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Abstract. The growth in anthropogenic carbon dioxide (CO2) emissions acts as a major climate-change driver, which has 

widespread implications across society, influencing the scientific, political and public sectors. For an increased 

understanding of the CO2 emission sources, patterns and trends, a link between the emission inventories and observed CO2 

concentrations is best established via Earth system modelling and data assimilation. Bringing together the different pieces of 

the puzzle of a very different nature (measurements, reported statistics and models) it is of utmost importance to know their 15 

level of confidence and boundaries well.  

Inversions disaggregate the variation in observed atmospheric CO2 concentration to variability in CO2 emissions by 

constraining the regional distribution of CO2 fluxes, derived either bottom-up from statistics or top-down from observations. 

The level of confidence and boundaries for each of these CO2 fluxes is as important as their intensity, though often 

limitednot available for bottom-up anthropogenic CO2 emissions. This study provides a postprocessing tool 20 

CHE_UNC_APP for anthropogenic CO2 emissions, to help assessing and managing the uncertainty of the different emitting 

sectors. The postprocessor is available under [https://doi.org/10.5281/zenodo.5196190]. Recommendations are given for 

regrouping the sectoral emissions, taking into account their uncertainty instead of their statistical origin, for addressing local 

hot spots, for the treatment of sectors with small budget but uncertainties larger than 100 %, and for the assumptions around 

the classification of countries based on the quality of their statistical infrastructure. This tool has been applied on the 25 

EDGARv4.3.2_FT2015 dataset, resulting in 7 input grid-maps with upper and lower uncertainty range for the European 

Centre for Medium-Range Weather Forecasts Integrated Forecasting System. The dataset is available under 

https://doi.org/10.5281/zenodo.3967439.[https://doi.org/10.5281/zenodo.3967439]. While the uncertainty of most emission 

groups remains relatively small (5-20 %), the largest contribution (usually over 40 %) to the total uncertainty is determined 

by the OTHER group (of fuel exploitation and transformation but also agricultural soils and solvents) at global scale. The 30 

uncertainties have been compared for selected countries to those reported in the inventories submitted to the United Nations 

Framework Convention on Climate Change and to those assessed for the European emission grid-maps of the Netherlands 
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Organisation for Applied Scientific Research. Several sensitivity studiesexperiments are performed to check: 1) the country 

dependence – by analysing the impact of assuming either a well- or less well-developed statistical infrastructure, 2) the fuel 

type dependence – by adding explicit information for each fuel type used per activity from the Intergovernmental Panel on 35 

Climate Change, and 3) the spatial source distribution dependence – by aggregating all emission sources and comparing the 

effect against an even redistribution over the country. The third impactThe first experiment shows the SETTLEMENT group 

(of energy for buildings) uncertainty changes the most when development level is changed. The second experiment shows 

that fuel specific information reduces uncertainty in emissions only when a country uses several different fuels in the same 

amount, when a country mainly uses globally most typical fuel for an activity uncertainty values computed with and without 40 

detailed fuel information are the same. The third experiment highlights the importance of spatial mapping. 

1 Introduction 

Accurate assessment of anthropogenic carbon dioxide (CO2) emissions is important to better understand the global carbon 

cycle. Efforts towards a global anthropogenic CO2 monitoring and verification support capacity as described by Janssens-

Maenhout et al. (2020), rely on atmospheric modelling and atmospheric observations (in-situ from, for example, the 45 

Integrated Carbon Observation System, ICOS, air-borne from, for example,e.g. aircraft campaigns, or space-borne e.g. the 

Orbiting Carbon Observatory, OCO-2, and the Greenhouse gases Observing Satellite, GOSAT). AllAtmospheric 

measurements areof CO2 and co-emitted species can be assimilated by global tracer transport models to infer atmospheric 

CO2 changes, or byinto flux inversion systems to estimate the large-scale surfaceprovide top-down estimates of CO2 fluxes. 

at multiple spatiotemporal scales. The European Centre for Medium-Range Weather Forecasts (ECMWF), for example, 50 

applies both inverse modelling and direct modelling of global aims to develop an operational inversion system to estimate 

CO2 fluxes using observed atmospheric concentrations of CO2 in the atmosphere assimilating several types of 

observationsand other relevant species.  

The global transport models require an initial best estimate of the CO2 emission fields with uncertainties, the so-called “prior 

information”. The intensity of the emission fields is corrected through minimization of the difference between the modelled 55 

and measured concentration values for CO2. The uncertainty of these corrected CO2 fluxes based on inverse modelling will 

be lower with the increase of CO2 observations and its accuracy. The disentanglement of the fossil CO2 emissions from the 

total atmospheric CO2 emissions remains challenging. For example in 2018 total anthropogenic CO2 concentrations (5.4 ± 

0.4 ppm) represented only 1.3 % of the global atmospheric CO2 concentration (407.4 ± 0.1 ppm) (Friedlingstein et al., 2019), 

which states the need for a high accuracy of measurements (≥ 1.0 %).  60 

Emission fields are often supplied through emission inventories. Bottom-up emission inventories start from human activity 

statistics. Emission factors are defined for each activity and provided at international or country level (e.g. National 

greenhouse gas Inventory Report, NIR). Such bottom-up inventories need to be gridded and characterised with uncertainties 

to represent a prior data set useful for numerical modelling. Table 1 shows examples of most commonly used global gridded 
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CO2 emission datasets, for more details see Andrew (2020), Cong et al. (2018, Table 1), Janssens-Maenhout et al. (2019, 65 

Table 3), Cong et al. (2018, Table 1) Andrew (2020), and Jones et al. (2021). 

 

Table 1: Examples of global gridded anthropogenic CO2 emission bottom-up datasets  

Name Resolution Period Main assumptions, uncertainties Source 

Carbon Dioxide 

Information Analysis 

Center (CDIAC) 

Spatial: 1.0º×1.0º 

Temporal: annual, 

monthly 

Sectoral: 1 

1751-2013 

Use population density to disaggregate emissions, 

the mass-emissions data based on fossil-fuel 

consumption estimates. Provide gridded annual 

and monthly uncertainty estimates for 1950-2013. 

Andres et al., 1996; 

Andres et al., 2016 

Open-Data Inventory 

for Anthropogenic 

Carbon dioxide 

(ODIAC) 

Spatial: 1×1 km2, 

0.1º×0.1º 

Temporal: monthly 

Sectoral: 6 

1979-2018 

First introduced the combined use of nightlight 

data and individual power plant emission/ location 

profiles.  

Oda and Maksyutov, 

2011; Oda et al. 2018; 

ODIAC, 2020 

Emissions Database for 

Global Atmospheric 

Research (EDGAR) 

Spatial: 0.1º×0.1º 

Temporal: annual, 

monthly 

Sectoral: 26 

1970-(year-1) 

Based on international statistics, covers all IPCC 

(2006) reporting categories, consistent 

methodology applied to all the world countries. 

Janssens-Maenhout et 

al., 2019 

Fossil Fuel Data 

Assimilation System 

(FFDAS) 

Spatial: 0.1º×0.1º 

Temporal: annual 

Sectoral: 2 

1997-2012 

Provide gridded posterior uncertainty (version 2.2); 

in addition, provide monthly, weekly, and hourly 

fractions from annual CO2 emissions. 

Asefi-Najafabady et 

al., 2014 

Community Emissions 

Data System (CEDS) 

Spatial: 0.1º×0.1º 

Temporal: annual, 

monthly 

Sectoral: 55 

1750-2014 
Provide emissions of CO2 and other GHGs and 

pollutants. 
Hoesly et al., 2018 

Peking University Fuel 

combustion inventory 

(PKU-FUEL) 

Spatial: 0.1º×0.1º 

Temporal: monthly 

Sectoral: 6 

1960-2014 

By request provide daily emissions and the results 

of Monte Carlo simulation-based uncertainty 

analyses. 

Chen et al., 2016; Liu 

et al., 2015 

Global Carbon Budget 

Gridded Fossil 

Emissions Dataset 

(GCP-GridFED) 

Spatial: 0.1º×0.1º 

Temporal: monthly 

Sectoral: 28 

1959-2018 

National GHG inventories reported to UNFCCC 

are used for the GCP dataset, that is gridded with 

predefined grid-maps following EDGARv4.3.2 

spatial distribution proxies; also provide gridded 

sectoral uncertainties  

Jones et al. (., 2021)  

 

Only threefour datasets from Table 1 provide uncertainty estimates, namely CDIAC, FFDAS and, PKU-FUEL and GCP-70 

GridFED. CDIAC uncertainties have no sectors and include contributions from the tabular fossil fuel CO2 emissions 

(assigned per 7 country types, values are constant over time), geography map (power plant location), and population map 

(has details both in time and space, and used to distribute fossil fuel CO2 emissions). Population map uncertainty strongly 

dominates in the generated gridded fossil fuel CO2 uncertainties (Andres et al., 2016). CDIAC uncertainties have no sectoral 

distribution and are presented on 1.0º×1.0º grid. FFDAS provides only posterior uncertainties, which are based on a model 75 

inversion. These posterior uncertainties could be used as prior uncertainties for separate inversion systems. However, this 

would make the characterisation of uncertainty more complex if there were similarities in the model and observations used. 

PKU-FUEL uncertainty estimates of CO2 emission maps, associated with uncertain fuel data and uncertain activity data in 

the spatial disaggregation process, are based on Monte Carlo ensemble simulations. Input data was randomly sampled 1000 

times from an a priori normal uncertainty distribution with a certain coefficient of variation: for fuel consumptions from 80 

ships/aviation, the sector coefficient of variation is set to be 20 %, for the wildfires sector 18 %, for all other fuel data 10 %, 



 

4 

 

for combustion rates 20 % (Marland et al., 2003; Marland et al., 2006; Wang et al., 2013; Oda et al, 2019). GCP-GridFED 

focusses strongly on the fuel disaggregation for the global CO2 emissions, for which a detailed assessment of the uncertainty 

has not yet been published.  

2 Methods 85 

2.1 Purpose and UNFCCC context 

Intercomparisons of global greenhouse gas (GHG) emission inventories were carried out (e.g. Cong et al., 2019; Petrescu et 

al., 2020) to better understand discrepancies and missing or lesser-known sources. The United Nations Framework 

Convention on Climate Change (UNFCCC) experts, reviewing national GHG inventories on a yearly basis, are keen to know 

which sectors or fuels need extra attention for an inventory that complies with the principles of transparency, accuracy, 90 

consistency, completeness and comparability (TACCC-principles). Discrepancies are often related to the different 

interpretations of definitions or to missing information (statistics and/or measurements). When focussing on global emission 

datasets, which are calculated bottom-up following the Intergovernmental Panel on Climate Change (IPCC) 2006 Guidelines 

for National Greenhouse Gas Inventories, then the discrepancy using different definitions disappears, while the lack of 

information becomes strongly apparent for certain regions. More information costs time and effort, when compiling a global 95 

dataset in a consistent way. Therefore, it is of paramount importance to prioritise the additional information needs and the 

weaknesses in the inventory with sources of large uncertainty in intensity or variability.  

IPCC has been addressing uncertainty from the beginning of its creation.. Methodology, data, and data sources in this paper 

were taken from IPCC (2006) guidelines and its refinements (IPCC, 2019). Also, the assumptions are based on IPCC (2006) 

and), so all emissions are considered to be fully uncorrelated, by activity (and so by sector and by type) (i.e. all activities 100 

from IPCC (2006) are fully uncorrelated with each other), for the calculation of the uncertainty as well as of the covariance 

matrices. 

