
Interactive comment on ‘An improved dataset of satellite observation-based global 

surface soil moisture covering 2003~2018 (RSSSM)’ 

By Yongzhe Chen, Xiaoming Feng, Bojie Fu 

 

To Reviewer #3: 

We thank referee #3 for the valuable comments that will help us improve the quality and 

readability of the manuscript. We have carefully revised the MS following your comments and 

suggestions. We provide a detailed response to the Referee’s comments in the Supplement. 

 

*********** 

 

General comment: The authors used an iterative neural network approach to produce 

a new satellite-based soil moisture dataset using 11 microwave soil moisture products, 

using SMAP data for training and ISMN database for validation. The approach is quite 

original and efficient resulting is a improvement in the accuracy of the spatio-temporal 

patterns at the global scale, and at a 0.1 degree resolution. However, the manuscript will 

need to be improved before acceptance, in its structure, clarity and tone. 

Response: Thank you for your positive comments on our work. We have adjusted the 

article structure, revised the Methods section to make it clearer, and modified the tone 

of the expressions of the comparison of our product against other products. In addition, 

we have revised the figures and tables following each of the comments. Please find the 

details in the responses to the following comments. 

 

Major comment 1: The introduction would need to be improved. Several statements 

need to be supported by existing literature, others would need to be clarified. Finally 

the introduction would need to end with a brief description of the approach used in the 

study and how this approach will address the three major concerns raised from existing 

soil moisture products. See detailed comments below for details. 

Response: We have carefully addressed all the identified problems, including adding 

additional references, clarifying the confusing phrases, and briefly introducing how the 

approach addressed the three major concerns. Please see our responses to Specific 



comments 3~11 for details. Thank you for these suggestions. 

 

Major comment 2: The tone of the manuscript when referring to the new product and 

to past studies is not always appropriate. For instance, stating that the present product 

is “superior to the existing products” is useless, not informative and condescending. I 

would encourage the authors to rather explain how their product is an improvement to 

the global estimation of soil moisture, without necessarily condemn other products. In 

the result section, while nonlinearities between estimate and in-situ soil moisture 

measurements are identified for other products, it is not reported for the author’s 

product which I find quite biased. 

Response: We apologize for the inappropriate descriptions. We have corrected the 

descriptions in the abstract as follows: ‘This new dataset, named RSSSM, is comparable 

to the in situ surface soil moisture measurements at the International Soil Moisture 

Network sites (overall R2 and RMSE values of 0.42 and 0.087 m3/m3), while the overall 

R2 and RMSE values for the existing products (ASCAT-SWI, GLDAS Noah, ERA5-Land, 

CCI/ECV and GLEAM) are within the range of 0.31~0.41 and 0.095~0.142 m3/m3, 

respectively. The advantage of RSSSM is especially obvious in arid or relatively cold 

areas and during growing seasons. Moreover, the persistent high data quality as well 

as complete spatial coverage ensure the applicability of RSSSM to studies on both 

spatial and temporal patterns.’ We have also reported the nonlinearity of the 

relationship between our data and in situ measurements, following: ‘However, RSSSM 

overestimates soil moisture when it is low, which is a problem inherited from the SMAP 

product (Figure 4) and is slightly nonlinearly correlated with the measured values 

(Figure 7a).’ 

 

Major comment 3. The validation approach is based on site specific comparison. 

However, soil moisture being so spatially variable within a 0.1 degree pixel, validation 

based on single site observations within 0.1 degree pixels can be quite meaningless. 

This might be particularly true when one considers that site selection for in-situ 

measurement is rarely motivated by representativity of the surrounding landscape, but 



by specific ecological reasons. 

Response: We agree that although only the ‘good’ quality data records were used, due 

to high spatial variability in surface soil moisture, it is not very reasonable to compare 

the 0.1° resolution soil moisture product against the ISMN site-scale measurements. 

