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Dear editor,  

Thank you for editing our manuscript. The first part of this document includes the point-by-point 

responses to the reviews (Reviewer 1, Reviewer 2). Comments of the referees are marked as e.g. << 

Reviewer 1 Major comment 1>> followed by the answer from the authors, which includes the changes 

made in the manuscript to fulfill the referees’ suggestions. The section of responses to the referees is 5 

followed by a marked-up version of the manuscript.  

 

Best regards 

Yongzhe Chen, Xiaoming Feng and Bojie Fu 

  10 



2 

 

To Reviewer 1: 

 

General comment: This is a very valuable contribution to the research on long-term soil moisture data. 

The approach is technically sound and state-of-the-art. 

Response: Thank you for the positive comments on this work. We have carefully revised the manuscript 15 

following your comments. Details of the changes are provided in the responses below. 

 

Major comment 1: In the introduction the authors too strongly blame existing soil moisture products 

without discussing their advantages and drawbacks in detail. Also, other methods than NN to generate 

long-term time series such as Copulas are not mentioned. Introduction needs a much clearer structure. 20 

Response: Following this comment, we have removed the incorrect phrasing throughout the Introduction 

and added detailed descriptions of the advantages and drawbacks of the existing soil moisture products. 

In addition, we have revised the paragraph illustrating the methods for generating long-term microwave 

soil moisture time series, and the Copulas method is included. Please review the Introduction in the 

revised manuscript. 25 

The structure of the Introduction is as follows: the 1st paragraph introduces the significance of soil 

moisture; the 2nd and 3rd paragraphs illustrate the soil moisture products derived from land surface models 

and microwave remote sensing, respectively, with the advantages and drawbacks discussed; the 4th 

paragraph introduces the surface soil moisture datasets produced by combining land surface modeling 

and remote sensing, and the need for high-quality long-term surface soil moisture datasets derived from 30 

microwave remote sensing is highlighted; the 5th paragraph discusses the popular methods targeting the 

use of the information acquired by one sensor to produce soil moisture data compatible with those 

retrieved from another to generate long-term microwave soil moisture time series; the 6th paragraph 

introduces the existing long-term microwave soil moisture data developed by using the machine learning 

method and points out the major aspects that need to be improved; the 7th paragraph concludes the 35 

previous work and then proposes three major concerns in producing long-term microwave surface soil 

moisture, which we tried to solve in this study. 

 

Major comment 2: Also the description of the neural net approach is not very clear. Figure 2 helps, but 

the full iterative and localized approach is still not clear. Also the separation into monthly ~10-day bins 40 

is not justified. Why not using a strict 10 day temporal resolution? 

Response: We apologize for the confusion. Following this comment, we have revised the overall brief 

description of the iterative and localized neural network approach, and more details have been added. It 

now reads as follows: ‘Global long-term surface soil moisture data production includes three basic parts: 

1) preprocessing: the production of high-quality neural network inputs, including the training target soil 45 

moisture, predictor soil moisture products and the quality impact factors (i.e., 9 environmental factors); 
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2) neural network operation: the training of localized neural networks (i.e., the rules for soil moisture 

prediction are separately trained in different 1°×1° zones) followed by surface soil moisture simulation 

based on the localized neural networks; and 3) postprocessing: the correction of potential errors or 

deficiencies in the soil moisture simulation outputs. 50 

The temporal span of the primary training target SMAP does not overlap with that of TMI, FY-3B, 

WindSat or AMSR-E (see Figure 1), while most microwave soil moisture products are not available from 

the beginning year 2003 (e.g., AMSR2 data are only available since July 2012). Therefore, to fully utilize 

the 10 predictor surface soil moisture products retrieved from 7 different microwave sensors and form a 

temporally continuous soil moisture dataset covering 2003~2018, several iterative rounds of simulations 55 

are performed. Here, ‘iterative’ means that the simulated soil moisture data in a round were also 

converted to part of the training targets of the next round’s neural network (hereinafter the ‘secondary 

training targets’), thus extending the potential temporal span of the target soil moisture data. Accordingly, 

the postprocessing steps which are intended to transform the simulation outputs to reliable secondary 

training targets can be seen as preprocessing steps as well. The basic flow of this process is shown in 60 

Figure 2.’ (Lines 246~260 in the revised manuscript) 

In addition, we have revised the detailed explanation of the neural network design to help readers 

understand the specific operation processes. Please refer to Lines 265~269 and Lines 304~318 for these 

revisions. 

Our dataset is separated into monthly ~10-day bins rather than a strict 10-day resolution because the key 65 

inputs, e.g., SPOT-VGT and PROBA-V LAI data, are available in monthly ~10-day bins. We added the 

explanation at the end of section 2.1.1, following: ‘… Therefore, the temporal resolution of the dataset 

developed in this study is approximately 10 days, meaning that 3 data records are obtained within a 

month for days 1~10, 11~20 and from 21 to the last day of that month. This format is exactly the same as 

that of the ASCAT-SWI and many other products developed by the Copernicus Land Monitoring Service 70 

(https://land.copernicus.eu).’. 

 

Major comment 3: During validation the scale difference between coarse resolution of most satellite 

SSM products as compared to point-scale in situ measurements is not discussed. 

Response: We thank the reviewer for this comment. We have added section 4.2 to the Discussion as 75 

follows: ‘… However, we can neither conclude that our product is superior to the existing products, nor 

determine the performance of our product at the global scale. This is mainly because the ISMN 

measurements are unevenly distributed globally (Figure 3) and incompatible at a spatial scale with the 

scales of passive microwave observations and land surface modeling (0.1°~0.25°). We validated the soil 

moisture products against the ISMN’s point-scale data just because only such in situ measurements are 80 

currently available, and the ISMN dataset (Dorigo et al., 2011; Dorigo et al., 2013) is the most frequently 

used in the assessments of large-scale soil moisture data (Al-Yaari et al., 2019; Albergel et al., 2012; 
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Dorigo et al., 2015; Fernandez-Moran et al., 2017; Gao et al., 2020; Karthikeyan et al., 2017b; Kerr et 

al., 2016; Kim et al., 2015b; Kolassa et al., 2018; Lievens et al., 2017; Zhang et al., 2019). In this study, 

to alleviate the impact of spatial scale differences on the evaluation, dense networks are more utilized 85 

(19 out of 29 networks, see Text S2 for details) that contain multiple stations within the same 0.1° pixel. 

The pixels with nonnegligible water area are also excluded in case of high spatial variability in surface 

soil moisture. In addition, more than 90% of the selected stations are located in relatively flat areas with 

a topographic complexity less than 10%. …’ 

 90 

Major comment 4: Also the discussion is very descriptive focusing on the statistics, but I would like to 

see deeper interpretations by linking environmental characteristics, microwave observation methods and 

NN predictions. 

Response: We thank the reviewer for this comment. Following this advice, we have added section 4.1 to 

the Discussion to discuss the roles of microwave-observed soil moisture data and environmental 95 

characteristics on NN predictions as follows: ‘The key algorithm calibrates and fuses various sources of 

microwave surface soil moisture products through multiple neural networks. Several environmental 

factors are also chosen as ancillary neural network inputs because they are quality impact factors of 

microwave soil moisture retrievals, or also director indicators of surface soil moisture. To explore the 

relative roles of soil moisture data retrieved from microwave observations and the environmental 100 

characteristics, we performed contribution tests on all the input features at the global scale (for each 

predictor, we added a random error that is controlled within the standard deviation of the predictor. Then 

the increased mean squared error (MSE) in neural network training can be used to determine the relative 

contribution of that variable). Taking the first independent neural network (NN1-1-1, a primary NN) as 

an example, the results (Figure 16) indicate that SMOS soil moisture plays the dominant role in the neural 105 

network training (55.5%), while the four predictor soil moisture products explained 62.7% in total. The 

remaining 37.3% of the training efficiency could be attributed to the environmental characteristics, 

among which the water fraction accounts for the most (13.4%) since it is both a quality impact factor 

and a direct indicator of soil moisture. The tree cover fraction is an important neural network input as 

well and reduces the MSE by 7.8%, which is probably due to the strong impact of forest cover on 110 

microwave soil moisture retrievals.’ 
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Figure R1 (Figure 16 in the revised manuscript): Relative contributions of the 13 input features (i.e., four 

predictor soil moisture products retrieved from microwave remote sensing and 9 environmental factors 

that are quality impact factors of microwave soil moisture retrieval or also indicators of soil moisture) to 115 

the training efficiency of the first round’s primary neural network (NN1-1-1). 

 

Major comment 5: The language needs to be improved. All abbreviations need to be introduced first. 

The authors should speak about surface soil moisture, not surface moisture or similar. 

Response: We have checked and corrected the language errors. The abbreviations are now introduced 120 

when they are first mentioned. For the remaining abbreviations of the names of satellites, remote sensors 

and missions, we added a table (Table 1 in the revised manuscript). Thank you for this reminder. We have 

corrected ‘surface moisture’ to ‘surface soil moisture’ in the manuscript accordingly. 

 

Major comment 6: I am missing also a description of the data set itself, i.e. which format, auxiliary data 125 

etc. 

Response: Thank you for this comment. We have added that information in the Data Availability section 

as follows: ‘In the ZIP file, data maps are all provided in Geotiff format, and we also attached a csv table 

relating the filename and the nominal time period of the file.’ 

 130 

Specific comment 1: L. 8: be more specific, what is lacking? 

Response: We have changed the sentence to: ‘However, long-term satellite monitoring of surface soil 

moisture at the global scale needs improvement.’ instead of saying that the long-term satellite monitoring 

of surface soil moisture at the global scale is lacking. 

 135 

Specific comment 2: L. 12: elaborate? 
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Response: We have changed the phrase to ‘complicated’: ‘The training efficiency was high (R2 =0.95) 

due to … and the complicated organizational structure of multiple neural networks.’ 

 

Specific comment 3: L. 14: strange formulation. Iterative and localized? 140 

Response: As the reviewer noted, the neural networks in this study are both iterative and localized. To 

clarify our meaning, we have changed the phrasing to ‘5 rounds of iterative simulations; 8 substeps; 67 

independent neural networks; and more than one million localized subnetworks’ accordingly. 

 

Specific comment 4: L. 16: introduce RSSSM 145 

Response: We have revised the text by adding an introduction as follows: ‘Then, we developed the global 

Remote Sensing-based Surface Soil Moisture dataset (RSSSM) covering 2003~2018 at 0.1° resolution. 

The temporal resolution is approximately 10 days, meaning that 3 data records are obtained within a 

month, for days 1~10, 11~20 and from 21 to the last day of that month …’. 

 150 

Specific comment 5: L. 19: why in cold and arid regions? 

Response: We have revised the sentence as follows: ‘RSSSM generally presents advantages over other 

products in arid and relatively cold areas, which is probably because of the difficulty in simulating the 

impacts of thawing and transient precipitation on soil moisture, and during the growing seasons…’. 

 155 

Specific comment 6: L. 21: which period? Is it valid to use the data set for trend analysis? 

Response: We have revised this sentence as follows: ‘Moreover, the persistent high data quality during 

2003~2018 as well as the complete spatial coverage ensure the applicability of RSSSM to studies on both 

the spatial and temporal patterns (e.g., long-term trend).’ accordingly. 

 160 

Specific comment 7: L. 33: where do the uncertainties come from? 

Response: The uncertainties of microwave soil moisture products and land surface model products are 

described in detail in the following paragraphs. We agree that putting this sentence here will probably 

lead to confusion. Therefore, following this comment, we have deleted this sentence. 

The uncertainties in land surface model products are described as follows: ‘The uncertainties arise from 165 

meteorological forcing data, model parameters, as well as inadequacies in model physics (Cheng et al., 

2017). Moreover, the anthropogenic impacts from irrigation and land cover changes are rarely 

considered (Kumar et al., 2015; Qiu et al., 2016).’. On the other hand, for the microwave products, the 

description on the sources of uncertainties are as follows: ‘Satellite-based soil moisture retrievals may 

also suffer from various disturbances, such as lower quality over dense vegetation cover, high open water 170 

fractions and complex topography (Draper et al., 2012; Fan et al., 2020; Ye et al., 2015). Difference in 
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the algorithms dealing with the disturbances make different microwave soil moisture products hardly 

comparable with each other (Kim et al., 2015a; Mladenova et al., 2014).’ 

 

Specific comment 8: L. 47: explain abbreviations 175 

Response: We have added a table for abbreviations for these sensors or satellites, see Table 1 in the 

revised manuscript. The sentence has been revised as follows: ‘… SMOS, SMAP, see Table 1 for the full 

names’. 

 

Specific comment 9: L. 47: change to AMSR-E, also in the following 180 

Response: We have changed it to AMSR-E accordingly. 

 

Specific comment 10: L. 51: usually is wrong, reformulate. Reduced performance due to complex 

topography or dense vegetation 

Response: This sentence may not have been clearly written. To avoid misunderstanding, we have 185 

changed it as follows: ‘satellite-based soil moisture products usually have lower accuracies than modeled 

products … due to various disturbances, such as lower quality over high vegetation cover, high open 

water fractions and complex topography’. 

 

Specific comment 11: L. 56: reference for SMOS is Kerr et al. (2001) 190 

Response: We have corrected the reference accordingly. 

 

Specific comment 12: L. 57: better than shorter wavelengths 

Response: We have revised it accordingly. 

 195 

Specific comment 13: L. 61: reformulate: …and incorporated hardware RFI mitigation 

Response: We have changed it accordingly. 

 

Specific comment 14: L. 64: published a long-term surface soil moisture dataset under the Climate 

Change Initiative (CCI). Delete: or Essential Climate Variable (ECV) 200 

Response: We have deleted it accordingly and deleted it in the Abstract. 

 

Specific comment 15: L. 71: justify low quality, why? 

Response: We apologize for the arbitrary phrasing. We have deleted this claim on low quality. The 

microwave sensors before 2003 may have had limited spatial coverage and coarser resolution 205 

(Karthikeyan et al., 2017b). Therefore, we have revised the sentence as follows: ‘CCI utilized almost all 

the available microwave soil moisture datasets to form a long time series, and generally agrees well with 
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measured values at some sites, e.g.,, the Irish grassland sites and the grassland and agricultural fields in 

the United States, France, Spain, China and Australia (Albergel et al., 2013; An et al., 2016; Dorigo et 

al., 2017; Pratola et al., 2015). Valid microwave observations were quite limited before June 2002 due 210 

to satellite sensor constraints (Dorigo et al., 2017).’. 

 

Specific comment 16: L. 72: why is the merging algorithm probably too simple? Justify! 

Response: We apologize for the incorrect phrasing. We have changed the sentence as follows: We have 

changed the sentence to: ‘The temporal variation in each satellite product is retained, although the data 215 

averaging (Liu et al., 2012) cannot efficiently distinguish between the divergent interannual variations 

in various products (Feng et al., 2017).’ 

