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Abstract. The growth in anthropogenic carbon dioxide (CO2) emissions acts as a major climate-change driver, which has 

widespread implications across society, influencing the scientific, political and public sectors. For an increased 

understanding of the CO2 emission sources, patterns and trends, a link between the emission inventories and observed CO2 

concentrations is best established via Earth system modelling and data assimilation. In this study anthropogenic CO2 

emission inventories are processed into gridded maps to provide an estimate of CO2 emissions for 7 main emissions groups: 15 

1) energy production super-emitters, 2) energy production standard-emitters, 3) manufacturing, 4) settlements, 5) aviation, 6) 

other transport at ground level and 7) others, with estimation of their uncertainty and covariance to be included in the 

European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecasting System (IFS). The emission 

inventories are sourced from the Intergovernmental Panel on Climate Change (IPCC) 2006 Guidelines for National 

Greenhouse Gas Inventories and revised information from its 2019 Refinements, and the global grid-maps of Emissions 20 

Database for Global Atmospheric Research (EDGAR) inventory. The anthropogenic CO2 emissions for 2012 and 2015, 

(EDGAR versions 4.3.2 and 4.3.2_FT2015 respectively) are considered, updated with improved apportionment of the energy 

sector (decreased by 8 %) and the energy usage for manufacturing (increased by 18 %), and with newly generated diffusive 

CO2 emissions from coal mines. These emissions aggregated into 7 ECMWF groups with their emission uncertainties are 

calculated per country (considering its statistical infrastructure development level) and sector (considering the most typical 25 

fuel type) and use the IPCC recommended error propagation method assuming fully uncorrelated emissions. While the 

uncertainty of most groups remains relatively small (5-20 %), the largest contribution (usually over 40 %) to the total 

uncertainty is determined by the OTHER group with usually the smallest budget, consisting of oil refineries and 

transformation industry, fuel exploitation, coal production, agricultural soils and solvents and products use emissions, with 

uncertainties more than 100 %. Several sensitivity studies are performed: 1) for country type – by analysing the impact of 30 

assuming either a well or less-well developed statistical infrastructure, 2) for fuel type specification – by adding explicit 

information for each fuel type used per each IPCC activity, and 3) for national emission source distribution – by aggregating 
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all emission sources and evenly redistributing them over the country – highlights the importance of spatial mapping. 

Uncertainties are compared with United Nations Framework Convention on Climate Change (UNFCCC) and the 

Netherlands Organisation for Applied Scientific Research (TNO) data. Upgraded anthropogenic CO2 emission maps with 35 

their yearly and monthly uncertainties are combined into the CHE_EDGAR-ECMWF_2015 dataset (Choulga et al., 2020) 

available from https://doi.org/10.5281/zenodo.3967439. CHE_EDGAR-ECMWF_2015 consists of 11 global NetCDF files 

with gridded yearly and monthly upper and lower bounds of uncertainties in % and kg·m-2·s-1 for each ECMWF group and 

their sum, and 1 Excel file with 16 spreadsheets with the same information listed per country (metadata, emissions, 

uncertainties, statistical parameters). 40 

1 Introduction 

Carbon dioxide (CO2) is the most abundant greenhouse gas (GHG) (NOAA, 2019) contributing to the climate change. This 

study focuses on anthropogenic (man-made) long-cycle carbon CO2 emissions (i.e. emissions from fossil fuel use and 

industrial processes: cement production, carbonate use of limestone and dolomite, non-energy use of fuels and other 

combustion, chemical and metal processes, solvents, agricultural liming and urea, waste and fossil fuel fires (Janssens-45 

Maenhout et al., 2019)), that occur on top of an active natural carbon cycle, and generation of a reliable uncertainty band 

globally for different emission types that can be used in Earth system modelling and data assimilation. 

The CO2 growth rate varies from year to year with a tendency toward higher growth rates since the early 2000s. The added 

CO2 has a long life-time and only a portion of it transfers each year from the atmosphere to the oceans and to vegetation on 

land. The atmosphere exchanges carbon mainly between: (i) the terrestrial biosphere – impact on growth rate through 50 

deforestation and other forms of land management; (ii) the oceans – impact on growth rate through marine ecosystems 

implications due to CO2 in the form of carbonic acid absorption in surface waters and their mix with deep ocean waters; (iii) 

the fossil fuels and cement and other CO2 process emissions – when around 1920 fossil fuel burning became the dominant 

source of anthropogenic emissions to the atmosphere, with a clear increase of 91 ppm in the past six decades (from 316 ppm 

in 1959 till 407.4 ± 0.1 ppm in 2018), according to NOAA (2019).  55 

Accurate assessment of anthropogenic CO2 emissions is important to better understand the global carbon cycle. Efforts 

towards a global anthropogenic CO2 monitoring and verification support capacity as described by Janssens-Maenhout et al. 

(2020), rely on atmospheric modelling and atmospheric observations (in-situ from e.g. the Integrated Carbon Observation 

System, ICOS, air-borne from e.g. aircraft campaigns, or space-borne from e.g. the Orbiting Carbon Observatory, OCO-2, 

and the Greenhouse gases Observing Satellite, GOSAT). All measurements are assimilated by global tracer transport models 60 

to infer atmospheric CO2 changes or by flux inversion systems to estimate the large-scale surface CO2 fluxes. ECMWF for 

example applies both inverse modelling and direct modelling of global concentrations of CO2 in the atmosphere assimilating 

several types of observations.  

https://doi.org/10.5281/zenodo.3967439
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The global transport models require an initial best estimate of the CO2 emission fields with uncertainties, the so-called prior 

information. The intensity of the emission fields is corrected through minimization of the difference between the modelled 65 

and measured concentration values for CO2. The uncertainty of these corrected CO2 fluxes based on inverse modelling will 

be lower with the increase of CO2 observations and its accuracy. The disentanglement of the fossil CO2 emissions from the 

total atmospheric CO2 emissions remains challenging, e.g. in 2018 total anthropogenic CO2 concentrations (42.5 ± 3.3 Gt 

CO2) represented only 1.3 % of the global atmospheric CO2 concentration (407.4 ± 0.1 ppm) (Friedlingstein et al., 2019), 

which states the need for high accuracy of measurements (≥ 1.0 %). Emission fields are often supplied through emission 70 

inventories. Bottom-up emission inventories start from human activity statistics and emission factors are defined for each 

activity and provided at international or country level (e.g. National greenhouse gas Inventory Report, NIR). Such bottom-up 

inventories need to be gridded and characterised with uncertainties in order to represent a prior data set useful for numerical 

modelling. Table 1 shows examples of most used global gridded CO2 emission datasets, for more details see Andrew (2020), 

Janssens-Maenhout et al. (2019, Table 3) and Cong et al. (2018, Table 1).  75 

There is strong evidence to suggest fixed annual emissions do not represent sufficient temporal variability, for example, 

natural gas consumption has two seasonal peaks, with consumption patterns predominantly driven by weather – the largest 

peak occurs during winter due to low temperatures when natural gas is used more to heat residential and commercial spaces, 

the smaller peak occurs during summer due to high temperatures when natural gas, coal or petroleum-fired generators are 

used to generate more electric power for air conditioning (Bradley, 2015; Comstock, 2020). New version of EDGAR v5.0 is 80 

addressing high temporal disaggregation of emissions (Crippa et al., 2020). 

 

Table 1: Examples of global gridded anthropogenic CO2 emission bottom-up datasets  

Name Resolution Period Main assumptions, uncertainties Source 

Carbon Dioxide 

Information Analysis 

Center (CDIAC) 

Spatial: 1.0º×1.0º 

Temporal: annual, monthly 

Sectoral: 1 

1751-

2013 

Use population density to disaggregate 

emissions, the mass-emissions data based on 

fossil-fuel consumption estimates. Provide 

gridded annual and monthly uncertainty 

estimates for 1950-2013 

Andres et al., 1996; 

Andres et al., 2016 

Open-Data Inventory for 

Anthropogenic Carbon 

dioxide (ODIAC) 

Spatial: 1×1 km2, 0.1º×0.1º 

Temporal: monthly 

Sectoral: 6 

1979-

2018 

First introduced the combined use of nightlight 

data and individual power plant 

emission/location profiles  

Oda and Maksyutov, 

2011; Oda et al. 2018; 

ODIAC, 2020 

Emissions Database for 

Global Atmospheric 

Research (EDGAR) 

Spatial: 0.1º×0.1º 

Temporal: annual, monthly 

Sectoral: 26 

1970-

(year-1) 

Based on international statistics, covers all 

IPCC (2006) reporting categories, consistent 

methodology applied to all the world countries 

Janssens-Maenhout et 

al., 2019 

Fossil Fuel Data 

Assimilation System 

(FFDAS) 

Spatial: 0.1º×0.1º 

Temporal: annual 

Sectoral: 2 

1997-

2012 

Provide gridded posterior uncertainty (version 

2.2); in addition, provide monthly, weekly, and 

hourly fractions from annual CO2 emissions 

Asefi-Najafabady et al., 

2014 

Community Emissions 

Data System (CEDS) 

Spatial: 0.1º×0.1º 

Temporal: annual, monthly 

Sectoral: 55 

1750-

2014 

Provide emissions of CO2 and other GHGs and 

pollutants 

Hoesly et al., 2018 

Peking University Fuel 

combustion inventory 

(PKU-FUEL) 

Spatial: 0.1º×0.1º 

Temporal: monthly 

Sectoral: 6 

1960-

2014 

By request provide daily emissions and the 

results of Monte Carlo simulation-based 

uncertainty analyses 

Chen et al., 2016; Liu et 

al., 2015 
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Though there are global anthropogenic emission gridded datasets, most of them have scarce evaluation of uncertainties, 85 

which needs enhancement with the relative errors for sector-specific country totals and the uncertainties in trends with the 

appropriate probability density functions. Only 3 datasets from Table 1 provide uncertainty estimates, namely CDIAC, 

FFDAS and PKU-FUEL. CDIAC uncertainties have no sectors and include contributions from the tabular fossil fuel CO2 

emissions (assigned per 7 country types, values are constant over time), geography map (power plant location), and 

population map (has details both in time and space, is used to distribute fossil fuel CO2 emissions). Population map 90 

uncertainty strongly dominates in the generated gridded fossil fuel CO2 uncertainties (Andres et al., 2016). CDIAC 

uncertainties have no sectoral distribution and are presented on 1.0º×1.0º grid. FFDAS provides only posterior uncertainties,  

which are based on a model inversion. These posterior uncertainties could be used as prior uncertainties for separate 

inversion systems, however this would make the characterisation of uncertainty more complex if there were similarities in 

the model and observations used. PKU-FUEL uncertainty estimates of CO2 emission maps associated with uncertain fuel 95 

data and uncertain activity data in the spatial disaggregation process are based on Monte Carlo ensemble simulations. Input 

data was randomly sampled 1000 times from an a priori normal uncertainty distribution with a certain coefficient of 

variation: for fuel consumptions from ships/aviation sector coefficient of variation is set to be 20 %, for wildfires sector – 18 

%, for all other fuel data – 10 %, for combustion rates – 20 %. Additional coefficient of variation was assigned for each 

country or subnational unit based on its size to consider uncertainty of spatial fuel data disaggregation (e.g. coefficient of 100 

variation for the largest subnational unit of the world Asian part of the Russian Federation is 1000 %). Emission factor 

coefficient of variation was constant value of 5 % (Wang et al., 2013). PKU-FUEL uncertainties were heavily based on 

subjective assumptions and rather detailed information of fuel type, which makes is difficult to use for IPCC (2006) 

reporting categories. 

In this study, we focus on fossil emissions (from fossil fuel combustion, use and production, and process emissions from 105 

cement production and others such as glass, chemicals, urea) and we distinguish between point sources and sources with 

wider spatial distribution. The scope of this research is to generate a reliable uncertainty band on 0.1º×0.1º grid with global 

coverage based on emission type for the yearly and monthly emission budgets, that are the composite of anthropogenic fossil 

fluxes, and that are aligned with updated IPCC requirements. Uncertainty characterisation is key for optimally combining the 

bottom-up inventories with the top-down data assimilation.  110 

In this study 2015 is chosen as a base year to analyse anthropogenic CO2 budgets (i.e. global, regional, national) from 

different sources (i.e. global statistics, national reports), benefitting the availability of observations (both in-situ and space-

borne) as well as reported and verified emission inventories. Global CO2 emissions from fossil fuel and industrial processes 

such as cement production reached a total of 36.2 Pg CO2 in 2015 according to EDGAR inventory version 4.3.2_FT2015 

(Olivier et al., 2016a). The use of energy represents by far the largest source of emissions (89 % share globally), and in 115 

particular the energy industry sector (38 % share) (including both combustion and fugitive gas releases from use but also 

production, processes, transmission and storage of fuels for energy and heat generation). Another reason for choosing 2015 

is that it’s the year of the Paris Agreement and the reference year for several Nationally Determined Contributions (NDCs). 
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Countries have submitted their pledges to the United Nations (UN), setting out how far they plan to reduce their GHG 

emissions – NDCs (CarbonBrief, 2020). Yet concentrations are still growing. In 2015, the average concentration of CO2 (399 120 

ppm) was about 40 % higher than in the mid-1800s, with an average growth of 2 ppm/yr in the last ten years. Furthermore, 

according to JRC 2019 Report (Crippa et al., 2019) between 2015 till 2018, just in three years global CO2 emissions have 

raised by 4.3 % (1575.2 Mt CO2/yr), of which the international component of CO2 emissions (shipping and aviation bunker 

fuel) has even raised by 6.3 % (75.1 Mt CO2/yr). 