While the UNFCCC sticks to national inventories, the atmospheric modelling community needs spatially distributed data. 

This adds an extra uncertainty to the emission grid-maps, not evaluated with the uncertainty of the proxy data but which 

needs an assessment of the representativeness of the selected proxies for distributing the emissions. The point sources, 105 

leading to large plumes, were prioritised for being treated separately with more data. These consisted of super power plants, 

which are defined as a large power plant or a group of closely located power plants (operating at maximum capacity and 

availability), causing CO2 plumes from a single grid cell with a CO2 flux ≥ 7.9·10-6 kg·m-2·s-1. According to expert 

knowledge, the upper bound of annual uncertainty for super power plants is not larger than +3.0 %, whereas for small plants 

whose operation is decided on day-to-day needs, this can reach up to +15.0 %. In this paper, 30 grid-cells of 0.1º×0.1º from 110 

12 countries were identified, representing these super power generators (896.7 Mt of the energy sector) and including large 

plants from China, Russia and India (for the detailed ranking of the power plant sites in function of their emission intensity, 

refer to the Supplementary Information, section S.1). The power plant coordinates were checked, to avoid the need for an 
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uncertainty related to their positioning. The remaining power plants (not super power generators), over 30000, could not be 

checked to the same extent and therefore are recommended in a second emission group.  115 

2.2 Generating uncertainty input for transport models 

The uncertainty calculation methodology and initial uncertainty values (i.e. activity data and emission factor uncertainties 

per CO2-emitting activity) are both taken from IPCC (2006) and its refinements (IPCC, 2019). The following terminology is 

used to ease the explanation: “activity” – IPCC (2006) activities which result in anthropogenic CO2 emissions in the yearly 

budget (a long-cycle carbon); “sector” – combination of different activities that are measured/reported together (that have 120 

emission budget data); “group” – combination of different “sectors”, that have emission budget data, purely for 

modelling/comparison needs. 

In general, uncertainties are calculated in three steps: (i) “sector” uncertainties (based on emission factors and activity data 

uncertainties), (ii) annual grouped uncertainties, and (iii) monthly grouped uncertainties. By default, all calculations are 

performed separately for upper and lower half-ranges of uncertainties and “sector”/“group” combined uncertainties, where 125 

upper and lower uncertainty half-ranges are in percent. 

2.2.1 Calculating “sector” uncertainties 

The initial 92 IPCC (2006) activity uncertainties are combined into “sectors” for which the user has emission budget data1, 

following Eq. (1) and Eq. (2):  

𝑈𝐶𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦_𝑖 = √𝐸𝐹𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦_𝑖
2 + 𝐴𝐷𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦_𝑖

2 ,    (1) 130 

where combined uncertainties UCactivity_i per activity i were calculated using uncertainties for emission factors EFactivity_i and 

activity data ADactivity_i in percent provided in IPCC (2006) and its refinements (IPCC, 2019); 

𝑈𝐶𝑠𝑒𝑐𝑡𝑜𝑟_𝑗 = √𝑈𝐶𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦_1
2 + 𝑈𝐶𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦_2

2 + ... + 𝑈𝐶𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦_𝑛
2 ,       (2) 

where combined uncertainties UCsector_j per “sector” j were calculated with the error propagation method, taking into account 

particular for that “sector” activity combined uncertainties UCactivity_1, UCactivity_2,..., UCactivity_n used in percent.  135 

2.2.2 “Group” annual uncertainties 

This concerns the further grouping of the combined IPCC (2006) “sectors” according to the user needs into “groups” and 

calculation of “group” yearly uncertainties. Usually, there are computational restrictions for operational modelling: the 

number of emission input fields read by the model can’t be too large andor emission values are too low to be distinguishable 

from a global or large regional modelling perspective, so some “sectors” need to be merged. In addition, instantaneous local 140 

 
1 Often, emission budgets are provided not per IPCC (2006) activity but for several activities together (usually due to measuring/reporting 

limitations), for which the user then needs to assume a lump sum activity, emission factor and uncertainties of those. 



 

6 

 

emission data as an aggregated total might be rather uncertain and hard to evaluate for different emission types all over the 

world. IPCC (2006) and its refinement (IPCC, 2019) provide the best possible information on how certain emissions are 

reported on an annual national level. 

“Sector” uncertainties have to be adjusted to consider a country’s statistical system development level and its yearly 

emission budget, log-normal distribution of non-negative emissions, and then further combined into “group” uncertainties 145 

for modelling/comparison purposes in the following way (by default all calculations are performed separately for upper and 

lower half-ranges of uncertainties): 

𝐹𝐶𝑠𝑒𝑐𝑡𝑜𝑟_𝑗 = [
−0.7200+1.0921⋅𝑈𝐶𝑠𝑒𝑐𝑡𝑜𝑟_𝑗−1.63⋅10−3⋅𝑈𝐶𝑠𝑒𝑐𝑡𝑜𝑟_𝑗

2 +1.11⋅10−5⋅𝑈𝐶𝑠𝑒𝑐𝑡𝑜𝑟_𝑗
3

𝑈𝐶𝑠𝑒𝑐𝑡𝑜𝑟_𝑗
]

2

,     (3) 

(𝑈𝐶𝑠𝑒𝑐𝑡𝑜𝑟_𝑗)
𝑐𝑜𝑟𝑟

=

{
𝑈𝐶𝑠𝑒𝑐𝑡𝑜𝑟_𝑗 ⋅ 𝐹𝐶𝑠𝑒𝑐𝑡𝑜𝑟_𝑗 , 100% ≤ 𝑈𝐶𝑠𝑒𝑐𝑡𝑜𝑟_𝑗 ≤ 230%

𝑈𝐶𝑠𝑒𝑐𝑡𝑜𝑟_𝑗 , 𝑈𝐶𝑠𝑒𝑐𝑡𝑜𝑟_𝑗 < 100% ∪ 𝑈𝐶𝑠𝑒𝑐𝑡𝑜𝑟_𝑗 > 230%
{

𝑈𝐶𝑠𝑒𝑐𝑡𝑜𝑟_𝑗 ⋅ 𝐹𝐶𝑠𝑒𝑐𝑡𝑜𝑟_𝑗 , 100% ≤ 𝑈𝐶𝑠𝑒𝑐𝑡𝑜𝑟_𝑗 ≤ 230%

𝑈𝐶𝑠𝑒𝑐𝑡𝑜𝑟_𝑗, 𝑈𝐶𝑠𝑒𝑐𝑡𝑜𝑟_𝑗 < 100% ∪  𝑈𝐶𝑠𝑒𝑐𝑡𝑜𝑟_𝑗 > 230%
 ,150 

    (4) 

where corrected uncertainties (UCsector_j)corr per “sector” j were calculated to take into account large combined uncertainty 

(100 % ≤ UCsector_j ≤ 230 %), underestimation by the error propagation method in comparison to a Monte Carlo simulation, 

correction factor FCsector_j is computed based on Frey (2003), also log-normal adjustment of the emission distribution is 

computed based on Frey (2003) as detailed in the Supplementary Information, section S.3;  155 

𝑈𝐶𝑔𝑟𝑜𝑢𝑝_𝑘 =

√({(𝑈𝐶𝑠𝑒𝑐𝑡𝑜𝑟_1)
𝑐𝑜𝑟𝑟

}
𝑙𝑛

⋅𝐸𝑠𝑒𝑐𝑡𝑜𝑟_1)
2

+({(𝑈𝐶𝑠𝑒𝑐𝑡𝑜𝑟_2)
𝑐𝑜𝑟𝑟

}
𝑙𝑛

⋅𝐸𝑠𝑒𝑐𝑡𝑜𝑟_2)
2

+⋯+({(𝑈𝐶𝑠𝑒𝑐𝑡𝑜𝑟_𝑛)
𝑐𝑜𝑟𝑟

}
𝑙𝑛

⋅𝐸𝑠𝑒𝑐𝑡𝑜𝑟_𝑛)
2

|𝐸𝑠𝑒𝑐𝑡𝑜𝑟_1+𝐸𝑠𝑒𝑐𝑡𝑜𝑟_2+⋯+𝐸𝑠𝑒𝑐𝑡𝑜𝑟_𝑛|
,  (5) 

𝐸𝑔𝑟𝑜𝑢𝑝_𝑘 = 𝐸𝑠𝑒𝑐𝑡𝑜𝑟_1 + 𝐸𝑠𝑒𝑐𝑡𝑜𝑟_2 + ⋯ + 𝐸𝑠𝑒𝑐𝑡𝑜𝑟_𝑛,        (6) 

where the combined uncertainties 𝑈𝐶𝑔𝑟𝑜𝑢𝑝_𝑘  and total emissions 𝐸𝑔𝑟𝑜𝑢𝑝_𝑘 per “group” k were calculated taking into account 

specifically for that “group” “sector” logarithmicallylog-normally transformed uncertainties 

{(𝑈𝐶𝑠𝑒𝑐𝑡𝑜𝑟_1)
𝑐𝑜𝑟𝑟

}
𝑙𝑛

, {(𝑈𝐶𝑠𝑒𝑐𝑡𝑜𝑟_2)
𝑐𝑜𝑟𝑟

}
𝑙𝑛

, … , {(𝑈𝐶𝑠𝑒𝑐𝑡𝑜𝑟_𝑛)
𝑐𝑜𝑟𝑟

}
𝑙𝑛

 in percent. 160 

“Group” upper and lower uncertainty half-range values are descriptive, but not straightforward to use in numerical modelling 

(e.g. emission perturbations in ensemble runs, flux inversions), so mean 𝜇𝑙𝑛 and standard 𝜎𝑙𝑛 deviation of the “group” log-

normal distribution are calculated starting from Eq. (7): 

𝐸𝑔𝑟𝑜𝑢𝑝_𝑘 = 𝑒𝜇𝑙𝑛+𝜎𝑙𝑛∙𝑧,           (7) 

where z is a standard normal variable, and parameters 𝜇𝑙𝑛 and 𝜎𝑙𝑛 represent a natural logarithm of “group” emissions, not the 165 

emissions themselves. The lower and upper bounds of the 95 % probability range, which are the 2.5th and 97.5th percentiles 

respectively, are calculated assuming a log-normal distribution based on a corrected estimated uncertainty half-range from 

the error propagation approach, and are lower and upper uncertainty values. Taking this into account and using the Z-table 
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for 2.5th and 97.5th percentiles p (𝑝2.5 = −1.96, 𝑝97.5 = 1.96), mean 𝜇𝑙𝑛 and standard deviation 𝜎𝑙𝑛 of log-normal distribution 

can be calculated following Eq. (8): 170 

𝑍𝑝 =
𝑙𝑛([𝐸𝑔𝑟𝑜𝑢𝑝_𝑘]

𝑝
)−𝜇𝑔𝑟𝑜𝑢𝑝_𝑘

𝑙𝑛

𝜎𝑔𝑟𝑜𝑢𝑝_𝑘
𝑙𝑛 ,          (8) 

resulting in Eq. (9) and Eq. (10): 

𝜇𝑔𝑟𝑜𝑢𝑝_𝑘
𝑙𝑛 = 𝑙𝑛(𝐸𝑔𝑟𝑜𝑢𝑝_𝑘) +

1

2
𝑙𝑛 (1 +

[𝑈𝐶𝑔𝑟𝑜𝑢𝑝_𝑘]
𝑙𝑜𝑤

100%
) +

1

2
𝑙𝑛 (1 +

[𝑈𝐶𝑔𝑟𝑜𝑢𝑝_𝑘]
ℎ𝑖𝑔ℎ

100%
),     (9) 