However, the currently available global-scale soil moisture products are all coarse 

resolution, usually approximately 0.25°. To evaluate these coarse resolution products, 

previous studies also had to rely on the site-measured soil moisture, especially the 

ISMN dataset, while the validation process and the evaluation indicators are almost the 

same as those used in this study (Al-Yaari et al., 2019; Albergel et al., 2012; Dorigo et 

al., 2015; Fernandez-Moran et al., 2017; Gao et al., 2020; Karthikeyan et al., 2017; Kerr 

et al., 2016; Kim et al., 2015b; Kolassa et al., 2018; Lievens et al., 2017; Zhang et al., 

2019). For 29 ISMN networks used for validation in this study, 19 are dense networks 

(usually with multiple stations within one 0.1° pixel (Dorigo et al., 2015)), including 

AMMA-CATCH (Cappelaere et al., 2009; De Rosnay et al., 2009; Lebel et al., 2009; 

Mougin et al., 2009; Pellarin et al., 2009), BIEBRZA_S-1 (http://www.igik.edu.pl/en), 

BNZ-LTER (Van Cleve et al., 2015) (http://www.lter.uaf.edu/), CTP_SMTMN (Yang 

et al., 2013), FLUXNET-AMERIFLUX (http://ameriflux.lbl.gov/), FR_Aqui (Al-Yaari 

et al., 2018), HiWATER_EHWSN (Jin et al., 2014; Kang et al., 2014), HOBE (Bircher 

et al., 2012), HYDROL-NET_PERUGIA (Morbidelli et al., 2014), iRON (Osenga et 

al., 2019), MAQU (Su et al., 2011), OZNET (Smith et al., 2012; Young et al., 2008), 

REMEDHUS (http://campus.usal.es/~hidrus/), SASMAS (Rüdiger et al., 2007), SKKU 

(Hyunglok et al., 2016), SOILSCAPE (Moghaddam et al., 2010; Moghaddam et al., 

2016), SWEX_POLAND (Marczewski et al., 2010), VAS (http://nimbus.uv.es/) and 

WSMN (http://www.aber.ac.uk/wsmn). This information has been added to Text S2. 

Therefore, the average of the data obtained from two or more stations within a 0.1° 

pixel, which was calculated in this study, can best represent the grid-scale soil moisture 

conditions (Gruber et al., 2020). 

In addition, to avoid the errors induced by the high spatial variability of soil moisture 

as much as possible, we excluded pixels with nonnegligible open water, wetland or 

inundated fields. In Supplementary Text- Text S2, the related details now read: ‘It has 

been acknowledged that the scale difference between the records at ISMN sites and the 

0.1° pixel-scale soil moisture data may lead to incomparability, especially for pixels 

with open water and inundated land (Loew, 2008). If the measurement site is located 

http://www.aber.ac.uk/wsmn


on land, away from water, yet the corresponding pixel contains much water, the pixel-

scale soil moisture can be significantly higher than the site-measured values. 

Conversely, if the site is in or close to the open water or inundated areas but land also 

exists in the pixel, the soil moisture measured at the station will be much higher than 

the average pixel value. The absolute values are unmatchable, and the temporal 

variations cannot be directly compared as well, because the moisture conditions of 

riverside (or wetland) soil and the land soil may change with precipitation differently. 

Therefore, the sites located in the pixels with an average annual maximal water area 

fraction greater than 5% according to SWAMPS data are excluded (for example, some 

sites in wetlands in Canada).’ We also added more explanations in the manuscript as 

follows: 1) ‘After data screening and processing (for example, in the case of high 

spatial variability in soil moisture, we excluded the pixels with average annual maximal 

water area fractions greater than 5%, see Text S2), …’; 2) More than 90% of the stations 

are located in relatively flat areas with topographic complexity less than 10%; and 3) 

‘Hence, to make full use of all the high-quality records and to reduce the problem 

caused by the scale difference between simulation and measurement, the site-scale 10-

day averaged soil moisture data are further aggregated to a 0.1° pixel-scale by 

averaging all the data (different stations or different sensors) within the pixel (Gruber 

et al., 2020).’ 

 

Specific comment 1: “This new dataset, once validated against the International Soil 

Moisture Network (ISMN) records, is supposed to be superior to the existing products” . 

Do you mean this validation hasn’t been done yet? Superior in what way? 

Response: We apologize for the confusion. Following this comment, we show the 

situation that our product is preferred, according to the validation against site 

measurements, instead of the general description that our product is superior to other 

products. We have made the clarification as follows: ‘This new dataset, named RSSSM, 

is comparable to the in situ surface soil moisture measurements at the International 

Soil Moisture Network sites (overall R2 and RMSE values of 0.42 and 0.087 m3/m3), 

while the overall R2 and RMSE values for the existing products (ASCAT-SWI, GLDAS 

Noah, ERA5-Land, CCI/ECV and GLEAM) are within the range of 0.31~0.41 and 

0.095~0.142 m3/m3, respectively. The advantage of RSSSM is especially obvious in arid 



or relatively cold areas and during growing seasons. Moreover, the persistent high data 

quality as well as complete spatial coverage ensure the applicability of RSSSM to 

studies on both spatial and temporal patterns.’ 

