCC (2006) provide default EF values for different 

fuels in transport-related activities (e.g. railways, aviation, etc.). Detailed fuel consumption information per activity was not 235 

available and it was decided to use the most typical and consumed (common) fuel type (its EF value) per each activity. The 

following fuels were assumed as most typical ones: for aviation – jet kerosene, for railways – diesel, and for shipping (or 
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water-borne navigation) – composition of 80 % diesel and 20 % residual fuel oil. Following IPCC (2006) recommendations 

for road and off-road transport the most typical EF uncertainty was used (instead of the typical fuel type EF). 

Uncertainties for each of the 70 IPCC activities from Table 2 are calculated with the error propagation method and combined 240 

into the 20 EDGAR sectors, following Eq. (2): 

𝑈𝐶𝐸𝐷𝐺𝐴𝑅𝑗 = √𝑈𝐶𝐼𝑃𝐶𝐶1
2 + 𝑈𝐶𝐼𝑃𝐶𝐶2

2 + ... + 𝑈𝐶𝐼𝑃𝐶𝐶𝑛
2 ,        (2) 

where EDGARj – combined uncertainty per sector j, and 1,2,...,n – IPCC activities that are taken into account in a particular 

EDGAR sector; UCIPCC1, UCIPCC2,..., UCIPCCn used in %.  

The EDGAR sector uncertainty had to be corrected, as the error propagation method of Approach 1 systematically 245 

underestimates the uncertainty unless the model is purely additive, which was not the case. Here, uncertainty calculations are 

estimated based on the sum of several product terms. To fix this underestimation IPCC (2006) advises using a correction 

factor. One example of a correction factor is proposed in Frey (2003), where the performance of an analytical approach for 

combining uncertainty in comparison to a Monte Carlo simulation with large sample sizes for many cases involving different 

ranges of uncertainty for additive, multiplicative, and quotient models are evaluated. Frey found that error propagation and 250 

Monte Carlo simulated estimates of the uncertainty half-range of the model output agreed well for values of less than 100 %, 

but with the increase of the uncertainty a systematic underestimation of uncertainty in the total inventory by the error 

propagation approach appeared. The relationship between the simulated and propagated error estimates was found to be 

well-behaved, which led to a correction factor development for the large (i.e. greater than 100 %) total inventory 

uncertainties. This correction factor will not necessarily be reliable for very large uncertainties (i.e. greater than 230 %) 255 

because it was calibrated over the range of 10 to 230 %. As such, the correction factor FC, calculated following Eq. (3), was 

applied if half-range uncertainty estimated from the error propagation method was > 100 and < 230 % following Eq. (4): 

𝐹𝐶𝐸𝐷𝐺𝐴𝑅𝑗 = [
−0.7200+1.0921⋅𝑈𝐶𝐸𝐷𝐺𝐴𝑅𝑗−1.63⋅10−3⋅𝑈𝐶𝐸𝐷𝐺𝐴𝑅𝑗

2 +1.11⋅10−5⋅𝑈𝐶𝐸𝐷𝐺𝐴𝑅𝑗
3

𝑈𝐶𝐸𝐷𝐺𝐴𝑅𝑗
]

2

,     (3) 

(𝑈𝐶𝐸𝐷𝐺𝐴𝑅𝑗)
𝑐𝑜𝑟𝑟

= 𝑈𝐶𝐸𝐷𝐺𝐴𝑅𝑗 ⋅ 𝐹𝐶𝐸𝐷𝐺𝐴𝑅𝑗 ,         (4) 

where corr corresponds to the corrected uncertainty; UCEDGARj is given in %. In cases where UCEDGARj was ≤ 100 and ≥ 230 260 

%, FCEDGARj was assumed to be equal to one.  

For models that are purely additive, and for which the half range of uncertainty is less than approximately 50 %, a normal 

distribution is often an accurate assumption for the model output form. In this case, a symmetric probability distribution with 

respect to the mean can be assumed. But this is not the case for multiplicative (or mixed) models, or when the uncertainty is 

large for a non-negative variable such as anthropogenic CO2 emissions. A log-normal distribution is typically an accurate 265 

assumption for the model output form, where the uncertainty range is not symmetric with respect to the mean, even though 

the variance for the total inventory may be correctly estimated from Approach 1. IPCC (2006) guidelines provide a practical 

methodology based on Frey (2003) for approximate asymmetric uncertainty range calculations based on the error 

propagation method. According to this methodology key characteristics of the 95 % confidence intervals are: (i) 

https://doi.org/10.5194/essd-2020-68

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 6 April 2020
c© Author(s) 2020. CC BY 4.0 License.



11 

 

approximately symmetric for small ranges of uncertainty, and (ii) positively skewed for large ranges of uncertainty. This 270 

methodology was applied if the corrected lower half-range uncertainty estimated from error propagation method was ≥ 50 %. 

More details on the IPCC (2006) parametrisation of the log-normal distribution is given in the Supplementary Information, 

section S.3. Table 3 shows the prior uncertainty values for each EDGAR sector and two geographical entity types (i.e. well 

(WDS) and less well (LDS) statistically developed). These values are a combined IPCC activity uncertainty aggregated to 

EDGAR sectors with the error propagation method and corrected for this method’s underestimation. Also, as an example, 275 

Table 3 shows aggregated to ECMWF groups uncertainties with ensured log-normal distribution for China (CHN), Europe 

(28 members till end 2019) and all world countries (GLB). 

 

Table 3: Prior uncertainties (lower L and upper U bounds) per each EDGAR emission sector and two geographical entity types 

based on IPCC (2006) and IPCC-TFI (2019), and aggregated to the ECMWF group uncertainties for China (CHN), Europe (E28) 280 
and globe (GLB) 

№ ECMWF group IPCC (2006) activities per EDGAR sector 

Prior uncertainty bounds, % Uncertainty bounds, % 

WDS 

countries 

LDS 

countries 

CHN, 

WDS 

E28, 

WDS 

GLB, 

mix 

L U L U L U L U L U 

1 ENERGY_S 1.A.1.a (subset) 8.6 3.0 12.2 3.0 8.6 3.0 5.4 1.9 3.6 1.0 

2 ENERGY_A 
1.A.1.a (rest) 8.6 8.6 12.2 12.2 

8.6 8.6 2.8 2.8 3.5 3.5 
4.C 40.3 40.3 41.2 41.2 

3 MANUFACTURING 

1.A.2 8.6 8.6 12.2 12.2 

12.8 19.4 3.9 5.8 5.7 8.6 

2.C.1, 2.C.2 37.1 37.1 37.1 37.1 

2.C.3, 2.C.4, 2.C.5, 2.C.6, 2.C.7 73.2 73.2 73.2 73.2 

2.D.1, 2.D.2, 2.D.4 121.7 121.7 124.0 124.0 

2.A.1, 2.A.2, 2.A.3, 2.A.4 70.9 70.9 93.0 93.0 

2.B.1, 2.B.2, 2.B.3, 2.B.4, 2.B.5, 2.B.6, 

2.B.8 
107.8 89.9 107.8 89.9 

4 SETTLEMENTS 1.A.4, 1.A.5.a, 1.A.5.b.i, 1.A.5.b.ii 12.2 12.2 26.0 26.0 12.2 12.2 4.2 4.2 3.9 3.9 

5 AVIATION 

1.A.3.a_CRS 5.5 6.4 50.1 106.8 

3.5 4.1 1.4 1.6 17.3 58.1 1.A.3.a_CDS 5.5 6.4 50.1 106.8 

1.A.3.a_LTO 5.5 6.4 50.1 106.8 

6 TRANSPORT 

1.A.3.b 5.4 5.4 7.1 7.1 

5.1 8.2 1.6 1.8 4.3 6.4 1.A.3.d 5.4 5.1 50.0 50.0 

1.A.3.c, 1.A.3.e 50.3 106.9 50.5 107.0 

7 OTHER 

1.A.1.b, 1.A.1.c, 1.A.5.b.iii, 1.B.1.c, 

1.B.2.a.iii.4, 1.B.2.a.iii.6, 1.B.2.b.iii.3 
54.4 149.3 57.7 151.4 

39.7 180.9 10.1 45.3 11.5 52.4 

1.B.2.a.ii, 1.B.2.a.iii.2, 1.B.2.a.iii.3, 

1.B.2.b.ii, 1.B.2.b.iii.2, 1.B.2.b.iii.4, 

1.B.2.b.iii.5, 1.C 

191.1 339.1 210.9 364.5 

1.B.1.a 115.8 300.5 115.8 300.5 

3.C.2, 3.C.3, 3.C.4, 3.C.7 70.7 0.0 70.7 0.0 

2.D.3, 2.B.9, 2.E, 2.F, 2.G 25.0 25.0 50.0 50.0 

 

The next step is to combine these prior uncertainties for each EDGAR sector into ECMWF group uncertainties (see Table 3). 