𝜎𝑔𝑟𝑜𝑢𝑝_𝑘
𝑙𝑛 =

𝑙𝑛(1+
[𝑈𝐶𝑔𝑟𝑜𝑢𝑝_𝑘]

𝑙𝑜𝑤
100%

)−𝑙𝑛(1+
[𝑈𝐶𝑔𝑟𝑜𝑢𝑝_𝑘]

ℎ𝑖𝑔ℎ

100%
)

−3.92
,        (10) 

where [𝑈𝐶𝑔𝑟𝑜𝑢𝑝_𝑘]
𝑙𝑜𝑤

 and [𝑈𝐶𝑔𝑟𝑜𝑢𝑝_𝑘]
ℎ𝑖𝑔ℎ

 are in percent. 175 

Figure 1 shows a simplified roadmap for yearly uncertainty calculations.  
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Figure 1: Yearly uncertainty calculation simplified roadmap.  180 

 

2.2.3 “Group” monthly uncertainties 

The “group” monthly uncertainties are calculated starting from the yearly uncertainties, which can provide a more 

appropriate variation than the yearly timescale for operational modelling. In this way, yearly “sector” uncertainties are 

adjusted to represent monthly variability (no correlation between months is assumed), and further combined into “group” 185 

monthly uncertainties, by means of the following four steps: 

1) the same steps as for annual uncertainty calculation are used but based on monthly emission budgets (i.e. 

uncertainties for IPCC activities are combined to “sectors” with the error propagation method, corrected for systematic 

underestimation by the error propagation method, and adapted to have log-normal distribution;);  

2) the correlation α (an uncertainty boosting parameter) between yearly and monthly uncertainties is based on an 190 

analysis of the variations over the different months following Eq. (11). It’s computed to enhance obtained monthly 

uncertainties as they are the same or even smaller than the yearly ones, because empirical equations applied use emission 

budgets, which are smaller for individual months compared to the yearly values: 

(𝐸𝑌𝐸𝐴𝑅 ∙ 𝑈𝐶𝑌𝐸𝐴𝑅)2 = 𝛼2 ∙ ((𝐸𝑀𝑂𝑁𝑇𝐻1 ∙ 𝑈𝐶𝑀𝑂𝑁𝑇𝐻1)2 + (𝐸𝑀𝑂𝑁𝑇𝐻2 ∙ 𝑈𝐶𝑀𝑂𝑁𝑇𝐻2)2 + ⋯ + (𝐸𝑀𝑂𝑁𝑇𝐻12 ∙ 𝑈𝐶𝑀𝑂𝑁𝑇𝐻12)2), (11) 

where E and UC correspond to “sector” emission budget and uncertainty in kilotonne and % respectively, 195 

YEAR,MONTH1,MONTH2,…,MONTH12 – yearly and monthly (January, February, …, December) values. Eq. (11) is based 

on the rule for combining uncorrelated uncertainties under addition of the error propagation equation (see Eq. (5)) and the 

assumption that each month’s uncertainty should be enhanced (boosted) by the same value; 

3) the prior yearly “sector” uncertainties are multiplied by the boosting parameter (specific per country and emission 

“sector”) and the results are used as a first guess of prior month “sector” uncertainties; 200 
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4) the calculation steps 1) to 3) are iterated to find the best boosting parameter as the best fit between yearly and 

combined 12-month uncertainties, with the incremental step below a given acceptable threshold from Eq. (11) for each 

country and emission “sector”. With this optimum boosting parameter, monthly uncertainties per “sector” are calculated and 

then merged into “groups”, with a log-normal distribution of CO2 emissions.  

Detailed information on each Unix shell script included in the anthropogenic CO2 emission uncertainty calculation tool 205 

CHE_UNC_APP (Choulga et al., 2021) is provided in the Supplementary Information, section S.4. 

2.2.4 Remarks about the fuel dependence and assumptions concerning correlation 

It should be noted that IPCC (2006) provide default emission factor values for different fuels in transport-related activities 

(e.g. railways, aviation, etc.). Detailed fuel consumption information per IPCC activity, that result in a long-cycle carbon, 

was not available and instead the most typical and consumed (common) fuel type (or its emission factor value) was used: 210 

• Aviation cruise (1.A.3.a_CRS), climbing & descent (1.A.3.a_CDS), and landing & take off (1.A.3.a_LTO) – jet 

kerosene; 

• Road transportation (1.A.3.b), and pipelines, off-road transport (1.A.3.e) – most typical emission factor uncertainty; 

• Shipping (1.A.3.d) – composition of 80 % diesel and 20 % residual fuel oil; 

• Railways (1.A.3.c) – diesel. 215 

It should also be noted that some uncertainty ranges for emission factors and/or activity data in IPCC (2006) and its 

refinements (IPCC, 2019) are not symmetrical and have higher uncertainty values for the lower bound than for the upper 

bound (or vice a versa), due to input from expert knowledge or available in-situ data, which then leads to the same pattern in 

final prior uncertainty bounds. 

It should finally be noted that according to the IPCC (2006), all anthropogenic CO2 emissions are assumed to be fully 220 

uncorrelated, hence the prior error correlations between grid-cell emissions from the same “sector”/“group” should be 

assumed negligible if country- and/or sector-specific information is lacking. 

3 Uncertainty calculation application 

The method explained above has been applied to the EDGARv4.3.2_FT2015 dataset to prepare prior uncertainty information 

for the ECMWF Integrated Forecasting System (IFS) model.  225 

3.1 Data input 

In this example, 2015, the year of the Paris Agreement and reference for several Nationally Determined Contributions, is 

chosen as a base year to analyse anthropogenic CO2 budgets (i.e. global, regional, national) from different sources (i.e. 

global statistics, national reports), benefitting the availability of observations (both in-situ ground and space-borne) as well 

as reported and verified emission inventories.  230 
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Following IPCC (2006) and its refinements (IPCC, 2019), starting from the global fossil CO2 grid-maps of EDGAR 

inventory versions 4.3.2 (Janssens-Maenhout et al., 2019) and 4.3.2_FT2015 (Olivier et al., 2016a), for 2012 and 2015 

respectively, an updated emission dataset CHE_EDGAR-ECMWF_2015 2  (Choulga et al., 2020) is derived. The 

EDGARv4.3.2 dataset is improved by correcting the allocation of the autoproducers to the manufacturing sector instead of 

the energy sector. Autoproducers are defined by International Energy Agency (IEA) and include the energy (electricity and 235 

heat) generated by an industry for its own use, mostly for the manufacturing. An extra emission source of fugitive CO2 from 

coal mines is also added, following the recommendations from IPCC (2019). Even though this emission source is not that 

large globally, usually the coalseam gas is composed dominantly of methane (CH4), but in some coalmines (in Australia, and 

also in Brazil) seam gas consists predominantly (> 95 %) of CO2 (Beamish and Vance, 1992), leading to significant 

atmospheric CO2 concentration increases. An additional map for CHE_EDGAR-ECMWF_2015 with coal mining emissions 240 

from underground mines has been generated, following the IPCC (2019) default values and the coal mining activity of CH4 

emission grid-maps from hard and brown coal production in EDGARv4.3.2 (for more information refer to the 

Supplementary Information, section S.2). For the update from 2012 to 2015 the fast-track approach of Olivier et al. (2016b) 

is used. The initial 92 IPCC activity uncertainties are combined into 20 EDGAR “sectors” for two distinct country types with 

well- and less well-developed statistical infrastructures (i.e. country’s ability to register different emissions – tabulate even 245 

very small emissions or only major ones, respectively). For the input to the IFS model the emission “sectors” are grouped in 

7 “groups”, with one “group” devoted to super power plants. Table 2 shows activity and “sector” grouping and emission 

budget difference between EDGARv4.3.2_FT2015 and CHE_EDGAR-ECMWF_2015 datasets due to reallocation of the 

autoproducers from the energy sector (-8 %) to the manufacturing sector (+18 %), and due to the extra emission source of 

diffusive coal mine CO2. 250 

 

Table 2: Grouping of anthropogenic long-cycle carbon CO2 emission “sectors” into “groups”, note provides main information and 

typical fuel type, global emission budgets for 2015 in Megatonnemegatonne provides values for EDGARv4.3.2_FT2015 (total sum 

35986.5 Mt) and CHE_EDGAR-ECMWF_2015; (total sum 35995.2); italics – values with biggest differences, * – values that were 

replaced from EDGARv4.3.2 255 

№ “Group” name 
IPCC (2006) activities per 

“sector” 
Note 

Emission budget 2015, Mt 

EDGARv4.3.2_FT2

015 

CHE_EDGAR-

ECMWF_2015 

1 ENERGY_S 1.A.1.a (subset) 

Power industry (without 

autoproducers): super 

emitting power plants 
13704.0 

13841.2 

896.7 

12705.5 

2 ENERGY_A 
1.A.1.a (rest) 

Power industry (without 

autoproducers): standard 

emitting power plants 

11671.6 

4.C Solid waste incineration 137.2 137.2 

3 MANUFACTURING 1.A.2 

Combustion for 

manufacturing (including 

autoproducers) 

6182.8 8960.1 7320.4 10096.0 

 
2 CHE stands for the CO2 Human Emissions project (CHE, 2020). 



 

11 

 

2.C.1, 2.C.2 Iron and steel production 233.6 233.6 

2.C.3, 2.C.4, 2.C.5, 2.C.6, 

2.C.7 

Non-ferrous metals 

production 
91.4 91.4 

2.D.1, 2.D.2, 2.D.4 Non energy use of fuels 24.7* 24.6 

2.A.1, 2.A.2, 2.A.3, 2.A.4 
Non-metallic minerals 

production 
1748.8 1749.0 

2.B.1, 2.B.2, 2.B.3, 2.B.4, 

2.B.5, 2.B.6, 2.B.8 
Chemical processes 678.8* 677.0 

4 SETTLEMENTS 
1.A.4, 1.A.5.a, 1.A.5.b.i, 

1.A.5.b.ii 
Energy for buildings 3321.9 3321.9 3322.7 3322.7 

5 AVIATION 

1.A.3.a_CRS 
Aviation cruise; typical fuel: 

jet kerosene 
412.2 

815.4 

412.2 

815.4 1.A.3.a_CDS 

Aviation climbing & 

descent; typical fuel: jet 

kerosene 

305.5 305.5 

1.A.3.a_LTO 
Aviation landing & take off; 

typical fuel: jet kerosene 
97.7 97.7 

6 TRANSPORT 

1.A.3.b 

Road transportation; typical 

fuel: most typical emission 

factor uncertainty 

5530.2 

6604.4 

5530.6 

6604.9 

1.A.3.d 

Shipping; typical fuel: 

composition of 80 % diesel 

and 20 % residual fuel oil 

819.0 819.1 

1.A.3.c, 1.A.3.e 

Railways, pipelines, off-

road transport; typical fuel: 

railways – diesel, off-road 

transport – most typical 

emission factor uncertainty 

255.2 255.2 

7 OTHER 

1.A.1.b, 1.A.1.c, 1.A.5.b.iii, 

1.B.1.c, 1.B.2.a.iii.4, 

1.B.2.a.iii.6, 1.B.2.b.iii.3 

Oil refineries and 

transformation industry 
1917.4 

2443.5 

1917.8 

2450.6 

1.B.2.a.ii, 1.B.2.a.iii.2, 

1.B.2.a.iii.3, 1.B.2.b.ii, 

1.B.2.b.iii.2, 1.B.2.b.iii.4, 

1.B.2.b.iii.5, 1.C 

Fuel exploitation 258.4 258.4 

1.B.1.a Coal production 0.0 7.0 

3.C.2, 3.C.3, 3.C.4, 3.C.7 Agricultural soils 99.0 99.1 

2.D.3, 2.B.9, 2.E, 2.F, 2.G Solvents and products use 168.7* 168.3 

 

3.2 Model constraints 

The operational IFS model is used to provide global CO2 forecasts using the gridded prior emissions previously described 

(Agusti-Panareda et al., 2014; Agusti-Panareda et al., 2019). A prototype 4D-Var inverse modelling system is currently 

under development to monitor anthropogenic CO2 emission using the IFS. There is also an on-going development to extend 260 

the window length beyond 24-hours using an ensemble-based methodology.  