 

Specific comment 17: L. 77: it is not true that temporal changes are mainly driven by model simulations, 

reformulate 220 

Response: Since the anomalies (the deviations to the seasonal climatology, which indicate whether the 

soil moisture at a time point is more humid or drier than the multiyear average (Martens et al., 2017)) 

rather than the original CCI time series are assimilated into the GLEAM model now, the temporal changes 

(e.g., intra-annual variation) in the GLEAM v3 products will not learn much from satellite observations. 

Following this comment, to avoid suspicious negative claim and provide more positive assessments, we 225 

have corrected the sentences to: ‘The general performance of the GLEAM soil moisture product is 

satisfactory (Beck et al., 2020). In the current version, the CCI soil moisture anomalies (the deviations 

to the seasonal climatology, which indicate whether the soil moisture at a time point is more humid or 

drier than the multiyear average) are assimilated instead of the original CCI time series (Martens et al., 

2017). Therefore, satellite observations play a much smaller role than modelling in forming the GLEAM 230 

product.’. 

 

Specific comment 18: L. 85-90: it is not clear what the authors want to say here 

Response: Here, we introduced the previous methods on calibrating the soil moisture (or Tb) data 

retrieved by one microwave sensor to make it matchable (compatible) with the soil moisture data 235 

retrieved from another (i.e., the approach for harmonizing two different microwave soil moisture datasets, 

except for CDF matching). We have revised these sentences to make it easier to understand, and added 

the Copulas function method as follows: ‘In addition to the CDF matching algorithm, at least four 

methods have been proposed that target the use of the information acquired by one sensor to produce soil 

moisture data that are compatible with the data retrieved from another. Based on physical-based 240 

equations (Wigneron et al., 2004), the regression between SMOS soil moisture and dual-polarized 

brightness temperature (Tb) data from AMSR-E is applied to match the AMSR-E soil moisture time series 

to SMOS (R-square =0.36) (Al-Yaari et al., 2016). An example of the second method uses the Land 
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Parameter Retrieval Model (LPRM) (Owe et al., 2008) to retrieve soil moisture from SMOS and then 

match the ‘SMOS-LPRM’ data with the AMSR-E-LPRM product by calibrating the LPRM parameters 245 

and then applying a linear regression (Van der Schalie et al., 2017). Thirdly, Copulas functions allow to 

model the structure of the dependence between two different Tb or soil moisture datasets and thus could 

perform better for the extreme values, thereby reducing the RMSE (Gao et al., 2007; Leroux et al., 2014; 

Lorenz et al., 2018; Verhoest et al., 2015).’ 

 250 

Specific comment 19: L. 92: polarized reflectivity? Isn’t it emission? 

Response: We apologize for including the wrong information. There is no ‘polarized reflectivity’. We 

have corrected the sentence as follows: ‘researchers built a neural network that links SMOS soil moisture 

to the Tb at different polarizations and frequencies of AMSR-E to produce a calibrated soil moisture data 

product that covers 9 years (2003~2011) (Rodríguez-Fernández et al., 2016).’ Thank you for the reminder.  255 

 

Specific comment 20: L. 103: this data has been 

Response: We have corrected the text as follows: ‘SMAP soil moisture data have been chosen as …’. 

 

Specific comment 21: L. 115: iterative 5-step neural network 260 

Response: We have revised it to ‘iterative 5-round neural networks’. because we would like to 

distinguish between ‘round’ and ‘substep’, which is included in a ‘round’. 

 

Specific comment 22: L. 123: It has to be noted that the SMAP_E grid is 9km only, but that the spatial 

resolution of that product is around ~20km. The 9km is misleading and should be clarified also to 265 

correctly interpret the final product of this study. 

Response: SMAP_E is the enhanced SMAP product (spatial resolution: 36 km). It is in the EASE-Grid 

(equal-area scalable Earth) 2.0 projection, and the spatial resolution is 9.024 km (1623 rows×3855 

columns at the global scale). Therefore, for most places, the spatial resolution of SPAM_E is 

approximately at a 0.1° resolution in the WGS1984 coordinate system. To clarify our meaning, we added 270 

the following sentence as follows: ‘SMAP_E was reprojected from the EASE-Grid 2.0 projection with 9 

km resolution to the WGS1984 geographic coordinate system with 0.1° resolution.’ 

 

Specific comment 23: L. 126: The nominal penetration depth 

Response: We have changed the text accordingly. 275 

 

Specific comment 24: L. 134: ASCAT soil water index 

Response: We have changed the text accordingly. 
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Specific comment 25: L. 135: not developed by Copernicus, but by EUMETSAT. It is provided by the 280 

ESA Copernicus Land Monitoring Service 

Response: Thank you for reminding us of this mistake. We have corrected the information accordingly. 

 

Specific comment 26: L. 135: why was the SMAP porosity used, and not the porosity provided with the 

ASCAT product? 285 

Response: We used the SMAP porosity because porosity data is not included in the static layers of 

ASCAT-SWI product (https://land.copernicus.eu/global/products/swi). We added information to the 

revision. 

 

Specific comment 27: L. 140: Highly questionable to use X-band for soil moisture retrieval, maybe that 290 

is the reason why the results of this study show improvements for cold and arid regions with low 

vegetation. C-band RFI is known to be high over the US, but also over the rest of the globe? L. 150: again, 

why not C-band also for Windsat? 

Response: We agree that C-band retrievals will probably perform better than X-band soil moisture data 

in regions with high vegetation cover. To reduce the effect of this problem, we have incorporated LAI 295 

and vegetation continuous field (tree cover fraction) data as ancillary neural network inputs to consider 

the impact of vegetation on the retrievals from different frequency bands. According to Njoku et al., the 

C-band RFI is much higher than the X-band RFI. The C-band RFI is most densely concentrated in the 

United States, Japan, and the Middle East and sparsely distributed in Europe and other areas worldwide 

(Njoku et al., 2005). 300 

 

https://land.copernicus.eu/global/products/swi
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Figure R2: Classification maps of the global RFI. (a) 6.9-GHz RFI; and (b) 10.7-GHz RFI. This figure 

is directly obtained from (Njoku et al., 2005). 

 

In addition, the footprint size of C-band brightness temperature is much coarser than that of the X-band 305 

for AMSR-E, AMSR2 and WindSAT (~0.5°).  

Following this comment, we revised the related sentence as follows: ‘X-band retrievals may not perform 

well in high-vegetated areas, but C-band data such as AMSR2-LPRM-C or AMSR-E-LPRM-C were not 

applied due to the high RFI, especially in the United States, Japan, and the Middle East (Njoku et al., 

2005)’. 310 

For WindSAT, the RFI and coarser resolution may explain why no C-band product for WindSAT is 

available now (De Jeu and Owe, 2014a, b; Karthikeyan et al., 2017b). 

However, we really appreciate your idea of incorporating both the X-band and C-band retrievals as 

predictors. This attempt may further improve the final data quality when the algorithm remains 

unchanged. 315 

 

Specific comment 28: L. 169: not all products are retrieved by a RTM. Additionally, typical all retrieval 

methods use a vegetation and/or a LST information. Don´t you add here those characteristics twice? 

Please discuss. 

Response: We agree that not all soil moisture data are retrieved by physical models (e.g., RTM). Semi-320 

empirical models, empirical models, vegetation contribution models and change detection models are 

used as well; however, vegetation cover or LST information is usually needed (Karthikeyan et al., 2017a). 

This sentence was not clearly written, and we have revised it as follows: ‘However, these factors are quite 

essential due to their direct impacts on microwave-based soil moisture retrieval through the radiative 

transfer model and other models (Fan et al., 2020; Karthikeyan et al., 2017a); thus, they are retrieval 325 

quality impact factors.’ 

 

Specific comment 29: L. 182: sand and clay fractions can be named soil texture 

Response: Following this comment, we have revised it as follows: ‘… the ‘soil texture factors’ (two 

factors, sand fraction and clay fraction) …’ . 330 

 

Specific comment 30: L. 189: the WARP change detection algorithm is applied to ASCAT after using 

the different angles to remove the vegetation contribution. Please check the ASCAT SM retrieval and 

modify accordingly. 

Response: Thank you for this reminder. After checking the change detection algorithm, we have 335 

corrected the sentence as follows: ‘…, whereas the TU-Wien change detection algorithm applied to 

ASCAT utilizes the quadratic polynomial dependence of backscatter on the incidence angle to better 
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characterize the vegetation effect on backscatter and then remove it by identifying the reference angles 

(Hahn et al., 2017; Vreugdenhil et al., 2016).’ (TU-Wien algorithm is used in WARP). 

 340 

Specific comment 31: L. 211: that 

Response: We have removed the duplicate ‘that’ accordingly. 

 

Specific comment 32: L. 252: please justify this filtering. 

Response: We have added an explanation for this filtering method to justify it as follows: ‘the principle 345 

is that 99.87% of the data appear within this range for a normal distribution (Howell et al., 1998). Also 

note that the filter applied spatially rather than temporally to detect and delete the extreme values, which 

are usually noise in mountain areas. Therefore, the extreme climatic events will not be mistakenly 

removed’. 

 350 

Specific comment 33: L. 323: it is not clear why a NN sorting is necessary 

Response: The reasons for sorting the independent NNs in each round are actually described in the 

previous paragraph (Lines 303~328). To make this part easier to understand, we have added the following 

details. It now reads: ‘Although increasing the sources of soil moisture data inputs can improve the 

training efficiency, the spatial coverage of the simulation output is sacrificed because the overlapping 355 

area decreases as the number of soil moisture products increases. After all, most products have missing 

data in specific regions (e.g., mountains, wetlands and urban settlements), and some sensors are even 

unable to produce data at the global scale (e.g., TMI is limited to [N40°, S40°]; SMOS have many missing 

values in Eurasia). To resolve this dilemma, we classified all 0.1° pixels according to the predictor soil 

moisture products that have a valid value over a 10-day period (for example, if there are four predictor 360 

soil moisture datasets in one round, there should be 4+6+4+1=15 combinations. Here, ‘1’ indicates the 

condition that all four products have a valid value in the 0.1° pixel, and there are ‘6’ conditions when 

only two of the four predictors have valid value in the pixel). However, to avoid soil moisture simulation 

under snow or ice cover (see section 2.2.2), not all combinations are considered. Then, an independent 

neural network corresponding to each selected combination is trained. For data simulations in a 0.1° 365 

pixel, the most preferable independent neural network is expected to be trained using all the available 

soil moisture data sources in that pixel (i.e., if valid values are provided by three soil moisture products, 

then the preferable neural network is the one trained using those three predictors). However, in the 1° 

zone in which the 0.1° pixel is located, the subnetwork belonging to that preferable independent neural 

network may not exist due to limited valid data points (see section 2.2.1). Then, an alternative subnetwork 370 

driven by the combination of fewer soil moisture data inputs should be applied instead. Hence, we should 

determine the neural network collocation that is the best choice for every pixel. Apart from applicability, 
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the relative priority order of different neural networks was obtained by comprehensively considering the 

number and quality of input soil moisture products, ….’. 

 375 

Specific comment 34: L. 335: the Russian networks do not have any data in this period 

Response: Thank you for this reminder. We have revised it as follows: ‘Records outside of the RSSSM 

data period (2003~2018), such as those from Russian networks, are ignored as well.’ 

 

Specific comment 35: L. 406: is that an independent comparison? If not, please indicate. 380 

Response: We agree with you and have added the following note: ‘these two datasets are not completely 

independent because SMAP data are used as the training target while RSSSM data are the simulation 

results’. 

 

Specific comment 36: L. 434: The ASCAT problem in arid areas is known and might be related to 385 

changes in soil scattering where the change detection method assumptions are not longer valid. 

Response: Thank you for this suggestion. We have added the following sentence: ‘This problem is known 

and might be related to the different scattering mechanisms in dry soils invalidating the assumptions of 

change detection method (Al-Yaari et al., 2014)’. 

  390 
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To Reviewer 2: 

 

General comment: I've got the impression that the authors have sufficiently addressed my previous 

comments and questions. I support the publication of this data description paper after the following minor 555 

points had been considered. 

Response: We thank the reviewer for the positive comments on our work as well as the last round of 

revision. Here, we have further addressed the minor points. Details of the changes are provided in the 

responses below. 

 560 

Specific comment 1: L134: "The first is ASCAT" change to something like: "The first satellite soil 

moisture product", otherwise it reads as if it was a quality impact factor product. 

Response: We have made the revision accordingly. 

 

Specific comment 2: L180: You speak of 9 quality impact factors but you only list 8 and in the overview 565 

Fig. 1 there are only 7 different types distinguished. 

Response: We have revised the sentence as follows: ‘In this study, 9 quality impact factors are 

incorporated: LAI, water fraction, LST, land use cover, tree cover fraction, non-tree vegetation fraction, 

topographic complexity, soil sand fraction and clay fraction.’. In addition, in Figure 1, ‘sand and clay 

fractions’ are two quality impact factors, while ‘vegetation continuous fields- tree cover and non-tree 570 

vegetation cover fraction’ indicate two quality impact factors as well. 

 

Specific comment 3: L193: GEOV2-LAI is missing in the overview figure (Fig. 1) 

Response: GEOV2-LAI indicates SPOT-VGT plus PROBA-V LAI. We added this information in the 

revised manuscript: ‘The Copernicus global 1 km resolution LAI (called GEOV2-LAI, which consists of 575 

SPOT-VGT and PROBA-V LAI) data are adopted here …’ 

 

Specific comment 4: L211: that that 

Response: We have removed the duplicate ‘that’. 

 580 

Specific comment 5: L223, L224, continue the enumeration of quality impact factors as you started with 

"first, second, third, ..." until you reach 9th as defined in the introduction 

Response: We have made the revision accordingly. 

 

Specific comment 6: L249: Still required to state the Toolbox used in Matlab 2016 and the name of the 585 

neural network training function 

Response: We have revised the sentence as follows: ‘The training was performed in MATLAB 2016a-
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using the Neural network fitting toolbox, and the number of nodes in the hidden layer (between the input 

and output layers (Stinchcombe and White, 1989)) of each subnetwork was 7. We chose the gradient 

descent backpropagation algorithm as the training function.’ 590 

 

Specific comment 7: L339: which as a -> which has a 

Response: We apologize for the misspelling. We have revised the sentence as follows: ‘… ~10-day-

averaged soil moisture records obtained from 728 stations of 29 networks are applied for validation of 

the soil moisture products.’ for simplicity. 595 

 

Specific comment 8: L395: "grid" please change all occurrences to "grid cell". A grid refers to an 

aggregate of cells, so a 0.5° x 0.5° unit corresponds to a grid cell. 

Response: We have changed ‘grid’ to ‘grid cell’ accordingly. 

 600 

Specific comment 9: L546: if you write "most" you should state which ones are better than yours. 