 

Specific comment 2: “reveals that the surface moisture decline on rainless days is 

highest in summers over the low-latitudes but highest in winters over most mid-latitude 

areas.” Soil moisture being so spatially variable, I find the impact of this statement quite 

limited – e.g. low latitude regions range from tropical/equatorial rain forests to deserts 

and one would expect as much differences in the sensitivity of soil moisture to 

precipitation between a desert and a tropical forest than between a tropical forest and a 

temperate prairie. 

Response: We apologize for the unclear sentences. In the calculation of soil moisture 

decline on consecutive rainless days, because ‘In desert areas, the random noise of the 

surface soil moisture product can hide the signal of moisture changes, while in wet 

areas (e.g., rainforests), 20 days without effective precipitation seldom occurs, leading 

to no results over most areas.’, the acquired results can represent the conditions in only 

regions excluding deserts and rainforests. Following this comment, we have revised the 

sentence as follows: ‘These data also reveal that without considering the deserts and 

rainforests, the surface moisture decline on consecutive rainless days is highest in 

summers over the low latitudes (30°S~30°N) but highest in winters over most 

midlatitude areas (30°N~60°N; 30°S~60°S).’ 

 

Specific comment 3: “L47: “due to various disturbances”: what type of disturbances? 

Response: Following your comment, we have revised this phrase as ‘due to various 

disturbances, such as high vegetation cover, high open water fractions and complex 

topography (Draper et al., 2012; Fan et al., 2020; Ye et al., 2015)’ to improve the clarity. 

 

Specific comment 4: “L49: “ Although new sensors, SMOS : : :.” -> “Although new 

sensors such as SMOS: : :” 

Response: We have revised this phrase accordingly. 



 

Specific comment 5: L 50: “better penetrability” -> please be more specific: what depth? 

Response: We apologize for the unclear expression. It does not indicate the nominal 

soil depth of the microwave soil moisture. We have revised it to ‘… because L-band 

microwaves (1~2 GHz) can penetrate the vegetation canopy better than other bands,’ 

by referring to (Piles et al., 2018). 

 

Specific comment 6: L66: “Because the temporal variation in soil moisture is often 

better captured by model simulations than remote sensing inversions”: please include a 

reference that support this statement. L67: “CCI may undesirably combine the 

disadvantages of both.” Be more specific here (low accuracy of temporal variations 

from remote sensing products and low spatial accuracy from model simulations – am I 

right?). And please include another reference here for this second statement. 

Response: We apologize for the arbitrary statements. We agree that there is no strong 

evidence supporting the claim that the temporal variation in soil moisture is better 

captured by model simulations than remote sensing inversions. Following this comment, 

we have deleted these two sentences in the Introduction of the manuscript. Thank you 

for the reminder! 

 

Specific comment 7: L70: “are assimilated instead”: instead of what? this sentence is 

not clear. 

Response: Following this comment, we have revised the sentence as follows: 

‘Currently, anomalies of CCI soil moisture (the deviations to the seasonal climatology 

that indicate whether the soil moisture at a time point is more humid or drier than the 

multi-year average) are assimilated instead of the original CCI time series (Martens et 

al., 2017).’ 

 

Specific comment 8: L85: “Among these three approaches, machine learning proves 

to be probably the best choice” based on what criteria – again, please be more specific 

Response: Following this comment, we revised the sentence as follows: ‘Among these 



three approaches, machine learning has been proven to be the best choice according to 

the connection between precipitation and the changes in soil moisture, as evaluated 

through a data assimilation technique and triple collocation analysis results (Van der 

Schalie et al., 2018).’ 

 

Specific comment 9: “L102: “substantial success has not been achieved yet.” This is a 

rather strong and yet vague statement that denies the merits of a large body of research. 

Please remove this statement. 

Response: We apologize for the confusion. We have revised the sentence as follows: 

‘In conclusion, while previous studies have focused on developing long-term satellite-

based surface moisture products using machine learning, some major concerns remain 

that need to be solved. 1)…’ 

 

Specific comment 10: “L102/103:” the high-quality microwave observations are not 

fully utilized”: this is not clear from the literature review – please develop this point in 

earlier sections of the introduction (i.e. in what way high-quality microwave 

observations haven’t been fully utilized, and how the authors are proposing to utilize 

them more efficiently). 