Following the Intergovernmental Panel on Climate Change (IPCC) 2006 Guidelines for National Greenhouse Gas 125 

Inventories and revised information from its 2019 Refinements (IPCC-TFI, 2019) we start from the global fossil CO2 grid-

maps of EDGAR inventory versions 4.3.2 (Janssens-Maenhout et al., 2019) and 4.3.2_FT2015 (Olivier et al., 2016a), for 

2012 and 2015 respectively, and derive an updated emission dataset as prior input to the ECMWF model: CHE_EDGAR-

ECMWF_2015 (CHE stands for the CO2 Human Emissions project (CHE, 2020)). We improve the EDGARv4.3.2 dataset by 

correcting the allocation of the autoproducers (autoproducers are defined by International Energy Agency (IEA) and include 130 

the energy (electricity and heat) generated by an industry for its own use, mostly for the manufacturing) to the manufacturing 

sector instead of the energy sector and by adding the diffusive CO2 emissions from coal mines. We then aggregate the 

sectors in 7 emission groups while tracking 232 countries separately. Uncertainties are calculated per country and sector 

considering the most typical fuel type using the error propagation method of the IPCC (2006) guidelines. According to the 

IPCC (2006) guidance all emissions are considered to be fully uncorrelated; this assumption is further used to calculate 135 

uncertainty and covariance matrices. The country-based uncertainties and the share to the total uncertainty are presented for 

the 7 ECMWF emission groups, with calculations based on 20 EDGAR sectors for two distinct country types with well- and 

less well-developed statistical infrastructures. While the uncertainty of most groups (i.e. power industry, combustion for 

manufacturing, and road transport) remains small (5-20 %), the largest contribution (over 40 %) to the total uncertainty is 

determined by rather small but relative uncertain (more than 100 %) sectors (i.e. non energy use of fuels, chemical processes, 140 

fuel exploitation, and coal production) emissions. 

This paper is organised as follows. Section 2 describes the data sources and includes the description of the anthropogenic 

CO2 emission datasets used to calculate emission uncertainties, data pre-processing, emission sectors and groups, and 

geographical treatment of emissions. Section 3 discusses the uncertainty calculation methodology applied to the datasets, to 

calculate both yearly and monthly uncertainties. Section 4 provides details on the newly generated dataset. National sectorial 145 

emission budgets are compared in Section 5. The main results, a discussion and further research guidance are covered in the 

conclusion in Section 6. This paper also has Supplementary Information with details on methods and assumptions used. 
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2 Data 

2.1 Update of fossil CO2 emissions as input for the ECMWF model 

Main requirements for datasets in order to be used in global numerical models are being global and gridded, and preferably 150 

with continuous update. In this study it was decided to use EDGARv4.3.2 (and EDGARv4.3.2_FT2015) because it is based 

on international statistics, mainly IEA data, has a unique global geo-coverage with 228 countries/regions and continuous 

updates of the time-series. The most relevant activity data for both EDGARv4.3.2 and CHE_EDGAR-ECMWF_2015 are the 

energy statistics from IEA (2014), which has been corrected for few outliers and for the revised Chinese coal statistics of 

2015. For the update from 2012 to 2015 we used the fast track approach of Olivier et al. (2016b), with IEA (2016) energy 155 

statistics and BP (2017) statistics. EDGAR distributes anthropogenic emissions for each source category over a uniform, 

global 0.1º×0.1º grid defined with lower left coordinates and provides annual and monthly global emissions grid-maps. The 

bottom-up emissions calculation methodology and emission factors, either defaults recommended by IPCC (2006) guidelines 

or region-specific ones justified by scientific evidence, are consistently applied to all countries in order to achieve 

comparability and full transparency.  160 

We focus on long-cycle carbon CO2 and therefore consider the CO2 from fossil fuel use (combustion and other use of 42 

fossil fuels) and from industrial processes (cement production, carbonate use of limestone and dolomite, non-energy use of 

fuels and other combustion, chemical and metal processes, solvents, agricultural liming and urea, waste and fossil fuel fires). 

Excluded are consumption of biofuels and short-cycle biomass burning (such as agricultural waste burning), large-scale 

biomass burning (such as forest fires, savannah burning, woodland and peatland fires) and carbon emissions/removals of 165 

land-use, land-use change and forestry (LULUCF)1. Based on the Global Carbon Budget 2018 findings this sector showed 

no significant trend since 1960s, only high year-to-year variability and high uncertainty (Bastos et al., 2020; Le Quéré et al., 

2018; Arneth et al., 2017). We excluded also the fossil fuel fires, because we focus only on 2015, for which the Kuwait oil 

fires of 1991 are of no importance and the coal mine fires data are considered to be very uncertain.  

Starting from EDGARv4.3.2_FT2015, the following updates were considered necessary for the derivation of the 170 

CHE_EDGAR-ECMWF_2015 dataset. Firstly, there was a need to reallocate the part of autoproducers in the energy sector 

to the manufacturing industry in line with UNFCCC reporting. The autoproducers’ energy generated and used for industrial 

manufacturing was added to the manufacturing sector (causing an increase of 18 %) and taken away from the energy sector 

(leading to a decrease of 8 %). The reallocation of the autoproducers part was done using the energy statistics reported by 

every country separately (IEA, 2016) but the correction remained limited to 30 % of the national total energy sector. More 175 

details are given in the Supplementary Information, section S.1. 

Secondly, super power plants were considered to be treated separately, because they are expected to operate at full capacity 

with maximum availability. Super power plants are defined in this study as a large power plant or a group of closely located 

 
1 Following the UNFCCC national inventory reporting guidelines, emissions of biofuel combustion are only a memo item and have to be 

reported under the LULUCF sector. Together with all short-cycle carbon emissions they are excluded from this study. 
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power plants causing CO2 plumes from a single grid cell with a CO2 flux ≥ 7.9·10-6 kg·m-2·s-1. According to expert 

knowledge the upper bound of uncertainty for super power plants is not larger than +3.0 %, whereas for small plants which 180 

operate based on day-to-day needs, this can reach up to +15.0 %. Currently 30 grid-cells from 12 countries represent energy 

generated by the super power plants (7.1 % or 896.7 Mton of the remaining energy sector after autoproducers part separation 

12705.5 Mton). Top 3 countries that produce energy using super power plants are China, Russia and India. For the detailed 

ranking of the power plant sites in function of their emission intensity, we refer to the Supplementary Information, section 

S.1.  185 

Finally, an extra emission source of fugitive CO2 from coal mines was added, following the recommendations from IPCC-

TFI (2019). Even though this emission source is not that large globally, usually the coalseam gas is composed dominantly 

from methane, but in some coalmines (in Australia, and also in Brazil) seam gas consists predominantly (> 95 %) from CO2 

(Beamish and Vance, 1992), leading to significant atmospheric CO2 concentration increases. An additional map for 

CHE_EDGAR-ECMWF_2015 with coal mining emissions from underground mines has been generated, following the 190 

IPCC-TFI (2019) default values and the coal mining activity of the methane (CH4) emission grid-maps from hard and brown 

coal production of EDGARv4.3.2. More details are given in the Supplementary Information, section S.2, in which Table S3 

lists all differences between EDGARv4.3.2_FT2015 and CHE_EDGAR-ECMWF_2015. 

The detailed EDGARv4.3.2 spatial distribution is used for mapping the updated 2015 emission values (Janssens-Maenhout 

et al. (2019) provide all special details on how emissions are spatially distributed and what proxies are used for that in 195 

EDGARv4.3.2). The relative changes per sector, fuel type and country from 2012 to 2015 are then applied on the 

EDGARv4.3.2 reference maps to obtain EDGARv4.3.2_FT2015. For non-energy use of fuels, chemical processes, and 

solvents and products use we used directly the EDGARv4.3.2 maps. Also, the CO2 emission maps from coal production are 

based on the 2012 maps of CH4 from EDGARv4.3.2. Gridded monthly multiplication factors are obtained from 2010 

monthly gridded emissions and applied to the final set of yearly emission maps of CHE_EDGAR-ECMWF_2015.  200 

 

2.2 Aggregation of CO2 emission groups for the ECMWF model 

EDGARv4.3.2_FT2015 (as well as EDGARv4.3.2) has 20 global maps with anthropogenic long-cycle carbon CO2 flux 

values for energy, fugitives, industrial processes, solvents and products use, agriculture and waste involved sectors. In this 

study these sectors had to be grouped for the use of global flux inversion and ensemble perturbation systems. Grouping was 205 

done keeping in mind possible future evolution of present systems and sector common features: activity type (point sources, 

3D field, etc.), amount of knowledge for the activity (uncertainty value), geographical distribution (e.g. over urban areas 

only), size of sector covariance matrix (computationally affordable size for the inversion system of the ECMWF model is 

covariance matrix of 7×7). Table 2 shows additional grouping of 20 EDGAR sectors into 7 ECMWF groups, and emission 

budget difference between EDGARv4.3.2_FT2015 and CHE_EDGAR-ECMWF_2015 datasets due to reallocation of the 210 
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autoproducers from the energy sector (-8 %) to the manufacturing sector (+18 %), and due to the extra emission source of 

diffusive coal mine CO2.  

 

Table 2: Grouping of anthropogenic long-cycle carbon CO2 emission EDGAR sectors into ECMWF groups, note provides main 

information and typical fuel type, global emission budgets for 2015 in Mton provides values for EDGARv4.3.2_FT2015 and 215 
CHE_EDGAR-ECMWF_2015; italics – values with biggest differences, * – values that were replaced from EDGARv4.3.2 

№ ECMWF group 
IPCC (2006) activities per 

EDGAR sector 
Note 

Emission budget 2015, Mton 

EDGARv4.3

.2_FT2015 

CHE_EDGAR-

ECMWF_2015 

1 ENERGY_S 1.A.1.a (subset) 
Power industry (without autoproducers): 

super emitting power plants 
13704.0 

896.7 

2 ENERGY_A 
1.A.1.a (rest) 

Power industry (without autoproducers): 

standard emitting power plants 
11671.6 

4.C Solid waste incineration 137.2 137.2 

3 MANUFACTURING 

1.A.2 
Combustion for manufacturing (including 

autoproducers) 
6182.8 7320.4 

2.C.1, 2.C.2 Iron and steel production 233.6 233.6 

2.C.3, 2.C.4, 2.C.5, 2.C.6, 

2.C.7 
Non-ferrous metals production 91.4 91.4 

2.D.1, 2.D.2, 2.D.4 Non energy use of fuels 24.7* 24.6 

2.A.1, 2.A.2, 2.A.3, 2.A.4 Non-metallic minerals production 1748.8 1749.0 

2.B.1, 2.B.2, 2.B.3, 2.B.4, 

2.B.5, 2.B.6, 2.B.8 
Chemical processes 678.8* 677.0 

4 SETTLEMENTS 
1.A.4, 1.A.5.a, 1.A.5.b.i, 

1.A.5.b.ii 
Energy for buildings 3321.9 3322.7 

5 AVIATION 

1.A.3.a_CRS Aviation cruise; typical fuel: jet kerosene 412.2 412.2 

1.A.3.a_CDS 
Aviation climbing & descent; typical fuel: 

jet kerosene 
305.5 305.5 

1.A.3.a_LTO 
Aviation landing & take off; typical fuel: 

jet kerosene 
97.7 97.7 

6 TRANSPORT 

1.A.3.b 
Road transportation; typical fuel: most 

typical emission factor uncertainty 
5530.2 5530.6 

1.A.3.d 
Shipping; typical fuel: composition of 

80 % diesel and 20 % residual fuel oil 
819.0 819.1 

1.A.3.c, 1.A.3.e 

Railways, pipelines, off-road transport; 

typical fuel: railways – diesel, off-road 

transport – most typical emission factor 

uncertainty 

255.2 255.2 

7 OTHER 

1.A.1.b, 1.A.1.c, 1.A.5.b.iii, 

1.B.1.c, 1.B.2.a.iii.4, 

1.B.2.a.iii.6, 1.B.2.b.iii.3 

Oil refineries and Transformation 

industry 
1917.4 1917.8 

1.B.2.a.ii, 1.B.2.a.iii.2, 

1.B.2.a.iii.3, 1.B.2.b.ii, 

1.B.2.b.iii.2, 1.B.2.b.iii.4, 

1.B.2.b.iii.5, 1.C 

Fuel exploitation 258.4 258.4 

1.B.1.a Coal production 0.0 7.0 

3.C.2, 3.C.3, 3.C.4, 3.C.7 Agricultural soils 99.0 99.1 

2.D.3, 2.B.9, 2.E, 2.F, 2.G Solvents and products use 168.7* 168.3 
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3 Uncertainty calculation methodology 

3.1 Overview 

The IPCC (2006) Guidelines for NIR for fossil CO2 uncertainty calculations and updated IPCC-TFI (2019) provide vast 220 

information about numerous human activities emitting CO2 and how certain these values are. Use of the IPCC-TFI (2019) 

permitted to consider the 2019 emission factor and activity data uncertainties for petroleum refining, solid fuel 

manufacturing, transformation, processing and transport and oil and gas production, which differed significantly from the 

2006 defaults. In order to use the same methodology globally and because CO2 emissions are not technologically dependant, 

it was decided to omit regional (e.g. Europe) detailed information and use only information required for the most basic and 225 

simplest (Tier 1) approach for emission reporting. The Tier 1 methodology to estimate CO2 emissions from fossil fuel 

combustion follows the concept of carbon conservation (from the fuel combusted into CO2). Uncertainties for all emission 

activities, sectors and groups can be derived following two different approaches of IPCC (2006): (Approach 1) propagation 

of error – gives informative results even if the criterion “standard deviation divided by the mean value is less than 0.3” is not 

strictly met and data still have some correlation. The advantages are that it only needs uncertainty ranges for activity data 230 

and emission factors, that are provided by IPCC and that it is relatively easy to improve in case of large and asymmetric 

uncertainties; (Approach 2) Monte Carlo simulation or similar techniques – suitable only if detailed category-by-category 

uncertainty information is available and complex calculations can be done. In order to use the same methodology for all 

world countries/geographical entities (i.e. not needing detailed information for each emission activity) it was decided to use 

the error propagation method (Approach 1).  235 

To summarize, the final uncertainties per geographical entity per ECMWF fossil CO2 emission group are based on: emission 

budgets calculated from CHE_EDGAR-ECMWF_2015 maps (upgraded combination of EDGARv4.3.2 and 

EDGARv4.3.2_FT2015), uncertainty default values from IPCC (2006) and IPCC-TFI (2019), Tier 1 approach (error 

propagation method) and the definition of a log-normal distribution (needed for non-negative anthropogenic CO2 emissions). 

It should be noted that all uncertainty calculations were done per country (geographical entity) and only then for comparison 240 

purposes aggregated to Europe (28 members till end 2019) or global values assuming no correlation following IPCC (2006). 