Sector uncertainties are combined into group uncertainties by addition following Eq. (5) and Eq. (6): 
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𝑈𝐶𝐸𝐶𝑀𝑊𝐹𝑘 =
√({(𝑈𝐶𝐸𝐷𝐺𝐴𝑅1)𝑐𝑜𝑟𝑟}𝑙𝑛⋅𝐸𝐸𝐷𝐺𝐴𝑅1)2+({(𝑈𝐶𝐸𝐷𝐺𝐴𝑅2)𝑐𝑜𝑟𝑟}𝑙𝑛⋅𝐸𝐸𝐷𝐺𝐴𝑅2)2+⋯+({(𝑈𝐶𝐸𝐷𝐺𝐴𝑅𝑛)𝑐𝑜𝑟𝑟}𝑙𝑛⋅𝐸𝐸𝐷𝐺𝐴𝑅𝑛)2

|𝐸𝐸𝐷𝐺𝐴𝑅1+𝐸𝐸𝐷𝐺𝐴𝑅2+⋯+𝐸𝐸𝐷𝐺𝐴𝑅𝑛|
,  (5) 285 

𝐸𝐸𝐶𝑀𝑊𝐹𝑘 = 𝐸𝐸𝐷𝐺𝐴𝑅1 + 𝐸𝐸𝐷𝐺𝐴𝑅2 + ⋯ + 𝐸𝐸𝐷𝐺𝐴𝑅𝑛 ,        (6) 

where 𝑈𝐶𝐸𝐶𝑀𝑊𝐹𝑘  and 𝐸𝐸𝐶𝑀𝑊𝐹𝑘   – combined uncertainty and total emissions per group k; 1,2,…,n – EDGAR emission 

sectors that are combined in a particular ECMWF group k; {(𝑈𝐶𝐸𝐷𝐺𝐴𝑅1)𝑐𝑜𝑟𝑟}𝑙𝑛 , {(𝑈𝐶𝐸𝐷𝐺𝐴𝑅2)𝑐𝑜𝑟𝑟}𝑙𝑛 , … , {(𝑈𝐶𝐸𝐷𝐺𝐴𝑅𝑛)𝑐𝑜𝑟𝑟}𝑙𝑛 

are in %. Combined group uncertainties are country-specific, because they take into account sector budget and adjust 

uncertainty values accordingly.  290 

Finally, we needed to ensure a log-normal distribution of CO2 emissions. Upper and lower uncertainty half-range values per 

ECMWF group k ECMWFk are descriptive, but not straight forward to use for emission perturbations in ensemble runs or 

flux inversions, where mean and standard deviation of the distribution are usually used. The lower and upper bounds of the 

95 % probability range, which are the 2.5th and 97.5th percentiles respectively, calculated assuming a log-normal distribution 

based on a corrected estimated uncertainty half-range from an error propagation approach, are lower and upper uncertainty 295 

values. Taking this into account and using the Z-table2 for 2.5th and 97.5th percentiles p, mean 𝜇𝑙𝑛 and standard deviation 𝜎𝑙𝑛 

of log-normal distribution can be calculated following Eq. (7): 

𝑍𝑝 =
𝑙𝑛([𝐸𝐸𝐶𝑀𝑊𝐹𝑘]𝑝)−𝜇𝐸𝐶𝑀𝑊𝐹𝑘

𝑙𝑛

𝜎𝐸𝐶𝑀𝑊𝐹𝑘
𝑙𝑛 ,          (7) 

where the following variables are known: 

𝑝 = 2.5 => 𝑍2.5 = −1.96, [𝐸𝐸𝐶𝑀𝑊𝐹𝑘]2.5 = 𝐸𝐸𝐶𝑀𝑊𝐹𝑘 ⋅ (1 +
[𝑈𝐶𝐸𝐶𝑀𝑊𝐹𝑘]𝑙𝑜𝑤

100
),     (8) 300 

𝑝 = 97.5 => 𝑍97.5 = 1.96, [𝐸𝐸𝐶𝑀𝑊𝐹𝑘]97.5 = 𝐸𝐸𝐶𝑀𝑊𝐹𝑘 ⋅ (1 +
[𝑈𝐶𝐸𝐶𝑀𝑊𝐹𝑘]ℎ𝑖𝑔ℎ

100
),     (9) 

then simple system could be composed and solved accordingly following Eq. (10) and Eq. (11): 

𝜇𝐸𝐶𝑀𝑊𝐹𝑘
𝑙𝑛 = 𝑙𝑛(𝐸𝐸𝐶𝑀𝑊𝐹𝑘) +

1

2
𝑙𝑛 (1 +

[𝑈𝐶𝐸𝐶𝑀𝑊𝐹𝑘]𝑙𝑜𝑤

100
) +

1

2
𝑙𝑛 (1 +

[𝑈𝐶𝐸𝐶𝑀𝑊𝐹𝑘]ℎ𝑖𝑔ℎ

100
),    (10) 

𝜎𝐸𝐶𝑀𝑊𝐹𝑘
𝑙𝑛 =

𝑙𝑛(1+
[𝑈𝐶𝐸𝐶𝑀𝑊𝐹𝑘]

𝑙𝑜𝑤
100

)−𝑙𝑛(1+
[𝑈𝐶𝐸𝐶𝑀𝑊𝐹𝑘]

ℎ𝑖𝑔ℎ

100
)

−3.92
,        (11) 

where [𝑈𝐶𝐸𝐶𝑀𝑊𝐹𝑘]𝑙𝑜𝑤 and [𝑈𝐶𝐸𝐶𝑀𝑊𝐹𝑘]ℎ𝑖𝑔ℎ  are in %. 305 

 

3.3 Monthly uncertainties 

For Earth system modelling and data assimilation purposes a sub-yearly time scale is more appropriate. Monthly profiles are 

available and used in air quality models and are more certain than the sub-monthly profiles. The monthly profiles used in 

EDGARv4.3.2 are standardised to 12 monthly shares per EDGAR sector and per region (i.e. Northern temperate zone, 310 

Equator, Southern temperate zone). They do not take into account the specificity of a single year and are not varying within a 

geographical entity (country). We used these global yearly and monthly emission maps for 2010 to calculate for each month 

 
2 The Z-table is a mathematical table for the values of the cumulative distribution function of the normal distribution. 
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a multiplication factor per 0.1º×0.1º grid-cell of the sector-specific maps. Then multiplication factors were combined with 

CHE_EDGAR-ECMWF_2015 maps and monthly country- and sector-specific CO2 emission budgets are calculated.  

Uncertainties for monthly budgets are obviously larger than yearly ones and instead of one standard deviation σ (Quilcaille et 315 

al, 2018) two or three standard deviations, 2σ or 3σ respectively are commonly used (Oda et al., 2018; Andres et al., 2014; 

Andres et al., 2011). We decided to be more analytical:  

1) to use the same procedure as for annual uncertainty calculation but base it on monthly emission budgets (i.e. 

uncertainties for IPCC activities are combined to EDGAR sectors with error propagation method, corrected for systematic 

underestimation by error propagation method, and adapted to have log-normal distribution). Obtained monthly uncertainties 320 

are the same or even smaller than the yearly ones, because empirical equations applied use emission budgets, which are 

smaller for individual months compared to the yearly values; 

2) to calculate the correlation α (an uncertainty boosting parameter) between yearly and monthly uncertainties based 

on an analysis of the variations over the different months following Eq. (12): 

(𝐸𝑌𝐸𝐴𝑅 ∙ 𝑈𝐶𝑌𝐸𝐴𝑅)2 = 𝛼2 ∙ ((𝐸𝑀𝑂𝑁𝑇𝐻1 ∙ 𝑈𝐶𝑀𝑂𝑁𝑇𝐻1)2 + (𝐸𝑀𝑂𝑁𝑇𝐻2 ∙ 𝑈𝐶𝑀𝑂𝑁𝑇𝐻2)2 + ⋯ + (𝐸𝑀𝑂𝑁𝑇𝐻12 ∙ 𝑈𝐶𝑀𝑂𝑁𝑇𝐻12)2), (12) 325 

where E and UC correspond to sectoral emission budget and uncertainty in kton and % respectively, 

YEAR,MONTH1,MONTH2,…,MONTH12 – yearly and monthly (January, February, …, December) values. Eq. (12) is based 

on the rule for combining uncorrelated uncertainties under addition of the error propagation equation (see Eq. (5)) and 

assumption that each month’s uncertainty should be enhanced (boosted) by the same value; 

3) to multiply the prior yearly uncertainties from Table 3 by the boosting parameter (specific per country and emission 330 

sector) and use the result as monthly prior uncertainties; 

4) to iterate calculation steps 1) to 3) in order to find the best boosting parameter (to have the best fit between yearly 

and combined 12-month uncertainties) for each country and emission sector. Once best boosting parameter was found (i.e. 

maximum difference between α from previous iteration and the current one over all countries and emission sectors became 

less than acceptable threshold) calculated monthly uncertainties per each EDGAR sector were grouped into 7 ECMWF 335 

groups and log-normal distribution of CO2 emissions was ensured.  