The uncertainties derived for the 7 “groups” described here have been used to generate an ensemble of forecasts for 2015 

based on the operational IFS ensemble system (McNorton et al., 2020). This provides a representation of the model 

uncertainty and an estimation of the expected signal-to-noise ratio for a future inverse modelling system. Random seeds for 
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each “group” and country were applied to the normalised log-normal mean 𝜇𝑙𝑛  and standard deviation 𝜎𝑙𝑛  to generate 265 

emission scaling factors, which were then used for 50 ensemble members. 

Primarily, the derived emission uncertainties presented here are envisaged for use as prior errors within atmospheric 

inversion frameworks. Aggregation of emission “sectors” into 7 “groups” is required for computational efficiency and to 

reduce the dimensions of the inverse problem. To resolve collocated emissions, further information is required about spatial 

correlations and/or co-emitted species (e.g. nitrogen oxides (NOx)). Within the IFS inversion prototype, the log-normal 270 

normalised standard deviation outlined in the previous section is used to provide the uncertainty values to prevent negative 

scaling factors. 

3.3 CHE_EDGAR-ECMWF_2015 output 

The new CHE_EDGAR-ECMWF_2015 dataset with anthropogenic fossil CO2 emissions and their uncertainties was 

compiled and tested at ECMWF. The fossil CO2 emissions include all long-cycle carbon emissions from human activities, 275 

such as fossil fuel combustion, industrial processes (e.g. cement) and products use, but excludes emissions from land-use 

change and forestry. Human CO2 emission inventories were processed into gridded 0.1º×0.1º resolution maps to provide an 

estimate of prior CO2 emissions, aggregated in 7 main emissions “groups”: 1) energy production by super-emitters, 2) energy 

production by standard-emitters, 3) manufacturing, 4) settlements, 5) aviation, 6) other transport at ground level and 7) 

others, with an estimation of their uncertainty and covariance. Aggregation of the IPCC activities and “sectors” into 280 

“groups” was based on similarities between the magnitude of uncertainty, the spatiotemporal correlation and co-emission 

factors of each “sector”. It is assumed that each emission “group” is fully correlated with itself and fully uncorrelated with 

any other “group” (only diagonal values of the 7×7 “groups” covariance matrix for the atmospheric transport model are non-

zero and equal to log-normal variance). The CHE_EDGAR-ECMWF_2015 data are freely available 

https://doi.org/10.5281/zenodo.3967439,[https://doi.org/10.5281/zenodo.3967439], and consist of 11 grid-maps in NetCDF 285 

format and one Excel file with information on anthropogenic CO2 emissions and their uncertainties. For detailed information 

on each file see Table 3. 

 

Table 3: Detailed information on CHE_EDGAR-ECMWF_2015 data 

File General note Field / Spreadsheet 
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_
 

P
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0
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_
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c 

file has 2×8 fields with annual upper and 

lower uncertainty bounds in percent per 

emission “group” and for all “groups” 

summed together on a regular grid with 

1800 pixels along the latitude and 3600 

pixels along the longitude, where values 

represent centre of the grid-cell 

“Lower” – lower uncertainty bound (2.5th percentile of log-normal distribution) for 

yearly emissions, in percent 

“Upper” – upper uncertainty bound (97.5th percentile of log-normal distribution) 

for yearly emissions, in percent 

“Sector” – emission “sector” numerical name. “0” represents emission “group” 

ENERGY_S (with IPCC (2006) activity 1.A.1.a (subset)) standing for power 

industry emissions from super emitting power plants; “1” ENERGY_A (1.A.1.a 

(rest), 4.C) – power industry emissions from standard emitting power plants, & 

solid waste incineration; “2” MANUFACTURING (1.A.2, 2.C.1, 2.C.2, 2.C.3, 

2.C.4, 2.C.5, 2.C.6, 2.C.7, 2.D.1, 2.D.2, 2.D.4, 2.A.1, 2.A.2, 2.A.3, 2.A.4, 2.B.1, 

2.B.2, 2.B.3, 2.B.4, 2.B.5, 2.B.6, 2.B.8) – combustion for manufacturing (including 

https://doi.org/10.5281/zenodo.3967439
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autoproducers), & iron and steel production, & non-ferrous metals production, & 

non energy use of fuels, & non-metallic minerals production, & chemical 

processes; “3” SETTLEMENTS (1.A.4, 1.A.5.a, 1.A.5.b.i, 1.A.5.b.ii) – energy for 

buildings, residential heating; “4” AVIATION (1.A.3.a_CRS, 1.A.3.a_CDS, 

1.A.3.a_LTO) – aviation cruise, & climbing and descent, & landing and take off; 

“5” TRANSPORT (1.A.3.b, 1.A.3.d, 1.A.3.c, 1.A.3.e) – road transportation, & 

shipping, & railways, pipelines, off-road transport; “6” OTHER (1.A.1.b, 1.A.1.c, 

1.A.5.b.iii, 1.B.1.c, 1.B.2.a.iii.4, 1.B.2.a.iii.6, 1.B.2.b.iii.3, 1.B.2.a.ii, 1.B.2.a.iii.2, 

1.B.2.a.iii.3, 1.B.2.b.ii, 1.B.2.b.iii.2, 1.B.2.b.iii.4, 1.B.2.b.iii.5, 1.C, 1.B.1.a, 3.C.2, 

3.C.3, 3.C.4, 3.C.7, 2.D.3, 2.B.9, 2.E, 2.F, 2.G) – oil refineries and transformation 

industry, & fuel exploitation, & coal production, & agricultural soils, & solvents 

and products use; “7” represents all “groups” summed together 
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c 

file has 2×8×12 fields with monthly upper 

and lower uncertainty bounds in percent per 

emission “group” and for all “groups” 

summed together on a regular grid with 

1800 pixels along the latitude and 3600 

pixels along the longitude, where values 

represent centre of the grid-cell 

file structure is identical to the file 

Annual_Upper_Lower_Uncertainties_Percentage_0.1_0.1.nc, but per month (1, 2, 

…, 12 correspond to January, February, …, December) 
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_

 

0
.1

_
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.n

c 

file has 3×8 fields with annual emissions, 

and upper and lower uncertainty bounds in 

kg·m-2·s-1 per emission “group” and for all 

“groups” summed together on a regular grid 

with 1800 pixels along the latitude and 3600 

pixels along the longitude, where values 

represent centre of the grid-cell 

“Sup_lower” – lower uncertainty bound (2.5th percentile of log-normal 

distribution) for yearly emissions of ENERGY_S, in kg·m-2·s-1, 

“Sup_upper” – upper uncertainty bound (97.5th percentile of log-normal 

distribution) for yearly emissions of ENERGY_S, in kg·m-2·s-1, 

“Sup_flux” – yearly emissions of ENERGY_S, in kg·m-2·s-1 

“Ene_lower”, “ene_upper”, “ene_flux” – same, but for ENERGY_A, in kg·m-2·s-1 

“Man_lower”, “man_upper”, “man_flux” – same, but for MANUFACTURING, in 

kg·m-2·s-1 

“Set_lower”, “set_upper”, “set_flux” – same, but for SETTLEMENTS, in kg·m-

2·s-1 

“Avi_lower”, “avi_upper”, “avi_flux” – same, but for AVIATION, in kg·m-2·s-1 

“Tra_lower”, “tra_upper”, “tra_flux” – same, but for TRANSPORT, in kg·m-2·s-1 

“Oth_lower”, “oth_upper”, “oth_flux” – same, but for OTHER, in kg·m-2·s-1 

“All_lower”, “all_upper”, “all_flux” – same, but for all “groups” summed together, 

in kg·m-2·s-1 
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0
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c 

file has 3×12 fields with monthly emissions, 

and upper and lower uncertainty bounds in 

kg·m-2·s-1 per ENERGY_S emission 

“group” on a regular grid with 1800 pixels 

along the latitude and 3600 pixels along the 

longitude, where values represent centre of 

the grid-cell 

“Sup_lower” – lower uncertainty bound (2.5th percentile of log-normal 

distribution) for monthly emissions of ENERGY_S, in kg·m-2·s-1 

“Sup_upper” – upper uncertainty bound (97.5th percentile of log-normal 

distribution) for monthly emissions of ENERGY_S, in kg·m-2·s-1 

“Sup_flux” – monthly emissions of ENERGY_S, in kg·m-2·s-1 

“Month” – month numerical name, where 1, 2, …, 12 correspond to January, 

February, …, December 
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c file has 3×12 fields with monthly emissions, 

and upper and lower uncertainty bounds in 

kg·m-2·s-1 per ENERGY_A emission 

“group” on a regular grid with 1800 pixels 

along the latitude and 3600 pixels along the 

longitude, where values represent centre of 

the grid-cell 

file structure is identical to the file 

Monthly_Sup_Upper_Lower_Uncertainties_0.1_0.1.nc, but with “ene_lower”, 

“ene_upper”, “ene_flux” fields 
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c file has 3×12 fields with monthly emissions, 

and upper and lower uncertainty bounds in 

kg·m-2·s-1 per MANUFACTURING 

emission “group” on a regular grid with 

1800 pixels along the latitude and 3600 

pixels along the longitude, where values 

represent centre of the grid-cell 

file structure is identical to the file 

Monthly_Sup_Upper_Lower_Uncertainties_0.1_0.1.nc, but with “man_lower”, 

“man_upper”, “man_flux” fields 
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c 

file has 3×12 fields with monthly emissions, 

and upper and lower uncertainty bounds in 

kg·m-2·s-1 per SETTLEMENTS emission 

“group” on a regular grid with 1800 pixels 

along the latitude and 3600 pixels along the 

longitude, where values represent centre of 

the grid-cell 

file structure is identical to the file 

Monthly_Sup_Upper_Lower_Uncertainties_0.1_0.1.nc, but with “set_lower”, 

“set_upper”, “set_flux” fields 
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c file has 3×12 fields with monthly emissions, 

and upper and lower uncertainty bounds in 

kg·m-2·s-1 per AVIATION emission “group” 

on a regular grid with 1800 pixels along the 

latitude and 3600 pixels along the longitude, 

where values represent centre of the grid-

cell 

file structure is identical to the file 

Monthly_Sup_Upper_Lower_Uncertainties_0.1_0.1.nc, but with “avi_lower”, 

“avi_upper”, “avi_flux” fields 
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c 

file has 3×12 fields with monthly emissions, 

and upper and lower uncertainty bounds in 

kg·m-2·s-1 per TRANSPORT emission 

“group” on a regular grid with 1800 pixels 

along the latitude and 3600 pixels along the 

longitude, where values represent centre of 

the grid-cell 

file structure is identical to the file 

Monthly_Sup_Upper_Lower_Uncertainties_0.1_0.1.nc, but with “tra_lower”, 

“tra_upper”, “tra_flux” fields 
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c file has 3×12 fields with monthly emissions, 

and upper and lower uncertainty bounds in 

kg·m-2·s-1 per OTHER emission “group” on 

a regular grid with 1800 pixels along the 

latitude and 3600 pixels along the longitude, 

where values represent centre of the grid-

cell 

file structure is identical to the file 

Monthly_Sup_Upper_Lower_Uncertainties_0.1_0.1.nc, but with “oth_lower”, 

“oth_upper”, “oth_flux” fields 
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c 

file has 3×12 fields with monthly emissions, 

and upper and lower uncertainty bounds in 

kg·m-2·s-1 for all “groups” summed together 

on a regular grid with 1800 pixels along the 

latitude and 3600 pixels along the longitude, 

where values represent centre of the grid-

cell 

file structure is identical to the file 

Monthly_Sup_Upper_Lower_Uncertainties_0.1_0.1.nc, but with “all_lower”, 

“all_upper”, “all_flux” fields 
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file has 16 spreadsheets with listed 

information per country (metadata, 

emissions, uncertainties, statistical 

parameters) 