Response: We have deleted the word ‘most’, since in this study we did not find datasets that are more 

comparable with the ISMN measurements than ours. However, we cannot conclude that our product is 

better than others due to the limitations in this validation method. Following this comment, we have 

revised the sentences as follows: ‘Our product is generally more comparable to the in-situ measurements 605 

at ISMN stations than the existing global long-term surface soil moisture datasets in general, when all 

indicators on both spatial and temporal accuracy are considered. However, we can neither conclude that 

our product is superior to the existing products, nor determine the performance of our product at the 

global scale. This is mainly because the ISMN measurements are unevenly distributed globally (Figure 

3) and incompatible at a spatial scale with the scales of passive microwave observations and land surface 610 

modeling (0.1°~0.25°). We validated the soil moisture products against the ISMN’s point-scale data just 

because only such in situ measurements are currently available, and the ISMN dataset (Dorigo et al., 

2011; Dorigo et al., 2013) is the most frequently used in the assessments of large-scale soil moisture data 

(Al-Yaari et al., 2019; Albergel et al., 2012; Dorigo et al., 2015; Fernandez-Moran et al., 2017; Gao et 

al., 2020; Karthikeyan et al., 2017; Kerr et al., 2016; Kim et al., 2015; Kolassa et al., 2018; Lievens et 615 

al., 2017; Zhang et al., 2019)…’ 

 

Specific comment 10: L573: You could name the Cosmic-Ray Neutron Sensing method (CRNS) and the 

COSMSOS (http://cosmos.hwr.arizona.edu/) network here as a potential provider of root zone integrated 

large scale soil moisture with global coverage (Andreasen, M., Jensen, K.H., Desilets, D., Franz, T.E., 620 

Zreda, M., Bogena, H.R. and Looms, M.C. (2017), Status and Perspectives on the Cosmic‐Ray Neutron 

Method for Soil Moisture Estimation and Other Environmental Science Applications. Vadose Zone 

Journal, 16: 1-11 vzj2017.04.0086. doi:10.2136/vzj2017.04.0086) 
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Response: Following this comment, we added information to point out the significance of CRNS and 

COSMOS. In the Discussion in section 4.2 entitled ‘Requirement of further validation’, we wrote the 625 

following: ‘The Cosmic-Ray Neutron Sensing method (CRNS) can provide soil moisture estimates at a 

scale of hundreds of meters in diameter (Andreasen et al., 2017). Hence, the in situ networks generated 

using this method, e.g., COSMOS, are more suitable for the validation of satellite-based or modeled 

coarse resolution soil moisture products. We hope that additional records obtained from cosmic-ray 

neutron stations become available in the future so that our product may be better evaluated.’ 630 

 

Specific comment 11: L990: Figure caption: "Overview of the periods of the different soil moisture 

datasets..." 

Response: We have made the revision accordingly. 

 635 

Specific comment 12: L995: Figure caption: "Flow chart for the ..." 

Response: We have changed it accordingly. 

 

Specific comment 13: L1002: provide time range for (c) RSSSM vs site measured soil Moisture 

Response: We have revised this phrasing as follows: ‘RSSSM and the site-measured soil moisture from 640 

April 2015 to 2018’. 

 

Specific comment 14: Table 2 & 3: you could highlight the best performing dataset (per column) by 

setting their values bold 

Response: We have revised the table and highlighted the better performing dataset for each comparison 645 

between RSSSM and the other datasets. Please note that the comparison period for different pairs of 

comparisons is not the same. Therefore, we could not identify the best performing dataset per column. 

 

Specific comment 15: Language: the writing has improved since the initial version of the manuscript but 

some parts are still difficult to grasp at first reading. 650 

Response: We have checked and corrected the errors in language again. In addition, many complicated 

parts, especially the descriptions of the methods, have been revised, and details have been added. 

Moreover, the abbreviations are now introduced when they are mentioned first. For the remaining 

abbreviations of the names of satellites, remote sensors and missions, we added a table (Table 1 in the 

revised manuscript). Thank you for your careful reading! 655 
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Abstract. Soil moisture is an important variable linking the atmosphere and terrestrial ecosystems. However, long-term 

satellite monitoring of surface soil moisture at the global scale needs improvement. In this study, we conducted data calibration 

and data fusion of 11 well-acknowledged microwave remote sensing soil moisture products since 2003 through a neural 725 

network approach, with Soil Moisture Active Passive (SMAP) soil moisture data applied as the primary training target. The 

training efficiency was high (R2 =0.95) due to the selection of 9 quality impact factors of microwave soil moisture products 

and the complicated organizational structure of multiple neural networks (5 rounds of iterative simulations; 8 substeps; 67 

independent neural networks; and more than one million localized subnetworks). Then, we developed the global Remote 

Sensing-based Surface Soil Moisture dataset (RSSSM) covering 2003~2018 at 0.1° resolution. The temporal resolution is 730 

approximately 10 days, meaning that 3 data records are obtained within a month, for days 1~10, 11~20 and from 21 to the last 

day of that month. RSSSM is proved comparable to the in situ surface soil moisture measurements of the International Soil 

Moisture Network sites (overall R2 and RMSE values of 0.42 and 0.087 m3/m3), while the overall R2 and RMSE values for 

the existing popular similar products are usually within the ranges of 0.31~0.41 and 0.095~0.142 m3/m3, respectively. RSSSM 

generally presents advantages over other products in arid and relatively cold areas, which is probably because of the difficulty 735 

in simulating the impacts of thawing and transient precipitation on soil moisture, and during the growing seasons. Moreover, 

the persistent high quality during 2003~2018 as well as the complete spatial coverage ensure the applicability of RSSSM to 

studies on both the spatial and temporal patterns (e.g., long-term trend). RSSSM data suggests an increase in the global mean 

surface soil moisture. Moreover, without considering the deserts and rainforests, the surface soil moisture loss on consecutive 

rainless days is highest in summer over the low latitudes (30°S~30°N) but mostly in winter over the mid-latitudes (30°N~60°740 

N; 30°S~60°S). Notably, the error propagation is well controlled with the extension of the simulation period to the past, 

indicating that the data fusion algorithm proposed here will be more meaningful in the future when more advanced microwave 

sensors become operational. RSSSM data can be accessed at https://doi.pangaea.de/10.1594/PANGAEA.912597 (Chen, 2020). 
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1 Introduction 

Soil moisture plays an important role in modulating the exchange of water, carbon and energy between the land surface and 

atmosphere, and it also links the global water, carbon and energy cycles (Dorigo et al., 2012; Karthikeyan et al., 2017a). Soil 

moisture has been endorsed by the Global Climate Observing System (GCOS) as an essential climate variable (Bojinski et al., 825 

2014), because it can indicate the climatic impact on the ecosystems, such as during ecological droughts (Martínez-Fernández 

et al., 2016; Samaniego et al., 2018). Current research requires high-quality soil moisture information in terms of data accuracy 

and spatial-temporal coverage (Hashimoto et al., 2015; Stocker et al., 2019).  

Reanalysis-based land surface model products are frequently used, including the Global Land Data Assimilation System 

(GLDAS, with 0.25° resolution) (Rodell et al., 2004), European Reanalysis (ERA)-interim (0.75°) (Balsamo et al., 2015) and 830 

its successors ERA5 (0.25°) and ERA5-Land (0.1°) (Hoffmann et al., 2019)). These products can often predict temporal 

variations well due to the incorporation of the time variance of environmental factors, e.g., precipitation. In addition, the 

modeling approach can also provide information on the soil moisture in soil layers deeper than the surface layer (< 5 cm). The 

uncertainties arise from meteorological forcing data, model parameters, as well as inadequacies in model physics (Cheng et 

al., 2017). Moreover, the anthropogenic impacts from irrigation and land cover changes are rarely considered (Kumar et al., 835 

2015; Qiu et al., 2016).  

With advances of remote sensing technology, microwave remote sensing became an alternative to soil moisture monitoring. 

Currently, global-scale soil moisture can be acquired from either passive sensors (e.g., SMMR, SSM/I, TMI, WindSAT, 

AMSR-E, AMSR2, SMOS, SMAP, see Table 1 for the full names) or active sensors (e.g., ERS and ASCAT), with that within 

the top 5 cm of soil being detectable (Feng et al., 2017; Jiao et al., 2016; Piles et al., 2018). The data quality and spatial 840 

coverage are improved step by step (Karthikeyan et al., 2017b). However, valid temporal spans of all these sensors are limited, 

and the data quality and spatial coverage were considered to be unsatisfactory until the launch of AMSR-E in June 2002 

(Karthikeyan et al., 2017b; Kawanishi et al., 2003). Currently, ASCAT sensors have produced the longest continuous record 

of global surface soil moisture of microwave remote sensing (Bartalis et al., 2007), with the temporal span from 2007 until 

present. Satellite-based soil moisture retrievals may also suffer from various disturbances, such as lower quality over dense 845 

删除了: as well as linking

删除了: as …ecause it is probably the best indicator of 

ecological droughts…
...

删除了: However, due to the large uncertainty in global-scale 

soil moisture data,(Sadeghi et al., 2020)(Cheng et al., 2017) 900 

the applicability of these data in global ecosystem models is 

currently limited

删除了: the most …requently used, mainly ...

删除了: -

删除了: Although t…hese products can often predict 905 

temporal variations well due to the incorporation of the time 

variance of environmental factors, e.g., high-

quality …recipitation data,…
...

移动了(插入) [1]

删除了: Apart from surface soil moisture that can be 

observed by satellites, …he modeling method …pproach also910 
...

删除了: the bias and root mean square error (RMSE) may be 

large (Bi et al., 2016; Gu et al., 2019)

删除了: significant impacts of human 

activities…nthropogenic impacts such as…rom irrigation and 

land cover changes on soil moisture 915 
...

上移了 [1]: Apart from surface soil moisture that can be 

删除了: provides information on the moisture in deeper soil 950 
...

删除了: the …dvances of remote sensing technology, soil 
...

删除了: surface s…oil moisture monitoring (current satellite 
...

删除了: but …owever, the …alid temporal spans of all these 
...

删除了: the …SCAT sensors have product is the…roduced ...

删除了: and …ith the temporal span of this product is …rom 945 
...

删除了: products…etrievals may also suffer from various 
...

删除了: high 



26 

 

vegetation cover, high open water fractions and complex topography (Draper et al., 2012; Fan et al., 2020; Ye et al., 2015). 

Difference in the algorithms dealing with the disturbances make different microwave soil moisture products hardly comparable 

with each other (Kim et al., 2015a; Mladenova et al., 2014). New sensors, such as SMOS (Kerr et al., 2001) and SMAP 

(Entekhabi et al., 2010), can produce significantly improved estimates because L-band microwaves (1.4 GHz (Kerr et al., 955 

2001)) penetrate the vegetation canopy better than shorter wavelengths (Burgin et al., 2017; Chen et al., 2018; Karthikeyan et 

al., 2017b; Kerr et al., 2016; Kim et al., 2018; Leroux et al., 2014a; Stillman and Zeng, 2018). However, SMOS data are noisy 

and lacks data in Eurasia due to high radio frequency interference (RFI) (Oliva et al., 2012). While the SMAP passive product 

has achieved an unbiased RMSE that is close to its target of 0.04 m3/m3, and has incorporated hardware RFI mitigation (Chen 

et al., 2018; Colliander et al., 2017), the data are only available since March 2015. 960 

Interest in fusing satellite-observed and modeled soil moisture has increased recently. The European Space Agency (ESA) 

published a long-term surface soil moisture dataset called the Climate Change Initiative (CCI), and the latest version (v4.5) 

covers the time period of 1978~2018. Two steps contribute to the combined CCI product. The first step involves rescaling the 

soil moisture of all microwave sensors against the reference data (GLDAS Noah product) by cumulative distribution function 

(CDF) matching, while the second step merges the rescaled products together by selecting the best product in each subperiod 965 

or averaging the products weighted by the estimated errors (Dorigo et al., 2017; Gruber et al., 2017; Gruber et al., 2019; Liu 

et al., 2012). CCI utilized almost all the available microwave soil moisture datasets to form a long time series, and generally 

agrees well with measured values at some sites, e.g.,, the Irish grassland sites and the grassland and agricultural fields in the 

United States, France, Spain, China and Australia (Albergel et al., 2013; An et al., 2016; Dorigo et al., 2017; Pratola et al., 

2015). Valid microwave observations were quite limited before June 2002 due to satellite sensor constraints (Dorigo et al., 970 

2017). Through CDF matching, the CCI soil moisture references the spatial patterns of all the satellite products relative to that 

of GLDAS (Gruber et al., 2019; Liu et al., 2012; Liu et al., 2011b). The temporal variation in each satellite product is retained, 

although the data averaging (Liu et al., 2012) cannot efficiently distinguish between the divergent interannual variations in 

various products (Feng et al., 2017). Soil Moisture Operational Product System (SMOPS) v3.0 is another global blended 

surface soil moisture dataset that was developed in the similar way (Yin et al., 2019). SMOPS v3.0 is a daily/6-hourly temporal 975 
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interval dataset with a complete global land coverage since March 2017. The overall performance, which is indicated by a 

RMSE of 0.035~0.066 m3/m3, is slightly lower than that of CCI (with RMSE of 0.031~0.06 m3/m3) (Wang et al., 2021). The 

Global Land Evaporation Amsterdam Model (GLEAM) surface soil moisture was produced by assimilating CCI data into a 

land surface model- GLEAM (Burgin et al., 2017; Martens et al., 2017; Miralles et al., 2011) through an optimized Newtonian 1015 

Nudging approach (Martens et al., 2016). The general performance of the GLEAM soil moisture product is satisfactory (Beck 

et al., 2020). In the current version, the CCI soil moisture anomalies (the deviations to the seasonal climatology, which indicate 

whether the soil moisture at a time point is more humid or drier than the multiyear average) are assimilated instead of the 

original CCI time series (Martens et al., 2017). Therefore, satellite observations play a much smaller role than modelling in 

forming the GLEAM product. For further improvements in the efficiency of soil moisture assimilation, a high-quality long-1020 

term surface soil moisture dataset basically derived from microwave remote sensing is highly needed.  

In addition to the CDF matching algorithm, at least four methods have been proposed that target the use of the information 

acquired by one sensor to produce soil moisture data that are compatible with the data retrieved from another. Based on 

physical-based equations (Wigneron et al., 2004), the regression between SMOS soil moisture and dual-polarized brightness 

temperature (Tb) data from AMSR-E is applied to match the AMSR-E soil moisture time series to SMOS (R-square =0.36) 1025 

(Al-Yaari et al., 2016). An example of the second method uses the Land Parameter Retrieval Model (LPRM) (Owe et al., 2008) 

to retrieve soil moisture from SMOS and then match the ‘SMOS-LPRM’ data with the AMSR-E-LPRM product by calibrating 

the LPRM parameters and then applying a linear regression (Van der Schalie et al., 2017). Thirdly, Copulas functions allow 

to model the structure of the dependence between two different Tb or soil moisture datasets and thus could perform better for 

the extreme values, thereby reducing the RMSE (Gao et al., 2007; Leroux et al., 2014b; Lorenz et al., 2018; Verhoest et al., 1030 

2015). To better characterize the nonlinear relationship between two datasets (Rodriguez-Fernandez et al., 2015), researchers 

built a neural network that links SMOS soil moisture to the Tb at different polarizations and frequencies of AMSR-E to 

produce a calibrated soil moisture data product that covers 9 years (2003~2011) (Rodríguez-Fernández et al., 2016). This 

approach proves to be efficient according to the connection between precipitation and the soil moisture changes, as evaluated 

based on a data assimilation technique and triple collocation analysis result (Van der Schalie et al., 2018).  1035 
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A global long-term observational-based soil moisture product was recently developed by building a neural network between 

the SMOS product and the Tb data from AMSR-E (2003~September 2011) and AMSR2 (July 2012~2015) (Yao et al., 2017). 