Figure 1 shows a simplified scheme of the uncertainty calculation roadmap, followed by a detailed description below on how 

exactly yearly and monthly uncertainties are calculated. 
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 245 

Figure 1: Simplified roadmap for yearly uncertainty calculation  

 

3.2 Yearly uncertainties  

3.2.1 Calculating uncertainty per each IPCC activity 

Uncertainties in the emissions per IPCC activity from Table 2 – Combined Uncertainties UCIPCCi – were calculated using 250 

uncertainties for emission factors EFIPCCi and activity data ADIPCCi in % provided in IPCC (2006) and IPCC-TFI (2019) 

following Eq. (1): 

𝑈𝐶𝐼𝑃𝐶𝐶𝑖 = √𝐸𝐹𝐼𝑃𝐶𝐶𝑖
2 + 𝐴𝐷𝐼𝑃𝐶𝐶𝑖

2 .          (1) 

It should be noted that IPCC (2006) and IPCC-TFI (2019) provide upper and lower limits of emission factor and activity 

data, which are not always symmetrical. In order to preserve as much initial information as possible (and not to inflate 255 

artificially lower or upper limits of log-normal emission distributions) all calculations were performed for upper and lower 

uncertainty limits separately although it is not required by the Approach 1 methodology. Moreover, IPCC (2006) provide 

default emission factor values for different fuels in transport-related activities (e.g. railways, aviation, etc.). Detailed fuel 

consumption information per each IPCC activity that result in long-cycle carbon was not available and it was decided to use 
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the most typical and consumed (common) fuel type (its emission factor value). Table 2 shows the most typical fuels for each 260 

transport related sector. 

3.2.2 Calculating uncertainty for each EDGAR sector 

Uncertainties for each of the 70 IPCC activities from Table 2 are calculated with the error propagation method and combined 

into the 20 EDGAR sectors, following Eq. (2): 

𝑈𝐶𝐸𝐷𝐺𝐴𝑅𝑗 = √𝑈𝐶𝐼𝑃𝐶𝐶1
2 + 𝑈𝐶𝐼𝑃𝐶𝐶2

2 + ... + 𝑈𝐶𝐼𝑃𝐶𝐶𝑛
2 ,        (2) 265 

where EDGARj – combined uncertainty per sector j, and 1,2,...,n – IPCC activities that are taken into account in a particular 

EDGAR sector; UCIPCC1, UCIPCC2,..., UCIPCCn used in %.  

3.2.3 Correction of EDGAR sector uncertainty due to underestimation by the chosen method 

The EDGAR sector uncertainty had to be corrected, as the error propagation method of Approach 1 systematically 

underestimates the uncertainty unless the model is purely additive, which was not the case as EDGAR emissions are 270 

estimated based on the sum of several product terms. To fix this underestimation IPCC (2006) advises using a correction 

factor. One example of a correction factor is proposed in Frey (2003), where the performance of an analytical approach for 

combining uncertainty in comparison to a Monte Carlo simulation with large sample sizes for many cases involving different 

ranges of uncertainty for additive, multiplicative, and quotient models are evaluated. Frey found that error propagation and 

Monte Carlo simulated estimates of the uncertainty half-range of the model output agreed well for values of less than 100 %, 275 

but with the increase of the uncertainty a systematic underestimation of uncertainty in the total inventory by the error 

propagation approach appeared. The relationship between the simulated and propagated error estimates was found to be 

well-behaved, which led to a correction factor development for the large (i.e. greater than 100 %) total inventory 

uncertainties. This correction factor will not necessarily be reliable for very large uncertainties (i.e. greater than 230 %) 

because it was calibrated over the range of 10 to 230 %. As such, the correction factor FC, calculated following Eq. (3), was 280 

applied if half-range uncertainty estimated from the error propagation method was > 100 and < 230 % following Eq. (4): 

𝐹𝐶𝐸𝐷𝐺𝐴𝑅𝑗 = [
−0.7200+1.0921⋅𝑈𝐶𝐸𝐷𝐺𝐴𝑅𝑗−1.63⋅10−3⋅𝑈𝐶𝐸𝐷𝐺𝐴𝑅𝑗

2 +1.11⋅10−5⋅𝑈𝐶𝐸𝐷𝐺𝐴𝑅𝑗
3

𝑈𝐶𝐸𝐷𝐺𝐴𝑅𝑗
]

2

,     (3) 

(𝑈𝐶𝐸𝐷𝐺𝐴𝑅𝑗)
𝑐𝑜𝑟𝑟

= 𝑈𝐶𝐸𝐷𝐺𝐴𝑅𝑗 ⋅ 𝐹𝐶𝐸𝐷𝐺𝐴𝑅𝑗 ,         (4) 

where corr corresponds to the corrected uncertainty; UCEDGARj is given in %. In cases where UCEDGARj was ≤ 100 and ≥ 230 

%, FCEDGARj was assumed to be equal to one. Only four sectors with non energy use of fuels, chemical processes, fuel 285 

exploitation and coal production emissions were corrected, Table 3 shows how these uncertainties were corrected. It should 

be noted that some uncertainty ranges for emission factors and/or activity data in IPCC (2006) and IPCC-TFI (2019) are not 

symmetrical and have higher uncertainty values for the lower bound than for the upper bound, due to input from expert 

knowledge or available in-situ data, which lead to the same pattern in final prior uncertainty bounds. 
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 290 

Table 3: Sectors with corrected uncertainties (lower and upper bounds) for countries with well- (WDS) and less well-developed 

(LDS) statistical infrastructures  

№ ECMWF group 
IPCC (2006) activities per 

EDGAR sector 
Note 

Country 

type 

Prior uncertainty bounds, % 

Before correction After correction 

Low Up Low Up 

3 
MANUFACTURING 

(part) 

2.D.1, 2.D.2, 2.D.4 
Non energy 

use of fuels 

WDS 112.0 112.0 121.7 121.7 

LDS 113.8 113.8 124.0 124.0 

2.B.1, 2.B.2, 2.B.3, 2.B.4, 2.B.5, 

2.B.6, 2.B.8 

Chemical 

processes 

WDS 100.9 89.9 107.8 89.9 

LDS 100.9 89.9 107.8 89.9 

7 
OTHER 

(part) 

1.B.2.a.ii, 1.B.2.a.iii.2, 1.B.2.a.iii.3, 

1.B.2.b.ii, 1.B.2.b.iii.2, 1.B.2.b.iii.4, 

1.B.2.b.iii.5, 1.C 

Fuel 

exploitation 

WDS 156.6 215.7 191.1 339.1 

LDS 166.8 223.2 210.9 364.5 

1.B.1.a 
Coal 

production 

WDS 107.4 300.5 115.8 300.5 

LDS 107.4 300.5 115.8 300.5 

 

3.2.4 Forcing lognormal distribution on corrected EDGAR sector uncertainty 

For models that are purely additive, and for which the half range of uncertainty is less than approximately 50 %, a normal 295 

distribution is often an accurate assumption for the model output form. In this case, a symmetric probability distribution with 

respect to the mean can be assumed. But this is not the case for multiplicative (or mixed) models, or when the uncertainty is 

large for a non-negative variable such as anthropogenic CO2 emissions. A log-normal distribution is typically an accurate 

assumption for the model output form, where the uncertainty range is not symmetric with respect to the mean, even though 

the variance for the total inventory may be correctly estimated from Approach 1. IPCC (2006) guidelines provide a practical 300 

methodology based on Frey (2003) for approximate asymmetric uncertainty range calculations based on the error 

propagation method. According to this methodology key characteristics of the 95 % confidence intervals are: (i) 

approximately symmetric for small ranges of uncertainty, and (ii) positively skewed for large ranges of uncertainty. This 

methodology was applied if the corrected lower half-range uncertainty estimated from error propagation method was ≥ 50 %. 

IPCC (2006) suggests to define parameters of the lognormal distribution in terms of the geometric mean μg (which can be 305 

estimated based upon the arithmetic mean and the arithmetic standard deviation) following Eq. (5) and geometric standard 

deviation σg following Eq. (6): 

𝜇𝑔𝐸𝐷𝐺𝐴𝑅𝑗 = 𝑒𝑥𝑝 {𝑙𝑛(𝐸𝐸𝐷𝐺𝐴𝑅𝑗) −
1

2
⋅ 𝑙𝑛 (1 + [

(𝑈𝐶𝐸𝐷𝐺𝐴𝑅𝑗)
𝑐𝑜𝑟𝑟

200
]

2

)},      (5) 

𝜎𝑔𝐸𝐷𝐺𝐴𝑅𝑗 = 𝑒𝑥𝑝 {√𝑙𝑛 (1 + [
(𝑈𝐶𝐸𝐷𝐺𝐴𝑅𝑗)

𝑐𝑜𝑟𝑟

200
]

2

)},        (6) 

where 𝐸𝐸𝐷𝐺𝐴𝑅𝑗  is the anthropogenic CO2 emissions per sector j; corr corresponds to the corrected uncertainty (i.e. corrected 310 

for the systematic underestimation of uncertainty calculated by the error propagation approach used in this study comparing 

to uncertainties calculated by using the Monte Carlo approach); UCEDGARj is in %.  
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Because calculations were performed for upper and lower uncertainty limits separately, there are two values of 

(𝑈𝐶𝐸𝐷𝐺𝐴𝑅𝑗)
𝑐𝑜𝑟𝑟

: [(𝑈𝐶𝐸𝐷𝐺𝐴𝑅𝑗)
𝑐𝑜𝑟𝑟

]
𝑙𝑜𝑤

  – the absolute value of the lower uncertainty limit of sector j, and 

[(𝑈𝐶𝐸𝐷𝐺𝐴𝑅𝑗)
𝑐𝑜𝑟𝑟

]
ℎ𝑖𝑔ℎ

  – the absolute value of the upper uncertainty limit of sector j. As it is preferred to preserve as much 315 

accuracy (extra knowledge) as possible in our calculations and not to inflate uncertainty upper or lower bounds artificially, 

lower {[(𝑈𝐶𝐸𝐷𝐺𝐴𝑅𝑗)
𝑐𝑜𝑟𝑟

]
𝑙𝑜𝑤

}
𝑙𝑛

 and upper {[(𝑈𝐶𝐸𝐷𝐺𝐴𝑅𝑗)
𝑐𝑜𝑟𝑟

]
ℎ𝑖𝑔ℎ

}
𝑙𝑛

 uncertainty half-range from the error propagation 

method were calculated with a logarithmic transformation using [𝜇𝑔𝐸𝐷𝐺𝐴𝑅𝑗]
𝑙𝑜𝑤

 , [𝜇𝑔𝐸𝐷𝐺𝐴𝑅𝑗]
ℎ𝑖𝑔ℎ

  and [𝜎𝑔𝐸𝐷𝐺𝐴𝑅𝑗]
𝑙𝑜𝑤

 , 

[𝜎𝑔𝐸𝐷𝐺𝐴𝑅𝑗]
ℎ𝑖𝑔ℎ

  respectively according to the following Eq. (7) and Eq. (8) (see Figure 2 for visual representation of these 

equations): 320 

{[(𝑈𝐶𝐸𝐷𝐺𝐴𝑅𝑗)
𝑐𝑜𝑟𝑟

]
𝑙𝑜𝑤

}
𝑙𝑛

= (
𝑒𝑥𝑝{𝑙𝑛([𝜇𝑔𝐸𝐷𝐺𝐴𝑅𝑗]

𝑙𝑜𝑤
)−1.96⋅𝑙𝑛([𝜎𝑔𝐸𝐷𝐺𝐴𝑅𝑗]

𝑙𝑜𝑤
)}−𝐸𝐸𝐷𝐺𝐴𝑅𝑗

𝐸𝐸𝐷𝐺𝐴𝑅𝑗
) × 100,   (7) 

{[(𝑈𝐶𝐸𝐷𝐺𝐴𝑅𝑗)
𝑐𝑜𝑟𝑟

]
ℎ𝑖𝑔ℎ

}
𝑙𝑛

= (
𝑒𝑥𝑝{𝑙𝑛([𝜇𝑔𝐸𝐷𝐺𝐴𝑅𝑗]

ℎ𝑖𝑔ℎ
)+1.96⋅𝑙𝑛([𝜎𝑔𝐸𝐷𝐺𝐴𝑅𝑗]

ℎ𝑖𝑔ℎ
)}−𝐸𝐸𝐷𝐺𝐴𝑅𝑗

𝐸𝐸𝐷𝐺𝐴𝑅𝑗
) × 100,   (8) 

where ln corresponds to logarithmic transformation of the distribution; resulting values are not absolute.  

It should be noted that according to this methodology (with constants for 2.5th and 97.5th percentiles, +1.96 and -1.96 

respectively, from the Z-table2) the lower uncertainty half-range {[(𝑈𝐶𝐸𝐷𝐺𝐴𝑅𝑗)
𝑐𝑜𝑟𝑟

]
𝑙𝑜𝑤

}
𝑙𝑛

  will always be less than 100.0 %. 325 

Upper uncertainty half-range {[(𝑈𝐶𝐸𝐷𝐺𝐴𝑅𝑗)
𝑐𝑜𝑟𝑟

]
ℎ𝑖𝑔ℎ

}
𝑙𝑛

 is approximately symmetric relative to the 0 (Gaussian distribution) 

up to ~20.0 %, then has rather rapid growth till ~500.0 % (which with logarithmic transformation results in ~486.0 %), 

maxima at ~1350.0 % (which with logarithmic transformation results in ~582.6 %) and further gradual decrease.  

 

 330 

 
2 The Z-table is a mathematical table for the values of the cumulative distribution function of the normal distribution. 
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Figure 2: Visual representation of an empirical logarithmic transformation formula for upper and lower uncertainty bounds 

according IPCC (2006) 

 

Table 4 shows the prior uncertainty values for each EDGAR sector and for two geographical entity types (i.e. with well- and 

less well-developed statistical infrastructure). These values are a combined IPCC activity uncertainty aggregated to EDGAR 335 

sectors with the error propagation method and corrected for this method’s underestimation. Also, as an example, Table 4 

shows aggregated to ECMWF groups uncertainties with ensured log-normal distribution for China (CHN), Europe (28 

members till end 2019) and all world countries. 