Response: To avoid potential misunderstanding, we have revised the sentence as 

follows: ‘1) The microwave observations from only three sensors at most are utilized, 

leading to large temporal and spatial gaps and limited the training efficiency.’ This 

point has been illustrated in the earlier sections of the introduction: ‘A global long-term 

observational-based soil moisture product was recently developed by building a neural 

network between the SMOS product and the Tb data from AMSRE (2003~September 

2011) and AMSR2 (July 2012~2015) (Yao et al., 2017)…. The gap between the temporal 

spans of AMSRE and AMSR2 and the lack of SMOS data in Asia resulted in large 

quantities of missing data.’ 

 

Specific comment 11: “L106-107: This statement should be removed from the 

introduction section. - this is rather a concluding statement. Instead please describe your 



approach in a couple sentences and how this approach addresses the three major 

concerns identified. 

Response: Thank you for your advice. We have rewritten the paragraph as: ‘… some 

major concerns remain that need to be solved. 1) The microwave observations from 

only three sensors at most are utilized, leading to large temporal and spatial gaps and 

limited the training efficiency; 2) it remains unclear which environmental factors 

should be incorporated as ancillary inputs and why; and 3) the training designed for 

soil moisture estimation at the global scale should be more complex than that for only 

a specific region to ensure satisfactory training efficiency. In this study, 11 high-quality 

microwave soil moisture products since 2003 are incorporated into 5 rounds of neural 

networks to achieve a spatially and temporally continuous simulation for 2003~2018, 

using as many sources of microwave observational data as possible as predictors in 

each neural network. The factors impacting the quality of microwave soil moisture 

retrievals are also determined and then utilized as ancillary inputs to improve the 

training efficiency. Moreover, we designed localized subnetworks instead of only one 

global-scale neural network to account for the regional differences in training rules.’ 

 

Specific comment 12: “Section 2.1 L110: please add citation to literature supporting 

this statement. 

Response: In the Introduction section, the best overall quality of SMAP soil moisture 

has been stated as follows: ‘Although new sensors such as SMOS (Stillman and Zeng, 

2018) and SMAP (Entekhabi et al., 2010) can produce significantly improved estimates 

because L-band microwaves (1~2 GHz) can penetrate the vegetation canopy better than 

other bands (Burgin et al., 2017; Chen et al., 2018; Karthikeyan et al., 2017; Kerr et 

al., 2016; Kim et al., 2018; Leroux et al., 2014; Stillman and Zeng, 2018), the 

applicability of both products is still limited. SMOS data have too much noise and too 

many missing values in Eurasia due to high radio frequency interference (RFI) (Oliva 

et al., 2012). While SMAP has the highest quality (the unbiased RMSE of the passive 

product can be close to its target of 0.04 m3/m3) and has filtered RFI (Chen et al., 2018; 

Colliander et al., 2017), …’ Following your advice, we have revised this sentence and 



added two new references supporting the best performance of SMAP product. It reads: 

‘SMAP currently has the best quality of all remote sensing-based soil moisture products 

(Al-Yaari et al., 2019; Liu et al., 2019)…’ 

 

Specific comment 13: L115-118: This sentence is too long and too complex. Please 

split into shorter and clearer sentences. 

Response: We apologize for the complex sentence. We have revised it to: ‘However, in 

this study, the well-acknowledged surface soil moisture products retrieved through 

mature algorithms (see Figure 1) are directly applied instead of Tb. These products are 

chosen because 1) the primary goal of this study is to calibrate and then fuse the existing 

popular microwave soil moisture products, and 2) the Tb signals at multiple bands 

contain too much information that is not related to soil moisture, which may weaken 

the training efficiency and lead to overfitting.’ 

 

Specific comment 14: Section 2.2 L147/160: the purpose of this argumentation is quite 

unclear as the environmental predictors that are selected are also important drivers of 

soil moisture dynamic. 