“COUNTRY” – ISO Code (3-letter abbreviation of a geographical entity), 

Geographical name (name of a geographical entity), Type (development level of 

countriescountry’s statistical infrastructure, meaning with well-/less well-

developed statistical infrastructure), Main country (dependency, which country 

geographical entity in question belongs to), Full information (full name of a 

geographical entity, and what territory it occupies on the map of this study) 

“GROUP” – № (number of anthropogenic CO2 emission “group”), group (“group” 

name), IPCC (2006) activity (IPCC activities that are included in each “group”), 

Note (short explanation of the “group”), Global emission budget 2015, Mt (total 

global emissions per “group”), Prior uncertainty bounds, % (initial, calculated 

purely based on assumptions from IPCC, lower and upper uncertainty bounds for 

countriescountry’s with well-/less well-developed statistical infrastructures) 
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“YEARLY” – ISO Code (3-letter abbreviation of a geographical entity), group 

(“group” name), Budget, kt (yearly anthropogenic CO2 emission budget per 

“group” and total per geographical entity), Uncertainty bounds, % (calculated 

based on Prior uncertainty bounds and Budgets yearly uncertainties per “group” 

and total per geographical entity, uncertainties lower/upper/average bounds), 

Contribution to total countriescountry’s uncertainty, % (share of each “group” in 

geographical entities total yearly uncertainty, total contribution is always 100 %), 

Parameters of log-normal distribution (anthropogenic CO2 emission distribution is 

assumed to be log-normal, so additionally for modelling purposes log-normal 

mean, log-normal standard deviation and log-normal variance were calculated) 

“MONTHLY_01”, “MONTHLY_02”, …, “MONTHLY_12” – same explanation 

as for spreadsheet “YEARLY”, but for a month (01, 02, …, 12 correspond to 

January, February, …, December) 

 290 

3.4 Example of uncertainty calculation  

Table 4 shows a step-by-step example of how yearly uncertainties are calculated, and Figure 2 shows plotted probability 

density functions based on computed log-normal parameters. The example shows calculations for the TRANSPORT 

“group”, that consists of several emission “sectors”. The example shows two countries with different statistical infrastructure 

development levels (country with well-developed statistical infrastructuresinfrastructure is Germany, country with less well-295 

developed statistical infrastructuresinfrastructure is the Russian Federation) and significant differences in emission budgets. 

 

Table 4a: Preparatory step for yearly uncertainty calculation – data collection, same values are applied for all countries of the 

same type, namely for countries with well- (WDS) and less well-developed (LDS) statistical infrastructures; example shows 

TRANSPORT “group” uncertainty calculations for Germany (DEU) and the Russian Federation (RUS) 300 

Country 

(Type) 

“Group” 

name 

(Nr) 

IPCC 

(2006) 

activities 

per 

“sector” 
IPCC 

(2006) 

activity 

Note 

Typical fuel Uncertainty, % 

    Emission factor Activity data 

  DEU 

(WDS) 

RUS 

(LDS) 

DEU 

(WDS) 

RUS 

(LDS) 

  Low Up Low Up Low Up Low Up 

Germany 

(WDS) 

T
R

A
N

S
P

O
R

T
 (

6
) 

1.A.3.b 1.A.3.b 
Road 

transportation 
most typical emission factor 2.0 2.0 5.0 5.0 5.0 5.0 5.0 5.0 

1.A.3.d 1.A.3.d 
Water-borne 

navigation 

composition of 80 % diesel 

and 20 % residual fuel oil 
2.1 1.1 2.1 1.1 5.0 5.0 50.0 50.0 

1.A.3.c, 

1.A.3.e  
1.A.3.c Railways diesel 2.0 0.9 2.0 0.9 5.0 5.0 5.0 5.0 

  

 

1.A.3.e 

Other 

transportation 

– Pipeline 

none (suggested to neglect) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

  
  Other 

transportation 

– Off-road 

most typical emission factor 2.0 2.0 5.0 5.0 50.0 100.0 50.0 100.0 

Russian Federation 

(LDS) 

T R A N S P O R T
 

(6 ) 1.A.3.b 1.A.3.b Road transportation 
most typical 

emission factor 
5.0 5.0 5.0 5.0 
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1.A.3.d 1.A.3.d Water-borne navigation 

composition of 80 

% diesel and 20 % 

residual fuel oil 

2.1 1.1 50.0 50.0 

1.A.3.c, 

1.A.3.e  

1.A.3.c Railways diesel 2.0 0.9 5.0 5.0 

1.A.3.e 

Other transportation – 

Pipeline 

none (suggested to 

neglect) 
0.0 0.0 0.0 0.0 

Other transportation – 

Off-road 

most typical 

emission factor 
5.0 5.0 50.0 100.0 

 

Table 4b: First part of yearly uncertainty calculation – same values are applied for all countries of the same type, namely for 

countries with well- (WDS) and less well-developed (LDS) statistical infrastructures; example shows TRANSPORT “group” 

uncertainty calculations for Germany (DEU) and the Russian Federation (RUS) 

Country 

(Type) 

IPCC 

(2006) 

activities 

per 

“sector” 
IPCC (2006) 

activity 

Combined uncertainty per 

IPCC (2006) activity, % 

see Eq. (1) 

Combined uncertainty per 

“sector”, % 

see Eq. (2) 

Corrected combined 

uncertainty per 

“sector”, % 

see Eq. (3)-(4) 

 DEU (WDS) RUS (LDS) DEU (WDS) RUS (LDS) 
DEU 

(WDS) 

RUS 

(LDS) 

 Low Up Low Up Low Up Low Up Low Up Low Up 

Germany 

(WDS) 

1.A.3.b 1.A.3.b 5.4 5.4 7.1 7.1 5.4 5.4 7.1 7.1 5.4 5.4 7.1 7.1 

1.A.3.d 1.A.3.d 5.4 5.1 50.0 50.0 5.4 5.1 50.0 50.0 5.4 5.1 50.0 50.0 

1.A.3.c, 

1.A.3.e  
1.A.3.c 5.4 5.1 5.4 5.1 50.3 100.1 50.5 100.3 50.3 106.9 50.5 107.0 

 
1.A.3.e 

0.0 0.0     

 50.0 100.0     

Russian 

Federation 

(LDS) 

1.A.3.b 1.A.3.b 7.1 7.1 7.1 7.1 7.1 7.1 

 1.A.3.de 1.A.3.d 500.0 500.0 500.0 500.0 50.0 50.0       

 1.A.3.c, 

1.A.3.e  

1.A.3.c 5.4 5.1 
50.50 100.30 50.52 100.1107.0         

  
1.A.3.e 

0.0 0.0     

  50.2 100.1     

 305 

Table 4c: Second part of yearly uncertainty calculation – values are specific per geographical entity, consider country type, namely 

if country has well- (WDS) or less well-developed (LDS) statistical infrastructure, and countries emission budget (values are from 

CHE_EDGAR-ECMWF_2015) ); example shows TRANSPORT “group” uncertainty calculations for Germany (DEU) and the 

Russian Federation (RUS); “St. Dev.” stands for standard deviation 

Countr

y 

(Type) 

IPCC 

(2006) 

activiti

es per 

“sector

” 

Emission 

budget 2015 

per “sector”, 

∙103 kt 

Uncertainty with 

assumed log-normal 

distribution per 

“sector”, % 

Emission 

budget 2015 

per “group”, 

∙103 kt 

see Eq. (6) 

Grouped uncertainty with 

assumed log-normal 

distribution per “group”, % 

see Eq. (5) 

Log-normal parameters of 

grouped uncertainty with 

assumed log-normal 

distribution per “group”  

see Eq. (9)-(10) 

 
DEU 

(WD

S) 

RUS 

(LDS

) 

DEU 

(WDS) 

RUS 

(LDS) DEU 

(WDS

) 

RUS 

(LDS) 

DEU 

(WDS) 
RUS (LDS) DEU (WDS) RUS (LDS) 

 
Lo

w  
Up Low Up 

Lo

w 
Up 

meanL

ow 

standard 

deviation

Up 

Mea

n 

St.De

v. 

Mea

n 

St.De

v. 

German

y 

1.A.3.b 139.6 131.7 5.4 5.4 7.1 7.1 
143.0 206.9 

5.

3 
5.7 14.1 44.8 11.9 0.0 12.3 0.1 

1.A.3.d 1.0 7.4 5.4 5.1 40.1 57.
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(WDS) 2 

1.A.3.c, 

1.A.3.e  
2.3 67.9 

40.

3 

135.

5 
40.5 

135

.7 

Russian 

Federation (LDS) 

1.A.3.b 131.7 7.1 7.1 

206.9 14.1 44.8 12.3 0.1 
1.A.3.d 7.4 40.1 57.2 

1.A.3.c, 

1.A.3.e  
67.9 40.5 135.7 

 310 

 

 

Figure 2: Probability density functions (for Germany (left) and the Russian Federation (right)) based on computed log-normal 

mean and standard deviation for TRANSPORT “group” 

 315 

Calculated yearly and monthly uncertainties per country and emission “group” were assigned to each grid-box on the global 

map. National uncertainties were applied uniformly across each country. Figure 3 shows an example of the upper and lower 

uncertainty limits of anthropogenic CO2 emission flux for the TRANSPORT “group”. It should be noted that uncertainties 

related to the spatial distribution (representativeness of the proxy data and their uncertainty) should be much higher than the 

ones presented in this study. This research does not address uncertainties related to the spatial distribution. In the future it is 320 

planned to address these uncertainties too. For example, by following Oda et al. (2019) to characterize spatial patterns of the 

disaggregation errors in the emission maps.  
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Uncertainty lower bound Uncertainty upper bound 

  
Emissions of CO2, in kg·m-2·s-1 

 

 

Figure 3: CO2 emission flux uncertainties (lower (left) and upper (right) bounds) for TRANSPORT “group” in kg·m-2·s-1 325 

 

4 Comparison and sensitivity 

4.1 Comparison of total uncertainty of global CO2 emission datasets 

Calculated emissions and uncertainties of fossil CO2 have been compared to other global data sets based on the country-

specific data reported to UNFCCC, and on fuel-specific data reported in the energy statistics of IEA. The global values and 330 

their uncertainty at a 2σ range for the CHE_EDGAR-ECMWF_2015 dataset show the lowest value of -4.7/+9.6 % or ±7.1 % 

range, see Table 5. This result might be attributed to the methodology, in particular considering that (i) all calculations were 

done at the country level and then aggregated to global level assuming no correlation following IPCC (2006), (ii) all 

calculations were done separately for upper and lower uncertainty bounds to preserve original information with asymmetric 

confidence intervals for large uncertainties (not required for the Approach 1 described in IPCC (2006), in which only the 335 
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higher uncertainty value of the asymmetric interval should be used – leads to artificial inflation of uncertainty upper or lower 

limit), and (iii) might be also because in this study proxy grid-map uncertainties are not considered.  