 

Table 4: Prior uncertainties (lower and upper bounds) per each EDGAR emission sector and two geographical entity types (with 340 
well- (WDS) and less well-developed (LDS) statistical infrastructure) based on IPCC (2006) and IPCC-TFI (2019), and aggregated 

to the ECMWF group uncertainties for China (CHN), Europe (E28) and globe (GLB) 

№ ECMWF group 
IPCC (2006) activities per EDGAR 

sector 

Prior uncertainty bounds, % Uncertainty bounds, % 

WDS 

countries 

LDS 

countries 

CHN, 

WDS 

E28, 

WDS 

GLB, 

mix 

Low Up Low Up Low Up Low Up Low Up 

1 ENERGY_S 1.A.1.a (subset) 8.6 3.0 12.2 3.0 8.6 3.0 5.4 1.9 3.6 1.0 

2 ENERGY_A 
1.A.1.a (rest) 8.6 8.6 12.2 12.2 

8.6 8.6 2.8 2.8 3.5 3.5 
4.C 40.3 40.3 41.2 41.2 

3 MANUFACTURING 

1.A.2 8.6 8.6 12.2 12.2 

12.8 19.4 3.9 5.8 5.7 8.6 

2.C.1, 2.C.2 37.1 37.1 37.1 37.1 

2.C.3, 2.C.4, 2.C.5, 2.C.6, 2.C.7 73.2 73.2 73.2 73.2 

2.D.1, 2.D.2, 2.D.4 121.7 121.7 124.0 124.0 

2.A.1, 2.A.2, 2.A.3, 2.A.4 70.9 70.9 93.0 93.0 

2.B.1, 2.B.2, 2.B.3, 2.B.4, 2.B.5, 2.B.6, 

2.B.8 
107.8 89.9 107.8 89.9 

4 SETTLEMENTS 1.A.4, 1.A.5.a, 1.A.5.b.i, 1.A.5.b.ii 12.2 12.2 26.0 26.0 12.2 12.2 4.2 4.2 3.9 3.9 

5 AVIATION 

1.A.3.a_CRS 5.5 6.4 50.1 106.8 

3.5 4.1 1.4 1.6 17.3 58.1 1.A.3.a_CDS 5.5 6.4 50.1 106.8 

1.A.3.a_LTO 5.5 6.4 50.1 106.8 

6 TRANSPORT 

1.A.3.b 5.4 5.4 7.1 7.1 

5.1 8.2 1.6 1.8 4.3 6.4 1.A.3.d 5.4 5.1 50.0 50.0 

1.A.3.c, 1.A.3.e 50.3 106.9 50.5 107.0 

7 OTHER 

1.A.1.b, 1.A.1.c, 1.A.5.b.iii, 1.B.1.c, 

1.B.2.a.iii.4, 1.B.2.a.iii.6, 1.B.2.b.iii.3 
54.4 149.3 57.7 151.4 

39.7 180.9 10.1 45.3 11.5 52.4 

1.B.2.a.ii, 1.B.2.a.iii.2, 1.B.2.a.iii.3, 

1.B.2.b.ii, 1.B.2.b.iii.2, 1.B.2.b.iii.4, 

1.B.2.b.iii.5, 1.C 

191.1 339.1 210.9 364.5 

1.B.1.a 115.8 300.5 115.8 300.5 

3.C.2, 3.C.3, 3.C.4, 3.C.7 70.7 0.0 70.7 0.0 

2.D.3, 2.B.9, 2.E, 2.F, 2.G 25.0 25.0 50.0 50.0 
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3.2.5 Calculating uncertainty for each ECMWF group 

The next step is to combine these prior uncertainties for each EDGAR sector into ECMWF group uncertainties (see Table 4). 345 

Sector uncertainties are combined into group uncertainties by addition following Eq. (9) and Eq. (10): 

𝑈𝐶𝐸𝐶𝑀𝑊𝐹𝑘 =
√({(𝑈𝐶𝐸𝐷𝐺𝐴𝑅1)𝑐𝑜𝑟𝑟}𝑙𝑛⋅𝐸𝐸𝐷𝐺𝐴𝑅1)2+({(𝑈𝐶𝐸𝐷𝐺𝐴𝑅2)𝑐𝑜𝑟𝑟}𝑙𝑛⋅𝐸𝐸𝐷𝐺𝐴𝑅2)2+⋯+({(𝑈𝐶𝐸𝐷𝐺𝐴𝑅𝑛)𝑐𝑜𝑟𝑟}𝑙𝑛⋅𝐸𝐸𝐷𝐺𝐴𝑅𝑛)2

|𝐸𝐸𝐷𝐺𝐴𝑅1+𝐸𝐸𝐷𝐺𝐴𝑅2+⋯+𝐸𝐸𝐷𝐺𝐴𝑅𝑛|
,  (9) 

𝐸𝐸𝐶𝑀𝑊𝐹𝑘 = 𝐸𝐸𝐷𝐺𝐴𝑅1 + 𝐸𝐸𝐷𝐺𝐴𝑅2 + ⋯ + 𝐸𝐸𝐷𝐺𝐴𝑅𝑛 ,        (10) 

where 𝑈𝐶𝐸𝐶𝑀𝑊𝐹𝑘  and 𝐸𝐸𝐶𝑀𝑊𝐹𝑘   – combined uncertainty and total emissions per group k; 1,2,…,n – EDGAR emission 

sectors that are combined in a particular ECMWF group k; {(𝑈𝐶𝐸𝐷𝐺𝐴𝑅1)𝑐𝑜𝑟𝑟}𝑙𝑛 , {(𝑈𝐶𝐸𝐷𝐺𝐴𝑅2)𝑐𝑜𝑟𝑟}𝑙𝑛 , … , {(𝑈𝐶𝐸𝐷𝐺𝐴𝑅𝑛)𝑐𝑜𝑟𝑟}𝑙𝑛 350 

are in %. Combined group uncertainties are country-specific, because they take into account sector budget and adjust 

uncertainty values accordingly.  

3.2.6 Calculating mean and standard deviation of lognormally distributed ECMWF group uncertainty 

Finally, we needed to ensure a log-normal distribution of CO2 emissions. Upper and lower uncertainty half-range values per 

ECMWF group k ECMWFk are descriptive, but not straight forward to use for emission perturbations in ensemble runs or 355 

flux inversions, where mean and standard deviation of the distribution are usually used. The lower and upper bounds of the 

95 % probability range, which are the 2.5th and 97.5th percentiles respectively, calculated assuming a log-normal distribution 

based on a corrected estimated uncertainty half-range from an error propagation approach, are lower and upper uncertainty 

values. Taking this into account and using the Z-table for 2.5th and 97.5th percentiles p, mean 𝜇𝑙𝑛 and standard deviation 𝜎𝑙𝑛 

of log-normal distribution can be calculated following Eq. (11): 360 

𝑍𝑝 =
𝑙𝑛([𝐸𝐸𝐶𝑀𝑊𝐹𝑘]𝑝)−𝜇𝐸𝐶𝑀𝑊𝐹𝑘

𝑙𝑛

𝜎𝐸𝐶𝑀𝑊𝐹𝑘
𝑙𝑛 ,          (11) 

where the following variables are known: 

𝑝 = 2.5 => 𝑍2.5 = −1.96, [𝐸𝐸𝐶𝑀𝑊𝐹𝑘]2.5 = 𝐸𝐸𝐶𝑀𝑊𝐹𝑘 ⋅ (1 +
[𝑈𝐶𝐸𝐶𝑀𝑊𝐹𝑘]𝑙𝑜𝑤

100
),     (12) 

𝑝 = 97.5 => 𝑍97.5 = 1.96, [𝐸𝐸𝐶𝑀𝑊𝐹𝑘]97.5 = 𝐸𝐸𝐶𝑀𝑊𝐹𝑘 ⋅ (1 +
[𝑈𝐶𝐸𝐶𝑀𝑊𝐹𝑘]ℎ𝑖𝑔ℎ

100
),     (13) 

then simple system could be composed and solved accordingly following Eq. (14) and Eq. (15): 365 

𝜇𝐸𝐶𝑀𝑊𝐹𝑘
𝑙𝑛 = 𝑙𝑛(𝐸𝐸𝐶𝑀𝑊𝐹𝑘) +

1

2
𝑙𝑛 (1 +

[𝑈𝐶𝐸𝐶𝑀𝑊𝐹𝑘]𝑙𝑜𝑤

100
) +

1

2
𝑙𝑛 (1 +

[𝑈𝐶𝐸𝐶𝑀𝑊𝐹𝑘]ℎ𝑖𝑔ℎ

100
),    (14) 

𝜎𝐸𝐶𝑀𝑊𝐹𝑘
𝑙𝑛 =

𝑙𝑛(1+
[𝑈𝐶𝐸𝐶𝑀𝑊𝐹𝑘]

𝑙𝑜𝑤
100

)−𝑙𝑛(1+
[𝑈𝐶𝐸𝐶𝑀𝑊𝐹𝑘]

ℎ𝑖𝑔ℎ

100
)

−3.92
,        (15) 

where [𝑈𝐶𝐸𝐶𝑀𝑊𝐹𝑘]𝑙𝑜𝑤 and [𝑈𝐶𝐸𝐶𝑀𝑊𝐹𝑘]ℎ𝑖𝑔ℎ  are in %. 
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3.2.7 Example of uncertainty calculation  

Table 5 shows a step-by-step example of how yearly uncertainties are calculated. Example shows calculations for 370 

TRANSPORT group, that consists of several EDGAR emission sectors (one EDGAR sector consists even of several IPCC 

activities). Example shows two countries with different statistical infrastructure development levels (country with well-

developed statistical infrastructures is Germany, country with less well-developed statistical infrastructures is the Russian 

Federation) and significant differences in emission budgets. 

 375 

Table 5a: Preparatory step for yearly uncertainty calculation – data collection, same values are applied for all countries of the 

same type, namely for countries with well- (WDS) and less well-developed (LDS) statistical infrastructures 

Country 

(Type) 

ECMWF 

group 

IPCC (2006) 

activities per 

EDGAR 

sector 

IPCC 

(2006) 

activity 

Note Typical fuel 

Emission 

factor 

uncertainty 

Activity 

data 

uncertainty 

Low Up Low Up 

Germany 

(WDS) 

T
R

A
N

S
P

O
R

T
 

1.A.3.b 1.A.3.b Road transportation most typical emission factor 2.0 2.0 5.0 5.0 

1.A.3.d 1.A.3.d 
Water-borne 

navigation 

composition of 80 % diesel 

and 20 % residual fuel oil 
2.1 1.1 5.0 5.0 

1.A.3.c, 

1.A.3.e  

1.A.3.c Railways diesel 2.0 0.9 5.0 5.0 

1.A.3.e 

Other transportation 

– Pipeline 
none (suggested to neglect) 0.0 0.0 0.0 0.0 

Other transportation 

– Off-road 
most typical emission factor 2.0 2.0 50.0 100.0 

Russian 

Federation 

(LDS) 

T
R

A
N

S
P

O
R

T
 

1.A.3.b 1.A.3.b Road transportation most typical emission factor 5.0 5.0 5.0 5.0 

1.A.3.d 1.A.3.d 
Water-borne 

navigation 

composition of 80 % diesel 

and 20 % residual fuel oil 
2.1 1.1 50.0 50.0 

1.A.3.c, 

1.A.3.e  

1.A.3.c Railways diesel 2.0 0.9 5.0 5.0 

1.A.3.e 

Other transportation 

– Pipeline 
none (suggested to neglect) 0.0 0.0 0.0 0.0 

Other transportation 

– Off-road 
most typical emission factor 5.0 5.0 50.0 100.0 

 

Table 5b: First part of yearly uncertainty calculation – same values are applied for all countries of the same type, namely for 

countries with well- (WDS) and less well-developed (LDS) statistical infrastructures 380 

Country 

(Type) 

IPCC (2006) 

activities per 

EDGAR sector 

IPCC 

(2006) 

activity 

Combined uncertainty per 

IPCC (2006) activity,  

see Eq. (1) 

Combined uncertainty 

per EDGAR sector,  

see Eq. (2) 

Corrected combined uncertainty 

per EDGAR sector,  

see Eq. (3)-(4) 

Low Up Low Up Low Up 

Germany 

(WDS) 

1.A.3.b 1.A.3.b 5.4 5.4 5.4 5.4 5.4 5.4 

1.A.3.d 1.A.3.d 5.4 5.1 5.4 5.1 5.4 5.1 

1.A.3.c, 1.A.3.e  

1.A.3.c 5.4 5.1 

50.3 100.1 50.3 106.9 
1.A.3.e 

0.0 0.0 

50.0 100.0 

Russian 

Federation 

(LDS) 

1.A.3.b 1.A.3.b 7.1 7.1 7.1 7.1 7.1 7.1 

1.A.3.d 1.A.3.d 50.0 50.0 50.0 50.0 50.0 50.0 

1.A.3.c, 1.A.3.e  

1.A.3.c 5.4 5.1 

50.5 100.3 50.5 107.0 
1.A.3.e 

0.0 0.0 

50.2 100.1 
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Table 5c: Second part of yearly uncertainty calculation – values are specific per each geographical entity, take into account 

country type, namely if country has well- (WDS) or less well-developed (LDS) statistical infrastructure, and countries emission 

budget (values are from CHE_EDGAR-ECMWF_2015)  

Country 

(Type) 

IPCC 

(2006) 

activities 

per 

EDGAR 

sector 

Emission 

budget 

2015 per 

EDGAR 

sector, 

Mton 

Uncertainty with 

assumed lognormal 

distribution per 

EDGAR sector, see 

Eq. (5)-(8) 

Emission 

budget 

2015 per 

ECMWF 

group, 

Mton 

Grouped uncertainty 

with assumed 

lognormal distribution 

per ECMWF group, see 

Eq. (9)-(10) 

Lognormal parameters of 

grouped uncertainty with 

assumed lognormal 

distribution per ECMWF 

group, see Eq. (14)-(15) 

Low  Up Low Up mean standard deviation 

Germany 

(WDS) 

1.A.3.b 139.6 5.4 5.4 

143.0 5.3 5.7 11.9 0.0 
1.A.3.d 1.0 5.4 5.1 

1.A.3.c, 

1.A.3.e 
2.3 40.3 135.5 

Russian 

Federation 

(LDS) 

1.A.3.b 131.7 7.1 7.1 

206.9 14.1 44.8 12.3 0.1 
1.A.3.d 7.4 40.1 57.2 

1.A.3.c, 

1.A.3.e  
67.9 40.5 135.7 

 385 

3.3 Monthly uncertainties 

For Earth system modelling and data assimilation purposes a sub-yearly time scale is more appropriate. Monthly profiles of 

anthropogenic emissions are available and used in air quality models and are more certain than the sub-monthly profiles. The 

monthly profiles used in EDGARv4.3.2 are standardised to 12 monthly shares per EDGAR sector and per region (i.e. 

Northern temperate zone, Equator, Southern temperate zone). They do not take into account the specificity of a single year 390 

and are not varying within a geographical entity (country). We used these global yearly and monthly emission maps for 2010 

to calculate for each month a multiplication factor per 0.1º×0.1º grid-cell of the sector-specific maps. Then multiplication 

factors were combined with CHE_EDGAR-ECMWF_2015 maps and monthly country- and sector-specific CO2 emission 

budgets are calculated.  