Figure 2 has simplified roadmaps for yearly and monthly uncertainty calculations.  

3.4 Covariance matrices 

The prior error covariance matrix of the emission inventory is required as an input to the inversion system. According to the 

IPCC (2006) all anthropogenic CO2 emissions are assumed to be fully uncorrelated, hence the prior error correlations 340 

between grid-cell emissions from the same sector should be assumed negligible if country- and/or sector-specific 

information is lacking. Only by assuming full absence of correlation it is possible to calculate emission uncertainties for each 

geographical entity and group of sectors with rather limited globally available information. For the first implementation, 

ECMWF group covariance matrices per each geographical entity have the same representation – emission group is fully 
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correlated with itself and fully uncorrelated with any other group. Table 4 shows an example for Europe (28 members till 345 

end 2019).  

Table 4: Representation of ECMWF group covariance matrices, example for Europe (E28) with diagonal values being log-normal 

variances ∙10-5 

E28 

Group of sectors 

E
N

E
R

G
Y

_
S
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M
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T
R

A
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S
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T
 

O
T

H
E

R
 

ENERGY_S 26.2 0.0 0.0 0.0 0.0 0.0 0.0 

ENERGY_A 0.0 2286.8 0.0 0.0 0.0 0.0 0.0 

MANUFACTURING 0.0 0.0 3435.5 0.0 0.0 0.0 0.0 

SETTLEMENTS 0.0 0.0 0.0 1518.3 0.0 0.0 0.0 

AVIATION 0.0 0.0 0.0 0.0 0.1 0.0 0.0 

TRANSPORT 0.0 0.0 0.0 0.0 0.0 473.8 0.0 

OTHER 0.0 0.0 0.0 0.0 0.0 0.0 9472.5 

 

Yearly uncertainties Monthly uncertainties 

 
Figure 2: Simplified roadmaps for yearly (left) and monthly (right) uncertainty calculation and their relation (bottom) 350 
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Due to the lack of information available to properly characterize the error correlations and error variances in the inventory, a 

refinement of those prior statistics will be carried out in a follow-on paper (Busserez et al. in preparation) using atmospheric 

CO2 observations. For this, the maximum likelihood of the prior error standard deviations and error correlation lengths will 

be estimated following approaches described in Wu et al. (2013). 355 

4 Comparison and discussion 

In this paper we decided to focus on some of the geographical areas – chosen to be among most emitting in total or per 

emission group, most typical or most influential for a certain region. A list of these geographical entities and development 

levels of their statistical infrastructures are presented in Table 5.  

 360 

Table 5: List of selected geographical entities with their statistical infrastructure’s development levels  

ISO Code Geographical name Type 

GLB All World Countries ALL 

E28 Europe (28 members till end 2019) WDS 

DEU Germany WDS 

ESP Spain WDS 

FRA France WDS 

GBR United Kingdom WDS 

POL Poland WDS 

BRA Brazil LDS 

CHN China WDS 

IDN Indonesia LDS 

IND India WDS 

JPN Japan WDS 

RUS Russian Federation LDS 

USA United States of America WDS 

 

4.1 Global versus country-specific results 

In order to see how development level of country’s or geographical entity’s statistical infrastructure is influencing emission 

uncertainty of that country or geographical entity itself and (possibly) global one, uncertainty calculations for selected 365 

entities were performed twice – with their original and inverse types (i.e. WDS becomes LDS and vice versa). More details 

on geographical entity’s statistical infrastructure development level (e.g. how it was determined) are given in the 

Supplementary Information, section S.4. Figure 3 shows sectoral emission budgets, uncertainties and contributions in 

percentage to the total uncertainty of country or geographical entity with its original and inverse statistical infrastructure 

development levels. The biggest impact of development level change can be noticed for countries with larger emission 370 

budgets. On average total uncertainties of selected countries (see Table 5) changed by 1-2 %; group uncertainties changed in 

line with prior uncertainties from Table 3 and countries emission budgets:  
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• most substantial uncertainty changes for SETTLEMENTS group (consists only from residential heating emissions) 

with rather high differences in prior uncertainties for WDS and LDS, ±12.2 % and ±26.0 % respectively;  

• strongly changes – for MANUFACTURING and ENERGY_A (and ENERGY_S where present) groups as their 375 

budgets usually make a significant part of country’s total emission budget. The MANUFACTURING group is globally 

mainly composed from combustion for manufacturing with rather low prior uncertainty (±8.6 % and ±12.2 % for WDS and 

LDS respectively) and non-metallic minerals production with much higher uncertainties (±70.9 % and ±93.0 % for WDS and 

LDS respectively). It also contains emissions from very uncertain non-energy use of fuels (±121.7 % and ±124.0 % for WDS 

and LDS respectively) and chemical processes (-107.8/+89.9 % both for WDS and LDS) emissions, though their global 380 

share in this group is ~7.0 %. The ENERGY_A group is composed of emissions from average power plants with rather low 

uncertainties (±8.6 % and ±12.2 % for WDS and LDS respectively) and solid waste incineration with much higher 

uncertainties (±40.3 % and ±41.2 % for WDS and LDS respectively). For the Globe the ratio of solid waste incineration to 

energy emissions is ~1/100, which keeps the total ENERGY_A group prior uncertainty quite low ±3.5 % (NB! geographical 

entities with higher ratios will have higher uncertainties). The ENERGY_S group has emissions from super power plants 385 

only with rather low prior uncertainties (-8.6/+3.0 % and -12.2/+3.0 % for WDS and LDS respectively) for all geographical 

entities;  

• mildly changes – for TRANSPORT group which globally is mainly composed of road transportation with rather 

low uncertainty (±5.4 % and ±7.1 % for WDS and LDS respectively) and shipping emissions (NB! all international shipping 

is included in All World Countries) with low uncertainties -5.4/+5.1 % for WDS and high uncertainties ±50.0 % for LDS 390 

countries. In addition, this group contains rather uncertain railways, pipelines and off-road transport emissions (~ -

50.4/+107.0 % for both WDS and LDS), though their global share in this group is ~16.0 % only;  

• small changes (though huge in % value) – for AVIATION group as its prior uncertainties change dramatically from 

WDS to LDS (-5.5/+6.4 % and -50.1/+106.8 % respectively), though its share in global emissions is only 2.3 % (NB! all 

international aviation is included in All World Countries);  395 

• barely changes – for OTHER group as all its components are very uncertain and usually have the same prior 

uncertainties for both statistical infrastructure’s development levels. Its main composite globally (~78.0 %) are emissions 

from oil refineries and transformation industry with prior uncertainties -54.4/+149.3 % and -57.7/+151.4 % for WDS and 

LDS respectively. Also, this group usually has the highest contribution to the geographical entity’s total uncertainty. 

 400 
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Group emission budget , in Mtons Upper and lower group uncertainty bound for 

countries original  and inverse  type, in Mtons 

Group contribution to countries total uncertainty 

for countries original  and inverse  type, in % Group uncertainty , in % 

Figure 3: Emission budgets, uncertainties and contributions in percentage to the total uncertainty of the country with their 

original and inverse statistical infrastructure development types: impacting mainly country itself, e.g. Europe (E28), India (IND), 

impacting also Europe (E28), e.g. Germany (DEU), impacting even globe (GLB), e.g. China (CHN)  

 

Alterations in some countries’ (e.g. Germany, France) statistical infrastructure’s development levels lead to changes in 405 

Europe (28 members till end 2019) uncertainties, with most substantial change for SETTLEMENTS group (e.g. 2.5 and 1.0 

% respectively). Huge changes (> 10.0 %) in Europe’s (28 members till end 2019) AVIATION group uncertainty % value 
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can be due to the variation of statistical infrastructure development level for Germany, United Kingdom, France or Spain, 

though this groups contribution to the Europe’s (28 members till end 2019) total uncertainty remains negligible. Alterations 

in statistical infrastructure development levels for China or United States of America modify even global uncertainties 410 

because these countries substantially contribute to the global emission budget – China emits ~1/3 of the global anthropogenic 

CO2 budget and can change global total uncertainty up to 0.5 %. 