Environmental factors, including the land surface temperature (LST) derived from the Tb at 36.5 GHz (Holmes et al., 2009) 

and the microwave vegetation index (MVI, an indicator of vegetation cover), were also incorporated as ancillary inputs. The 1145 

training R-square value (R2) of this product was only 0.45 (or correlation coefficient, r, equals 0.67), and the validation against 

in situ measurements showed a temporal r of 0.52 and temporal RMSE of 0.084. Soil moisture data are partially missing due 

to the gap between the temporal spans of AMSR-E and AMSR2 and the lack of SMOS data in Asia. As SMAP observations 

have become increasingly available, SMAP soil moisture data have been chosen as the training target, thereby improving the 

training R2 to 0.55, while the overall r and RMSE against measurements are 0.44 and 0.113 (Yao et al., 2019). Another study 1150 

rebuilt a soil moisture time series over the Tibetan Plateau by using SMAP data as the reference for a random forest (Qu et al., 

2019). For the environmental factors, while vegetation cover is not considered, elevation, IGBP land use cover type, grid 

location and the day of a year (DOY) were chosen as ancillary inputs. The training R2 in this region reached 0.9 with a high 

temporal accuracy (temporal r=0.7; RMSE=0.07 in the unfrozen season). However, these data are regional (for the Tibetan 

Plateau only), and have a temporal gap between AMSR-E and AMSR2 data (October 2011~June 2012). 1155 

Therefore, although previous studies have focused on developing long-term satellite-based surface soil moisture products 

using machine learning, major concerns remain to be addressed. 1) Training designed for soil moisture estimation at the global 

scale should be more complex than that for only a specific region to ensure a satisfactory training efficiency; 2) microwave 

observations are often limited to three sensors, leading to temporal and spatial gaps at the global scale and the limited training 

efficiency; 3) the environmental factors that should be incorporated as ancillary inputs have not been clarified. In this study, 1160 

11 high-quality microwave soil moisture products starting from 2003 are incorporated into iterative 5-round neural networks 

to produce a spatially and temporally continuous dataset for 2003~2018, and as many sources of microwave observational 

data as possible are used as predictors in each neural network. The quality impact factors of microwave soil moisture retrievals 

are also determined and then incorporated as ancillary inputs to improve the training efficiency. Moreover, we designed 

localized subnetworks instead of one global-scale neural network to account for the regional differences in training rules. 1165 
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2 Data and Methods 

2.1 Data for the production of global long-term surface soil moisture data 

2.1.1 Satellite-based surface soil moisture data products 

SMAP currently has the highest quality of all remote sensing-based soil moisture products (Al-Yaari et al., 2019) and is thus 1260 

chosen as the primary training target. The SMAP Enhanced L3 Radiometer Global Daily 9 km EASE-Grid Soil Moisture 

V002 (SPL3SMP_E_002, hereinafter SMAP_E for short), which was developed by improving the spatial interpolation of the 

original 36 km resolution SMAP soil moisture data (Chan et al., 2018), was adopted in this study. SMAP_E was reprojected 

from the EASE-Grid 2.0 projection with 9 km resolution to the WGS1984 geographic coordinate system with 0.1° resolution. 

The nominal penetration depth of SMAP_E is ~5 cm. 1265 

Previous studies often used Tb observations at various bands as network inputs (Rodríguez-Fernández et al., 2016). However, 

in this study, the well-acknowledged surface soil moisture products retrieved through mature algorithms (see Figure 1) are 

directly applied instead of Tb because 1) the primary goal of this study is to calibrate and then fuse the existing popular 

microwave soil moisture products and 2) the Tb signals at multiple bands contain too much information that is not related to 

soil moisture, which may weaken the training efficiency and lead to overfitting. Although the drawback is that the final soil 1270 

moisture products may inherit the uncertainties associated with each retrieval method, this problem can be generally solved 

by including quality impact factors (see section 2.1.2). The first satellite soil moisture product that is used as a predictor is the 

ASCAT soil water index (ASCAT-SWI) product, which was developed by the European Meteorological Satellite Organization 

(EUMETSAT) and provided by the ESA-Copernicus Land Monitoring Service (Albergel et al., 2008; Wagner et al., 1999). 

The saturation degree in the top soil layer (SWI_001) was converted to volumetric soil moisture by multiplication with soil 1275 

porosity data included in the SMAP L4 Global Surface and Root Zone Soil Moisture Land Model Constants V004 dataset 

(hereinafter, ‘SMAP Constant’; note that porosity data were not provided in the ASCAT-SWI). Second, AMSR2-JAXA is the 

AMSR2 soil moisture retrieved by the Japan Aerospace Exploration Agency (JAXA) using Tb at the X-band (10.65 GHz) 

(Fujii et al., 2009), and version 3 data on the Global Portal System (G-Portal) were used. Third, AMSR2-LPRM-X stands for 

the AMSR2 soil moisture produced by applying the LPRM algorithm at the X-band (Parinussa et al., 2014) (X-band retrievals 1280 
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may not perform well in high-vegetated areas, but C-band data such as AMSR2-LPRM-C or AMSR-E-LPRM-C were not 

applied due to the high RFI, especially in the United States, Japan, and the Middle East (Njoku et al., 2005)), and is obtained 

from NASA’s Earthdata Search web. The fourth predictor, SMOS-IC (SMOS INRA-CESBIO), is a new SMOS soil moisture 

product created by INRA (Institut National de la Recherche Agronomique) and CESBIO (Centre d’Etudes Spatiales de la 1290 

BIOsphère) with the main goal of being as independent as possible from the auxiliary data, including the simulated soil 

moisture (Fernandez-Moran et al., 2017a; Fernandez-Moran et al., 2017b; Wigneron et al., 2007). The accuracy of SMOS-IC 

has been proven to be higher than that of other SMOS products (Al-Yaari et al., 2019; Ma et al., 2019), and the data version 

105 offered by Centre Aval de Traitement des Données SMOS (CATDS) is adopted. TMI-LPRM-X is the X-band LPRM 

product of TMI and was created by the NASA Goddard Space Flight Center (GSFC), which is used as the 5th predictor. 1295 

Fengyun 3B is a Chinese meteorological satellite with a Microwave Radiation Imager (MWRI) onboard (Yang et al., 2011; 

Yang et al., 2012). The National Satellite Meteorological Center product is retrieved using the Tb at 10.7 GHz, and it is  

denoted by ‘FY-3B-NSMC’ (the 6th predictor product). WindSat is onboard the Coriolis satellite (Gaiser et al., 2004), and the 

soil moisture retrieved by LPRM at the X-band (Parinussa et al., 2012) is provided by NASA (the 7th predictor). Three AMSR-

E products are used, including the NASA product (AE_Land3) created by the National Snow and Ice Data Center (AMSR-E-1300 

NSIDC) (Njoku et al., 2003), the JAXA product (AMSR-E-JAXA) (Fujii et al., 2009; Koike et al., 2004) obtained from G-

Portal and the LPRM product (AMSR-E-LPRM) available at the NASA Earthdata Search. All these data are reprojected to 

the WGS-1984 reference coordinate system and resampled to 0.1°. 

To reduce noise and fill the gaps between sensor observation tracks (at least 3 days are required for a microwave sensor to 

cover the whole globe), for every soil moisture product, both the daytime and nighttime observations within each 10-day 1305 

period are combined by data averaging (the relative superiority of daytime and nighttime retrievals is not considered). For 

example, for SMAP, 11% of the global land surface has data for only 5 days or less within a 10-day period. Therefore, the 

temporal resolution of the dataset developed in this study is approximately 10 days, meaning that 3 data records are obtained 

within a month for days 1~10, 11~20 and from 21 to the last day of that month. This format is exactly the same as that of the 

ASCAT-SWI and many other products developed by the Copernicus Land Monitoring Service (https://land.copernicus.eu). 1310 
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2.1.2 Quality impact factors of soil moisture retrievals 

Environmental factors, including elevation, LST and vegetation cover (indicated by the Normalized Difference Vegetation 

Index or MVI, etc.), were used as ancillary neural network inputs to improve the soil moisture simulation (Lu et al., 2015; Qu 

et al., 2019; Yao et al., 2017). According to these studies, these factors alone may not predict surface soil moisture well without 1325 

the incorporation of any microwave remote sensing data because although they are somewhat related to soil moisture (e.g. 

soil moisture is generally limited in areas with low vegetation cover but high in forests (McColl et al., 2017)), the relationships 

are rather uncertain (e.g., at smaller scales, the leaf area index (LAI) may have a negative influence on soil moisture due to 

the variation in evapotranspiration (Naithani et al., 2013), or may not have a clear impact (Zhao et al., 2010); also, soil moisture 

can be either high or low in summers when vegetation peaks (Baldocchi et al., 2006; Méndez-Barroso et al., 2009)). However, 1330 

these factors are quite essential due to their direct impacts on microwave-based soil moisture retrieval through the radiative 

transfer model and other models (Fan et al., 2020; Karthikeyan et al., 2017a); thus, they are retrieval quality impact factors. 

Detailed explanations are as follows. 1) The bias of soil moisture estimates derived from a certain sensor or a specific algorithm 

can be correlated with the degree of disturbances from various environmental factors. For example, in vegetated areas, LST 

is overestimated by LPRM (Ma et al., 2019), whereas soil moisture is underestimated by JAXA (Kim et al., 2015a), and the 1335 

magnitudes of the biases are often determined by vegetation amount or vegetation optical depth (VOD). Therefore, the 

environmental factors are essential for a better calibration of various products, especially when soil moisture, which contains 

errors associated with the retrieval method, is directly applied instead of the Tb. 2) The relative performances of different 

products is also controlled by environmental factors; for example, the ASCAT product is preferable to AMSR-E-LPRM in 

vegetated areas (Dorigo et al., 2010), while LST influences the relative superiority of the LPRM and JAXA algorithms (Kim 1340 

et al., 2015a). Therefore, for improved data fusion, the weights assigned to different soil moisture (or Tb) predictor data 

available at the same time should be determined by referring to these quality impact factors (Kim et al., 2015b). 

In this study, 9 quality impact factors are incorporated: LAI, water fraction, LST, land use cover, tree cover fraction, non-tree 

vegetation fraction, topographic complexity, soil sand fraction and clay fraction (see Figure 1). The reasons are as follows.  

Based on the two criteria above, the first environmental factor to be included is the ‘vegetation factor’ (i.e., vegetation water 1345 
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content, VWC). Plants can absorb or scatter radiation from soil and emit radiation, thereby reducing the sensitivities of both 

radiometers and radars to soil moisture (Du et al., 2000; Owe et al., 2001). However, L-band microwaves can penetrate the 

vegetation layer better due to their longer wavelengths (Konings et al., 2017; Piles et al., 2018). On the other hand, although 

vegetation effects can be somewhat corrected (Jackson and Schmugge, 1991), different methods have different efficiencies. 

Radiative transfer models such as LPRM may have difficulty describing the radiation attenuation by dense canopy due to the 1370 

neglect of multiple scattering (Mo et al., 1982; Owe et al., 2008), whereas the TU-Wien change detection algorithm applied 

to ASCAT utilizes the quadratic polynomial dependence of backscatter on the incidence angle to better characterize the 

vegetation effect on backscatter and then remove it by identifying the reference angles (Hahn et al., 2017; Vreugdenhil et al., 

2016). Microwave vegetation indexes may contain large uncertainty and have coarse resolutions (Liu et al., 2011a; Shi et al., 

2008). The NDVI becomes saturated at high vegetation cover (Huete et al., 2002). Because the LAI stands for the total leaf 1375 

area per unit land, which is closely related to the VWC assuming a relatively stable leaf equivalent water thickness (Yilmaz 

et al., 2008), LAI is a suitable surrogate. Copernicus global 1 km resolution LAI (called GEOV2-LAI, which consists of 

SPOT-VGT and PROBA-V LAI) data are adopted here due to the high accuracy and full coverage (Baret et al., 2013; Camacho 

et al., 2013; Verger et al., 2014). Because the sensor conversion from SPOT-VGT to PROBA-V in 2014 led to LAI data 

discontinuity in specific areas (Cammalleri et al., 2019), which may reduce neural network training and simulation efficiency, 1380 

the Global LAnd Surface Satellite (GLASS) LAI product (Xiao et al., 2014; Xiao et al., 2016) from 2007~2017 is also used 

(Figure 1). The LAIs are averaged on a monthly scale and aggregated to 0.1° resolution. The second is the ‘water fraction 

factor’ (i.e., the fraction of water area in each pixel). Waters in land pixels dramatically decrease the Tb, thereby leading to 

overestimated soil moisture. Because different methods are used to detect and correct small areas of water, either open water, 

wetlands or partly inundated wetlands and croplands (Entekhabi et al., 2010; Kerr et al., 2001; Mladenova et al., 2014; Njoku 1385 

et al., 2003), microwave soil moisture data calibration and weight assignment based on the water fraction within land pixels 

make sense (Ye et al., 2015). In addition, the water fraction is a direct indicator of surface soil moisture. In this study, the daily 

water area fraction derived from the Surface WAter Microwave Product Series (SWAMPS) v3.2 dataset (Schroeder et al., 

2015) is applied. The third factor is the ‘heat factor’ (i.e., LST). Soil moisture retrievals from passive microwave sensors are 

删除了: First-order r1390 

删除了: (Crow et al., 2010)

删除了: but 

删除了: can reduce vegetation impacts due to the implicit 

account of high-order scattering effects

删除了:  (Bartalis et al., 2007)1395 

删除了: The 

删除了: GLASS (

删除了: overestimation 

删除了: of 

删除了:  there1400 



33 

 

based on the correlation between the soil dielectric constant, which is influenced by soil moisture, and the emissivity estimated 

as the ratio of Tb to soil physical temperature (Ts) (Karthikeyan et al., 2017a). Ts is approximate to the LST and can be derived 

from the Tb at 36.5 GHz (Holmes et al., 2009; Parinussa et al., 2011) or from reanalysis datasets including ECMWF, MERRA 

and NCEP, or set as a constant of 293 K (Koike, 2013). Active microwave products are independent of LST (Ulaby et al., 