Uncertainties for monthly budgets are obviously larger than yearly ones and instead of one standard deviation σ (Quilcaille et 395 

al, 2018) two or three standard deviations, 2σ or 3σ respectively are commonly used (Oda et al., 2018; Andres et al., 2014; 

Andres et al., 2011). We decided to be more analytical:  

1) to use the same procedure as for annual uncertainty calculation but base it on monthly emission budgets (i.e. 

uncertainties for IPCC activities are combined to EDGAR sectors with error propagation method, corrected for systematic 

underestimation by error propagation method, and adapted to have log-normal distribution; see Eq. (1)-(8)). Obtained 400 

monthly uncertainties are the same or even smaller than the yearly ones, because empirical equations applied use emission 

budgets, which are smaller for individual months compared to the yearly values; 

2) to calculate the correlation α (an uncertainty boosting parameter) between yearly and monthly uncertainties based 

on an analysis of the variations over the different months following Eq. (16): 

(𝐸𝑌𝐸𝐴𝑅 ∙ 𝑈𝐶𝑌𝐸𝐴𝑅)2 = 𝛼2 ∙ ((𝐸𝑀𝑂𝑁𝑇𝐻1 ∙ 𝑈𝐶𝑀𝑂𝑁𝑇𝐻1)2 + (𝐸𝑀𝑂𝑁𝑇𝐻2 ∙ 𝑈𝐶𝑀𝑂𝑁𝑇𝐻2)2 + ⋯ + (𝐸𝑀𝑂𝑁𝑇𝐻12 ∙ 𝑈𝐶𝑀𝑂𝑁𝑇𝐻12)2), (16) 405 
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where E and UC correspond to sectoral emission budget and uncertainty in kton and % respectively, 

YEAR,MONTH1,MONTH2,…,MONTH12 – yearly and monthly (January, February, …, December) values. Eq. (16) is based 

on the rule for combining uncorrelated uncertainties under addition of the error propagation equation (see Eq. (9)) and 

assumption that each month’s uncertainty should be enhanced (boosted) by the same value; 

3) to multiply the prior yearly uncertainties from Table 4 by the boosting parameter (specific per country and emission 410 

sector) and use the result as a first guess of monthly prior uncertainties; 

4) to iterate calculation steps 1) to 3) in order to find the best boosting parameter (to have the best fit between yearly 

and combined 12-month uncertainties) from Eq. (16) for each country and emission sector. Once the best boosting parameter 

was found (i.e. maximum difference between α from previous iteration and the current one over all countries and emission 

sectors became less than acceptable threshold) calculated monthly uncertainties per each EDGAR sector were grouped into 7 415 

ECMWF groups and log-normal distribution of CO2 emissions was ensured, see Eq. (9)-(15).  

Figure 3 has simplified roadmaps for yearly and monthly uncertainty calculations.  

 

Yearly uncertainties Monthly uncertainties 

 
Figure 3: Simplified roadmaps for yearly (left) and monthly (right) uncertainty calculation and their relation (bottom) 

 420 

The prior error covariance matrix of the emission inventory is required as an input to the inversion system. According to the 

IPCC (2006) all anthropogenic CO2 emissions are assumed to be fully uncorrelated, hence the prior error correlations 

between grid-cell emissions from the same sector should be assumed negligible if country- and/or sector-specific 
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information is lacking. For the first implementation, ECMWF group covariance matrices per each geographical entity have 

the same representation – emission group is fully correlated with itself and fully uncorrelated with any other group. For an 425 

example of ECMWF group covariance matrices see Table S4 from the Supplementary Information, section S.3. Due to the 

lack of information available to properly characterize the error correlations and error variances in the inventory, a refinement 

of those prior statistics will be carried out in a follow-on paper (Bousserez, 2019) using atmospheric CO2 observations. For 

this, the maximum likelihood of the prior error standard deviations and error correlation lengths will be estimated following 

approaches described in Wu et al. (2013). 430 

3.4 Gridding uncertainties  

Calculated yearly and monthly uncertainties per country and sector were assigned to each grid-box on the global map. 

National uncertainties were applied uniformly across each country. Figure 4 shows an example of the upper and lower 

uncertainty limits of anthropogenic CO2 emission flux for TRANSPORT group. It should be noted that uncertainties related 

to the spatial distribution (representativeness of the proxy data and their uncertainty) should be much higher than the ones 435 

presented in this study. This research does not address uncertainties related to the spatial distribution. In the future we plan to 

address these uncertainties too. For example, following Oda et al. (2019) to characterize spatial patterns of the 

disaggregation errors in our emission maps.  

 

Uncertainty lower bound Uncertainty upper bound 

  
Emissions of CO2, in kg·m-2·s-1 

 
Figure 4: CO2 emission flux uncertainties (lower (left) and upper (right) bounds) for TRANSPORT group in kg·m-2·s-1 440 
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4 Generated dataset 

CHE_EDGAR-ECMWF_2015 data (Choulga et al., 2020) are freely available https://doi.org/10.5281/zenodo.3967439, and 

consist of 11 grid-maps in NetCDF format and one Excel file with information on anthropogenic CO2 emissions and their 

uncertainties. For detailed information on each file see Table 6. 445 

 

Table 6: Detailed information on CHE_EDGAR-ECMWF_2015 data 

File General note Field / Spreadsheet 

A
n

n
u

al
_

U
p
p

er
_

L
o

w
er

_
U

n
ce

rt
ai

n
ti

es
_

 

P
er

ce
n

ta
g

e_
0

.1
_
0

.1
.n

c 

file has 2×8 fields with annual upper 

and lower uncertainty bounds in % per 

each emission group and for all groups 

summed together on a regular grid 

with 1800 pixels along the latitude and 

3600 pixels along the longitude, where 

values represent centre of the grid-cell 

“Lower” – lower uncertainty bound (2.5th percentile of log-normal distribution) for 

yearly emissions, in % 

“Upper” – upper uncertainty bound (97.5th percentile of log-normal distribution) for 

yearly emissions, in % 

“Sector” – emission sector numerical name. “0” represents emission group ENERGY_S 

(with IPCC (2006) activity 1.A.1.a (subset)) standing for power industry emissions from 

super emitting power plants; “1” group ENERGY_A (1.A.1.a (rest), 4.C) – power 

industry emissions from standard emitting power plants, & solid waste incineration; “2” 

group MANUFACTURING (1.A.2, 2.C.1, 2.C.2, 2.C.3, 2.C.4, 2.C.5, 2.C.6, 2.C.7, 

2.D.1, 2.D.2, 2.D.4, 2.A.1, 2.A.2, 2.A.3, 2.A.4, 2.B.1, 2.B.2, 2.B.3, 2.B.4, 2.B.5, 2.B.6, 

2.B.8) – combustion for manufacturing (including autoproducers), & iron and steel 

production, & non-ferrous metals production, & non energy use of fuels, & non-metallic 

minerals production, & chemical processes; “3” group SETTLEMENTS (1.A.4, 1.A.5.a, 

1.A.5.b.i, 1.A.5.b.ii) – energy for buildings, residential heating; “4” group AVIATION 

(1.A.3.a_CRS, 1.A.3.a_CDS, 1.A.3.a_LTO) – aviation cruise, & climbing and descent, 

& landing and take off; “5” group TRANSPORT (1.A.3.b, 1.A.3.d, 1.A.3.c, 1.A.3.e) – 

road transportation, & shipping, & railways, pipelines, off-road transport; “6” group 

OTHER (1.A.1.b, 1.A.1.c, 1.A.5.b.iii, 1.B.1.c, 1.B.2.a.iii.4, 1.B.2.a.iii.6, 1.B.2.b.iii.3, 

1.B.2.a.ii, 1.B.2.a.iii.2, 1.B.2.a.iii.3, 1.B.2.b.ii, 1.B.2.b.iii.2, 1.B.2.b.iii.4, 1.B.2.b.iii.5, 

1.C, 1.B.1.a, 3.C.2, 3.C.3, 3.C.4, 3.C.7, 2.D.3, 2.B.9, 2.E, 2.F, 2.G) – oil refineries and 

transformation industry, & fuel exploitation, & coal production, & agricultural soils, & 

solvents and products use; “7” represents all groups summed together 

M
o

n
th

ly
_

U
p
p

er
_

L
o

w

er
_

U
n

ce
rt

ai
n

ti
es

_
 

P
er

ce
n

ta
g

e_
0

.1
_
0

.1
.n

c file has 2×8×12 fields with monthly 

upper and lower uncertainty bounds in 

% per each emission group and for all 

groups summed together on a regular 

grid with 1800 pixels along the 

latitude and 3600 pixels along the 

longitude, where values represent 

centre of the grid-cell 

file structure is identical to the file 

Annual_Upper_Lower_Uncertainties_Percentage_0.1_0.1.nc, but per month (1, 2, …, 12 

correspond to January, February, …, December) 

A
n

n
u

al
_

U
p
p

er
_

L
o

w
er

_
U

n
ce

rt
ai

n
ti

es

_
 

0
.1

_
0

.1
.n

c 

file has 3×8 fields with annual 

emissions, and upper and lower 

uncertainty bounds in kg·m-2·s-1 per 

each emission group and for all groups 

summed together on a regular grid 

with 1800 pixels along the latitude and 

3600 pixels along the longitude, where 

values represent centre of the grid-cell 

“Sup_lower” – lower uncertainty bound (2.5th percentile of log-normal distribution) for 

yearly emissions of ENERGY_S group, in kg·m-2·s-1, 

“Sup_upper” – upper uncertainty bound (97.5th percentile of log-normal distribution) for 

yearly emissions of ENERGY_S group, in kg·m-2·s-1, 

“Sup_flux” – yearly emissions of ENERGY_S group, in kg·m-2·s-1 

“Ene_lower”, “ene_upper”, “ene_flux” – same, but for ENERGY_A group, in kg·m-2·s-1 

“Man_lower”, “man_upper”, “man_flux” – same, but for MANUFACTURING group, in 

kg·m-2·s-1 

“Set_lower”, “set_upper”, “set_flux” – same, but for SETTLEMENTS group, in kg·m-

2·s-1 

“Avi_lower”, “avi_upper”, “avi_flux” – same, but for AVIATION group, in kg·m-2·s-1 

“Tra_lower”, “tra_upper”, “tra_flux” – same, but for TRANSPORT group, in kg·m-2·s-1 

“Oth_lower”, “oth_upper”, “oth_flux” – same, but for OTHER group, in kg·m-2·s-1 

https://doi.org/10.5281/zenodo.3967439
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“All_lower”, “all_upper”, “all_flux” – same, but for all groups summed together, in 

kg·m-2·s-1 
M

o
n

th
ly

_
S

u
p
_

U
p
p

er
_

L
o

w
er

_
U

n
ce

rt
ai

n
ti

es
_
 

0
.1

_
0

.1
.n

c 

file has 3×12 fields with monthly 

emissions, and upper and lower 

uncertainty bounds in kg·m-2·s-1 per 

ENERGY_S emission group on a 

regular grid with 1800 pixels along the 

latitude and 3600 pixels along the 

longitude, where values represent 

centre of the grid-cell 

“Sup_lower” – lower uncertainty bound (2.5th percentile of log-normal distribution) for 

monthly emissions of ENERGY_S group, in kg·m-2·s-1 

“Sup_upper” – upper uncertainty bound (97.5th percentile of log-normal distribution) for 

monthly emissions of ENERGY_S group, in kg·m-2·s-1 

“Sup_flux” – monthly emissions of ENERGY_S group, in kg·m-2·s-1 

“Month” – month numerical name, where 1, 2, …, 12 correspond to January, February, 

…, December 

M
o

n
th

ly
_

E
n

e_
U

p
p

er
_

L
o

w
er

_
U

n
ce

rt
ai

n
ti

es
_

0
.1

_
0

.1
.n

c 

file has 3×12 fields with monthly 

emissions, and upper and lower 

uncertainty bounds in kg·m-2·s-1 per 

ENERGY_A emission group on a 

regular grid with 1800 pixels along the 

latitude and 3600 pixels along the 

longitude, where values represent 

centre of the grid-cell 

file structure is identical to the file 

Monthly_Sup_Upper_Lower_Uncertainties_0.1_0.1.nc, but with “ene_lower”, 

“ene_upper”, “ene_flux” fields 

M
o

n
th

ly
_

M
an

_
U

p
p

er

_
L

o
w

er
_

U
n

ce
rt

ai
n

ti
es

_
0

.1
_
0

.1
.n

c 

file has 3×12 fields with monthly 

emissions, and upper and lower 

uncertainty bounds in kg·m-2·s-1 per 

MANUFACTURING emission group 

on a regular grid with 1800 pixels 

along the latitude and 3600 pixels 

along the longitude, where values 

represent centre of the grid-cell 

file structure is identical to the file 

Monthly_Sup_Upper_Lower_Uncertainties_0.1_0.1.nc, but with “man_lower”, 

“man_upper”, “man_flux” fields 

M
o

n
th

ly
_

S
et

_
U

p
p

er
_

L
o

w
er

_
U

n
ce

rt
ai

n
ti

es
_

0
.1

_
0

.1
.n

c 

file has 3×12 fields with monthly 

emissions, and upper and lower 

uncertainty bounds in kg·m-2·s-1 per 

SETTLEMENTS emission group on a 

regular grid with 1800 pixels along the 

latitude and 3600 pixels along the 

longitude, where values represent 

centre of the grid-cell 

file structure is identical to the file 

Monthly_Sup_Upper_Lower_Uncertainties_0.1_0.1.nc, but with “set_lower”, 

“set_upper”, “set_flux” fields 

M
o

n
th

ly
_

A
v
i_

U
p
p

er
_

L
o

w
er

_
U

n
ce

rt
ai

n
ti

es
_

0
.1

_
0

.1
.n

c 

file has 3×12 fields with monthly 

emissions, and upper and lower 

uncertainty bounds in kg·m-2·s-1 per 

AVIATION emission group on a 

regular grid with 1800 pixels along the 

latitude and 3600 pixels along the 

longitude, where values represent 

centre of the grid-cell 

file structure is identical to the file 

Monthly_Sup_Upper_Lower_Uncertainties_0.1_0.1.nc, but with “avi_lower”, 

“avi_upper”, “avi_flux” fields 

M
o

n
th

ly
_

T
ra

_
U

p
p

er
_

L
o

w
er

_
U

n
ce

rt
ai

n
ti

es
_

0
.1

_
0

.1
.n

c 

file has 3×12 fields with monthly 

emissions, and upper and lower 

uncertainty bounds in kg·m-2·s-1 per 

TRANSPORT emission group on a 

regular grid with 1800 pixels along the 

latitude and 3600 pixels along the 

longitude, where values represent 

centre of the grid-cell 

file structure is identical to the file 

Monthly_Sup_Upper_Lower_Uncertainties_0.1_0.1.nc, but with “tra_lower”, 

“tra_upper”, “tra_flux” fields 



22 

 