4.2 Yearly and monthly uncertainties 

In order to increase the emission temporal resolution, monthly emissions and their uncertainties were calculated combining 

yearly emissions, monthly multiplication factors, and adapted uncertainty calculation methodology (see Section 3.3). Prior 415 

yearly uncertainties were multiplied by dimensionless uncertainty boosting parameter α (same value for each month) to 

compute prior monthly uncertainties, which were further used together with monthly emission budgets for countries monthly 

uncertainty calculation. Monthly uncertainties (just like yearly uncertainties) are determined by empirical formulas from 

IPCC (2006), hence their values depend on monthly emission budgets, which relate to number of days in a month (e.g. even 

with a flat yearly cycle months with more days have higher emission budgets, i.e. month emissions are sum of daily values). 420 

To eliminate this dependency, we looked straight away at dimensionless uncertainty boosting parameter α, see Table 6 for 

most common values for WDS and LDS countries per EDGAR sectors. Boosting parameters become active (α ≠ 1) when 

absolute uncertainty values are ≥ 25.0 %, α increases with the increase of absolute uncertainty following third order 

polynomial. For lower bound uncertainties α has bigger values and steeper growth than for upper bound uncertainties (e.g. -

25.0 % ≙ α = 1.5 and -124.0 % ≙ α = 2.6; +25.0 % ≙ α = 0.8 and +124.0 % ≙ α = 1.2), α behaves in the same way for WDS 425 

and LDS countries. Discrepancies in different geographical entity’s (country’s) boosting parameters might be for several 

reasons, main ones are: (i) sector emissions were zero (e.g. super power plant emissions of the energy (ENE) sector had no 

emissions); (ii) sector uncertainties were ≥ 50.0 % and needed to be adapted accordingly by log-normal distribution 

technique (e.g. agriculture soils (AGS) sector with prior uncertainties -70.7/+0.0 % both for WDS and LDS). Most 

significant discrepancies in α are for AGS sector (e.g. instead of lower/upper values from Table 6 for WDS France has α = 430 

1.8/3.1, United Kingdom – 1.8/7.2, China – 1.8/8.4, Japan – 1.8/10.8; instead of lower/upper values from Table 6 for LDS 

Brazil has α = 1.8/0.0, Russian Federation – 1.8/5.6). 

In general, Brazil, Indonesia and India have a very weak yearly cycle with quite high monthly uncertainties throughout the 

year. Globe, Europe (28 members till end 2019), Germany, Spain, France, United Kingdom, Poland, China, Japan, Russian 

Federation, and United States of America have more pronounced yearly cycle, most significant for SETTLEMENTS and 435 

ENERGY_A (and ENERGY_S where present) groups, and less significant for AVIATION, TRANSPORT and 

MANUFACTURING groups. This is in line with the monthly profiles applied in EDGARv4.3.2 for Northern and Southern 

temperate zones, and Equator (see Janssens-Maenhout et al. (2019)). In summer months for Northern temperate zone, a 

strong decrease in SETTLEMENT and ENERGY_A (and ENERGY_S where present) groups emissions was observed, a 

light decrease in MANUFACTURING group emissions, and a light increase in AVIATION and TRANSPORT groups 440 
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emissions. This corresponds rather well with the assumption that most of the population in the Northern hemisphere must 

heat their houses during winter, and that they take holidays and travel more during summer.  

 

Table 6: Dimensionless (DN) boosting parameter uncertainties (lower L and upper U bounds) for statistically well- (WDS) and less 

well-developed (LDS) countries  445 

№ ECMWF group IPCC (2006) activities per EDGAR sector 

Uncertainty boosting parameter, DN 

WDS countries LDS countries 

L U L U 

1 ENERGY_S 1.A.1.a (subset) 1.0 1.0 1.0 1.0 

2 ENERGY_A 
1.A.1.a (rest) 1.0 1.0 1.0 1.0 

4.C 1.8 0.8 1.9 0.8 

3 MANUFACTURING 

1.A.2 1.0 1.0 1.0 1.0 

2.C.1, 2.C.2 1.7 0.8 1.7 0.8 

2.C.3, 2.C.4, 2.C.5, 2.C.6, 2.C.7 2.0 0.9 2.0 0.9 

2.D.1, 2.D.2, 2.D.4 2.6 1.2 2.6 1.2 

2.A.1, 2.A.2, 2.A.3, 2.A.4 2.0 0.9 2.3 1.0 

2.B.1, 2.B.2, 2.B.3, 2.B.4, 2.B.5, 2.B.6, 2.B.8 2.4 1.0 2.4 1.0 

4 SETTLEMENTS 1.A.4, 1.A.5.a, 1.A.5.b.i, 1.A.5.b.ii 1.0 1.0 1.5 0.9 

5 AVIATION 

1.A.3.a_CRS 1.0 1.0 1.7 1.1 

1.A.3.a_CDS 1.0 1.0 1.7 1.1 

1.A.3.a_LTO 1.0 1.0 1.7 1.1 

6 TRANSPORT 

1.A.3.b 1.0 1.0 1.0 1.0 

1.A.3.d 1.0 1.0 1.7 0.9 

1.A.3.c, 1.A.3.e 1.7 1.1 1.7 1.1 

7 OTHER 

1.A.1.b, 1.A.1.c, 1.A.5.b.iii, 1.B.1.c, 1.B.2.a.iii.4, 1.B.2.a.iii.6, 

1.B.2.b.iii.3 
1.7 1.4 1.8 1.4 

1.B.2.a.ii, 1.B.2.a.iii.2, 1.B.2.a.iii.3, 1.B.2.b.ii, 1.B.2.b.iii.2, 

1.B.2.b.iii.4, 1.B.2.b.iii.5, 1.C 
3.0 2.4 3.1 2.5 

1.B.1.a 2.5 2.2 2.5 2.2 

3.C.2, 3.C.3, 3.C.4, 3.C.7 1.8 0.0 2.0 0.0 

2.D.3, 2.B.9, 2.E, 2.F, 2.G 1.5 0.8 1.7 0.9 

 

4.3 Comparison with UNFCCC, TNO and other data 

The CHE_EDGAR-ECMWF_2015 dataset containing 7 global gridded fossil CO2 emission flux maps, and country- and 

ECMWF-group-specific emission budgets and uncertainties have been assessed with independent data. Global emission 

budget values from different datasets are never the same, therefore it is important to first identify why estimates differ 450 

between datasets – datasets might use same country-level information as primary input, nevertheless differences in inclusion, 

interpretation, and treatment of that data lead to diverse results in emissions; second – try to harmonise e.g. data inclusion or 

omission across datasets to have more clarity in the discrepancies.  

For Europe (28 members till end 2019), Germany, Spain, France, United Kingdom, Poland, Japan, Russian Federation and 

United States of America emission and uncertainty data was collected from UNFCCC NIR. The aggregation of the IPCC 455 
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(2006) activity-specific emissions and uncertainties into 7 ECMWF groups was done assuming no correlation, following 

IPCC (2006). Although IPCC (2006) has a standard table to report GHG emissions, uncertainties can be reported in less 

detail by a more general category (e.g. 2.D only instead of 2.D.1, 2.D.2, 2.D.3, 2.D.4), meaning information harmonization 

required lots of careful time-consuming country-specific technical work. 

The Netherlands Organisation for Applied Scientific Research (TNO) has recently prepared the first version of their GHG 460 

and co-emitted species emission database (TNO_GHGco_v1.1) that covers the entire European domain (at 0.1º×0.05º 

resolution) also for CO2 (distinguishing between fossil fuel and biofuel). Initial emission data is from the UNFCCC 

(Common reporting format (CRF) tables) and the European Monitoring and Evaluation Programme/Centre on Emission 

Inventories and Projections for air pollutants (EMEP/CEIP). These data were harmonized, checked for gaps, errors and 

inconsistencies, and (where needed) replaced or completed using emission data from the Greenhouse gas-Air pollution 465 

Interactions and Synergies (GAINS) model (Amann et al., 2011). Moreover, inland shipping emissions were replaced with 

TNO’s own estimates and sea shipping is based on automatic identification system (AIS) based tracks. Expert judgement is 

used to assess the quality of each data source and to make choices on which source to use. The resulting emissions were 

checked in detail with regard to their absolute value and trends (Kuenen et al., 2014). In this study we used emission budgets 

from 30 TNO sectors provided by TNO (Super et al., February 2020, personal communication), and prior uncertainties 470 

calculated from IPCC (2006) and IPCC-TFI (2019) see Table 7 (NB! all uncertainty calculations were done per country and 

only then for comparison purposes aggregated to Europe (28 members till end 2019) values assuming no correlation 

following IPCC (2006)). In addition, TNO has provided Tier 2 (Monte Carlo approach) uncertainties based on the same 

budgets and uncertainties from submitted NIR reports based on Tier 1 approach. The Monte Carlo simulations were done at 

the highest detail level (nomenclature for reporting (NFR) sector/fuel type) assuming correlations between certain sectors 475 

(for more information see Super et al. (2020)), and then emissions were aggregated to ECMWF groups assuming no 

correlation. 