 

Table 5: Comparison of global anthropogenic CO2 emission uncertainty at 2σ associated with certain emission datasets  

Name Global uncertainty at 2σ, % References 

BP no quantitative assessment of uncertainty associated with its emissions dataset Andrew, 2020 

CDIAC ±8.4 % Andres et al., 2016 

CEDS no quantitative assessment of uncertainty associated with its emissions dataset Hoesly et al., 2018 

CHE_EDGAR-ECMWF_2015 ±7.1 % (-4.7/+9.6 %) 
Andrew, 2020Current 

study 

EDGAR ±9.0 % 
Janssens-Maenhout et 

al., 2019 

EIA no quantitative assessment of uncertainty associated with its emissions dataset Andrew, 2020 

Global Carbon Project (GCP) ±10.0 % 
Friedlingstein et al., 

2019 

IEA no quantitative assessment of uncertainty associated with its emissions dataset Andrew, 2020 

ODIAC ±8.4 %3 Oda et al., 2018 

 340 

The contribution of each emission “group” to the total uncertainty per grid-cell is assessed. Figure 4 shows which “group” 

contributes the most to the total uncertainty per grid-cell. TRANSPORT “group” contributes most to the grid-cell uncertainty 

over the Unites States of America (due to road and off-road transport) and over the ocean (due to shipping). AVIATION 

“group” contributes most over main flight routes all over the Globe. OTHER “group” contributes the most over agricultural 

areas, and regions with oil refineries and transformation industry and fuel exploitation. MANUFACTURING “group” 345 

contributes most over industrial areas in (e.g. in Vietnam and Bangladesh.). ENERGY_A (and ENERGY_S) “group” 

contributes the most over power plant (and super power plant) location grid-cells (e.g. South Africa). SETTLEMENT 

“group” contributes the most to the grid-cell uncertainty over either very dense, either very sparce populated areas. 

 

 
3 The difference between ODIAC and CDIAC gridded data is 3.3-5.7 % (Oda et al., 2018). 
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 350 

 

Figure 4a: Main emission “group” that contributes to the total uncertainty per grid-cell – Global region 
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Figure 4b: Main emission “group” that contributes to the total uncertainty per grid-cell – European (left) and China (right) 

regions 
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Figure 4c: Main emission “group” that contributes to the total uncertainty per grid-cell – the Russian Federation (top) and the 

United States of America (bottom) regions 
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 365 

Figure 4d: Main emission “group” that contributes to the total uncertainty per grid-cell – Brazil (top left), India (top right), 

Indonesia (bottom left), and Japan (bottom right) regions 

 

4.2 Dependence of the country-specific statistical infrastructure 

Also, some specific geographical areas are analysed: chosen to be among the most emitting in total or per emission “group”, 370 

and the most typical or most influential for a certain region. A list of these geographical entities and development levels of 

their statistical infrastructures are presented in Table 6.  

 

Table 6: List of selected geographical entities with their statistical infrastructure’s development levels  

ISO Code Geographical name Type 

GLB All World Countries mixed-developed statistical infrastructure 

E28 Europe (28 members until end 2019) well-developed statistical infrastructure 

DEU Germany well-developed statistical infrastructure 

ESP Spain well-developed statistical infrastructure 

FRA France well-developed statistical infrastructure 

GBR United Kingdom well-developed statistical infrastructure 

POL Poland well-developed statistical infrastructure 

BRA Brazil less well-developed statistical infrastructure 

CHN China well-developed statistical infrastructure 

IDN Indonesia less well-developed statistical infrastructure 
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IND India well-developed statistical infrastructure 

JPN Japan well-developed statistical infrastructure 

RUS Russian Federation less well-developed statistical infrastructure 

USA United States of America well-developed statistical infrastructure 

 375 

In order to see how the development level of country’s or geographical entity’s statistical infrastructure influences the 

emission uncertainty of that country or geographical entity itself and (possibly) the globe, uncertainty calculations for 

selected entities were performed twice – with their original and inverseswitched types (i.e. a country with a well-developed 

statistical infrastructure becomes a country with a less well-developed statistical infrastructure and vice a versa). More 

details on a geographical entity’s statistical infrastructure development level (e.g. how it was determined) are given in the 380 

Supplementary Information, section S.5. Figure 5 shows sectoral emission budgets, uncertainties and contributions in 

percentage, to the total uncertainty of a country or geographical entity with its original and inverseswitched statistical 

infrastructure development levels. The biggest impact of development level change occurs for countries with larger emission 

budgets. On average, total uncertainties of selected countries (see Table 6) changed by 1-2 %; “group” uncertainties changed 

in line with prior uncertainties and countries emission budgets, as reported in Table 7. 385 

 

Table 7: Country’s statistical infrastructure (countries with well- (WDS) and less well-developed (LDS) statistical infrastructures) 

influence on emission uncertainty 

Impact on the 

uncertainty 
“Group” name Cause description 

most 

substantial 
SETTLEMENTS 

• consists only from residential heating emissions; 

• high differences in prior uncertainties for WDS and LDS, ±12.2 % and ±26.0 % respectively 

strong 

MANUFACTURING 

• budget usually makes a significant part of country’s total emission budget; 

• globally mainly composed from combustion for manufacturing with rather low prior 

uncertainty (±8.6 % and ±12.2 % for WDS and LDS respectively) and non-metallic minerals 

production with much higher uncertainties (±70.9 % and ±93.0 % for WDS and LDS 

respectively); 

• also contains emissions from very uncertain non-energy use of fuels (±121.7 % and ±124.0 % 

for WDS and LDS respectively) and chemical processes (-107.8/+89.9 % both for WDS and 

LDS) emissions, though their global share in this “group” is only ~7.0 % 

ENERGY_A 

• budget usually makes a significant part of country’s total emission budget; 

• composed of emissions from standard power plants with rather low uncertainties (±8.6 % and 

±12.2 % for WDS and LDS respectively) and solid waste incineration with much higher 

uncertainties (±40.3 % and ±41.2 % for WDS and LDS respectively); 

• for the Globe the ratio of solid waste incineration to energy emissions is ~1/100, which keeps 

the total “group” prior uncertainty quite low ±3.5 %; 

• Note: geographical entities with higher ratios will have higher uncertainties 

ENERGY_S 
• composed of emissions from super power plants only with rather low prior uncertainties (-

8.6/+3.0 % and -12.2/+3.0 % for WDS and LDS respectively) for all geographical entities 

mild TRANSPORT 

• globally mainly composed of road transportation with rather low uncertainty (±5.4 % and ±7.1 

% for WDS and LDS respectively) and shipping emissions with low uncertainties -5.4/+5.1 % 

for WDS and high uncertainties ±50.0 % for LDS; 

• also contains rather uncertain railways, pipelines and off-road transport emissions (~ -

50.4/+107.0 % for both WDS and LDS), though their global share in this “group” is ~16.0 % 

only; 

• Note: all international shipping is included in All World Countries geographical entity 
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small AVIATION 

• extremely high differences in prior uncertainties for WDS and LDS (-5.5/+6.4 % and -

50.1/+106.8 % respectively), though this “groups” share in global emissions is only 2.3 %; 

• Note: all international aviation is included in All World Countries geographical entity 

negligible OTHER 

• composed of very uncertain components with usually almost the same prior uncertainties for 

WDS and LDS; 

• main composite globally (~78.0 %) are emissions from oil refineries and transformation 

industry with prior uncertainties -54.4/+149.3 % and -57.7/+151.4 % for WDS and LDS 

respectively; 

• also usually has the highest contribution to the country’s total uncertainty 
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“Group” uncertainty , in percent countries original  and inverse  type, in Mt for countries original  and inverse  type, in % 

 390 

Figure 5: Emission budgets, uncertainties and contributions in percentage to the total uncertainty of the country with their 

original and switched (inverse) types (countries with well- (WDS) and less well-developed (LDS) statistical infrastructures): 

impacting mainly country itself, e.g. the Russian Federation (RUS), India (IND), impacting also Europe (E28), e.g. Germany 

(DEU), impacting even global values, e.g. China (CHN)  

 395 

Alterations in some countries’ (e.g. Germany, France) statistical infrastructure’s development levels lead to changes in 

Europe (28 members until end 2019) uncertainties, with the most substantial change for the SETTLEMENTS “group” (e.g. 

2.5 and 1.0 % respectively). Huge changes (> 10.0 %) in Europe’s (28 members until end 2019) AVIATION “group” 



 

28 

 

uncertainty percentage value can be due to the variation of statistical infrastructure development level for Germany, United 

Kingdom, France or Spain; though this “group’s” contribution to Europe’s total uncertainty remains negligible. Alterations 400 

in statistical infrastructure development levels for China or the United States of America, modify even global uncertainties 

because these countries substantially contribute to the total global emission budget, e.g. China emits ~1/3 of the global 

anthropogenic CO2 budget and can change global total uncertainty up to 0.5 %. 

4.3 Effect of increasing temporal resolution from yearly to monthly 

To increase the emission temporal resolution, monthly emissions and their uncertainties were calculated combining yearly 405 

emissions, monthly multiplication factors, and adapted uncertainty calculation methodology (see Section 2.2). Prior yearly 

uncertainties were multiplied by a dimensionless uncertainty boosting parameter α (same value for each month) to compute 

prior monthly uncertainties, which were further used together with monthly emission budgets for countries’ monthly 

uncertainty calculation. Monthly uncertainties (just like yearly uncertainties) are determined by empirical formulas from 

IPCC (2006) with monthly emission budgets (weighted with the total number of days in a month). The dimensionless 410 

uncertainty boosting parameter α is applied, see Table 8 for most common values for countries with well- and less well-

developed statistical infrastructures per “sector”. Boosting parameters become active (α ≠ 1), when absolute uncertainty 

values are ≥ 25.0 %, and α increases with the increase of absolute uncertainty following a third order polynomial. For lower 

bound uncertainties, α has larger values and steeper growth than for upper bound uncertainties (e.g. -25.0 % ≙ α = 1.5 and -

124.0 % ≙ α = 2.6; +25.0 % ≙ α = 0.8 and +124.0 % ≙ α = 1.2),; ≙ means “corresponds to”), and α behaves in the same 415 

way for countries with well- and less well-developed statistical infrastructures. Discrepancies in a different geographical 

entity’s (country’s) boosting parameters might be for several reasons, main ones are: (i) “sector” emissions were zero (e.g. 

super power plant emissions of the energy “sector” had no emissions); (ii) “sector” uncertainties were ≥ 50.0 % and needed 

to be adapted accordingly to log-normal distribution (e.g. this is the case for the agricultural soils “sector” with prior 

uncertainties -70.7/+0.0 % both for countries with well- and less well-developed statistical infrastructures; discrepancies 420 

from Table 8 for agricultural soils are France α = 1.8/3.1, United Kingdom – 1.8/7.2, China – 1.8/8.4, Japan – 1.8/10.8, 

Brazil – 1.8/0.0, the Russian Federation – 1.8/5.6). 