M
o

n
th

ly
_
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_
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p

er
_

L
o

w
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_
U

n
ce

rt
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n
ti

es
_

0
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_
0

.1
.n

c 

file has 3×12 fields with monthly 

emissions, and upper and lower 

uncertainty bounds in kg·m-2·s-1 per 

OTHER emission group on a regular 

grid with 1800 pixels along the 

latitude and 3600 pixels along the 

longitude, where values represent 

centre of the grid-cell 

file structure is identical to the file 

Monthly_Sup_Upper_Lower_Uncertainties_0.1_0.1.nc, but with “oth_lower”, 

“oth_upper”, “oth_flux” fields 
M

o
n

th
ly

_
A

ll
_

U
p
p

er
_

L
o

w
er

_
U

n
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rt
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n
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_

0
.1

_
0

.1
.n

c 

file has 3×12 fields with monthly 

emissions, and upper and lower 

uncertainty bounds in kg·m-2·s-1 for all 

groups summed together on a regular 

grid with 1800 pixels along the 

latitude and 3600 pixels along the 

longitude, where values represent 

centre of the grid-cell 

file structure is identical to the file 

Monthly_Sup_Upper_Lower_Uncertainties_0.1_0.1.nc, but with “all_lower”, 

“all_upper”, “all_flux” fields 

C
H

E
_

E
D

G
A

R
_

2
0

1
5

.x
ls

x
 

file has 16 spreadsheets with listed 

information per country (metadata, 

emissions, uncertainties, statistical 

parameters) 

“COUNTRY” – ISO Code (3-letter abbreviation of a geographical entity), Geographical 

name (name of a geographical entity), Type (development level of countries statistical 

infrastructure, meaning with well-/less well-developed statistical infrastructure), Main 

country (dependency, which country geographical entity in question belongs to), Full 

information (full name of a geographical entity, and what territory it occupies on the map 

of this study) 

“GROUP” – № (number of anthropogenic CO2 emission group), ECMWF group (group 

name), IPCC (2006) activity (IPCC activities that are included in each group), Note 

(short explanation of the group), Global emission budget 2015, Mton (total global 

emissions per group), Prior uncertainty bounds, % (initial, calculated purely based on 

assumptions from IPCC, lower and upper uncertainty bounds for countries with well-

/less well-developed statistical infrastructures) 

“YEARLY” – ISO Code (3-letter abbreviation of a geographical entity), ECMWF group 

(group name), Budget, kton (yearly anthropogenic CO2 emission budget per group and 

total per geographical entity), Uncertainty bounds, % (calculated based on Prior 

uncertainty bounds and Budgets yearly uncertainties per group and total per geographical 

entity, uncertainties lower/upper/symmetrical bounds), Contribution to total countries 

uncertainty, % (share of each group in geographical entities total yearly uncertainty, total 

contribution is always 100 %), Parameters of log-normal distribution (anthropogenic 

CO2 emission distribution is assumed to be log-normal, so additionally for modelling 

purposes log-normal mean, log-normal standard deviation and log-normal variance were 

calculated) 

“MONTHLY_01”, “MONTHLY_02”, …, “MONTHLY_12” – same explanation as for 

spreadsheet “YEARLY”, but for a month (01, 02, …, 12 correspond to January, 

February, …, December) 

 

5 Comparison and sensitivity 

Calculated emissions and uncertainties of fossil CO2 have been compared to other data sets based on the country-specific 450 

data reported to UNFCCC and on fuel-specific data reported in the energy statistics of IEA. The global values and their 

uncertainty at a 2σ range for the CHE_EDGAR-ECMWF_2015 dataset show the lowest value of -4.7/+9.6 % or ±7.1 % 

range, see Table 7. This result might be attributed to the methodology, in particular considering that (i) all calculations were 

done at the country level and then aggregated to global level assuming no correlation following IPCC (2006), (ii) all 
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calculations were done separately for upper and lower uncertainty bounds to preserve original information with asymmetric 455 

confidence intervals for large uncertainties (not required for the Approach 1 described in IPCC (2006), according to 

Approach 1 from IPCC (2006) only higher uncertainty value of asymmetric interval should be used – leads to artificial 

inflation of uncertainty upper or lower limit), and (iii) might be also because in this study we were not taking into account 

proxy grid-map uncertainties.  

 460 

Table 7: Comparison of global anthropogenic CO2 emission uncertainty at 2σ associated with certain emission datasets  

Name Global uncertainty at 2σ, % References 

BP 
no quantitative assessment of uncertainty associated with its 

emissions dataset 
Andrew (2020) 

CDIAC ±8.4 % Andres et al. (2016) 

CEDS 
no quantitative assessment of uncertainty associated with its 

emissions dataset, limited information in  
Hoesly et al. (2018) 

CHE_EDGAR-ECMWF_2015 ±7.1 % (-4.7/+9.6 %) Andrew (2020) 

EDGAR ±9.0 % Janssens-Maenhout et al. (2019) 

EIA 
no quantitative assessment of uncertainty associated with its 

emissions dataset 
Andrew (2020) 

Global Carbon Project (GCP) ±10.0 % Friedlingstein et al. (2019) 

IEA 
no quantitative assessment of uncertainty associated with its 

emissions dataset 
Andrew (2020) 

ODIAC ±8.4 %3 Oda et al. (2018) 

 

In this paper we decided to focus on some specific geographical areas – chosen to be among most emitting in total or per 

emission group, most typical or most influential for a certain region. A list of these geographical entities and development 

levels of their statistical infrastructures are presented in Table 8.  465 

 

Table 8: List of selected geographical entities with their statistical infrastructure’s development levels  

ISO Code Geographical name Type 

GLB All World Countries mixed-developed statistical infrastructure 

E28 Europe (28 members till end 2019) well-developed statistical infrastructure 

DEU Germany well-developed statistical infrastructure 

ESP Spain well-developed statistical infrastructure 

FRA France well-developed statistical infrastructure 

GBR United Kingdom well-developed statistical infrastructure 

POL Poland well-developed statistical infrastructure 

BRA Brazil less well-developed statistical infrastructure 

CHN China well-developed statistical infrastructure 

IDN Indonesia less well-developed statistical infrastructure 

IND India well-developed statistical infrastructure 

JPN Japan well-developed statistical infrastructure 

RUS Russian Federation less well-developed statistical infrastructure 

USA United States of America well-developed statistical infrastructure 

 

 
3 The difference between ODIAC and CDIAC gridded data is 3.3-5.7 % (Oda et al., 2018). 
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5.1 Global versus country-specific results 

In order to see how development level of country’s or geographical entity’s statistical infrastructure is influencing emission 470 

uncertainty of that country or geographical entity itself and (possibly) the globe, uncertainty calculations for selected entities 

were performed twice – with their original and inverse types (i.e. country with well-developed statistical infrastructure 

becomes country with less well-developed statistical infrastructure and vice versa). More details on geographical entity’s 

statistical infrastructure development level (e.g. how it was determined) are given in the Supplementary Information, section 

S.4. Figure 5 shows sectoral emission budgets, uncertainties and contributions in percentage to the total uncertainty of 475 

country or geographical entity with its original and inverse statistical infrastructure development levels. The biggest impact 

of development level change can be noticed for countries with larger emission budgets. On average total uncertainties of 

selected countries (see Table 8) changed by 1-2 %; group uncertainties changed in line with prior uncertainties from Table 4 

and countries emission budgets, as reported in Table 9. 

 480 

Table 9: Country’s statistical infrastructure (countries with well- (WDS) and less well-developed (LDS) statistical infrastructures) 

influence on emission uncertainty 

Impact on the 

uncertainty 
ECMWF group Cause description 

most 

substantial 
SETTLEMENTS 

• consists only from residential heating emissions; 

• high differences in prior uncertainties for WDS and LDS, ±12.2 % and ±26.0 % 

respectively 

strong 

MANUFACTURING 

• budget usually makes a significant part of country’s total emission budget; 

• globally mainly composed from combustion for manufacturing with rather low prior 

uncertainty (±8.6 % and ±12.2 % for WDS and LDS respectively) and non-metallic minerals 

production with much higher uncertainties (±70.9 % and ±93.0 % for WDS and LDS 

respectively); 

• also contains emissions from very uncertain non-energy use of fuels (±121.7 % and 

±124.0 % for WDS and LDS respectively) and chemical processes (-107.8/+89.9 % both for 

WDS and LDS) emissions, though their global share in this group is only ~7.0 % 

ENERGY_A 

• budget usually makes a significant part of country’s total emission budget; 

• composed of emissions from standard power plants with rather low uncertainties 

(±8.6 % and ±12.2 % for WDS and LDS respectively) and solid waste incineration with much 

higher uncertainties (±40.3 % and ±41.2 % for WDS and LDS respectively); 

• for the Globe the ratio of solid waste incineration to energy emissions is ~1/100, 

which keeps the total group prior uncertainty quite low ±3.5 %; 

• NB! geographical entities with higher ratios will have higher uncertainties 

ENERGY_S 
• composed of emissions from super power plants only with rather low prior 

uncertainties (-8.6/+3.0 % and -12.2/+3.0 % for WDS and LDS respectively) for all 

geographical entities 

mild TRANSPORT 

• globally mainly composed of road transportation with rather low uncertainty (±5.4 % 

and ±7.1 % for WDS and LDS respectively) and shipping emissions with low uncertainties -

5.4/+5.1 % for WDS and high uncertainties ±50.0 % for LDS; 

• also contains rather uncertain railways, pipelines and off-road transport emissions (~ 

-50.4/+107.0 % for both WDS and LDS), though their global share in this group is ~16.0 % 

only; 

• NB! all international shipping is included in All World Countries geographical entity 

small AVIATION • extremely high differences in prior uncertainties for WDS and LDS (-5.5/+6.4 % and 
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-50.1/+106.8 % respectively), though this groups share in global emissions is only 2.3 %; 

• NB! all international aviation is included in All World Countries geographical entity 

negligible OTHER 

• composed of very uncertain components with usually almost the same prior 

uncertainties for WDS and LDS; 

• main composite globally (~78.0 %) are emissions from oil refineries and 

transformation industry with prior uncertainties -54.4/+149.3 % and -57.7/+151.4 % for WDS 

and LDS respectively; 

• also usually has the highest contribution to the country’s total uncertainty 
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Figure 5: Emission budgets, uncertainties and contributions in percentage to the total uncertainty of the country with their 

original and inverse types (countries with well- (WDS) and less well-developed (LDS) statistical infrastructures): impacting mainly 485 
country itself, e.g. the Russian Federation (RUS), India (IND), impacting also Europe (E28), e.g. Germany (DEU), impacting even 

global values, e.g. China (CHN)  

 

Alterations in some countries’ (e.g. Germany, France) statistical infrastructure’s development levels lead to changes in 

Europe (28 members till end 2019) uncertainties, with most substantial change for SETTLEMENTS group (e.g. 2.5 and 1.0 490 

% respectively). Huge changes (> 10.0 %) in Europe’s (28 members till end 2019) AVIATION group uncertainty % value 

can be due to the variation of statistical infrastructure development level for Germany, United Kingdom, France or Spain, 

though this groups contribution to the Europe’s (28 members till end 2019) total uncertainty remains negligible. Alterations 

in statistical infrastructure development levels for China or the United States of America modify even global uncertainties 

because these countries substantially contribute to the global emission budget, e.g. China emits ~1/3 of the global 495 

anthropogenic CO2 budget and can change global total uncertainty up to 0.5 %. 

5.2 Yearly and monthly uncertainties 

In order to increase the emission temporal resolution, monthly emissions and their uncertainties were calculated combining 

yearly emissions, monthly multiplication factors, and adapted uncertainty calculation methodology (see Section 3.3). Prior 

yearly uncertainties were multiplied by dimensionless uncertainty boosting parameter α (same value for each month) to 500 

compute prior monthly uncertainties, which were further used together with monthly emission budgets for countries monthly 

uncertainty calculation. Monthly uncertainties (just like yearly uncertainties) are determined by empirical formulas from 

IPCC (2006), hence their values depend on monthly emission budgets, which relate to number of days in a month (e.g. even 

with a flat yearly cycle months with more days have higher emission budgets, i.e. month emissions are sum of daily values). 

To eliminate this dependency, we looked straight away at dimensionless uncertainty boosting parameter α, see Table 10 for 505 

most common values for countries with well- and less well-developed statistical infrastructures per EDGAR sectors. 

Boosting parameters become active (α ≠ 1) when absolute uncertainty values are ≥ 25.0 %, α increases with the increase of 

absolute uncertainty following third order polynomial. For lower bound uncertainties α has bigger values and steeper growth 

than for upper bound uncertainties (e.g. -25.0 % ≙ α = 1.5 and -124.0 % ≙ α = 2.6; +25.0 % ≙ α = 0.8 and +124.0 % ≙ α = 

1.2), α behaves in the same way for countries with well- and less well-developed statistical infrastructures. Discrepancies in 510 

different geographical entity’s (country’s) boosting parameters might be for several reasons, main ones are: (i) sector 

emissions were zero (e.g. super power plant emissions of the energy sector had no emissions); (ii) sector uncertainties were ≥ 

50.0 % and needed to be adapted accordingly by log-normal distribution technique (e.g. agriculture soils sector with prior 

uncertainties -70.7/+0.0 % both for countries with well- and less well-developed statistical infrastructures). Most significant 

discrepancies in α are for agriculture soils sector (e.g. instead of lower/upper values from Table 10 for countries with well-515 

developed statistical infrastructures France has α = 1.8/3.1, United Kingdom – 1.8/7.2, China – 1.8/8.4, Japan – 1.8/10.8; 
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instead of lower/upper values from Table 10 for countries with less well-developed statistical infrastructures Brazil has α = 

1.8/0.0, the Russian Federation – 1.8/5.6). 