 

Table 7: Prior uncertainties (lower L and upper U bounds) per each TNO emission sector based on IPCC (2006) and IPCC-TFI 

(2019), and aggregated to the ECMWF group uncertainties for Germany (DEU) and Europe (E28) 480 

№ ECMWF group IPCC (2006) activities per TNO sector 

Prior uncertainty bounds, % Uncertainty bounds, % 

WDS countries DEU E28 

L U L U L U 

1 ENERGY_S 1.A.1.a (subset) 8.6 3.0 0.0 0.0 0.0 0.0 

2 ENERGY_A 
1.A.1.a (rest) 8.6 8.6 

8.6 8.6 3.1 3.1 
4.C 40.3 40.3 

3 MANUFACTURING 

1.A.2 8.6 8.6 

8.3 9.0 3.0 3.6 

2.C.1, 2.C.2 37.1 37.1 

2.C.3 10.2 10.2 

2.C.4, 2.C.5, 2.C.6, 2.C.7 72.5 72.5 

2.D.2 106.8 106.8 

2.D.1, 2.D.4 50.3 50.3 

2.A.1 36.7 36.7 
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2.A.2, 2.A.3, 2.A.4 60.7 60.7 

2.B.1, 2.B.2, 2.B.3, 2.B.4, 2.B.5, 2.B.6, 2.B.8 107.8 89.9 

4 SETTLEMENTS 
1.A.4 12.2 12.2 

12.1 12.1 4.2 4.2 
1.A.5.a, 1.A.5.b.i, 1.A.5.b.ii 0.0 0.0 

5 AVIATION 

1.A.3.a_CRS 5.5 6.4 

5.5 6.4 1.9 2.2 1.A.3.a_CDS 5.5 6.4 

1.A.3.a_LTO 5.5 6.4 

6 TRANSPORT 

1.A.3.b 5.4 5.4 

5.4 7.4 1.8 3.1 
1.A.3.d 5.4 5.1 

1.A.3.c 5.4 5.1 

1.A.3.e 50.0 106.7 

7 OTHER 

1.A.1.b 8.6 8.6 

8.1 19.6 3.7 12.4 

1.A.1.c 12.2 12.2 

1.A.5.b.iii, 1.B.1.c, 1.B.2.a.iii.4, 1.B.2.a.iii.6, 

1.B.2.b.iii.3 
0.0 0.0 

1.B.2.a.ii, 1.B.2.a.iii.2, 1.B.2.a.iii.3, 1.B.2.b.ii, 

1.B.2.b.iii.2, 1.B.2.b.iii.4, 1.B.2.b.iii.5 
176.3 267.2 

1.C 50.0 100.0 

1.B.1.a 115.8 300.5 

3.C.2 50.0 0.0 

3.C.3, 3.C.4, 3.C.7 50.0 0.0 

2.D.3, 2.B.9, 2.E, 2.F, 2.G 25.0 25.0 

 

Figure 4 shows emission budgets and uncertainties in Mtons, and contributions in % to the total geographical entity’s 

uncertainty for Europe (28 members till end 2019), Germany, Spain, France, United Kingdom and Poland with their original 

statistical infrastructure development types based on data from CHE_EDGAR-ECMWF_2015 (in pink), UNFCCC (in 

yellow), and TNO_GHGco_v1.1 Tier 1 (in blue) and Tier 2 (in green). Out of the four different sources, usually UNFCCC 485 

and TNO_GHGco_v1.1 Tier 2 uncertainties are the lowest ones and CHE_EDGAR-ECMWF_2015 – the highest one. It 

should be noted that: (i) UNFCCC uncertainties were aggregated to ECMWF groups individually per each country as 

uncertainties are reported in a rather free form thus could be aggregated from different levels of precision, (ii) uncertainties 

for Europe (28 members till end 2019) from CHE_EDGAR-ECMWF_2015 are rather low as they were calculated by 

aggregating information of 28 countries, rather than assuming it to be a one geographical entity from the beginning as it is 490 

done in UNFCCC, and (iii) differences in uncertainties of CHE_EDGAR-ECMWF_2015 with other sources, especially in 

fuel dependent emission groups, might be due to biofuels, as CHE_EDGAR-ECMWF_2015 is not taking them into account, 

and other sources (e.g. according to UNFCCC SETTLEMENT group uncertainties for United Kingdom are ±24.5 % 

(contributes 95 % of United Kingdom’s total uncertainty), which is twice higher according to other sources – it might be 

explained by use of other fuels, e.g. wood and/or coal for residential heating). Differences in uncertainties between 495 

CHE_EDGAR-ECMWF_2015 and TNO_GHGco_v1.1 Tier 1 show additional value in more detailed emission budget 

knowledge, i.e. if we know for certain that country has no glass production then this rather uncertain activity can be excluded 

from non-metallic minerals production sector overall uncertainty calculation. Differences in uncertainties between 
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TNO_GHGco_v1.1 Tier 1 and TNO_GHGco_v1.1 Tier 2 show additional value in advanced calculation technique, using a 

more sophisticated, data demanding Monte Carlo approach instead of simple error propagation. Overall there is quite good 500 

agreement in emission budgets and uncertainties from different sources of emission data.  

 

  

  

  

Group emission budget, in Mtons for UNFCCC , 

CHE_EDGAR-ECMWF_2015 , 

TNO_GHGco_v1.1 Tier 1  & Tier 2  

Upper and lower group uncertainty 

bound, in Mtons for UNFCCC , 

CHE_EDGAR-ECMWF_2015  , 

TNO_GHGco_v1.1 Tier 1   & Tier 2   

Group contribution to countries total 

uncertainty, in % for UNFCCC , 

CHE_EDGAR-ECMWF_2015 , 

TNO_GHGco_v1.1 Tier 1  & Tier 2  Group uncertainty , in % 
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Figure 4: Emission budgets, uncertainties and contributions in percentage to the total uncertainty for Europe (E28), Germany 

(DEU), Spain (ESP), France (FRA), United Kingdom (GBR) and Poland (POL) with their original statistical infrastructure 

development types 505 

 

Emission budgets, Tier 1 uncertainties, and contributions in percentage to the total geographical entity’s uncertainty for 

Japan, Russian Federation and United States of America from CHE_EDGAR-ECMWF_2015 could be compared only with 

UNFCCC data (plots not shown here). UNFCCC uncertainties are usually lower than the ones calculated in this study. Main 

reason for that is use of country-specific emission data and AD uncertainties, which are lower than default values suggested 510 

by IPCC (2006) and IPCC-TFI (2019). Only for fuel dependent groups (e.g. AVIATION) UNFCCC uncertainties might be 

higher than in this study as rather uncertain biofuels might be taken into account. Also, emission budgets reported to 

UNFCCC show some differences from the ones from CHE_EDGAR-ECMWF_2015. For Japan group budgets agree rather 

well, and total budget difference is ~1.0 %. For Russian Federation major differences are in ENERGY_A (and ENERGY_S) 

and MANUFACTURING groups, which results in ~6.0 % higher total budget of CHE_EDGAR-ECMWF_2015. For United 515 

States of America major differences are ~200 Mton and ~100 Mton for SETTLEMENTS and OTHER groups respectively, 

which results in ~4.0 % higher total budget than based on UNFCCC data.  

Recent comparison of different gridded global datasets by Andrew (2020) pointed out that only few of these datasets provide 

quantitative uncertainty assessment, see summary in Table 8. Comparing to other global emission uncertainty values 

CHE_EDGAR-ECMWF_2015 shows lowest values – it might be rather deceptive as all calculations were done at the 520 

country level and then aggregated to global level assuming no correlation following IPCC (2006), we have also calculated 

separately upper and lower uncertainty bounds to preserve as much initial information as possible especially of asymmetric 

confidence intervals for large uncertainties although it is not required by the Approach 1 methodology (according to 

Approach 1 from IPCC (2006) only higher uncertainty value of asymmetric interval should be used – leads to artificial 

inflation of uncertainty upper or lower limit); on the other hand it might be also because in this study we were not taking into 525 

account proxy grid-map uncertainties. Proxy grid-map uncertainties can be rather easily added on top of calculated 

uncertainties by the end user. 