1978). Because different LST estimates are used in the retrievals of different soil moisture products, while the bias of each 1405 

LST estimate compared to the actual LST is influenced by the actual LST, we assume that the actual LST can determine the 

accuracy of every LST estimate and finally the relative performances of various soil moisture products (Kim et al., 2015a). In 

this study, we averaged the MODIS monthly LST acquired from the ascending and descending passes of both TERRA and 

AQUA. The 4~6th factors are the ‘land cover factors’, which are added because the parameters essential for soil moisture 

retrieval (vegetation effect correction) are set based on land use types (Griend and Wigneron, 2004; Jackson and Schmugge, 1410 

1991; Jackson et al., 1982; Panciera et al., 2009). Additionally, landscape heterogeneity influences the retrieval accuracy 

(Lakhankar et al., 2009; Lei et al., 2018; Ma et al., 2019). Here, both the annual MODIS land use cover maps and the 

MEaSUREs vegetation continuous fields (i.e., the cover fractions of trees and non-tree vegetation (Hansen and Song, 2018)) 

are adopted. Apart from the above dynamic factors, three (7~9th) static factors are included: the ‘topographic factor’ (i.e., 

topographic complexity) and the ‘soil texture factors’ (two factors, sand fraction and clay fraction) (Neill et al., 2011). Both 1415 

factors can influence the relationship between soil moisture and emissivity or the dielectric constant (Dobson et al., 1985; 

Karthikeyan et al., 2017a; Njoku and Chan, 2006), but they are characterized and corrected differently, leading to different 

relative performances of various soil moisture products (Das and O'neill, 2010; Gao et al., 2006; Kim et al., 2015a). For 

topographic complexity, the static layer of the Copernicus ASCAT-SWI product (hereinafter the ASCAT Constant) is adopted 

while for soil texture, the SMAP Constant is used (topographic complexity data are not available from SMAP Constant while 1420 

soil texture is not provided by ASCAT Constant). The contribution analysis results show that because various microwave soil 

moisture retrievals have already been included, precipitation data are not an essential indicator of soil moisture and are not 

utilized as a physically based ‘quality impact factor’ either (see Text S1 for detailed explanations).  
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2.2 Methods for the production of global long-term surface soil moisture data 

Global long-term surface soil moisture data production includes three basic parts: 1) preprocessing: the production of high-1440 

quality neural network inputs, including the training target soil moisture, predictor soil moisture products and the quality 

impact factors (i.e., 9 environmental factors); 2) neural network operation: the training of localized neural networks (i.e., the 

rules for soil moisture prediction are separately trained in different 1°×1° zones) followed by surface soil moisture simulation 

based on the localized neural networks; and 3) postprocessing: the correction of potential errors or deficiencies in the soil 

moisture simulation outputs. 1445 

The temporal span of the primary training target SMAP does not overlap with that of TMI, FY-3B, WindSat or AMSR-E (see 

Figure 1), while most microwave soil moisture products are not available from the beginning year 2003 (e.g., AMSR2 data 

are only available since July 2012). Therefore, to fully utilize the 10 predictor surface soil moisture products retrieved from 7 

different microwave sensors and form a temporally continuous soil moisture dataset covering 2003~2018, several iterative 

rounds of simulations are performed. Here, ‘iterative’ means that the simulated soil moisture data in a round were also 1450 

converted to part of the training targets of the next round’s neural network (hereinafter the ‘secondary training targets’), thus 

extending the potential temporal span of the target soil moisture data. Accordingly, the postprocessing steps which are intended 

to transform the simulation outputs to reliable secondary training targets can be seen as preprocessing steps as well. The basic 

flow of this process is shown in Figure 2. 

2.2.1 Neural network design (1): localized neural networks 1455 

In this study, instead of a universal network, we devised localized neural networks. The data within each individual zone are 

used to train a zonal neural network (hereinafter a subnetwork), which is used for soil moisture simulation at that zone. By 

comparison, localized neural networks help improve the training efficiency; however, a smaller zonal size does not indicate a 

better simulation accuracy. We noticed that over arid regions, the surface soil moisture values retrieved by the LPRM algorithm 

(AMSR2/TMI/WindSat/AMSR-E-LPRM-X) can be obviously different on the two sides of each edge of 1°×1° sized squares, 1460 

which was probably attributed to the spatial distribution of key parameters (i.e., some parameters are at 1° resolution). This 
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finding suggests that subnetworks should be built at the 1°×1° scale. Therefore, we divided the global extent except the polar 1485 

areas (80°N~60°S) into 140×360 zones. Here, for a 0.1° pixel during a specific 10-day period, if all the input data (input soil 

moisture products and quality impact factors) have valid values, one valid data point is provided. Therefore, the maximal 

number of valid data points applied to train a subnetwork = 100 × the number of 10-day periods within the training period. 

The subnetworks with less than 100 valid data points (e.g., those in oceans) were dropped, leaving usually >15,000 zonal 

subnetworks included in an independent neural network. The training was performed in MATLAB 2016a-using the Neural 1490 

network fitting toolbox, and the number of nodes in the hidden layer (between the input and output layers (Stinchcombe and 

White, 1989)) of each subnetwork was 7. We chose the gradient descent backpropagation algorithm as the training function. 

2.2.2 Preprocessing and postprocessing steps 

After standardization of the original soil moisture data, to improve the neural network training efficiency, the potential salt 

and pepper noises are removed. For each map (a specific 10-day period), within each 1°×1° zone, the soil moisture values are 1495 

filtered to the level of three standard deviations relative to the mean in that zone (the principle is that 99.87% of the data 

appear within this range for a normal distribution (Howell et al., 1998). Also note that the filter applied spatially rather than 

temporally to detect and delete the extreme values, which are usually noise in mountain areas. Therefore, the extreme climatic 

events will not be mistakenly removed). This preprocessing step is thus called ‘3σ denoising’. 

After neural network operation, boundary fuzzification is first applied, and it is a step in both preprocessing and postprocessing. 1500 

Because the localized 1°×1° network is applied instead of the global network, the boundary between nearby zones may be too 

obvious over some areas. To blur the boundary, a simple algorithm is applied as shown in Figure S1. The soil moisture data 

with fuzzified boundaries are transformed into both the final product and the next round’s training target. To produce the final 

product, two postprocessing steps are essential: filling of missing values and data masking. Because ‘3σ denoising’ deleted 

suspicious soil moisture retrievals, the simulation outputs also contain few missing values, which can be simply filled by 1505 

sequentially searching and averaging nearby valid values (Chen et al., 2019). While the snow/ice mask of the ASCAT-SWI 

product can be transferred to the simulation output, the potential snow or ice cover before 2007 should be identified. For a 
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pixel in a specific ten-day period, if ice cover is reported by ASCAT-SWI in most years, it should also be covered by snow/ice 

unless the thaw state is observed in the MEaSUREs Global Record of Daily Landscape Freeze/Thaw Status V4 dataset. The 1515 

simulated soil moisture in the rainforests identified in the ‘ASCAT Constant’ is retained but not recommended due to the high 

uncertainty. On the other hand, to avoid error propagation with the training times by ensuring a high-quality training target for 

the next round’s simulation, we remove all suspicious values for every simulated result. This preprocessing step is performed 

by first obtaining the maximal and minimum values of SMAP_E soil moisture in each pixel. If the simulated value is out of 

the range of the SMAP data during 2015~2018, then the value is considered suspicious and not used as a training target. 1520 

Subsequently, ‘3σ denoising’ is performed again before the simulated soil moisture becomes secondary training target, which 

are referred to as SIM-1T, SIM-2T, and so on (‘SIM’ stands for the simulated soil moisture, the number after the hyphen 

indicates the round of simulation, and ‘T’ means it is applied as training target; the temporal spans of SIM-XT and SIM-X are 

the same, as shown in Figure 1). 

2.2.3 Neural network design (2)- five rounds of simulations 1525 

The 11 microwave soil moisture data products with different temporal spans are incorporated, and utilized as fully as possible 

through up to 5 rounds of neural network-based simulations, with at least four different soil moisture products retrieved from 

three different sensors applied as predictors in each round (see Figure 1). Although increasing the sources of soil moisture 

data inputs can improve the training efficiency, the spatial coverage of the simulation output is sacrificed because the 

overlapping area decreases as the number of soil moisture products increases. After all, most products have missing data in 1530 

specific regions (e.g., mountains, wetlands and urban settlements), and some sensors are even unable to produce data at the 

global scale (e.g., TMI is limited to [N40°, S40°]; SMOS have many missing values in Eurasia). To resolve this dilemma, we 

classified all 0.1° pixels according to the predictor soil moisture products that have a valid value over a 10-day period (for 

example, if there are four predictor soil moisture datasets in one round, there should be 4+6+4+1=15 combinations. Here, ‘1’ 

indicates the condition that all four products have a valid value in the 0.1° pixel, and there are ‘6’ conditions when only two 1535 

of the four predictors have valid value in the pixel). However, to avoid soil moisture simulation under snow or ice cover (see 
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section 2.2.2), not all combinations are considered. Then, an independent neural network corresponding to each selected 

combination is trained. For data simulations in a 0.1° pixel, the most preferable independent neural network is expected to be 

trained using all the available soil moisture data sources in that pixel (i.e., if valid values are provided by three soil moisture 1560 

products, then the preferable neural network is the one trained using those three predictors). However, in the 1° zone in which 

the 0.1° pixel is located, the subnetwork belonging to that preferable independent neural network may not exist due to limited 

valid data points (see section 2.2.1). Then, an alternative subnetwork driven by the combination of fewer soil moisture data 

inputs should be applied instead. Hence, we should determine the neural network collocation that is the best choice for every 

pixel. Apart from applicability, the relative priority order of different neural networks was obtained by comprehensively 1565 

considering the number and quality of input soil moisture products, the variety of sensors, the quantity of training samples 

indicated by the number of 10-day periods, and the relative quality of the training targets (the training target quality declines 

monotonically: SMAP>SIM-1T>SIM-2T>SIM-3T>SIM-4T). Occasionally, the two most likely priority orders are given and 

the simulation results of the corresponding two substeps are integrated later. Specifically, when the LAI data source changes, 

the division of a single round into two substeps is also essential. Based on these principles, five rounds of neural networks are 1570 

designed as follows, with 8 substeps containing a total of 67 independent neural networks. The training period for each neural 

network and the simulation period for each substep are shown in Figure 1 (below the timeline), and the details are as follows. 

For the first round’s neural network (labeled as NN1), the potential training period is 2015D10~2018 (‘D’ is the ordinal of the 

10-day period; therefore, ‘2015D10’ represents the period from April 1st to April 10th in 2015) because SMAP soil moisture 

data that cover only that period are applied as the training target, while ASCAT-SWI10 (abbreviated as ASCAT), SMOS-IC 1575 

(SMOS), AMSR2-JAXA and AMSR2-LPRM-X (AMSR2-LPRM) are the four soil moisture products used as predictors 

(details are in Tables S1~S2). Because all four predictors have data since 2012D19, the potential soil moisture simulation 

period is 2012D19~2018, which is further divided into two parts: 2014~2018 (substep1), for which the PROBA-V LAI data 

that begins in 2014 are applied; and 2012D19~2013 (substep2), for which GLASS LAI data are used (note: because GLASS 

LAI covers from the beginning of our study period until 2017, the training period for substep 2 is 2015D10~2017). The 1580 

simulation results of the two substeps (SIM-1-1 and SIM-1-2) are combined as SIM-1, which is then transformed into a 

删除了: S

删除了: corresponding to each selected combination, an 

independent neural network

删除了: where it 1585 

删除了: accuracy 

删除了: Sometimes, the two most likely priority orders are 

given, with the simulation results of the corresponding two 

substeps integrated later

删除了: several 1590 

删除了: :

删除了: , so

删除了: during 

删除了: the 

删除了: one is 1595 

删除了: , whereas the other is

删除了: the period 

删除了: Please refer to Tables S1~S2 for details. 

删除了:  and 



38 

 

secondary training target, denoted as SIM-1T. In the second round of simulation, the training target can be either SMAP or 1600 

SIM-1T, while the soil moisture input data are ASCAT, SMOS, TMI-LPRM-X (TMI) and FY-3B-NSMC (FY). The simulation 

output SIM-2, covers the period of 2011D20~2012D18, which is constrained by the common period of the four predictors 

(Tables S3~S4). SIM-2 was also converted into the training target SIM-2T. In the third round of neural network operation, the 

simulation period is 2010D16~2011D19. SMAP, SIM-1T and SIM-2T are combined and used as the training targets (the 

training periods are within the range of 2011D20~2017D36), while the predictor soil moisture data are ASCAT, SMOS, TMI 1605 

and WindSat-LPRM-X (WINDSAT). There are two substeps in round 3 that are distinguished by whether the priority order 

of the neural networks is determined mainly based on the training sample quantity and the training target quality (SIM-3-1), 

or by first considering the number of predictor soil moisture products (SIM-3-2, Tables S5~S8). Because these two methods 

emphasize different aspects of neural network quality, in some pixels, SIM-3-1 will be advantageous, whereas in others, SIM-

3-2 could be better. Hence, an algorithm is devised to combine the advantages of both simulations (SIM-3), which is described 1610 

in Table S9. Next, the 4th round is for the simulations from 2007D01 to 2010D15. SIM-2T and SIM-3T are combined to be 

the training target, and ASCAT, WINDSAT, TMI, AMSR-E-JAXA, AMSR-E-LPRM-X (AMSR-E-LPRM) and AMSR-E-

NSIDC are all applied as predictors (LAI data now come from SPOT-VGT). Two substeps are also considered. In the first 

substep, neural networks are sorted by focusing on the number of soil moisture inputs and the sensors they are derived from, 

while the training sample size and training target quality are prioritized to create an alternative estimate (Tables S10~S13). 1615 

Afterwards, SIM-4 is obtained by reasonably integrating these two results. In the final round, the soil moisture simulation is 

extended to as early as 2003. SIM-2T, SIM-3T and SIM-4T together are the training targets, while the predictor soil moisture 

data entering the neural networks consist of WINDSAT, TMI, AMSR-E-JAXA, AMSR-E-LPRM and AMSR-E-NSIDC 

(Tables S14~S15).  