 

Table 8: Dimensionless (DN) boosting parameter uncertainties (lower and upper bounds) for countries with well- (WDS) and less 

well-developed (LDS) statistical infrastructures  425 

№ “Group” name IPCC (2006) activities per “sector” 

Uncertainty boosting parameter, DN 

WDS countries LDS countries 

Low Up Low Up 

1 ENERGY_S 1.A.1.a (subset) 1.0 1.0 1.0 1.0 

2 ENERGY_A 
1.A.1.a (rest) 1.0 1.0 1.0 1.0 

4.C 1.8 0.8 1.9 0.8 

3 MANUFACTURING 
1.A.2 1.0 1.0 1.0 1.0 

2.C.1, 2.C.2 1.7 0.8 1.7 0.8 
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2.C.3, 2.C.4, 2.C.5, 2.C.6, 2.C.7 2.0 0.9 2.0 0.9 

2.D.1, 2.D.2, 2.D.4 2.6 1.2 2.6 1.2 

2.A.1, 2.A.2, 2.A.3, 2.A.4 2.0 0.9 2.3 1.0 

2.B.1, 2.B.2, 2.B.3, 2.B.4, 2.B.5, 2.B.6, 2.B.8 2.4 1.0 2.4 1.0 

4 SETTLEMENTS 1.A.4, 1.A.5.a, 1.A.5.b.i, 1.A.5.b.ii 1.0 1.0 1.5 0.9 

5 AVIATION 

1.A.3.a_CRS 1.0 1.0 1.7 1.1 

1.A.3.a_CDS 1.0 1.0 1.7 1.1 

1.A.3.a_LTO 1.0 1.0 1.7 1.1 

6 TRANSPORT 

1.A.3.b 1.0 1.0 1.0 1.0 

1.A.3.d 1.0 1.0 1.7 0.9 

1.A.3.c, 1.A.3.e 1.7 1.1 1.7 1.1 

7 OTHER 

1.A.1.b, 1.A.1.c, 1.A.5.b.iii, 1.B.1.c, 1.B.2.a.iii.4, 1.B.2.a.iii.6, 

1.B.2.b.iii.3 
1.7 1.4 1.8 1.4 

1.B.2.a.ii, 1.B.2.a.iii.2, 1.B.2.a.iii.3, 1.B.2.b.ii, 1.B.2.b.iii.2, 

1.B.2.b.iii.4, 1.B.2.b.iii.5, 1.C 
3.0 2.4 3.1 2.5 

1.B.1.a 2.5 2.2 2.5 2.2 

3.C.2, 3.C.3, 3.C.4, 3.C.7 1.8 0.0 2.0 0.0 

2.D.3, 2.B.9, 2.E, 2.F, 2.G 1.5 0.8 1.7 0.9 

 

In general, Brazil, Indonesia and India have a very weak yearly cycle with quite high monthly uncertainties throughout the 

year. Globe, Europe (28 members until end 2019), Germany, Spain, France, United Kingdom, Poland, China, Japan, the 

Russian Federation, and the United States of America have more pronounced yearly cycles, most significant for 

SETTLEMENTS and ENERGY_A (and ENERGY_S where present) “groups”, and less significant for AVIATION, 430 

TRANSPORT and MANUFACTURING “groups”. This is in line with the monthly profiles applied in EDGARv4.3.2 for 

Northern and Southern temperate zones, and Equator, see Janssens-Maenhout et al. (2019). In the summer months for the 

Northern temperate zone, a strong decrease in SETTLEMENT and ENERGY_A (and ENERGY_S where present) “groups” 

emissions was observed, with a light decrease in MANUFACTURING “group” emissions, and a light increase in 

AVIATION and TRANSPORT “groups” emissions. This corresponds rather well with the assumption that most of the 435 

population in the Northern hemisphere heat their houses during winter, and take holidays and travel more during summer.  

4.4 Comparison for selected European countries with UNFCCC and TNO data 

The CHE_EDGAR-ECMWF_2015 dataset containing 7 global gridded fossil CO2 emission flux maps, and country- and 

“group”-specific emission budgets and uncertainties have been assessed with independent data. Global emission budget 

values from different datasets are almost never the same, therefore it is important to first identify why estimates differ 440 

between datasets. First, datasetsDatasets might use the same country-level information as primary input, though differences 

in inclusion, interpretation, and treatment of that data lead to diverse results in emissions. Second,It is necessary to try to 

harmonise data inclusion or omission across datasets to have more clarity in the discrepancies.  

For Europe (28 members until end 2019), Germany, Spain, France, United Kingdom, Poland, Japan, the Russian Federation 

and the United States of America, emission and uncertainty data was collected from UNFCCC NIR. The aggregation of the 445 
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IPCC (2006) activity-specific emissions and uncertainties into 7 “groups” was done assuming no correlation, following 

IPCC (2006). Although IPCC (2006) has a standard table to report GHG emissions, uncertainties can be reported in less 

detail by a more general category (e.g. 2.D only instead of 2.D.1, 2.D.2, 2.D.3, 2.D.4), meaning information “harmonization” 

required lots of careful time-consuming country-specific technical work by the authors of this paper. 

The Netherlands Organisation for Applied Scientific Research (TNO) has prepared the first version of their GHG and co-450 

emitted species emission database (TNO_GHGco_v1.1) that covers the entire European domain (at 0.1º×0.05º resolution), 

including CO2 (distinguishing between fossil fuel and biofuel). Initial emission data is from the UNFCCC (Common 

reporting format, CRF, tables) and the European Monitoring and Evaluation Programme/Centre on Emission Inventories and 

Projections for air pollutants (EMEP/CEIP). These data were harmonized, checked for gaps, errors and inconsistencies, and 

(where needed) replaced or completed using emission data from the Greenhouse gas-Air pollution Interactions and Synergies 455 

(GAINS) model (Amann et al., 2011). Moreover, inland shipping emissions were replaced with TNO’s own estimates and 

sea shipping is based on automatic identification system (AIS) based tracks. Expert judgement is used to assess the quality of 

each data source and to make choices on which source to use. The resulting emissions were checked in detail regarding their 

absolute value and trends (Kuenen et al., 2014). In this study emission budgets from 30 TNO sectors (Super et al., February 

2020, personal communication), and prior uncertainties calculated from IPCC (2006) and its refinements (IPCC, 2019) are 460 

used. In addition, TNO has provided Tier 2 (Monte Carlo approach) uncertainties based on the same budgets and 

uncertainties from submitted NIR reports based on a Tier 1 approach. The Monte Carlo simulations were done at the highest 

detail level (nomenclature for reporting (NFR) sector/fuel type) assuming correlations between certain sectors (for more 

information see Super et al. (2020)), and then emissions were aggregated to “groups” assuming no correlation. 

Figure 6 shows emission budgets and uncertainties in Megatonnemegatonne, and contributions in percent to the total 465 

geographical entity’s uncertainty for Europe (28 members until end 2019), Germany, France and United Kingdom with their 

original statistical infrastructure development types based on data from CHE_EDGAR-ECMWF_2015 (in pink), UNFCCC 

(in yellow), and TNO_GHGco_v1.1 Tier 1 (in blue) and Tier 2 (in green); plots for Spain and Poland are not shown here. 

Out of the four different sources, usually UNFCCC and TNO_GHGco_v1.1 Tier 2 uncertainties are the lowest ones and 

CHE_EDGAR-ECMWF_2015 the highest one. It should be noted that: (i) UNFCCC uncertainties were aggregated to 470 

“groups” individually per country as uncertainties are reported in a rather free form, and thus could be aggregated from 

different levels of precision, (ii) uncertainties for Europe (28 members until end 2019) from CHE_EDGAR-ECMWF_2015 

are rather low as they were calculated by aggregating information from 28 countries, and (iii) differences in uncertainties of 

CHE_EDGAR-ECMWF_2015 with other sources, especially in fuel dependent emission groups, might be due to biofuels or 

other fuels (e.g. wood and/or coal for residential heating). Differences in uncertainties between CHE_EDGAR-475 

ECMWF_2015 and TNO_GHGco_v1.1 Tier 1 show additional value in more detailed emission budget knowledge (i.e. 

where absence of the uncertain glass production activity in the non-metallic minerals production “sector” decreases overall 

uncertainty). Differences in uncertainties between TNO_GHGco_v1.1 Tier 1 and TNO_GHGco_v1.1 Tier 2 show additional 

value in an advanced calculation technique, using a more sophisticated, data demanding Monte Carlo approach instead of 
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simple error propagation. Overall, there is quite good agreement in emission budgets and uncertainties from different sources 480 

of emission data.  

 

Europe (28 members until end 2019), country with well-developed statistical infrastructure 

 

Data 

Emission 

budget 

2015, Mt 

Uncertainty 

bound, % 

Low/Up Range 

CHE_EDGAR-

ECMWF_2015 
3489.4 -1.6/+3.3 ±2.4 

UNFCCCTier1 3486.7 -1.4/+1.4 ±1.4 

TNO_GHGco 

_v1.1Tier1 
3492.2 -1.4/+1.8 ±1.6 

TNO_GHGco 

_v1.1Tier2 
3492.3 -1.2/+1.2 ±1.2 

 

Germany, country with well-developed statistical infrastructure 

 

Data 

Emission 

budget 

2015, Mt 

Uncertainty 

bound, % 

Low/Up Range 

CHE_EDGAR-

ECMWF_2015 
783.7 -4.7/+8.7 ±6.7 

UNFCCCTier1 794.0 -2.7/+2.7 ±2.7 

TNO_GHGco 

_v1.1Tier1 
791.2 -4.3/+4.6 ±4.5 

TNO_GHGco 

_v1.1Tier2 
791.2 -3.8/+3.6 ±3.7 

 

France, country with well-developed statistical infrastructure 

 

Data 

Emission 

budget 

2015, Mt 

Uncertainty 

bound, % 

Low/Up Range 

CHE_EDGAR-

ECMWF_2015 
333.8 -5.1/+10.7 ±7.9 

UNFCCCTier1 334.1 -1.6/+1.6 ±1.6 

TNO_GHGco 

_v1.1Tier1 
340.6 -4.3/+6.4 ±5.3 

TNO_GHGco 

_v1.1Tier2 
340.6 -3.8/+3.8 ±3.8 

 

United Kingdom, country with well-developed statistical infrastructure 
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Data 

Emission 

budget 

2015, Mt 

Uncertainty 

bound, % 

Low/Up Range 

CHE_EDGAR-

ECMWF_2015 
398.6 -4.8/+13.2 ±9.0 

UNFCCCTier1 415.3 -5.5/+5.5 ±5.5 

TNO_GHGco 

_v1.1Tier1 
414.0 -4.1/+5.7 ±4.9 

TNO_GHGco 

_v1.1Tier2 
414.0 -3.7/+3.4 ±3.6 

 

“Group” emission budget, in Mt for UNFCCC , 

CHE_EDGAR-ECMWF_2015 , 

TNO_GHGco_v1.1 Tier 1  & Tier 2  

Upper and lower “group” uncertainty bound, 

in Mt for UNFCCC , CHE_EDGAR-

ECMWF_2015 , TNO_GHGco_v1.1 Tier 1 

 & Tier 2  

“Group” contribution to countries total 

uncertainty, in percent for UNFCCC , 

CHE_EDGAR-ECMWF_2015 , 

TNO_GHGco_v1.1 Tier 1  & Tier 2  “Group” uncertainty , in percent 

 

Figure 6: Emission budgets, uncertainties and contributions in percentage to the total uncertainty for Europe (E28), Germany 

(DEU), France (FRA) and United Kingdom (GBR) 485 
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Emission budgets, Tier 1 uncertainties, and contributions in percentage to the total geographical entity’s uncertainty for 

Japan, the Russian Federation and the United States of America from CHE_EDGAR-ECMWF_2015 could be compared 

only with UNFCCC data (plots not shown here). UNFCCC uncertainties are usually lower than the ones calculated in this 

study. The main reason for that is the use of country-specific emission data and activity data uncertainties, which are lower 490 

than default values suggested by IPCC (2006) and its refinements (IPCC, 2019). Only for the fuel dependent “groups” (e.g. 