 

Table 10: Dimensionless (DN) boosting parameter uncertainties (lower and upper bounds) for countries with well- (WDS) and less 520 
well-developed (LDS) statistical infrastructures  

№ ECMWF group IPCC (2006) activities per EDGAR sector 

Uncertainty boosting parameter, DN 

WDS countries LDS countries 

Low Up Low Up 

1 ENERGY_S 1.A.1.a (subset) 1.0 1.0 1.0 1.0 

2 ENERGY_A 
1.A.1.a (rest) 1.0 1.0 1.0 1.0 

4.C 1.8 0.8 1.9 0.8 

3 MANUFACTURING 

1.A.2 1.0 1.0 1.0 1.0 

2.C.1, 2.C.2 1.7 0.8 1.7 0.8 

2.C.3, 2.C.4, 2.C.5, 2.C.6, 2.C.7 2.0 0.9 2.0 0.9 

2.D.1, 2.D.2, 2.D.4 2.6 1.2 2.6 1.2 

2.A.1, 2.A.2, 2.A.3, 2.A.4 2.0 0.9 2.3 1.0 

2.B.1, 2.B.2, 2.B.3, 2.B.4, 2.B.5, 2.B.6, 2.B.8 2.4 1.0 2.4 1.0 

4 SETTLEMENTS 1.A.4, 1.A.5.a, 1.A.5.b.i, 1.A.5.b.ii 1.0 1.0 1.5 0.9 

5 AVIATION 

1.A.3.a_CRS 1.0 1.0 1.7 1.1 

1.A.3.a_CDS 1.0 1.0 1.7 1.1 

1.A.3.a_LTO 1.0 1.0 1.7 1.1 

6 TRANSPORT 

1.A.3.b 1.0 1.0 1.0 1.0 

1.A.3.d 1.0 1.0 1.7 0.9 

1.A.3.c, 1.A.3.e 1.7 1.1 1.7 1.1 

7 OTHER 

1.A.1.b, 1.A.1.c, 1.A.5.b.iii, 1.B.1.c, 1.B.2.a.iii.4, 1.B.2.a.iii.6, 

1.B.2.b.iii.3 
1.7 1.4 1.8 1.4 

1.B.2.a.ii, 1.B.2.a.iii.2, 1.B.2.a.iii.3, 1.B.2.b.ii, 1.B.2.b.iii.2, 

1.B.2.b.iii.4, 1.B.2.b.iii.5, 1.C 
3.0 2.4 3.1 2.5 

1.B.1.a 2.5 2.2 2.5 2.2 

3.C.2, 3.C.3, 3.C.4, 3.C.7 1.8 0.0 2.0 0.0 

2.D.3, 2.B.9, 2.E, 2.F, 2.G 1.5 0.8 1.7 0.9 

 

In general, Brazil, Indonesia and India have a very weak yearly cycle with quite high monthly uncertainties throughout the 

year. Globe, Europe (28 members till end 2019), Germany, Spain, France, United Kingdom, Poland, China, Japan, the 

Russian Federation, and the United States of America have more pronounced yearly cycles, most significant for 525 

SETTLEMENTS and ENERGY_A (and ENERGY_S where present) groups, and less significant for AVIATION, 

TRANSPORT and MANUFACTURING groups. This is in line with the monthly profiles applied in EDGARv4.3.2 for 

Northern and Southern temperate zones, and Equator, see Janssens-Maenhout et al. (2019). In summer months for Northern 

temperate zone, a strong decrease in SETTLEMENT and ENERGY_A (and ENERGY_S where present) groups emissions 

was observed, a light decrease in MANUFACTURING group emissions, and a light increase in AVIATION and 530 

TRANSPORT groups emissions. This corresponds rather well with the assumption that most of the population in the 

Northern hemisphere must heat their houses during winter, and that they take holidays and travel more during summer.  
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5.3 Comparison with UNFCCC, TNO and other data 

The CHE_EDGAR-ECMWF_2015 dataset containing 7 global gridded fossil CO2 emission flux maps, and country- and 

ECMWF-group-specific emission budgets and uncertainties have been assessed with independent data. Global emission 535 

budget values from different datasets are almost never the same, therefore it is important to first identify why estimates differ 

between datasets – datasets might use same country-level information as primary input, nevertheless differences in inclusion, 

interpretation, and treatment of that data lead to diverse results in emissions; second – try to harmonise e.g. data inclusion or 

omission across datasets to have more clarity in the discrepancies.  

For Europe (28 members till end 2019), Germany, Spain, France, United Kingdom, Poland, Japan, the Russian Federation 540 

and the United States of America emission and uncertainty data was collected from UNFCCC NIR. The aggregation of the 

IPCC (2006) activity-specific emissions and uncertainties into 7 ECMWF groups was done assuming no correlation, 

following IPCC (2006). Although IPCC (2006) has a standard table to report GHG emissions, uncertainties can be reported 

in less detail by a more general category (e.g. 2.D only instead of 2.D.1, 2.D.2, 2.D.3, 2.D.4), meaning information 

harmonization required lots of careful time-consuming country-specific technical work. 545 

The Netherlands Organisation for Applied Scientific Research (TNO) has recently prepared the first version of their GHG 

and co-emitted species emission database (TNO_GHGco_v1.1) that covers the entire European domain (at 0.1º×0.05º 

resolution) also for CO2 (distinguishing between fossil fuel and biofuel). Initial emission data is from the UNFCCC 

(Common reporting format (CRF) tables) and the European Monitoring and Evaluation Programme/Centre on Emission 

Inventories and Projections for air pollutants (EMEP/CEIP). These data were harmonized, checked for gaps, errors and 550 

inconsistencies, and (where needed) replaced or completed using emission data from the Greenhouse gas-Air pollution 

Interactions and Synergies (GAINS) model (Amann et al., 2011). Moreover, inland shipping emissions were replaced with 

TNO’s own estimates and sea shipping is based on automatic identification system (AIS) based tracks. Expert judgement is 

used to assess the quality of each data source and to make choices on which source to use. The resulting emissions were 

checked in detail with regard to their absolute value and trends (Kuenen et al., 2014). In this study we used emission budgets 555 

from 30 TNO sectors provided by TNO (Super et al., February 2020, personal communication), and prior uncertainties 

calculated from IPCC (2006) and IPCC-TFI (2019) see Table 11 (NB! all uncertainty calculations were done per country and 

only then for comparison purposes aggregated to Europe (28 members till end 2019) values assuming no correlation 

following IPCC (2006)). In addition, TNO has provided Tier 2 (Monte Carlo approach) uncertainties based on the same 

budgets and uncertainties from submitted NIR reports based on Tier 1 approach. The Monte Carlo simulations were done at 560 

the highest detail level (nomenclature for reporting (NFR) sector/fuel type) assuming correlations between certain sectors 

(for more information see Super et al. (2020)), and then emissions were aggregated to ECMWF groups assuming no 

correlation. 

 

Table 11: Prior uncertainties (lower and upper bounds) per each TNO emission sector based on IPCC (2006) and IPCC-TFI 565 
(2019), and aggregated to the ECMWF group uncertainties for Germany (DEU) and Europe (E28) 
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№ ECMWF group IPCC (2006) activities per TNO sector 

Prior uncertainty bounds, % Uncertainty bounds, % 

WDS countries DEU E28 

Low Up Low Up Low Up 

1 ENERGY_S 1.A.1.a (subset) 8.6 3.0 0.0 0.0 0.0 0.0 

2 ENERGY_A 
1.A.1.a (rest) 8.6 8.6 

8.6 8.6 3.1 3.1 
4.C 40.3 40.3 

3 MANUFACTURING 

1.A.2 8.6 8.6 

8.3 9.0 3.0 3.6 

2.C.1, 2.C.2 37.1 37.1 

2.C.3 10.2 10.2 

2.C.4, 2.C.5, 2.C.6, 2.C.7 72.5 72.5 

2.D.2 106.8 106.8 

2.D.1, 2.D.4 50.3 50.3 

2.A.1 36.7 36.7 

2.A.2, 2.A.3, 2.A.4 60.7 60.7 

2.B.1, 2.B.2, 2.B.3, 2.B.4, 2.B.5, 2.B.6, 2.B.8 107.8 89.9 

4 SETTLEMENTS 
1.A.4 12.2 12.2 

12.1 12.1 4.2 4.2 
1.A.5.a, 1.A.5.b.i, 1.A.5.b.ii 0.0 0.0 

5 AVIATION 

1.A.3.a_CRS 5.5 6.4 

5.5 6.4 1.9 2.2 1.A.3.a_CDS 5.5 6.4 

1.A.3.a_LTO 5.5 6.4 

6 TRANSPORT 

1.A.3.b 5.4 5.4 

5.4 7.4 1.8 3.1 
1.A.3.d 5.4 5.1 

1.A.3.c 5.4 5.1 

1.A.3.e 50.0 106.7 

7 OTHER 

1.A.1.b 8.6 8.6 

8.1 19.6 3.7 12.4 

1.A.1.c 12.2 12.2 

1.A.5.b.iii, 1.B.1.c, 1.B.2.a.iii.4, 1.B.2.a.iii.6, 

1.B.2.b.iii.3 
0.0 0.0 

1.B.2.a.ii, 1.B.2.a.iii.2, 1.B.2.a.iii.3, 1.B.2.b.ii, 

1.B.2.b.iii.2, 1.B.2.b.iii.4, 1.B.2.b.iii.5 
176.3 267.2 

1.C 50.0 100.0 

1.B.1.a 115.8 300.5 

3.C.2 50.0 0.0 

3.C.3, 3.C.4, 3.C.7 50.0 0.0 

2.D.3, 2.B.9, 2.E, 2.F, 2.G 25.0 25.0 

 

Figure 6 shows emission budgets and uncertainties in Mtons, and contributions in % to the total geographical entity’s 

uncertainty for Europe (28 members till end 2019), Germany, France and United Kingdom with their original statistical 

infrastructure development types based on data from CHE_EDGAR-ECMWF_2015 (in pink), UNFCCC (in yellow), and 570 

TNO_GHGco_v1.1 Tier 1 (in blue) and Tier 2 (in green); plots for Spain and Poland are not shown here. Out of the four 

different sources, usually UNFCCC and TNO_GHGco_v1.1 Tier 2 uncertainties are the lowest ones and CHE_EDGAR-

ECMWF_2015 – the highest one. It should be noted that: (i) UNFCCC uncertainties were aggregated to ECMWF groups 

individually per each country as uncertainties are reported in a rather free form thus could be aggregated from different 

levels of precision, (ii) uncertainties for Europe (28 members till end 2019) from CHE_EDGAR-ECMWF_2015 are rather 575 
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low as they were calculated by aggregating information of 28 countries, rather than assuming it to be a one geographical 

entity from the beginning as it is done in UNFCCC, and (iii) differences in uncertainties of CHE_EDGAR-ECMWF_2015 

with other sources, especially in fuel dependent emission groups, might be due to biofuels, as CHE_EDGAR-ECMWF_2015 

is not taking them into account (NB! other datasets do take biofuels into account), and other sources (e.g. according to 

UNFCCC SETTLEMENT group uncertainties for United Kingdom are ±24.5 % (contributes 95 % of United Kingdom’s 580 

total uncertainty), which is twice higher according to other sources – it might be explained by use of other fuels, e.g. wood 

and/or coal for residential heating). Differences in uncertainties between CHE_EDGAR-ECMWF_2015 and 

TNO_GHGco_v1.1 Tier 1 show additional value in more detailed emission budget knowledge, i.e. if we know for certain 

that country has no glass production then this rather uncertain activity can be excluded from non-metallic minerals 

production sector overall uncertainty calculation. Differences in uncertainties between TNO_GHGco_v1.1 Tier 1 and 585 

TNO_GHGco_v1.1 Tier 2 show additional value in advanced calculation technique, using a more sophisticated, data 

demanding Monte Carlo approach instead of simple error propagation. Overall there is quite good agreement in emission 

budgets and uncertainties from different sources of emission data.  

 

Europe (28 members till end 2019), country with well-developed statistical infrastructure 

 

Data 

Emission 

budget 

2015, Mton 

Uncertainty 

bound, % 

Low/Up Range 

CHE_EDGAR-

ECMWF_2015 
3489.4 -1.6/+3.3 ±2.4 

UNFCCCTier1 3486.7 -1.4/+1.4 ±1.4 

TNO_GHGco 

_v1.1Tier1 
3492.2 -1.4/+1.8 ±1.6 

TNO_GHGco 

_v1.1Tier2 
3492.3 -1.2/+1.2 ±1.2 

 

Germany, country with well-developed statistical infrastructure 

 

Data 

Emission 

budget 

2015, Mton 

Uncertainty 

bound, % 

Low/Up Range 

CHE_EDGAR-

ECMWF_2015 
783.7 -4.7/+8.7 ±6.7 

UNFCCCTier1 794.0 -2.7/+2.7 ±2.7 

TNO_GHGco 

_v1.1Tier1 
791.2 -4.3/+4.6 ±4.5 

TNO_GHGco 

_v1.1Tier2 
791.2 -3.8/+3.6 ±3.7 

 

France, country with well-developed statistical infrastructure 
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Data 

Emission 

budget 

2015, Mton 

Uncertainty 

bound, % 

Low/Up Range 

CHE_EDGAR-

ECMWF_2015 
333.8 -5.1/+10.7 ±7.9 

UNFCCCTier1 334.1 -1.6/+1.6 ±1.6 

TNO_GHGco 

_v1.1Tier1 
340.6 -4.3/+6.4 ±5.3 

TNO_GHGco 

_v1.1Tier2 
340.6 -3.8/+3.8 ±3.8 

 

United Kingdom, country with well-developed statistical infrastructure 

 

Data 

Emission 

budget 

2015, Mton 

Uncertainty 

bound, % 

Low/Up Range 

CHE_EDGAR-

ECMWF_2015 
398.6 -4.8/+13.2 ±9.0 

UNFCCCTier1 415.3 -5.5/+5.5 ±5.5 

TNO_GHGco 

_v1.1Tier1 
414.0 -4.1/+5.7 ±4.9 

TNO_GHGco 

_v1.1Tier2 
414.0 -3.7/+3.4 ±3.6 

 

Group emission budget, in Mtons for UNFCCC , 

CHE_EDGAR-ECMWF_2015 , 

TNO_GHGco_v1.1 Tier 1  & Tier 2  

Upper and lower group uncertainty bound, in 

Mtons for UNFCCC , CHE_EDGAR-

ECMWF_2015  , TNO_GHGco_v1.1 Tier 1  

 & Tier 2   

Group contribution to countries total 

uncertainty, in % for UNFCCC , 

CHE_EDGAR-ECMWF_2015 , 

TNO_GHGco_v1.1 Tier 1  & Tier 2  Group uncertainty , in % 

Figure 6: Emission budgets, uncertainties and contributions in percentage to the total uncertainty for Europe (E28), Germany 590 
(DEU), France (FRA) and United Kingdom (GBR) with their original statistical infrastructure development types 

 

Emission budgets, Tier 1 uncertainties, and contributions in percentage to the total geographical entity’s uncertainty for 

Japan, the Russian Federation and the United States of America from CHE_EDGAR-ECMWF_2015 could be compared 

only with UNFCCC data (plots not shown here). UNFCCC uncertainties are usually lower than the ones calculated in this 595 

study. Main reason for that is use of country-specific emission data and activity data uncertainties, which are lower than 

default values suggested by IPCC (2006) and IPCC-TFI (2019). Only for fuel dependent groups (e.g. AVIATION) UNFCCC 

uncertainties might be higher than in this study as rather uncertain biofuels might be taken into account (NB! CHE_EDGAR-

ECMWF_2015 does not take biofuels into account). Also, emission budgets reported to UNFCCC show some differences 

from the ones from CHE_EDGAR-ECMWF_2015. For Japan group budgets agree rather well, and total budget difference is 600 

~1.0 %. For the Russian Federation major differences are in ENERGY_A (and ENERGY_S) and MANUFACTURING 

groups, which results in ~6.0 % higher total budget of CHE_EDGAR-ECMWF_2015. For the United States of America 

major differences are ~200 Mton and ~100 Mton for SETTLEMENTS and OTHER groups respectively, which results in 
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~4.0 % higher total budget than based on UNFCCC data. Recent comparison of different gridded global datasets by Andrew 

(2020) pointed out that only few of these datasets provide quantitative uncertainty assessment, see summary in Table 7. 605 

Comparing to other global emission uncertainty values CHE_EDGAR-ECMWF_2015 shows lowest values mainly due to 

the aggregation technique.  