2.3 Methods for the validation of surface soil moisture products 1620 

For the evaluation of global-scale soil moisture data, we adopted the International Soil Moisture Network (ISMN) dataset 

(Dorigo et al., 2011; Dorigo et al., 2013). Because the training target SMAP represents the soil moisture within 0~5 cm, the 
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simulated soil moisture is intended for that surface soil layer as well. Accordingly, the measurements used for validation are 

limited to ≤ 5 cm in depth. Records outside of the RSSSM data period (2003~2018), such as those from Russian networks, 

are ignored as well. The quality flags of ISMN (Dorigo et al., 2013) are also checked to retain only the ‘good quality’ data. 1645 

After data screening and processing (e.g., the pixels with average annual maximal water area fractions greater than 5% are 

excluded, please see Text S2), more than 100,000 ~10-day-averaged soil moisture records obtained from 728 stations of 29 

networks are applied for validation of the soil moisture products. The detailed information of these stations and the periods of 

the data used are listed in Table S16, while the spatial distribution of these stations is shown in Figure 3. The major climate 

types of the sites are determined from the Köppen-Geiger climate classification map (see Table 2 for the description (Kottek 1650 

et al., 2006)). Next, we further aggregated the site-scale 10-day averaged soil moisture data to a 0.1° pixel-scale by averaging 

all the measurements made by different stations or different sensors within the pixel (Gruber et al., 2020). Specifically, if soil 

moisture is not simulated due to snow or ice cover, then the corresponding measurement is useless. This process resulted in a 

final collection of ~40,000 pixel-scale 10-day period soil moisture records within the validation dataset. 

The soil moisture datasets to be evaluated include the RSSSM product in this study (Remote Sensing Surface Soil Moisture, 1655 

covering 2003~2018); SMAP_E (the primary training target, covering April 2015~2018); the longest record of satellite-based 

soil moisture: ASCAT-SWI (converted to volumetric fraction; data period is 2007~2018); the reanalysis-based soil moisture: 

GLDAS Noah V2.1 and ERA5-Land (data were resampled, 10-day averaged and then evaluated during 2003~2018); as well 

as the soil moisture datasets developed by combining both satellite observations and model simulations: CCI v4.5 and GLEAM 

v3.3 (for v3.3a, the radiation and air temperature forcing data come from ERA5, whereas for v3.3b, all meteorological data 1660 

are satellite-based, yet the data after September 2018 are not available). The overall performance of any soil moisture product 

is first evaluated using all of the validation datasets, with Pearson R-square (R2) and RMSE values (unit: m3 m-3) adopted as 

the main indicators. The next step is temporal pattern validation. For pixels with enough (>20) 10-day averaged in situ records, 

we compare the estimated soil moisture during all periods against the corresponding measurements, with the calculated 

Pearson correlation coefficient (r) and RMSE. Several supplementary indexes are also added, including bias, unbiased RMSE 1665 

(ubRMSE) and the correlation coefficient between the anomalies (anomalies r, abbreviated here as ‘A.R’; A.R can better 
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indicate the simulation accuracy of interannual variations; soil moisture anomalies are calculated by Eq. 1). Next, we compare 

the means and medians of the above evaluation indexes for different soil moisture products and test whether the differences 

are significant. Moreover, the relative performances of various products in different climatic zones are analyzed. Finally, we 

perform spatial pattern validation. In detail, for every 10-day period, we compare all the soil moisture measurements that are 1715 

upscaled to 0.1° during that period with the corresponding estimated values. The spatial pattern evaluation indexes include 

the correlation coefficient (r), RMSE, bias and ubRMSE values (Eq. 2). The relative superiority of all products during different 

10-day periods in a year and the changes in data coverage as well as data quality with time are also investigated. 

𝑆𝑆𝑀(𝑘)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =
∑ 𝑆𝑆𝑀(𝑦, 𝑘)𝑛𝑦

𝑦=1

𝑛𝑦
   (𝑛𝑦 ≥ 3) ;  𝑆𝑆𝑀 𝑖𝑠 𝑒𝑖𝑡ℎ𝑒𝑟 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑜𝑟 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑  

𝑆𝑆𝑀: 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑠𝑜𝑖𝑙 𝑚𝑜𝑖𝑠𝑡𝑢𝑟𝑒; 𝑘: 𝑡ℎ𝑒 𝑜𝑟𝑑𝑖𝑛𝑎𝑙 𝑜𝑓 10 𝑑𝑎𝑦 𝑝𝑒𝑟𝑖𝑜𝑑 𝑖𝑛 𝑎 𝑦𝑒𝑎𝑟;  𝑦: 𝑎 𝑦𝑒𝑎𝑟 𝑤𝑖𝑡ℎ 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑆𝑆𝑀 𝑖𝑛 𝑘𝑡ℎ 10 𝑑𝑎𝑦 𝑝𝑒𝑟𝑖𝑜𝑑;   𝑛𝑦: 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡ℎ𝑜𝑠𝑒 𝑦𝑒𝑎𝑟𝑠 1720 

𝑆𝑆𝑀𝑎𝑛𝑜𝑚(𝑦, 𝑘) = 𝑆𝑆𝑀(𝑦, 𝑘) − 𝑆𝑆𝑀(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅      

𝑆𝑆𝑀𝑎𝑛𝑜𝑚(𝑦, 𝑡): 𝑡ℎ𝑒 𝑎𝑛𝑜𝑚𝑎𝑙𝑖𝑒𝑠 𝑜𝑓 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑠𝑜𝑖𝑙 𝑚𝑜𝑖𝑠𝑡𝑢𝑟𝑒 𝑑𝑢𝑟𝑖𝑛𝑔 𝑡ℎ𝑒  𝑡𝑡ℎ 10 𝑑𝑎𝑦 𝑝𝑒𝑟𝑖𝑜𝑑 𝑖𝑛 𝑦𝑒𝑎𝑟 𝑦   (Eq. 1) 

𝑆𝑆𝑀𝑒𝑠𝑡
̅̅ ̅̅ ̅̅ ̅̅ ̅ =

∑ 𝑆𝑆𝑀𝑒𝑠𝑡,𝑖
𝑛𝑔
𝑖=1

𝑛𝑔
 ;    𝑆𝑆𝑀 𝑎𝑐𝑡

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =
∑ 𝑆𝑆𝑀𝑎𝑐𝑡,𝑖

𝑛𝑔
𝑖=1

𝑛𝑔
 (𝑛𝑔 ≥ 20)    

𝑖: 𝑎 𝑔𝑟𝑖𝑑 𝑤𝑖𝑡ℎ 𝑢𝑝𝑠𝑐𝑎𝑙𝑒𝑑 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑠𝑜𝑖𝑙 𝑚𝑜𝑖𝑠𝑡𝑢𝑟𝑒 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠 𝑑𝑢𝑟𝑖𝑛𝑔 𝑎 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 10 𝑑𝑎𝑦 𝑝𝑒𝑟𝑖𝑜𝑑;  𝑛𝑔: 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡ℎ𝑜𝑠𝑒 𝑔𝑟𝑖𝑑𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑔𝑙𝑜𝑏𝑒 

𝑢𝑏𝑅𝑀𝑆𝐸𝑠𝑝𝑎𝑡𝑖𝑎𝑙 = √∑ [(𝑆𝑆𝑀𝑒𝑠𝑡,𝑖 − 𝑆𝑆𝑀𝑒𝑠𝑡
̅̅ ̅̅ ̅̅ ̅̅ ̅) − (𝑆𝑆𝑀𝑒𝑠𝑡,𝑖 − 𝑆𝑆𝑀𝑎𝑐𝑡

̅̅ ̅̅ ̅̅ ̅̅ ̅)]2𝑛𝑔
𝑖=1 𝑛𝑔⁄    (Eq. 2) 1725 

2.4 Methods for the intra-annual variation analysis of surface soil moisture 

Because the original resolution of SMAP soil moisture is ~0.4° while that of most predictor soil moisture products is 0.25°, 

the intra-annual variation analysis of RSSSM is performed at 0.5° resolution. We also exclude high-latitude areas (60°N~90°N) 

where the available data are limited due to frequent ice cover. Fourier functions can characterize intra-annual variation well 

(Brooks et al., 2012; Hermance et al., 2007). Therefore, for the remaining areas (60°S~60°N), based on a total of 36×16 (years) 1730 

=576 data points, we fit the intra-annual cycle of soil moisture using the Fourier function, with the period fixed to 1 year (36 

10-day periods). The number of terms is set to 1 unless the intra-annual cycle is obviously asymmetrical and can be much 

better characterized by a two-term Fourier function. Subsequently, the highest peak and lowest trough values of surface soil 
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moisture as well as the corresponding locations in time (the ordinal of 10 days) are exported. 1735 

The direct driving factor of the variation in surface soil moisture is precipitation, for which we adopted the GPM (Global 

Precipitation Measurement) IMERG (Integrated Multi-satellitE Retrievals for GPM) Precipitation V06 Final Run data 

(Huffman et al., 2019). Apart from a direct correlation analysis, we also explored the relationship between the intra-annual 

cycles of precipitation and surface soil moisture using Fourier fitting (the derived fitting function is dropped if the adjusted 

R2 is lower than 0.1), with the peak time difference in each 0.5° grid cell calculated (if both cycles have two peaks, the average 1740 

locations of the two peaks are calculated). Because RSSSM indicates the average soil moisture condition during every 10-day 

period, we evaluate the surface soil moisture decline after 20 consecutive days (i.e., two adjacent 10-day periods) without 

effective precipitation to explore the impact of dry periods on surface soil moisture. Effective precipitation is calculated by 

precipitation minus canopy interception, which is estimated by the modified Merriam canopy interception model (Kozak et 

al., 2010; Merriam, 1960). If the total effective precipitation within two consecutive 10-day periods (20 days) is less than a 1745 

given threshold (initially set to 10 mm), we consider that the soil moisture change in the latter period compared to the previous 

period is mostly due to surface evaporation and percolation (capillary rise is negligible (McColl et al., 2017)); thus, it should 

be negative. Hence, for a 0.5° grid cell, if the number of negative values does not meet two times the number of positive 

values, the precipitation threshold is reduced by 1 mm until that condition is satisfied. This loop is terminated when there are 

less than 36 available data points in dry periods (the maximal number of data points is 576), and then the grid cell is excluded 1750 

from the analysis. In desert areas, the random noise of the surface soil moisture product can hide the signal of moisture changes, 

while in wet areas (e.g., rainforests), 20 days without effective precipitation seldom occurs, thus leading to no results over 

most areas. In the remaining areas, the intra-annual variation in the surface soil moisture loss during dry days can be fitted by 

the Fourier function as well, which is then analyzed using the above methods. 

3 Results 1755 

3.1 Neural network training efficiency: a comparison between RSSSM and SMAP 

To examine the training and simulation efficiency of the neural network, we compare the neural network simulated surface 
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soil moisture (RSSSM) with the training target SMAP (note: these two datasets are not completely independent because SMAP 

data are used as the training target while RSSSM data are the simulation results) during April 2015~2018. The R2 reaches up 

to 0.95, while the RMSE is 0.031 m3/m3 (Figure 4a). If only the pixels with measured data are considered, the consistency 1765 

between RSSSM and SMAP becomes even stronger, with an R2 of 0.97 and an RMSE of 0.016 (Figure 4b). When validated 

against site measurements, the R2 and RMSE values are 0.46 and 0.083, respectively, for both RSSSM and SMAP (Figure 4c 

and 4d). All these findings justify the high training and prediction efficiency of the neural network set designed in this study. 

According to Table 3, RSSSM is just slightly lower than SMAP in terms of temporal accuracy (the differences in the five 

indicators, r, RMSE, bias, ubRMSE and A.R, are all nonsignificant). Figure 5 indicates generally the same level of temporal 1770 

accuracy for RSSSM and SMAP under all climates. RSSSM cannot adequately characterize the temporal variation in soil 

moisture in the ‘Dfc’ (snow climate, fully humid, see Table 2) region because the training target, SMAP, does not have a high 

temporal accuracy in this area, probably due to frequent freezing and melting processes. 

Next, we compare the spatial accuracy of RSSSM and SMAP. The spatial correlation of RSSSM is somewhat reduced 

compared to the training target, while the RMSE is slightly increased (Table 4), indicating a subtle loss of detailed spatial 1775 

information through neural network operation. Because ISMN stations are mostly located in the middle to high latitudes of 

the Northern Hemisphere, Figure 6 shows that: 1) the accuracy of RSSSM is highest in summers (growing seasons) and lowest 

in winters, which is inherited from its origin (SMAP) probably due to the impact of freezing on soil moisture retrieval; and 2) 

RSSSM has a similar spatial accuracy as SMAP in most periods except for May to June and November to December. 

3.2 Accuracy comparison between RSSSM and popular global long-term soil moisture products 1780 

3.2.1 Data quality comparison between RSSSM and the satellite-derived product 

The satellite-derived global surface soil moisture product ASCAT-SWI now covers 12 years, 2007~2018. During that period, 

the overall R2 and RMSE for RSSSM are 0.44 and 0.086, respectively (Figure 7), which appear to be much better than those 

for ASCAT-SWI (R2=0.33, RMSE=0.100). If the data period of SMAP (2015D10~2018) is excluded, the overall R2 and RMSE 

for RSSSM are 0.43 and 0.087, respectively, which are still better than those for ASCAT-SWI (R2=0.33, RMSE=0.1). However, 1785 
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RSSSM overestimates soil moisture when low moisture occurs, which is a problem inherited from the SMAP product (Figure 

4), and is a bit nonlinearly correlated with the measured values (Figure 7a). 

According to the temporal validation results (Table 3), the evaluation indexes including r, RMSE, bias and ubRMSE, are all 

significantly (p<0.05) better for RSSSM than ASCAT-SWI (anomalies r for RSSSM is also higher, but not significant). The 1800 

temporal accuracy of RSSSM appears to be obviously higher in all climatic zones except for polar areas (Dsb, Dwc and ET). 

Specifically, in arid areas (BWh and BWk), the temporal correlation coefficients for ASCAT-SWI are much lower and even 

negative (Figure 8). This problem is known and might be related to the different scattering mechanisms in dry soils invalidating 

the assumptions of change detection method (Al-Yaari et al., 2014). 

The spatial accuracy of RSSSM is found significantly higher than that of ASCAT-SWI when any evaluation index is considered 1805 

(Table 4). Moreover, the results show that RSSSM is generally superior to ASCAT-SWI throughout the year, especially during 

the growing seasons (Figure 9). 

3.2.2 Data quality comparison between RSSSM and land surface model products 

First, the overall accuracies of RSSSM and GLDAS Noah V2.1 surface soil moisture data from 2003 to 2018 are compared. 

While RSSSM is nonlinearly correlated with measured soil moisture, the relationship between GLDAS soil moisture and the 1810 

measurements appears to be slightly more nonlinear, resulting in a smaller R2 of 0.39 and higher RMSE of 0.097 for GLDAS 

product compared to RSSSM (R2: 0.42; RMSE: 0.087, see Figure 10). When excluding the SMAP (training target) data period, 

the R2 and RMSE for RSSSM are 0.41 and 0.089, respectively, which are also superior to those for GLDAS (R2: 0.37; RMSE: 

0.099). 

The higher temporal accuracy of RSSSM than GLDAS can be justified by comparing the indicators, including r, RMSE and 1815 

ubRMSE (Table 3). The advantage of RSSSM over GLDAS could be identified in almost all climatic regions, especially the 

cold areas such as BWk, Dfa, Dfc, Dwc and ET (Figure 11), perhaps because the soil thawing and freezing processes are not 

simulated well. The spatial accuracy of RSSSM, indicated by r, RMSE, bias and ubRMSE, is found to be significantly higher 

than GLDAS as well (Table 4). The spatial correlation of RSSSM is somewhat higher than that of GLDAS during March to 
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May and September to November, and the spatial RMSE is lower all year round except in January and February (Figure 12). 