AVIATION) might UNFCCC uncertainties be higher than in this study, as rather uncertain biofuels might be taken into 

account (Note: CHE_EDGAR-ECMWF_2015 does not take biofuels into account). Also, emission budgets reported to 

UNFCCC show some differences from the ones from CHE_EDGAR-ECMWF_2015. For Japan, “group” budgets agree 

rather well, and the total budget difference is ~1.0 %. For the Russian Federation, major differences are in the ENERGY_A 495 

(and ENERGY_S) and MANUFACTURING “groups”, which results in ~6.0 % higher total budget of CHE_EDGAR-

ECMWF_2015. For the United States of America, major differences are ~200 Mt and ~100 Mt for the SETTLEMENTS and 

OTHER “groups” respectively, which results in ~4.0 % higher total budget than based on UNFCCC data. Recent comparison 

of different gridded global datasets by Andrew (2020) pointed out that only a few of these datasets provide quantitative 

uncertainty assessment, see the summary in Table 5. Compared to other global emission uncertainty values, CHE_EDGAR-500 

ECMWF_2015 shows the lowest values mainly due to the aggregation technique.  

4.5 Sensitivity to the fuel specificity 

As mentioned above, for transport related emission uncertainty calculations only the most typical fuel type (for aviation, 

railways, shipping) and emission factor uncertainty (for road and off-road transport) were used, because detailed fuel 

consumption information per IPCC activity was not available for this study. The EDGAR dataset development team do have 505 

specific fuel information globally, which could be used for uncertainty calculation. The EDGAR dataset with incorporated 

fuel-specific activity data and emission factor uncertainties and Tier 1 approach for uncertainty calculation (see 

Supplementary Information, section S.6), is hereinafter referred to as EDGAR-JRC. Country budget uncertainties were 

calculated by considering “full fuel” splitting and by taking into consideration the assumption that the emission factors, from 

sectors sharing the same fuel, are fully correlated. This latter assumption transformed the sum in quadrature of Eq. (2) into a 510 

linear summation (Bond et al., 2004; Bergamaschi et al., 2015). The uncertainty of activity data was set in accordance with 

IPCC (2006) guidelines, in the range 5.0 to 10.0 % for combustion activities, 10.0 to 20.0 % for combustion in the residential 

sector, 25.0 % for bunker fuels in the marine transport, 35.0 % for industrial processes of cement, lime, glass, ammonia (the 

range of uncertainty values refers to the 95 % confidence interval of the mean, assigned separately to countries with well- 

and less well-developed statistical infrastructures). Uncertainties from EDGAR-JRC dataset aggregated to the “group” level 515 

were compared with the ones from CHE_EDGAR-ECMWF_2015, see Table 9 for Europe (28 members until end 2019) and 

all world countries, and Table S8 from the Supplementary Information, section S.6, for all the rest geographical entities from 

Table 6. Emission uncertainties from EDGAR-JRC reflect the share of fuel composing the emission of each country and are 

in line with the estimates by CHE_EDGAR-ECMWF_2015 for those countries where the fuel-composite uncertainty is 
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closer to the average value assigned. Uncertainties calculated with fuel-specific data are usually smaller; when prevailing 520 

fuel coincides with typical fuel type from CHE_EDGAR-ECMWF_2015 emission “group” uncertainties from both sources 

are quite similar. It should be noted that: (i) countriescountries’ total uncertainty is higher in EDGAR-JRC due to the 

aggregation technique (full correlation is assumed), (ii) AVIATION “group” uncertainties are higher in EDGAR-JRC due to 

prior aggregation of all three aviation connected sectors (cruise, climbing & descent, and landing & take off).  

 525 

Table 9: Aggregated to the “group” level uncertainties (lower and upper bounds) in percent and contributions in percent to the 

total uncertainty (CV) for Europe (E28) and globe (GLB) from EDGAR-JRC (with extra fuel type knowledge) and CHE_EDGAR-

ECMWF_2015 (with typical fuel only) 

Country “Group” name 
EDGAR-JRC CHE_EDGAR-ECMWF_2015 

Low, % Up, % CV, % Low, % Up, % CV, % 

GLB 

ENERGY_S 0.0 0.0 0.0 -3.6 1.0 0.0 

ENERGY_A -2.9 2.7 42.4 -3.5 3.5 11.0 

MANUFACTURING -4.3 4.3 41.3 -5.7 8.6 34.0 

SETTLEMENTS -2.5 2.5 1.9 -3.9 3.9 1.1 

AVIATION -4.2 5.8 0.5 -17.3 58.1 6.1 

TRANSPORT -2.5 2.6 7.7 -4.3 6.4 8.1 

OTHER -5.9 6.2 6.2 -11.5 52.4 39.7 

TOTAL -4.8 4.8 100.0 -2.3 4.8 100.0 

E28 

ENERGY_S 0.0 0.0 0.0 -5.4 1.9 0.2 

ENERGY_A -2.0 2.4 56.4 -2.8 2.8 13.3 

MANUFACTURING -2.2 2.2 12.6 -3.9 5.8 20.0 

SETTLEMENTS -2.5 2.5 15.1 -4.2 4.2 8.8 

AVIATION -2.4 2.8 0.0 -1.4 1.6 0.0 

TRANSPORT -1.3 1.3 7.2 -1.6 1.8 2.8 

OTHER -5.0 5.0 8.7 -10.1 45.3 54.9 

TOTAL -3.3 3.6 100.0 -1.6 3.3 100.0 

 

The uncertainties derived in this study are an upper bound of the uncertainty estimation compared to the uncertainties 530 

calculated with more detailed information, as done by the countries and reported to UNFCCC or to the uncertainties 

calculated with fuel-specific data. Even though sometimes differences might be quite high in percentage values, they are 

usually quite small in Megatonnemegatonne.  

4.6 Atmospheric sensitivity to nationally disaggregated emissions  

The gridded emissions are required input to the ECMWF IFS model used to simulate atmospheric CO2 globally (Agusti-535 

Panareda et al., 2014; Agusti-Panareda et al., 2019). Ideally, uncertainties at a grid-cell level would be preferred by the 

models in general, which is a difficult time-consuming task. To check the usefulness of the information-intensive derivation 

of uncertainties at a grid-cell level, it was decided to run some experiments. High-resolution (~25 km horizontal resolution, 

137 vertical levels) simulations with the ECMWF IFS model have been performed to assess the atmospheric sensitivity to 

fully resolved emissions compared to nationally smoothed (global emission budget is conserved), see Figure 7.  540 
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Fully resolved emission source distribution Country aggregated emission source distribution 

  
Emissions of CO2, in kg·m-2·s-1 

 

 

Figure 7: Anthropogenic CO2 flux source distribution at ~25 km resolution – fully resolved (left), country aggregated (right) 

 

Model simulations were performed for January 2015 with three hourly output. Anthropogenic, fire, ocean and biogenic 545 

fluxes (large-scale model BIASbias mitigated by biogenic CO2 flux adjustment scheme (BFAS))) were considered. For the 

full model configuration description see McNorton et al. (2020). It was noted that point sources (e.g. power plants, factories) 

can be easily detected if they comprise a substantial part of countries total emission budget (e.g. in South Africa). If point 

sources are distributed homogeneously over the country and other areal sources are rather high as well, it becomes difficult 

to detect one extra/missing emitting hotspot (e.g. in Germany). China is a very good example for both cases, as its western 550 

part has very few hotspots and they are easy to detect over the low emitting background. Its eastern part, however, has lots of 

hotspots and high emitting areal sources making it almost impossible to disentangle emissions from a single power plant or 

factory from the high emitting background. Differences of several ppm are detected over multiple regions, highlighting the 

importance of using high resolution spatially resolved emissions. With increase of both flux and transport model resolutions 

these differences are expected to increase further with steeper atmospheric CO2 gradients.  555 
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5 Recommendations and conclusion 

A pre-processor has been created that allows derivation of the upper and lower band uncertainty grid-maps, while making 

use of an appropriate classification of more certain and uncertain sectors. These grid-maps allow assessment of the error 

propagation of country emission budgets following the IPCC 2006 Guidelines for National Greenhouse Gas Inventories. It is 

a first step in evaluating where to provide more effort in reducing the propagated error budget that can be taken up in any 560 

global or regional atmospheric model as a first step. The method has been applied using EDGARv4.3.2_FT2015 and was 

tested as input to the ECMWF IFS ensemble spread to characterise the carbon dioxide (CO2) atmospheric concentrations’ 

uncertainties in the prototype of the Copernicus CO2 Monitoring and Verification Support Capacity. At country level the 

CHE_EDGAR-ECMWF_2015 dataset provides generally larger uncertainty ranges, reduced when more detailed information 

is available. In summary, using the information uniformly available for all countries, a coherent uncertainty representation is 565 

obtained.  

The application in the ECMWF IFS Earth system model sheds light on the spatial representativeness of the emissions. While 

the emission-intensive point sources were checked w.r.t.with reference to their spatial location, the diffuse emission sources 

are gridded using spatial proxy data. With CHE_EDGAR-ECMWF_2015 implemented in the IFS model it was demonstrated 

that the choice of the spatial proxy data has a strong influence on the model results. As such, it is proposed that this is 570 

analysed in comparison to other datasets, going beyond the evaluation of the probability density of the spatial proxy itself. 

Contribution of representativeness errors to uncertainties and time correlation will need to be assessed in successive future 

studies, as foreseen under the Prototype system for a Copernicus CO2 service (CoCO2) project, following up on the CO2 

Human Emissions (CHE) project.  

The use of ensemble technique to estimate CO2 uncertainties is recommended. The optimal number of ensemble members is 575 

bounded by practical considerations on computational costs. Leutbecher (2018) found a minimum of 8-member ensemble 

can mimic some of the skill of larger ensembles, with a 20-member ensemble being a typical value used by several 

modelling systems and with 50-member being a desirable target. Further grouping of anthropogenic emissions into e.g. one 

to reduce the dimensions of the problem is also possible with the tool CHE_UNC_APP (Choulga et al., 2021). 

The estimation of global gridded emissions with their spatially and temporally distributed uncertainties constitute the 580 

backbone for atmospheric inversions to estimate anthropogenic emissions from atmospheric concentrations (Pinty et al., 

2017). Dedicated satellite missions (e.g. Copernicus anthropogenic CO2 monitoring mission CO2M described in Janssens-

Maenhout et al. (2020)) are being planned to monitor anthropogenic emissions from space and substantially reduce emission 

uncertainties. The developments in the emission uncertainty, based on prior knowledge computation presented in this paper, 

are an important preparatory step for an ensemble-based CO2 Monitoring and Verification System prototype, such as the one 585 

developed within the CHE project. 
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http://edgar.jrc.ec.europa.eu/overview.php?v=432&SECURE=123, last access: 29 June 2021, 

doi:https://data.europa.eu/doi/10.2904/JRC_DATASET_EDGAR, documented in Janssens-Maenhout et al. (2019). 590 

CHE_EDGAR-ECMWF_2015 data (Choulga et al., 2020) are freely available https://doi.org/10.5281/zenodo.3967439, and 

documented in this paper. CHE_UNC_APP anthropogenic CO2 emission uncertainty calculation tool (Choulga et al., 2021) 

is freely available https://doi.org/10.5281/zenodo.5196190, and documented in this paper. 
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