 

Table 8: Comparison of global anthropogenic CO2 emission uncertainty at 2σ associated with certain emission dataset 

Name Global uncertainty at 2σ, % 

BP no quantitative assessment of uncertainty associated with its emissions dataset 

CDIAC ±8.4 % 

CEDS 
no quantitative assessment of uncertainty associated with its emissions dataset, 

limited information in Hoesly et al. (2018) 

CHE_EDGAR-ECMWF_2015 ±7.1 % (-4.7/+9.6 %) 

EDGAR ±9.0 % 

EIA no quantitative assessment of uncertainty associated with its emissions dataset 

Global Carbon Project (GCP) ±10.0 % 

IEA no quantitative assessment of uncertainty associated with its emissions dataset 

 530 
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4.4 Sensitivity to the fuel specificity 

As mentioned above, for transport related emission uncertainty calculations only the most typical fuel type (for aviation, 

railways, shipping) and EF uncertainty (for road and off-road transport) were used, because detailed fuel consumption 

information per IPCC activity was not available for this study. EDGAR dataset development team do have specific fuel 

information globally, which could be used for uncertainty calculation. EDGAR dataset with incorporated fuel-specific AD 535 

and EF uncertainties and Tier 1 approach for uncertainty calculation (see Supplementary Information, section S.5) 

hereinafter referred to as EDGAR-JRC. Country budget uncertainties were calculated by considering “full fuel” splitting and 

by taking into consideration the assumption that EF from sectors sharing the same fuel are fully correlated. This latter 

assumption transformed the sum in quadrature of Eq. (2) into a linear summation (Bond et al., 2004; Bergamaschi et al., 

2015). The uncertainty of AD were set in accordance with IPCC (2006) guidelines, in the range 5.0 to 10.0 % for 540 

combustion activities, 10.0 to 20.0 % for combustion in the residential sector, 25.0 % for bunker fuels in the marine 

transport, 35.0 % for industrial processes of cement, lime, glass, ammonia (the range of uncertainty values refers to the 95 % 

confidence interval of the mean, assigned separately to WDS and LDS countries). Uncertainties from EDGAR-JRC dataset 

aggregated to the ECMWF group level were compared with the ones from CHE_EDGAR-ECMWF_2015, see Table 9 for 

Europe (28 members till end 2019) and all world countries (GLB), and Table S6 from the Supplementary Information, 545 

section S.5, for all the rest geographical entities from Table 5. NB! Group contribution to the geographical entity’s 

(country’s) total uncertainty is zero when group has no emissions. Emission uncertainties from EDGAR-JRC reflect the 

share of fuel composing the emission of each country and are in line with the estimates by CHE_EDGAR-ECMWF_2015 for 

those countries where the fuel-composite uncertainty is closer to the average value assigned (see Table 3). Uncertainties 

calculated with fuel-specific data are usually smaller; when prevailing fuel coincides with typical fuel type from 550 

CHE_EDGAR-ECMWF_2015 emission group uncertainties from both sources are quite similar. It should be noted here that: 

(i) countries total uncertainty is higher in EDGAR-JRC due to aggregation technique (full correlation is assumed), (ii) 

AVIATION group uncertainties are higher in EDGAR-JRC due to prior aggregation of all three aviation connected sectors 

(cruise, climbing & descent, and landing & take off).  

 555 

Table 9: Aggregated to the ECMWF group level uncertainties (lower L and upper U bounds) in % and contributions in % to the 

total uncertainty (CV) for Europe (E28) and globe (GLB) from EDGAR-JRC (with extra fuel type knowledge) and CHE_EDGAR-

ECMWF_2015 (with typical fuel only) 

Country ECMWF group 
EDGAR-JRC CHE_EDGAR-ECMWF_2015 

L, % U, % CV, % L, % U, % CV, % 

GLB 

ENERGY_S 0.0 0.0 0.0 -3.6 1.0 0.0 

ENERGY_A -2.9 2.7 42.4 -3.5 3.5 11.0 

MANUFACTURING -4.3 4.3 41.3 -5.7 8.6 34.0 

SETTLEMENTS -2.5 2.5 1.9 -3.9 3.9 1.1 

AVIATION -4.2 5.8 0.5 -17.3 58.1 6.1 

TRANSPORT -2.5 2.6 7.7 -4.3 6.4 8.1 

OTHER -5.9 6.2 6.2 -11.5 52.4 39.7 
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TOTAL -4.8 4.8 100.0 -2.3 4.8 100.0 

E28 

ENERGY_S 0.0 0.0 0.0 -5.4 1.9 0.2 

ENERGY_A -2.0 2.4 56.4 -2.8 2.8 13.3 

MANUFACTURING -2.2 2.2 12.6 -3.9 5.8 20.0 

SETTLEMENTS -2.5 2.5 15.1 -4.2 4.2 8.8 

AVIATION -2.4 2.8 0.0 -1.4 1.6 0.0 

TRANSPORT -1.3 1.3 7.2 -1.6 1.8 2.8 

OTHER -5.0 5.0 8.7 -10.1 45.3 54.9 

TOTAL -3.3 3.6 100.0 -1.6 3.3 100.0 

 

The uncertainties derived in this study are an upper bound of the uncertainty estimation compared to the uncertainties 560 

calculated with more detailed information, as done by the countries and reported to UNFCCC or to the uncertainties 

calculated with fuel-specific data. Even though sometimes differences might be quite high in %, they are usually quite small 

in Mtons. Taking into account that data is not publicly available, requires a lot of time to collect and implement, and is not 

available globally – it was decided not to use it in this study for Tier 1 uncertainty calculations.  

 565 

4.5 Atmospheric sensitivity to nationally disaggregated emissions  

The gridded emissions are a required input to the ECMWF model used to simulate atmospheric CO2 globally (Agusti-

Panareda et al., 2014; Agusti-Panareda et al., 2019). Ideally, uncertainties at a grid-cell level would be preferred by the 

models, which is a difficult time-consuming task. In order to check if these calculations are necessary it was decided to run 

some experiments. High-resolution (~25 km horizontal resolution, 137 vertical levels) simulations with ECMWF Integrated 570 

Forecasting System (IFS) model have been performed to assess the atmospheric sensitivity to fully resolved emissions 

compared to nationally smoothed (global emission budget is conserved), see Figure 5.  

 

  
Emissions of CO2, in kg·m-2·s-1 

 
Figure 5: Anthropogenic CO2 flux source distribution – fully resolved (left), country aggregated (right) 

 575 
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Model simulations were performed for January 2015 with 3 hourly output. Anthropogenic, fire, ocean and biogenic fluxes 

(large-scale model BIAS mitigated by biogenic CO2 flux adjustment scheme BFAS) were considered. For the full model 

configuration description see McNorton et al. (2020). The atmospheric response to using either fully or partially resolved 

emissions compared with nationally smoothed emissions after a 10-day period are shown in Figure 6. It was noted that point 

sources (e.g. power plants, factories) can be easily detected if they comprise substantial part of countries total emission 580 

budget (e.g. in South Africa). If point sources are distributed homogeneously over the country and other areal sources are 

rather high as well it becomes really difficult to detect one extra/missing emitting hotspot (e.g. in Germany). China is a very 

good example for both cases as its western part has very little hotspots and they are easy to detect over the low emitting 

background, and its eastern part has lots of hotspots and high emitting areal sources which make it almost impossible to 

disentangle emissions from single power plant or factory from high emitting background. In general, even by resolving a 585 

single sector, in this case the energy sector (see Figure 6), a difference in the atmospheric response is evident. Differences of 

several ppm are detected over multiple regions, highlighting the importance of using high resolution spatially resolved 

emissions. With increase of both flux and transport model resolutions these differences are expected to increase further with 

steeper atmospheric CO2 gradients.  

 590 

Fully resolved emissions Only energy sector resolved emissions 

  
Difference in Total Column CO2, in ppm 

  
Figure 6: Difference in atmospheric response to using resolved and country aggregated emissions for January 2015 with IFS model 

at ~25 km resolution after 10-day simulation; the difference is calculated using both fully resolved emissions (left) or by only 

resolving the energy sector emissions (right) 

 

In McNorton et al. (2020) an ensemble of the ECMWF IFS model has been used to represent the atmospheric CO2 response 595 

to flux uncertainties derived in this study. The 50-member ensemble used spatially resolved anthropogenic, ocean, fire and 

biogenic fluxes. Prior anthropogenic emissions were taken from the CHE_EDGAR-ECMWF_2015 dataset and were 

perturbed using random noise and the log-normal yearly and monthly uncertainties reported here. They assumed that 

uncertainties have perfect spatial correlation within national domains and within a one-month period. No correlation was 

assumed between months and across different emission groups. McNorton et al. (2020) concludes that the atmospheric 600 
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response to the combined anthropogenic uncertainty is between 0.1-1.4 ppm for column-averaged CO2 over emission hot 

spots (see Tables 2 and 3 from McNorton et al. (2020)), these values are expected to increase further using weekly or daily 

uncertainty estimates. Figure 7 shows error growth in column CO2 (XCO2) from the ensemble simulations after 10 days 

using yearly and monthly uncertainties (from McNorton et al. (2020)). Results show a strong atmospheric signal from 

monthly uncertainties over the East Asia region, which is expected to increase further globally with hourly, daily or weekly 605 

uncertainties. 