ERA5-Land is a newly published reanalysis-based model product with 0.1° resolution. The overall quality validation (Figure 

S2) reveals a frequent overestimation of soil moisture by ERA5-Land as well as a nonlinear relationship between the predicted 

and measured values. Accordingly, although the R2 for ERA5-Land is 0.41, which is only slightly lower than that of RSSSM 

(0.42), the RMSE for ERA5-Land is 0.123, much higher than that for RSSSM (0.087) during their common period. Without 1835 

considering the SMAP period, the conditions are the same (the R2 for RSSSM and ERA5-Land are 0.41 and 0.38; the RMSE 

values for these two products are 0.089 and 0.125, respectively). The temporal correlation indicated by r and A.R is somewhat 

higher for ERA5-Land in general (Table 3), but in most cold areas (Dfa, Dwc and ET), the opposite condition occurs (Figure 

S3a, S3d). The temporal ubRMSE values for RSSSM and ERA5-Land do not differ significantly, but RSSSM usually performs 

better in relatively arid places (Figure S3c). While the relative temporal accuracies of RSSSM and ERA5-Land are unclear, 1840 

the spatial pattern of RSSSM is more accurate than that of ERA5-Land considering the significantly better spatial correlation, 

RMSE, bias and ubRMSE (Table 4). The considerable advantage of RSSSM over ERA5-Land exists throughout the year, 

especially during the growing seasons from March to November (Figure S4). 

3.2.3 Data quality comparison between RSSSM and the soil moisture products derived from both satellite data and 

model simulations 1845 

CCI is a typical surface soil moisture dataset developed by combining satellite observations and model simulations. However, 

validation against measurements indicates that the CCI product is not of very good quality because the overall R2 is only 0.31 

with an RMSE value of up to 0.095 (Figure S5, when the SMAP data period is excluded, the R2 and RMSE for CCI are 0.28 

and 0.098, compared to 0.41 and 0.089 for RSSSM). The temporal pattern of RSSSM, indicated by r and RMSE, is found to 

be significantly better than that of CCI (Table 3), and under all climate conditions (Figure S6). Our results indicate that RSSSM 1850 

also shows a consistently higher spatial accuracy than the CCI, especially during the growing seasons (Table 4 and Figure S7). 

Next, we focus on the interannual change in data quality. According to Figure 13a~c, while the correlation coefficient for 

RSSSM does not vary significantly among different years, the RMSE and ubRMSE values in earlier periods are somewhat 

higher compared to those after 2012. Although the data quality of RSSSM can hardly be maintained as well, the degradation 
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degree is much slighter than that of CCI. The comparison of the spatial coverages of the 10-day scale RSSSM and CCI data 

(rainforests are excluded) shows that RSSSM covers all land surfaces except for permafrost while the interannual variation in 

coverage is also negligible throughout the entire period (the intra-annual cycles of data coverages result from the changes in 

frozen areas), which are preferable to the CCI, whose data coverage before 2007 is limited (Figure 13d). 

GLEAM products also contain satellite information due to the assimilation of CCI data, although model simulations play a 1870 

much more important role. By validation, the overall R2 and RMSE values for the GLEAM v3.3a product (2003~2018) are 

0.38 and 0.142, respectively, whereas those for the v3.3b product are 0.36 and 0.13, respectively. Both estimates are 

nonlinearly correlated with and generally higher than the measured values (Figure S8). Therefore, with an R2 of 0.42 and  

RMSE of 0.087, RSSSM is found to be superior to GLEAM v3.3a/b in general (if the SMAP data period is excluded, RSSSM’s 

R2 and RMSE values are 0.41 and 0.089, respectively, which are still better than both GLEAM v3.3a (R2: 0.35; RMSE: 0.141) 1875 

and GLEAM v3.3a (R2: 0.34; RMSE: 0.128)). The temporal and spatial accuracies of GLEAM products and RSSSM are 

compared in Tables 3~4. The advantage of GLEAM is its ability to characterize the temporal variations in soil moisture, with 

higher temporal correlation achieved in most climatic regions (Figure S9a and S9d). However, the main potential disadvantage 

is the obvious overestimation, which leads to significantly higher RMSE values compared with RSSSM in all regions and all 

periods (Figure S9b and Figure S10b). Moreover, the spatial pattern of GLEAM products is less convincing than that of 1880 

RSSSM, considering the lower spatial correlation coefficients, especially in spring (March to May) and autumn (September 

to November) (Figure S10a). Therefore, the potential advantages of RSSSM can exceed those of GLEAM. 

In conclusion, surface soil moisture developed mainly based on land surface models (GLEAM and ERA5-Land) has high 

temporal accuracy, but relatively unreliable absolute values and spatial patterns; however, RSSSM shows good performances 

in all aspects. Generally, this study indicates that the expected order of data applicability among various global long-term 1885 

surface soil moisture products is RSSSM (applicable to all studies)> GLEAM (suitable for temporal variation studies)> ERA5-

Land (applicable to temporal pattern studies)> GLDAS Noah V2.1 (somewhat applicable to all studies)> ASCAT-SWI> CCI. 

The training R2 of the previous neural networks designed for global surface soil moisture mapping is 0.45~0.55, while the 

temporal r and RMSE values against measurements are 0.52 and 0.084 (Yao et al., 2017), and the overall R2 and RMSE are 
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0.2 and 0.113 (Yao et al., 2019). In this study, by elaborating the neural network, the training R2 is elevated to 0.95, with 

improvements in the temporal r and RMSE (0.69 and 0.08) as well as the overall R2 and RMSE (0.42 and 0.087) values. In 1900 

addition, our 10-day period average product is both spatially and temporally continuous over 16 years, has a high spatial 

resolution, and covers all land except for frozen ground. Hence, our product could be more useful than previous machine 

learning products. 

3.3 Spatial and temporal patterns of the calculated surface soil moisture 

For the calculated global surface soil moisture, the spatial pattern averaged during 2003~2018 is shown in Figure 14a (the 1905 

maps for separate months are shown in Figure S11a). The above validation results show that except for RSSSM, GLDAS has 

the highest spatial accuracy, so the spatial pattern of GLDAS surface soil moisture is also shown below (Figure S11b). By 

comparison, the spatial patterns of RSSSM and GLDAS are similar, but some differences also exist (see the regions circled in 

red). Obviously, RSSSM has a higher spatial heterogeneity and probably more reflections on wetlands and irrigated fields 

(e.g., the Hetao Irrigation Area in China), whereas GLDAS appears patchy in arid areas. The latitudinal pattern comparison 1910 

in Figure S12a also implies that RSSSM contains more detailed spatial information. 

For the interannual variation, because the GLEAM v3.3a product is proven to have the best accuracy in characterizing the 

temporal anomalies of soil moisture and covers the whole world, this product is selected as the reference to justify our 

calculation. According to Figure S12b, both GLEAM and RSSSM support a significant rising trend in global mean surface 

soil moisture during 2003~2018, while the average rates are both approximately 0.03 m3 m-3 yr-1 (Figure S12b). The spatial 1915 

patterns of the interannual trends in RSSSM and GLEAM are shown in Figure 14c~d, and they are generally consistent. Soil 

moisture gains are found over the border between the USA and Canada, as well as over Paraguay, Kazakhstan, Northeastern 

and Southern China (the regions circled in blue), while soil moisture declines are observed in North Asia and eastern Brazil 

(the regions with red circles). The main discrepancy between the soil moisture trends predicted by the two products lies in 

Central Africa, the Arabian Peninsula and northwestern Canada. 1920 

Because the validation against measurements proves that the intra-annual soil moisture variation in the ‘Dfc’ climate region 
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cannot be captured by SMAP or RSSSM, the acquired intra-annual analysis results in this region are not considered. Over 

low-latitude areas (30°S~30°N), surface soil moisture peaks in summers (seasons are opposite in the Northern and Southern 

hemispheres); however, in midlatitude areas (30°S~60°S; 30°N~60°N) except for eastern Asia (i.e., east of the Yenisei River), 

the soil moisture is high in winters (nongrowing seasons) and low in summers (Figure 15a and Figure S13a). The intra-annual 

range of surface soil moisture is largest in the tropical monsoon climate regions, including the African savannas, the Orinoco 1935 

Plain, the Ganges plain and the plain areas in the Indochina Peninsula, as well as some seasonal frozen areas, whereas it is 

lowest in arid places (Figure 15b; Figure S13b~c). Precipitation is a direct driver of surface soil moisture changes (Figure 

S14a~b), and the intra-annual cycle of soil moisture often strictly follows that of precipitation as long as it exists (Figure 15c 

and Figure S14c). Considering that at low latitudes, precipitation is often highest in summer, whereas in the westerlies, rainfall 

is even among different seasons (eastern Asia is an exception probably due to the monsoon climate and topographic conditions) 1940 

yet much higher evapotranspiration occurs in summer, the global intra-annual patterns of soil moisture can be explained. The 

peak time difference between surface soil moisture and precipitation is approximately one 10-day period, or six days on 

average at global scale (Figure 15d), which is expected to be related to the ‘time lag’ effect. On dry days, the fastest surface 

soil moisture decline is expected in summers when evapotranspiration is high. However, this study reveals that at midlatitudes, 

the opposite condition occurs: the surface water loss without rain is lowest in summer (Figure 15e and Figure S15a). Further 1945 

analysis identified a positive correlation between surface soil moisture and its rate of decline, with r>0.8 over 85% of the area 

(Figure S15b~c), indicating that because soil moisture in the westerlies is often high in winters, the available surface water 

for evaporation and percolation loss is limited in summer, and plants tend to utilize water in deeper soil layers. When droughts 

occur during a random period, the mean surface soil moisture decline is highest in the tropical monsoon climate regions 

(Figure 15f). Therefore, if sufficient water during rainy seasons is lacking there, then significant water loss (Figure S15d) may 1950 

destroy the local ecosystem. 
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4 Discussion and conclusions 1965 

4.1 Contributions of microwave observations and environmental characteristics to the neural network prediction 

In this study, we developed an improved global long-term remote sensing-based surface soil moisture dataset, named RSSSM. 

The key algorithm calibrates and fuses various sources of microwave surface soil moisture products through multiple neural 

networks. Several environmental factors are also chosen as ancillary neural network inputs because they are quality impact 

factors of microwave soil moisture retrievals, or also director indicators of surface soil moisture. To explore the relative roles 1970 

of soil moisture data retrieved from microwave observations and the environmental characteristics, we performed contribution 

tests on all the input features at the global scale (for each predictor, we added a random error that is controlled within the 

standard deviation of the predictor. Then the increased mean squared error (MSE) in neural network training can be used to 

determine the relative contribution of that variable). Taking the first independent neural network (NN1-1-1, a primary NN) as 

an example, the results (Figure 16) indicate that SMOS soil moisture plays the dominant role in the neural network training 1975 

(55.5%), while the four predictor soil moisture products explained 62.7% in total. The remaining 37.3% of the training 

efficiency could be attributed to the environmental characteristics, among which the water fraction accounts for the most 

(13.4%) since it is both a quality impact factor and a direct indicator of soil moisture. The tree cover fraction is an important 

neural network input as well and reduces the MSE by 7.8%, which is probably due to the strong impact of forest cover on 

microwave soil moisture retrievals. 1980 

4.2 Requirement of further validations 

Our product is generally more comparable to the in-situ measurements at ISMN stations than the existing global long-term 

surface soil moisture datasets in general, when all indicators on both spatial and temporal accuracy are considered. However, 

we can neither conclude that our product is superior to the existing products, nor determine the performance of our product at 

the global scale. This is mainly because the ISMN measurements are unevenly distributed globally (Figure 3) and incompatible 1985 

at a spatial scale with the scales of passive microwave observations and land surface modeling (0.1°~0.25°). We validated the 

soil moisture products against the ISMN’s point-scale data just because only such in situ measurements are currently available, 
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and the ISMN dataset (Dorigo et al., 2011; Dorigo et al., 2013) is the most frequently used in the assessments of large-scale 1995 

soil moisture data (Al-Yaari et al., 2019; Albergel et al., 2012; Dorigo et al., 2015; Fernandez-Moran et al., 2017b; Gao et al., 

2020; Karthikeyan et al., 2017b; Kerr et al., 2016; Kim et al., 2015b; Kolassa et al., 2018; Lievens et al., 2017; Zhang et al., 

2019). In this study, to alleviate the impact of spatial scale differences on the evaluation, dense networks are more utilized (19 

out of 29 networks, see Text S2 for details) that contain multiple stations within the same 0.1° pixel. The pixels with 

nonnegligible water area are also excluded in case of high spatial variability in surface soil moisture. In addition, more than 2000 

90% of the selected stations are located in relatively flat areas with a topographic complexity less than 10%. The Cosmic-Ray 

Neutron Sensing method (CRNS) can provide soil moisture estimates at a scale of hundreds of meters in diameter (Andreasen 

et al., 2017). Hence, the in situ networks generated using this method, e.g., COSMOS, are more suitable for the validation of 

satellite-based or modeled coarse resolution soil moisture products. We hope that additional records obtained from cosmic-

ray neutron stations become available in the future so that our product may be better evaluated. 2005 

4.3 Approaches towards more accurate soil moisture predictions 

By referring to the ISMN measurements, the accuracy (R2=0.42; RMSE=0.087) of RSSSM requires further improvement. The 

target RMSE for surface soil moisture set by GCOS is 0.04 m3 m-3, indicating the need to further improve the global soil 

moisture data quality. 

Fortunately, this study provides a novel approach that has the potential to lead to increasingly better soil moisture products in 2010 

future. The RMSE and ubRMSE values in earlier periods are somewhat higher than those after 2012, which is because: 1) five 

rounds of simulations were performed, with the output converted into the training target of the next round’s neural networks, 

thus leading to a little error propagation as the simulation period extended to the past; and 2) the quality of microwave soil 

moisture data is generally lower in earlier periods due to the relatively unadvanced microwave sensors with low signal-to-

noise ratio (SNR). However, due to the design of localized networks and the full use of 11 microwave soil moisture products 2015 

and quality impact factors, etc., high training efficiency is achieved, resulting in limited amplification of noise and high 

maintenance of valid information during 16 years of simulation. The overall data accuracy of RSSSM is only slightly lower 

移动了(插入) [3]
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than that of SMAP, which is the primary training target. Therefore, if microwave sensors with higher SNR or better penetration 

of the vegetation canopy than SMAP are launched in the future (e.g., the upcoming P-band microwave sensors (Etminan et 

al., 2020; Ye et al., 2020)), we can develop a temporally continuous soil moisture dataset beginning in 2003 by using the soil 2055 

moisture or Tb retrieved from the new sensors as the reference. This upcoming product is expected to have even higher 

accuracy than the SMAP product (we will update the complete RSSSM product then). In that sense, the data fusion algorithm 

proposed here will be even more meaningful in the future. 