Response: We apologize for the arbitrary sentence. Here, we would like to express the 

idea that without the incorporation of any microwave remote sensing product, these 

factors (LAI, topographic complexity, LST, etc.) alone may not predict surface soil 

moisture very well. This phenomenon occurs because although we agree that they are 

somewhat related to soil moisture (e.g., soil moisture is usually limited in areas with 

low vegetation cover), they can hardly be considered direct indexes of surface soil 

moisture content (since the relationships are rather uncertain; for example, as found in 

this study, in Europe, the soil moisture is low in summers when vegetation peaks). On 

the other hand, however, we admit that the water area fraction is a direct indicator of 

surface soil moisture and have corrected it by adding the sentence ‘Environmental 

factors, including DEM, LST and vegetation cover (indicated by NDVI, MVI, etc.), were 

used as ancillary neural network inputs to improve the soil moisture simulation (Lu et 

al., 2015; Qu et al., 2019; Yao et al., 2017). According to these studies, these factors 



alone may not predict surface soil moisture well without the incorporation of any 

microwave remote sensing data, which can also be justified by the contribution analysis 

results (Figure S1a). This phenomenon occurs because although these data are 

somewhat related to soil moisture (e.g., soil moisture is generally limited in areas with 

low vegetation cover but high in forests (McColl et al., 2017)), the relationships are 

rather uncertain (e.g., at small scales, leaf area index (LAI) may have a negative 

influence on soil moisture due to the variation in evapotranspiration (Naithani et al., 

2013) or may not have clear impacts (Zhao et al., 2010); also, soil moisture can be 

either high or low in summers when vegetation peaks (Baldocchi et al., 2006; Méndez-

Barroso et al., 2009)). However, these factors are essential due to their direct impacts 

on soil moisture retrieval through the radiative transfer model using microwave remote 

sensing data (Fan et al., 2020) and are factors that impact the retrieval quality. The 

detailed explanations are as follows: 1) …’ 

 

Specific comment 15: L201: since precipitation is such an important driver of soil 

moisture, the reasons why this variable hasn’t been included as a quality impact factor 

should be included in the main document. 

Response: We have revised the sentence as follows: ‘The contribution analysis results 

(Figure S1) show that because various microwave soil moisture data have already been 

included, precipitation data are not an essential indicator of soil moisture and are not 

utilized as a physically based ‘quality impact factor’ either (see Text S1 for detailed 

explanations).’ 

The Text S1 is a bit long, so we did not move all the information to the manuscript, but 

we summarized the key reasons in the revised manuscript, following your advice. Text 

S1 has been revised as follows: 

‘Because it takes at least 3 days for a microwave sensor to cover the globe, for 11% of 

global land, there will be only 5 or fewer observations for random days within a 10-

day period. By taking the average of these available data, this study focuses on only the 

mean soil moisture condition during that 10-day period. Then, to see how much the 

incorporation of precipitation data can improve the neural network training efficiency, 



we calculated the 10-day averaged GPM Final-Run precipitation, which can indicate 

the overall precipitation water availability (the antecedent precipitation index is not 

used because it must be calculated on a daily scale, and the attenuation coefficient is 

difficult to determine at a global scale (Kohler and Linsley, 1951)). Taking the first 

primary independent neural network, NN1-1-1, as an example, we performed 

contribution tests on all the input features at the global scale (not for each separate 

zone), including 9 ‘quality impact factors’, 4 soil moisture predictor products and 

precipitation - a potential ancillary soil moisture indicator. For each predictor, we 

added a random error that is controlled within the standard deviation of the predictor, 

and then an increase in MSE during neural network training can indicate the relative 

contribution of that variable. The results (Figure S1a) show that precipitation will 

contribute to only 1.7% of the training efficiency, which is much lower than the 

contribution of any soil moisture product (the total contribution fraction of the four soil 

moisture products is 61.2%) and is also lower than that of most ‘quality impact factor’. 

This result suggests that various microwave soil moisture datasets together with several 

‘quality impact factors’ of microwave soil moisture retrieval are enough to predict the 

training target, SMAP soil moisture, and there is no need to add precipitation as 

another ancillary indicator of soil moisture. 

‘Quality impact factors’ are defined in this study as the variables that will have a 

significant impact on the retrieval errors of soil moisture by microwave remote sensing 

(section 2.1.2). Although the relative performances of different soil moisture products 

are related to surface moisture conditions (Kim et al., 2015a), it is found mainly due to 

the less vegetation in arid areas. After all, no explicit mechanism can support the idea 

that the retrieval errors of soil moisture are significantly influenced by water 

availability. Even if this is true, the soil water availability can already be indicated by 

the microwave soil moisture products. Therefore, it is unreasonable to incorporate the 

precipitation variable as a ‘quality impact factor’. On the other hand, LAI, water area 

fraction, LST, land use cover, tree cover fraction, non-tree vegetation area fraction, 

topographic complexity, and soil sand/clay fractions all have direct impacts on the 

microwave soil moisture retrieval errors, with solid physical mechanisms (see section 

2.1.2). Therefore, theoretically, these variables should be added to the neural network, 

even though the land use cover type and soil sand fraction data have been proven to 

have limited contributions to NN training efficiency. 