5.4 Sensitivity to the fuel specificity 

As mentioned above, for transport related emission uncertainty calculations only the most typical fuel type (for aviation, 

railways, shipping) and emission factor uncertainty (for road and off-road transport) were used, because detailed fuel 610 

consumption information per IPCC activity was not available for this study. EDGAR dataset development team do have 

specific fuel information globally, which could be used for uncertainty calculation. EDGAR dataset with incorporated fuel-

specific activity data and emission factor uncertainties and Tier 1 approach for uncertainty calculation (see Supplementary 

Information, section S.5) hereinafter referred to as EDGAR-JRC. Country budget uncertainties were calculated by 

considering “full fuel” splitting and by taking into consideration the assumption that emission factor from sectors sharing the 615 

same fuel are fully correlated. This latter assumption transformed the sum in quadrature of Eq. (2) into a linear summation 

(Bond et al., 2004; Bergamaschi et al., 2015). The uncertainty of activity data were set in accordance with IPCC (2006) 

guidelines, in the range 5.0 to 10.0 % for combustion activities, 10.0 to 20.0 % for combustion in the residential sector, 25.0 

% for bunker fuels in the marine transport, 35.0 % for industrial processes of cement, lime, glass, ammonia (the range of 

uncertainty values refers to the 95 % confidence interval of the mean, assigned separately to countries with well- and less 620 

well-developed statistical infrastructures). Uncertainties from EDGAR-JRC dataset aggregated to the ECMWF group level 

were compared with the ones from CHE_EDGAR-ECMWF_2015, see Table 12 for Europe (28 members till end 2019) and 

all world countries, and Table S8 from the Supplementary Information, section S.5, for all the rest geographical entities from 

Table 8. NB! Group contribution to the geographical entity’s (country’s) total uncertainty is zero when group has no 

emissions. Emission uncertainties from EDGAR-JRC reflect the share of fuel composing the emission of each country and 625 

are in line with the estimates by CHE_EDGAR-ECMWF_2015 for those countries where the fuel-composite uncertainty is 

closer to the average value assigned (see Table 4). Uncertainties calculated with fuel-specific data are usually smaller; when 

prevailing fuel coincides with typical fuel type from CHE_EDGAR-ECMWF_2015 emission group uncertainties from both 

sources are quite similar. It should be noted here that: (i) countries total uncertainty is higher in EDGAR-JRC due to 

aggregation technique (full correlation is assumed), (ii) AVIATION group uncertainties are higher in EDGAR-JRC due to 630 

prior aggregation of all three aviation connected sectors (cruise, climbing & descent, and landing & take off).  

 

Table 12: Aggregated to the ECMWF group level uncertainties (lower and upper bounds) in % and contributions in % to the total 

uncertainty (CV) for Europe (E28) and globe (GLB) from EDGAR-JRC (with extra fuel type knowledge) and CHE_EDGAR-

ECMWF_2015 (with typical fuel only) 635 

Country ECMWF group 
EDGAR-JRC CHE_EDGAR-ECMWF_2015 

Low, % Up, % CV, % Low, % Up, % CV, % 
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GLB 

ENERGY_S 0.0 0.0 0.0 -3.6 1.0 0.0 

ENERGY_A -2.9 2.7 42.4 -3.5 3.5 11.0 

MANUFACTURING -4.3 4.3 41.3 -5.7 8.6 34.0 

SETTLEMENTS -2.5 2.5 1.9 -3.9 3.9 1.1 

AVIATION -4.2 5.8 0.5 -17.3 58.1 6.1 

TRANSPORT -2.5 2.6 7.7 -4.3 6.4 8.1 

OTHER -5.9 6.2 6.2 -11.5 52.4 39.7 

TOTAL -4.8 4.8 100.0 -2.3 4.8 100.0 

E28 

ENERGY_S 0.0 0.0 0.0 -5.4 1.9 0.2 

ENERGY_A -2.0 2.4 56.4 -2.8 2.8 13.3 

MANUFACTURING -2.2 2.2 12.6 -3.9 5.8 20.0 

SETTLEMENTS -2.5 2.5 15.1 -4.2 4.2 8.8 

AVIATION -2.4 2.8 0.0 -1.4 1.6 0.0 

TRANSPORT -1.3 1.3 7.2 -1.6 1.8 2.8 

OTHER -5.0 5.0 8.7 -10.1 45.3 54.9 

TOTAL -3.3 3.6 100.0 -1.6 3.3 100.0 

 

The uncertainties derived in this study are an upper bound of the uncertainty estimation compared to the uncertainties 

calculated with more detailed information, as done by the countries and reported to UNFCCC or to the uncertainties 

calculated with fuel-specific data. Even though sometimes differences might be quite high in %, they are usually quite small 

in Mtons. Taking into account that fuel data is not publicly available, requires a lot of time to collect and implement, and is 640 

not available globally – it was decided not to use it in this study for Tier 1 uncertainty calculations.  

 

5.5 Atmospheric sensitivity to nationally disaggregated emissions  

The gridded emissions are a required input to the ECMWF model used to simulate atmospheric CO2 globally (Agusti-

Panareda et al., 2014; Agusti-Panareda et al., 2019). Ideally, uncertainties at a grid-cell level would be preferred by the 645 

models, which is a difficult time-consuming task. In order to check if these calculations are necessary it was decided to run 

some experiments. High-resolution (~25 km horizontal resolution, 137 vertical levels) simulations with ECMWF Integrated 

Forecasting System (IFS) model have been performed to assess the atmospheric sensitivity to fully resolved emissions 

compared to nationally smoothed (global emission budget is conserved), see Figure 7.  

 650 

Fully resolved emission source distribution Country aggregated emission source distribution 
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Emissions of CO2, in kg·m-2·s-1 

 
Figure 7: Anthropogenic CO2 flux source distribution – fully resolved (left), country aggregated (right) 

 

Model simulations were performed for January 2015 with 3 hourly output. Anthropogenic, fire, ocean and biogenic fluxes 

(large-scale model BIAS mitigated by biogenic CO2 flux adjustment scheme BFAS) were considered. For the full model 

configuration description see McNorton et al. (2020). The atmospheric response to using either fully or partially resolved 655 

emissions compared with nationally smoothed emissions after a 10-day period are shown in Figure 8. It was noted that point 

sources (e.g. power plants, factories) can be easily detected if they comprise substantial part of countries total emission 

budget (e.g. in South Africa). If point sources are distributed homogeneously over the country and other areal sources are 

rather high as well it becomes really difficult to detect one extra/missing emitting hotspot (e.g. in Germany). China is a very 

good example for both cases as its western part has very little hotspots and they are easy to detect over the low emitting 660 

background, and its eastern part has lots of hotspots and high emitting areal sources which make it almost impossible to 

disentangle emissions from single power plant or factory from high emitting background. In general, even by resolving a 

single sector, in this case the energy sector (see Figure 8), a difference in the atmospheric response is evident. Differences of 

several ppm are detected over multiple regions, highlighting the importance of using high resolution spatially resolved 

emissions. With increase of both flux and transport model resolutions these differences are expected to increase further with 665 

steeper atmospheric CO2 gradients.  

 

Fully resolved emissions (global domain) Only energy sector resolved emissions (European domain) 

  
Difference in Total Column CO2, in ppm 

  
Figure 8: Difference in atmospheric response to using resolved and country aggregated emissions for January 2015 with IFS model 

at ~25 km resolution after 10-day simulation; the difference is calculated using both fully resolved emissions (left) or by only 

resolving the energy sector emissions (right) 670 

 



35 

 

6 Conclusions and discussion 

The new CHE_EDGAR-ECMWF_2015 dataset with anthropogenic fossil CO2 emissions and their uncertainties and with a 

new 7×7 covariance matrix for the atmospheric transport model was compiled and tested. The fossil CO2 emissions include 

all long-cycle carbon emissions from human activities, such as fossil fuel combustion, industrial processes (e.g. cement) and 675 

products use, but excludes emissions from land-use change and forestry. Human CO2 emission inventories were processed 

into gridded maps to provide an estimate of prior CO2 emissions, aggregated in 7 main emissions groups: 1) energy 

production super-emitters, 2) energy production standard-emitters, 3) manufacturing, 4) settlements, 5) aviation, 6) other 

transport at ground level and 7) others, with estimation of their uncertainty and covariance. For the first implementation it is 

assumed that each emission group is fully correlated with itself and fully uncorrelated with any other group (only diagonal 680 

values are non-zero and equal to log-normal variance).  

The CHE_EDGAR-ECMWF_2015 represents the 2015 global fossil CO2 emissions prior at 0.1º×0.1º resolution that has 

been for the first time to our knowledge bridging the inventory community and the atmospheric modelling community. In 

fact, the uncertainty calculations fully respect the detailed error propagation approach recommended by IPCC (2006) 

guidelines for GHG inventories while these datasets as prior input were processed such that the uncertainty information 685 

could be fully taken up by the ECMWF model IFS. Estimation of emission uncertainties is purely based on IPCC (2006) and 

IPCC-TFI (2019) emission factor and activity data uncertainty values and assumptions – mainly that emissions are fully 

uncorrelated. Uncertainties related to the spatial distribution (representativeness of the proxy data and their uncertainty) were 

not assessed in this study, but they can be included by the user on top of the calculated emission uncertainties. All 

calculations, performed for the year 2015, are documented so that the methodology and algorithms used can be easily 690 

adapted for any other year. The dataset can be directly used in inverse modelling, and ensemble data assimilation 

applications, such as those envisaged within the Copernicus Atmosphere Monitoring Service (CAMS) system.  

CHE_EDGAR-ECMWF_2015 consists of 11 global NetCDF files with gridded yearly and monthly upper and lower bounds 

of uncertainties in % and kg·m-2·s-1 per each ECMWF group and their sum, and 1 Excel file with 16 spreadsheets with the 

same information listed per country (metadata, emissions, uncertainties, statistical parameters). 695 

Calculated emissions and uncertainties of fossil CO2 have been compared to other data sets based on the country-specific 

data reported to UNFCCC and on fuel-specific data reported in the energy statistics of IEA. The global values and their 

uncertainty at a 2σ range for the CHE_EDGAR-ECMWF_2015 dataset show the lowest value of -4.7/+9.6 % or ±7.1 % 

range due to the methodology used. At country level the CHE_EDGAR-ECMWF_2015 dataset provides generally larger 

uncertainty ranges, that are reduced when more detailed information is available to reduce the uncertainties; in summary, 700 

using the information that is uniformly available for all countries a coherent uncertainty representation is obtained. 

The CHE_EDGAR-ECMWF_2015 dataset has been tested to provide the ECMWF Earth system ensemble spread to 

characterise the CO2 atmospheric concentrations’ uncertainties in the prototype of the Copernicus CO2 Monitoring and 

Verification Support Capacity. Annual and monthly uncertainties have been evaluated in the ECMWF’s atmospheric 
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transport model IFS ensemble simulations as well as the sensitivity to the spatial distribution of anthropogenic CO2 705 

emissions (McNorton et al., 2020). Results show to be rather sensitive to the spatial distribution proxies, and most updated 

proxies and prior uncertainties are better adapted for data assimilation applications. This needs to be studied in a future 

research project, the Prototype system for a Copernicus CO2 service (CoCO2), that follows the current CHE research project. 

Contribution of representativeness errors to uncertainties and time correlation are neglected in CHE_EDGAR-

ECMWF_2015 and will need to be assessed in successive future studies. The estimation of global gridded emissions with 710 

their spatially and temporally distributed uncertainties constitute the backbone for atmospheric inversions to estimate 

anthropogenic emissions from atmospheric concentrations (Pinty et al., 2017). Dedicated satellite missions (e.g. Copernicus 

anthropogenic CO2 monitoring mission CO2M described in Janssens-Maenhout et al. (2020)) are being planned to monitor 

anthropogenic emissions from space and substantially reduce emission uncertainties. The developments in the emission 

uncertainty based on prior knowledge computation presented in this paper is an important preparatory step for an ensemble-715 

based CO2 Monitoring and Verification System prototype, such as the one developed within the CHE project. 

 

Data availability. EDGARv4.3.2 data are open access and available at 

http://edgar.jrc.ec.europa.eu/overview.php?v=432&SECURE=123, last access: 29 June 2020, 

doi:https://data.europa.eu/doi/10.2904/JRC_DATASET_EDGAR, documented in Janssens-Maenhout et al. (2019). 720 

CHE_EDGAR-ECMWF_2015 data (Choulga et al., 2020) are freely available https://doi.org/10.5281/zenodo.3967439, and 

documented in this paper. 
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