 

 Annual anthropogenic uncertainties Monthly anthropogenic uncertainties 
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Figure 7: Error growth in column CO2 (XCO2) derived using IFS ensemble simulations after a 10-day period; using yearly (left) 

and monthly (right) uncertainties for both the global (top) and East Asian (bottom) domain 

 610 

5 Conclusions 

The new CHE_EDGAR-ECMWF_2015 dataset with anthropogenic fossil CO2 emissions and their uncertainties and with a 

new 7×7 covariance matrix for the atmospheric transport model was compiled and tested. The fossil CO2 emissions include 

all long cycle carbon emissions from human activities, such as fossil fuel combustion, industrial processes (e.g. cement) and 
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products use, but excludes emissions from land-use change and forestry. Human CO2 emission inventories were processed 615 

into gridded maps to provide an estimate of prior CO2 emissions, aggregated in 7 main emissions groups: 1) power 

generation super-emitters and 2) energy production average-emitters, 3) manufacturing, 4) settlements, 5) aviation, 6) other 

transport at ground level and 7) others, with estimation of their uncertainty and covariance. For the first implementation it is 

assumed that each emission group is fully correlated with itself and fully uncorrelated with any other group (only diagonal 

values are non-zero and equal to log-normal variance). A covariance matrix of 7×7 maintains the size for the inversion 620 

system to less than 50, which is adequate and computationally affordable. 

The CHE_EDGAR-ECMWF_2015 represents the 2015 fossil CO2 emissions prior at 0.1º×0.1º resolution that has been for 

the first time to our knowledge completed with full uncertainty information with global coverage. Estimation of emission 

uncertainties is purely based on IPCC (2006) and IPCC-TFI (2019) EF and AD uncertainty values and assumptions – mainly 

that emissions are fully uncorrelated. Uncertainties related to the spatial distribution (representativeness of the proxy data 625 

and their uncertainty) were not assessed in this study, but they can be included by the user on top of the calculated emission 

uncertainties. All calculations, performed for the year 2015, are documented so that the methodology and algorithms used 

can be easily adapted for any other year. The dataset can be directly used in inverse modelling, and ensemble data 

assimilation applications, such as those envisaged within the Copernicus Atmosphere Monitoring Service (CAMS) system.  

The CHE_EDGAR-ECMWF_2015 dataset consists of: (i) 1 grid-map with yearly anthropogenic CO2 emission fluxes per 630 

each of 7 groups and 1 all groups summed together (total of 8 grid-maps), in kg·m-2·s-1; (ii) 2 grid-maps with yearly 

emissions upper and lower uncertainty bounds per each of 7 groups and 1 all groups summed together (total of 16 grid-

maps), in %; (iii) 12 grid-maps with monthly anthropogenic CO2 emission fluxes per each of 7 groups and 1 all groups 

summed together (total of 96 grid-maps), in kg·m-2·s-1; (iv) 2 grid-maps with monthly emissions upper and lower uncertainty 

bounds per each of 12 months and per each of 7 groups and 1 all groups summed together (total of 192 grid-maps), in %; (v) 635 

Excel file with listed information per country. The Excel file is organized in spreadsheets by: 1) geographical entities and 

their statistical infrastructure development levels, 2) emission groups with their prior upper and lower uncertainty bounds per 

each geographical entities level type and IPCC activities included in each group, 3) yearly and monthly emission budgets 

(per group and per geographical entity – total), uncertainties (per group and total), contribution of each group to total 

geographical entities uncertainty in %. For modelling purposes the CO2 emission distribution is assumed to be log-normal 640 

with reported mean, standard deviation and variance (for the covariance matrices). 

Calculated emissions and uncertainties of fossil CO2 have been compared to other data sets based on the country-specific 

data reported to UNFCCC and on fuel-specific data reported in the energy statistics of IEA. The global values and their 

uncertainty at a 2σ range for the CHE_EDGAR-ECMWF_2015 dataset show the lowest value of -4.7/+9.6 % or ±7.1 % 

range (compared to CDIAC ±8.4 %, EDGAR ±9.0 %, GCP ±10.0 %), which is attributed to the methodology, in particular 645 

considering that (i) all calculations were done at the country level and then aggregated to global level assuming no 

correlation following IPCC (2006), and (ii) all calculations were done separately for upper and lower uncertainty bounds to 

preserve original information with asymmetric confidence intervals for large uncertainties (not required for the Approach 1 
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described in IPCC (2006)), but not specified for other datasets. At country level the CHE_EDGAR-ECMWF_2015 dataset 

provide generally larger uncertainty ranges, that are reduced when more detailed information is available to reduce the 650 

uncertainties; in summary, using the information that is uniformly available for all countries a coherent uncertainty 

representation is obtained. 

The CHE_EDGAR-ECMWF_2015 dataset has been tested to provide the ECMWF Earth system ensemble spread to 

characterise the CO2 atmospheric concentrations’ uncertainties in the prototype of the Copernicus CO2 Monitoring and 

Verification Support Capacity. Annual and monthly uncertainties have been evaluated in the ECMWF’s atmospheric 655 

transport model IFS ensemble simulations as well as the sensitivity to the spatial distribution of anthropogenic CO2 

emissions. Results show to be rather sensitive to the spatial distribution proxies, and most updated proxies and prior 

uncertainties are better adapted for data assimilation applications. This needs to be studied in a future research project, the 

Prototype system for a Copernicus CO2 service (CoCO2), that follows the current CHE research project. 

Contribution of representativeness errors to uncertainties and time correlation are neglected in CHE_EDGAR-660 

ECMWF_2015 and will need to be assessed in successive future studies. The estimation of global gridded emissions with 

their spatially and temporally distributed uncertainties constitute the backbone for atmospheric inversions to estimate 

anthropogenic emissions from atmospheric concentrations (Pinty et al., 2017). Dedicated satellite missions (e.g. Copernicus 

anthropogenic CO2 monitoring mission CO2M described in Janssens-Maenhout et al. (2020)) are being planned to monitor 

anthropogenic emissions from space and substantially reduce emission uncertainties. The developments in the emission 665 

uncertainty based on prior knowledge computation presented in this paper is an important preparatory step for an ensemble-

based CO2 Monitoring and Verification System prototype, such as the one developed within the CHE project. 

 

Data availability. EDGARv4.3.2 data are open access and available at 

http://edgar.jrc.ec.europa.eu/overview.php?v=432&SECURE=123, last access: 26 February 2020, 670 

doi:https://data.europa.eu/doi/10.2904/JRC_DATASET_EDGAR, documented in Janssens-Maenhout et al. (2019). 

CHE_EDGAR-ECMWF_2015 data (Choulga et al., 2020) are freely available https://doi.org/10.5281/zenodo.3712339, and 

consist of following files with information on anthropogenic CO2 emissions and their uncertainties:  

• Annual_Upper_Lower_Uncertainties_Percentage_0.1_0.1.nc – file has 2×8 fields with annual upper and lower 

uncertainty bounds in % per each emission group and for all groups summed together on a regular grid with 1800 pixels 675 

along the latitude and 3600 pixels along the longitude, where values represent centre of the grid-cell.  

- “Lower” – lower uncertainty bound (2.5th percentile of log-normal distribution) for yearly emissions, in %;  

- “Upper” – upper uncertainty bound (97.5th percentile of log-normal distribution) for yearly emissions, in %;  

- “Sector” – emission sector numerical name. “0” represents emission group ENERGY_S (with IPCC (2006) activity 

1.A.1.a (subset)) standing for power industry emissions from super emitting power plants; “1” group ENERGY_A 680 

(1.A.1.a (rest), 4.C) – power industry emissions from average emitting power plants, & solid waste incineration; “2” 

group MANUFACTURING (1.A.2, 2.C.1, 2.C.2, 2.C.3, 2.C.4, 2.C.5, 2.C.6, 2.C.7, 2.D.1, 2.D.2, 2.D.4, 2.A.1, 2.A.2, 
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2.A.3, 2.A.4, 2.B.1, 2.B.2, 2.B.3, 2.B.4, 2.B.5, 2.B.6, 2.B.8) – combustion for manufacturing (including autoproducers), 

& iron and steel production, & non-ferrous metals production, & non energy use of fuels, & non-metallic minerals 

production, & chemical processes; “3” group SETTLEMENTS (1.A.4, 1.A.5.a, 1.A.5.b.i, 1.A.5.b.ii) – energy for 685 

buildings, residential heating; “4” group AVIATION (1.A.3.a_CRS, 1.A.3.a_CDS, 1.A.3.a_LTO) – aviation cruise, & 

climbing and descent, & landing and take off; “5” group TRANSPORT (1.A.3.b, 1.A.3.d, 1.A.3.c, 1.A.3.e) – road 

transportation, & shipping, & railways, pipelines, off-road transport; “6” group OTHER (1.A.1.b, 1.A.1.c, 1.A.5.b.iii, 

1.B.1.c, 1.B.2.a.iii.4, 1.B.2.a.iii.6, 1.B.2.b.iii.3, 1.B.2.a.ii, 1.B.2.a.iii.2, 1.B.2.a.iii.3, 1.B.2.b.ii, 1.B.2.b.iii.2, 1.B.2.b.iii.4, 

1.B.2.b.iii.5, 1.C, 1.B.1.a, 3.C.2, 3.C.3, 3.C.4, 3.C.7, 2.D.3, 2.B.9, 2.E, 2.F, 2.G) – oil refineries and transformation 690 

industry, & fuel exploitation, & coal production, & agricultural soils, & solvents and products use; “7” represents all 

groups summed together; 