Remote sensing may provide more detailed spatial information on surface soil moisture, whereas reanalysis-based models 

have advantages in characterizing temporal variations, even on a daily scale. Furthermore, root-zone soil moisture, which 2060 

often plays a more important role in ecosystems, cannot be directly retrieved through microwave remote sensing. Therefore, 

combining the advantages of satellite observation and model simulation helps to improve the data accuracies of both surface 

and root-zone soil moisture. To realize a better combination, one possible approach is to use the pixel-specific confidence 

range and the spatial pattern of RSSSM to constrain the model parameters or add supplementary modules if necessary. In 

detail, RSSSM can be used as the initial base map of surface soil moisture. Then, after each time of soil moisture simulation 2065 

in multiple layers (both root-zone and surface), the model efficiency is examined through a spatial correlation test between 

the simulated surface soil moisture and RSSSM. In addition, whether the simulated values fall within the confidence range 

(e.g., ±20%) reported by RSSSM should also be tested. Using recurrent adjustments, the model parameters in each pixel can 

be optimized. For irrigated croplands, if irrigation is not considered in the models, the simulated surface soil moisture will 

soon fall below the confidence range, and the correlation will also decline regardless of the parameters that are provided. 2070 

Therefore, a well-designed irrigation module (Chen et al., 2019) should be introduced. Finally, for regions with human-induced 

land cover changes (e.g., afforestation), optical remote sensing should be applied to better estimate evapotranspiration. 

5 Data availability 

The global surface soil moisture dataset RSSSM, is available at: https://doi.pangaea.de/10.1594/PANGAEA.912597 (Chen, 

2020). In the ZIP file, data maps are all provided in Geotiff format, and we also attached a csv table relating the filename and 2075 

the nominal time period of the file.  
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Tables 

Table 1: Abbreviations for the name of satellites, remote sensors and missions. 

Abbreviation Full name 

SMMR Scanning Multichannel Microwave Radiometer 

SSM/I Special Sensor Microwave/Imager 

TMI Tropical Rainfall Measuring Mission (TRMM)’s Microwave Imager 

AMSR-E Advanced Microwave Scanning Radiometer for the Earth Observing System 

AMSR2 Advanced Microwave Scanning Radiometer 2 

SMOS Soil Moisture Ocean Salinity 

SMAP Soil Moisture Active Passive 

ERS European Remote Sensing- Active Microwave Instrument Wind Scatterometer 

ASCAT Advanced Scatterometer 

MODIS Moderate-resolution Imaging Spectroradiometer 

MEaSUREs Making Earth System Data Records for Use in Research Environments 

 2545 

Table 2: Description of the Köppen-Geiger climate classification types at all the selected ISMN stations. 

Climate_Köppen General description 

Aw Equatorial savannah with dry winter 

BSk Steppe climate, cold and arid 

BWh Desert climate, hot and arid 

BWk Desert climate, cold and arid 

Cfa Warm temperate climate, fully humid, hot summer 

Cfb Warm temperate climate, fully humid, warm summer 

Csa Warm temperate climate with dry, hot summer 

Csb Warm temperate climate with dry, warm summer 

Dfa Snow climate, fully humid, hot summer 

Dfb Snow climate, fully humid, warm summer 

Dfc Snow climate, fully humid, cool summer and cold winter 

Dsb Snow climate with dry, warm summer 

Dwc Snow climate with cool summer and cold, dry winter 

ET Tundra climate 
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Table 3: Mean and median values of the five evaluation indexes (correlation coefficient: r, RMSE, bias, unbiased RMSE 

(ubRMSE), and the anomalies r (A.R)) on the temporal accuracy of the surface soil moisture simulated in this study 2550 

(RSSSM) and the other surface soil moisture products, when validated using the ISMN in situ measurements. Note: 1) 

for the comparison between RSSSM and SMAP_E (SMAP) product, the validation period is from April 2015 to 2018; 

2) for the comparison between RSSSM and ASCAT-SWI (ASCAT), the period is 2007~2018; 3) for the comparison 

between RSSSM and GLDAS Noah v2.1 (GLDAS), ERA5-Land (ERA5-L), CCI or GLEAM v3.3a (GLE-a) surface 

soil moisture product, the validation period is 2003~2018; 4) for the comparison between RSSSM and GLEAM v3.3b 2555 

(GLE-b), the validation period is 2003 to September 2018. For each pair of comparisons based on each evaluation index, 

the product with the better performance and its values are highlighted in bold. 

Index r RMSE bias ubRMSE A.R 

Product RSSSM SMAP RSSSM SMAP RSSSM SMAP RSSSM SMAP RSSSM SMAP 

Mean 0.756 0.762 0.075 0.074 0.015 0.016 0.043 0.043 0.700 0.707 

Median 0.795 0.798 0.067 0.066 0.009 0.013 0.043 0.043 0.720 0.744 

Product RSSSM ASCAT RSSSM ASCAT RSSSM ASCAT RSSSM ASCAT RSSSM ASCAT 

Mean 0.687 0.561 0.079 0.095 0.002 -0.007 0.047 0.062 0.627 0.554 

Median 0.735 0.627 0.074 0.088 -0.001 -0.010 0.048 0.062 0.654 0.595 

Product RSSSM GLDAS RSSSM GLDAS RSSSM GLDAS RSSSM GLDAS RSSSM GLDAS 

Mean 0.689 0.613 0.080 0.091 0.001 0.028 0.047 0.051 0.620 0.519 

Median 0.737 0.661 0.075 0.082 -0.002 0.029 0.048 0.049 0.661 0.567 

Product RSSSM ERA5-L RSSSM ERA5-L RSSSM ERA5-L RSSSM ERA5-L RSSSM ERA5-L 

Mean 0.689  0.734  0.080  0.112  0.001  0.082  0.047  0.050  0.620  0.648  

Median 0.737  0.758  0.075  0.094  -0.002  0.073  0.048  0.049  0.661  0.672  

Product RSSSM CCI RSSSM CCI RSSSM CCI RSSSM CCI RSSSM CCI 

Mean 0.690  0.642  0.080  0.091  0.002  -0.002  0.047  0.049  0.620  0.530  

Median 0.735  0.666  0.074  0.080  -0.002  0.006  0.049  0.047  0.658  0.552  

Product RSSSM GLE-a RSSSM GLE-a RSSSM GLE-a RSSSM GLE-a RSSSM GLE-a 

Mean 0.689  0.735  0.080  0.126  0.001  0.093  0.047  0.047  0.620  0.681  

Median 0.737  0.771  0.075  0.119  -0.002  0.104  0.048  0.046  0.661  0.715  

Product RSSSM GLE-b RSSSM GLE-b RSSSM GLE-b RSSSM GLE-b RSSSM GLE-b 

Mean 0.688  0.729  0.080  0.117  0.001  0.077  0.047  0.046  0.618  0.670  

Median 0.730  0.762  0.075  0.112  -0.002  0.091  0.048  0.045  0.659  0.705  
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Table 4: Mean and median values of the four evaluation indexes (r, RMSE, bias and ubRMSE) on the spatial pattern 

accuracy of RSSSM and the other global long-term surface soil moisture products (SMAP_E, ASCAT-SWI, GLDAS 

Noah v2.1, ERA5-Land, CCI, GLEAM v3.3a and GLEAM v3.3b) in every 10-day period. For each pair of comparisons, 

the evaluation indexes are for the common period of the two products, and the product with better performance is 

highlighted in bold (the same as Table 3). The abbreviations for the products are also the same as those in Table 3. 2580 

Index r RMSE bias ubRMSE 

Product RSSSM SMAP RSSSM SMAP RSSSM SMAP RSSSM SMAP 

Mean 0.652 0.659 0.084 0.084 0.016 0.016 0.082 0.081 

Median 0.655 0.664 0.082 0.081 0.019 0.019 0.080 0.078 

Product RSSSM ASCAT RSSSM ASCAT RSSSM ASCAT RSSSM ASCAT 

Mean 0.636 0.561 0.087 0.102 0.005 -0.010 0.085 0.097 

Median 0.650 0.572 0.086 0.100 0.007 -0.009 0.085 0.095 

Product RSSSM GLDAS RSSSM GLDAS RSSSM GLDAS RSSSM GLDAS 

Mean 0.617 0.593 0.090 0.097 -0.005 0.035 0.086 0.087 

Median 0.643 0.630 0.089 0.096 0.001 0.041 0.086 0.086 

Product RSSSM ERA5-L RSSSM ERA5-L RSSSM ERA5-L RSSSM ERA5-L 

Mean 0.616  0.575  0.090  0.125  -0.005  0.077  0.086  0.095  

Median 0.641  0.633  0.089  0.125  0.001  0.082  0.086  0.092  

Product RSSSM CCI RSSSM CCI RSSSM CCI RSSSM CCI 

Mean 0.618  0.497  0.090  0.099  -0.004  0.003  0.086  0.093  

Median 0.647  0.554  0.089  0.098  0.002  0.006  0.086  0.093  

Product RSSSM GLE-a RSSSM GLE-a RSSSM GLE-a RSSSM GLE-a 

Mean 0.617  0.576  0.090  0.139  -0.005  0.105  0.086  0.089  

Median 0.643  0.616  0.089  0.142  0.001  0.112  0.086  0.088  

Product RSSSM GLE-b RSSSM GLE-b RSSSM GLE-b RSSSM GLE-b 

Mean 0.616  0.560  0.090  0.128  -0.005  0.088  0.086  0.090  

Median 0.643  0.613  0.089  0.130  0.001  0.094  0.086  0.089  
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Figure 1: Overview of the time periods of different soil moisture datasets and the ‘quality impact factor’ products (e.g., 2595 

LAI dataset) used in this study (listed above the timeline), as well as the periods of data applied for the training of the 

67 independent neural networks and the neural network simulation outputs (i.e., simulated soil moisture) in eight 

substeps (listed below the timeline). 

 

Figure 2: Flow chart for the production of global surface soil moisture data (RSSSM). 2600 

 
Figure 3. Global distribution of ISMN networks and stations. 
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Figure 4: Comparison between the neural network simulated surface soil moisture (RSSSM) and SMAP data. The 

scatter plots are between (a) RSSSM and SMAP values at all pixels; b) RSSSM and SMAP values at only the pixels 2610 

with measurements; (c) RSSSM and the site-measured soil moisture from April 2015 to 2018; and (d) SMAP and the 

site measurements during April 2015~2018. All plots are represented as the point density on a logarithmic scale, while 

the units for soil moisture content and RMSE values are m3 m-3. 
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Figure 5: Comparison of the temporal accuracy between RSSSM and SMAP in regions with different Köppen-Geiger 

climate types. The four indexes are (a) r, (b) RMSE, (c) ubRMSE and (d) Anomalies r (A.R). The lengths of the error 

bars are 1.5 times that of the interquartile range, while the upper and lower boundaries and the central lines of the 2620 

boxes indicate the 75th, 50th and 25th percentile values, with mean values marked by ‘×’ (the forms of all the following 

boxplots are the same). 
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Figure 6: Comparison of the spatial pattern accuracy between RSSSM and SMAP in different 10-day periods from 

April 2015 to 2018. The three evaluation indexes are (a) r, (b) RMSE and (c) ubRMSE. The length of each box/error 

bar is determined from the evaluation index values in three (January to March) or four (April to December) years.  2630 
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Figure 7: Overall data accuracy comparison between RSSSM and the ASCAT-SWI data product. The scatter plot is 

between (a) RSSSM or (b) ASCAT-SWI soil moisture and the site measured values during 2007~2018. The unit of all 

plots is the density of points on a logarithmic scale. 

 2635 
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Figure 8: Comparison of the temporal accuracy between RSSSM and ASCAT-SWI in different Köppen-Geiger climatic 

regions. The four indexes are (a) r, (b) RMSE, (c) ubRMSE, and (d) Anomalies R (A.R).   



73 

 

 

Figure 9: Comparison of the spatial accuracy between RSSSM and ASCAT-SWI during different 10-day periods. The 2640 

evaluation indexes are (a) r, (b) RMSE, and (c) ubRMSE. 
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Figure 10: Overall data accuracy comparison between RSSSM and the surface soil moisture simulated by GLDAS 

Noah V2.1. The scatter plot is between the (a) RSSSM or (b) GLDAS soil moisture and the measured soil moisture 2645 

from 2003 to 2018. 

 



75 

 

 

Figure 11: Comparison of the temporal accuracy between RSSSM and GLDAS surface soil moisture in regions with 

different Köppen-Geiger climate types. The four indexes are (a) r, (b) RMSE, (c) ubRMSE, and (d) Anomalies r.  2650 
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Figure 12: Comparison of the spatial accuracy between RSSSM and GLDAS during different 10-day periods. The 

evaluation indexes are the same as those in Figure 7. 
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 2655 

Figure 13: Changes in the data quality and data spatial coverages of RSSSM and CCI soil moisture with year. The 

interannual changes in (a) spatial correlation coefficients (r), (b) spatial RMSE, (c) spatial ubRMSE values, and (d) the 

spatial coverages of 10-day period data for RSSSM and CCI.
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Figure 14: Spatial and temporal patterns of the neural network simulated surface soil moisture (RSSSM) and comparison against other 2660 

products: (a~b) the global map of (a) calculated RSSSM and (b) GLDAS Noah V2.1 soil moisture (averaged during 2003~2018); and (c~d) 

interannual trend map of (c) calculated RSSSM and (d) GLEAM v3.3a soil moisture from 2003 to 2018. The circled regions in (a~b) are 

the places with obvious differences between RSSSM and the other products, while the circled regions in (c~d) are those with significant 

trends. 

 2665 

删除了: The s

删除了: the 



79 

 

 

Figure 15: Intra-annual variation in global surface soil moisture and its relationship with precipitation. (a) Spatial pattern of the time when 

surface soil moisture reaches its maximum in a year (unit: 10 days, note that the seasons are opposite in the Northern and Southern 2670 

hemispheres); (b) intra-annual variation range of surface soil moisture; (c) map of the correlation coefficient between the intra-annual 

variations in precipitation and surface soil moisture (both are fitted by Fourier periodic functions); (d) peak time difference between the 

surface soil moisture and precipitation (unit: 10 days), with the frequency histogram shown as the inset; (e) 10-day period with the fastest 

surface soil moisture loss on rainless days in every 0.5° grid cell over the world; and (f) map of the annual mean surface soil moisture 

decline after 10 consecutive dry days (assuming that the dry period occurs randomly throughout a year). 2675 
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Figure 16: Relative contributions of the 13 input features (i.e., four predictor soil moisture products retrieved from microwave remote 

sensing and 9 environmental factors that are quality impact factors of microwave soil moisture retrieval or also indicators of soil moisture) 2685 

to the training efficiency of the first round’s primary neural network (NN1-1-1). 