• Monthly_Upper_Lower_Uncertainties_Percentage_0.1_0.1.nc – file has 2×8×12 fields with monthly upper and 

lower uncertainty bounds in % per each emission group and for all groups summed together on a regular grid with 1800 

pixels along the latitude and 3600 pixels along the longitude, where values represent centre of the grid-cell. File stricture is 695 

identical to the file Annual_Upper_Lower_Uncertainties_Percentage_0.1_0.1.nc, but per month (1, 2, …, 12 correspond to 

January, February, …, December);  

• Annual_Upper_Lower_Uncertainties_0.1_0.1.nc – file has 3×8 fields with annual emissions, and upper and lower 

uncertainty bounds in kg·m-2·s-1 per each emission group and for all groups summed together on a regular grid with 1800 

pixels along the latitude and 3600 pixels along the longitude, where values represent centre of the grid-cell. 700 

- “Sup_lower” – lower uncertainty bound (2.5th percentile of log-normal distribution) for yearly emissions of 

ENERGY_S group, in kg·m-2·s-1; 

- “Sup_upper” – upper uncertainty bound (97.5th percentile of log-normal distribution) for yearly emissions of 

ENERGY_S group, in kg·m-2·s-1; 

- “Sup_flux” – yearly emissions of ENERGY_S group, in kg·m-2·s-1; 705 

- “Ene_lower”, “ene_upper”, “ene_flux” – same, but for ENERGY_A group, in kg·m-2·s-1; 

- “Man_lower”, “man_upper”, “man_flux” – same, but for MANUFACTURING group, in kg·m-2·s-1; 

- “Set_lower”, “set_upper”, “set_flux” – same, but for SETTLEMENTS group, in kg·m-2·s-1; 

- “Avi_lower”, “avi_upper”, “avi_flux” – same, but for AVIATION group, in kg·m-2·s-1; 

- “Tra_lower”, “tra_upper”, “tra_flux” – same, but for TRANSPORT group, in kg·m-2·s-1; 710 

- “Oth_lower”, “oth_upper”, “oth_flux” – same, but for OTHER group, in kg·m-2·s-1; 

- “All_lower”, “all_upper”, “all_flux” – same, but for all groups summed together, in kg·m-2·s-1; 

• Monthly_Sup_Upper_Lower_Uncertainties_0.1_0.1.nc – file has 3×12 fields with monthly emissions, and upper 

and lower uncertainty bounds in kg·m-2·s-1 per ENERGY_S emission group on a regular grid with 1800 pixels along the 

latitude and 3600 pixels along the longitude, where values represent centre of the grid-cell. 715 
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- “Sup_lower” – lower uncertainty bound (2.5th percentile of log-normal distribution) for monthly emissions of 

ENERGY_S group, in kg·m-2·s-1; 

- “Sup_upper” – upper uncertainty bound (97.5th percentile of log-normal distribution) for monthly emissions of 

ENERGY_S group, in kg·m-2·s-1; 

- “Sup_flux” – monthly emissions of ENERGY_S group, in kg·m-2·s-1; 720 

- “Month” – month numerical name, where 1, 2, …, 12 correspond to January, February, …, December; 

• Monthly_Ene_Upper_Lower_Uncertainties_0.1_0.1.nc – file has 3×12 fields with monthly emissions, and upper 

and lower uncertainty bounds in kg·m-2·s-1 per ENERGY_A emission group on a regular grid with 1800 pixels along the 

latitude and 3600 pixels along the longitude, where values represent centre of the grid-cell. File stricture is identical to the 

file Monthly_Sup_Upper_Lower_Uncertainties_0.1_0.1.nc, but with “ene_lower”, “ene_upper”, “ene_flux” fields;  725 

• Monthly_Man_Upper_Lower_Uncertainties_0.1_0.1.nc – file has 3×12 fields with monthly emissions, and upper 

and lower uncertainty bounds in kg·m-2·s-1 per MANUFACTURING emission group on a regular grid with 1800 pixels 

along the latitude and 3600 pixels along the longitude, where values represent centre of the grid-cell. File stricture is 

identical to the file Monthly_Sup_Upper_Lower_Uncertainties_0.1_0.1.nc, but with “man_lower”, “man_upper”, 

“man_flux” fields;  730 

• Monthly_Set_Upper_Lower_Uncertainties_0.1_0.1.nc – file has 3×12 fields with monthly emissions, and upper and 

lower uncertainty bounds in kg·m-2·s-1 per SETTLEMENTS emission group on a regular grid with 1800 pixels along the 

latitude and 3600 pixels along the longitude, where values represent centre of the grid-cell. File stricture is identical to the 

file Monthly_Sup_Upper_Lower_Uncertainties_0.1_0.1.nc, but with “set_lower”, “set_upper”, “set_flux” fields;  

• Monthly_Avi_Upper_Lower_Uncertainties_0.1_0.1.nc – file has 3×12 fields with monthly emissions, and upper 735 

and lower uncertainty bounds in kg·m-2·s-1 per AVIATION emission group on a regular grid with 1800 pixels along the 

latitude and 3600 pixels along the longitude, where values represent centre of the grid-cell. File stricture is identical to the 

file Monthly_Sup_Upper_Lower_Uncertainties_0.1_0.1.nc, but with “avi_lower”, “avi_upper”, “avi_flux” fields;  

• Monthly_Tra_Upper_Lower_Uncertainties_0.1_0.1.nc – file has 3×12 fields with monthly emissions, and upper and 

lower uncertainty bounds in kg·m-2·s-1 per TRANSPORT emission group on a regular grid with 1800 pixels along the 740 

latitude and 3600 pixels along the longitude, where values represent centre of the grid-cell. File stricture is identical to the 

file Monthly_Sup_Upper_Lower_Uncertainties_0.1_0.1.nc, but with “tra_lower”, “tra_upper”, “tra_flux” fields;  

• Monthly_Oth_Upper_Lower_Uncertainties_0.1_0.1.nc – file has 3×12 fields with monthly emissions, and upper 

and lower uncertainty bounds in kg·m-2·s-1 per OTHER emission group on a regular grid with 1800 pixels along the latitude 

and 3600 pixels along the longitude, where values represent centre of the grid-cell. File stricture is identical to the file 745 

Monthly_Sup_Upper_Lower_Uncertainties_0.1_0.1.nc, but with “oth_lower”, “oth_upper”, “oth_flux” fields;  

• Monthly_All_Upper_Lower_Uncertainties_0.1_0.1.nc – file has 3×12 fields with monthly emissions, and upper and 

lower uncertainty bounds in kg·m-2·s-1 for all groups summed together on a regular grid with 1800 pixels along the latitude 
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and 3600 pixels along the longitude, where values represent centre of the grid-cell. File stricture is identical to the file 

Monthly_Sup_Upper_Lower_Uncertainties_0.1_0.1.nc, but with “all_lower”, “all_upper”, “all_flux” fields;  750 

• CHE_EDGAR_2015.xlsx – file has 16 spreadsheets with listed information per country (metadata, emissions, 

uncertainties, statistical parameters).  

- “COUNTRY” – ISO Code (3-letter abbreviation of a geographical entity), Geographical name (name of a 

geographical entity), Type (development level of countries statistical system, meaning well-/less well-developed 

statistical system, WDS/LDS respectively), Main country (dependency, which country geographical entity in question 755 

belongs to), Full information (full name of a geographical entity, and what territory it occupies on this research map); 

- “GROUP” – № (number of anthropogenic CO2 emission group), ECMWF group (group name), IPCC (2006) 

activity (IPCC activities that are included in each group), Note (short explanation of the group), Global emission budget 

2015, Mton (total global emissions per group), Prior uncertainty bounds, % (initial, calculated purely based on 

assumptions from IPCC, lower and upper uncertainty bounds for countries with well-/less well-developed statistical 760 

systems); 

- “YEARLY” – ISO Code (3-letter abbreviation of a geographical entity), ECMWF group (group name), Budget, 

kton (yearly anthropogenic CO2 emission budget per group and total per geographical entity), Uncertainty bounds, % 

(calculated based on Prior uncertainty bounds and Budgets yearly uncertainties per group and total per geographical 

entity, uncertainties lower/upper/symmetrical bounds), Contribution to total countries uncertainty, % (share of each 765 

group in geographical entities total yearly uncertainty, total contribution is always 100 %), Parameters of log-normal 

distribution (anthropogenic CO2 emission distribution is assumed to be log-normal, so additionally for modelling 

purposes log-normal mean, log-normal standard deviation and log-normal variance were calculated); 

- “MONTHLY_01”, “MONTHLY_02”, …, “MONTHLY_12” – same explanation as for spreadsheet “YEARLY”, 

but for a month (01, 02, …, 12 correspond to January, February, …, December). 770 
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