One may argue that if NARX (nonlinear autoregressive with external input) is applied 

instead, in which the soil moisture in the previous 10-day period is also incorporated 

as a predictor, precipitation data can be very beneficial to neural network training. This 

is true because precipitation directly contributes to increases in soil moisture. However, 

NARX is not suitable for global-scale long-term continuous soil moisture mapping 

because the base map (i.e., soil moisture at the beginning of the simulation period) is 

difficult to determine. Moreover, in mid to high latitudes, the lack of soil moisture 

retrievals over frozen ground in winters will lead to missing data there in summers when 

soil moisture data are otherwise available. Therefore, if NARX is adopted, we can only 

estimate long-term surface soil moisture in the tropics and subtropics with air 

temperatures consistently higher than 0 ℃. Finally, if the soil moisture in the previous 

phase and the current precipitation amount are both incorporated, they will largely 

conceal the role of satellite-observed signals. As shown in Figure S1b, the total 

contribution fraction of all four microwave soil moisture products is reduced to only 

10.6%, while the roles of ASCAT, AMSR2-JAXA and AMSR2-LPRM are all negligible. 

Without taking full advantage of remote sensing, simulations based on previous soil 

moisture and current precipitation products will lead to errors in regions where soil 

moisture gains are mostly driven by glacier melting or in places with high levels of 

radiation-driven soil evaporation. The reliability of the derived soil moisture will be 

reduced in irrigated croplands and afforestation/deforestation areas as well. 

On account of all of the above, precipitation data are neither included as an ancillary 

soil moisture indicator nor added as a ‘quality impact factor’ in this study.’ 

 

Figure R1 (Figure S1 in the revised Supplement): The roles of different input features 



in the soil moisture simulations based on BP neural networks and nonlinear 

autoregressive with external input (NARX) with microwave soil moisture products 

incorporated: (a) the contributions of different input features of a primary neural 

network: NN1-1-1, including 4 predictor soil moisture products, 9 quality impact 

factors of microwave soil moisture retrieval, plus 1 probable ancillary soil water 

indicator: 10-day averaged precipitation, to the neural network training efficiency 

indicated by the increased MSE; (b) the contributions of all the input features to the 

training efficiency if NN1-1-1 is changed into a NARX, in which the SMAP soil moisture 

for the previous period is also applied as a predictor. 

 

Specific comment 16: L202/203: This sentence should start this section, not end it. A 

table similar to table 1 but for the quality impact factors would be useful. The table 

would indicate the source of the data, the resolution and the temporal span for the 

dynamic factors. 

Response: Following your suggestion, we have revised this section, moving this 

concluding sentence to the beginning. It now reads as: 

‘In this study, 9 quality impact factors, LAI, water fraction, LST, land use cover, tree 

cover fraction, non-tree vegetation fraction, topographic complexity, and sand and clay 

fractions, are selected and incorporated (see Figure 1). The reasons for the selection of 

these factors are as follows. 

Based on the two criteria above, the first environmental factor to be included is the 

‘vegetation factor’ (i.e., vegetation water content, VWC) … Because the LAI stands for 

the total leaf area per unit land, which is closely related to VWC assuming a relatively 

stable leaf equivalent water thickness (Yilmaz et al., 2008), LAI is a suitable 

surrogate….’ 

We also added a timeline figure (Figure 1 in the revised manuscript) to show the 

temporal spans, sources and spatial resolution of all microwave soil moisture products 

and the data for 9 quality impact factors. This figure presents the information more 

clearly than a table. 



 

Figure R2 (Figure 1 in the revised manuscript): The timeline figure showing the time 

periods of the soil moisture datasets and the ‘quality impact factor’ products (e.g., LAI 

dataset) used in this study (listed above the timeline), as well as the periods of data 

applied for the trainings of the 67 independent neural networks and the neural network 

simulation outputs (i.e., simulated soil moisture) of eight substeps (listed below the 

timeline). 

 

Specific comment 17: Section 2.3 Sections 2.4, 2.5 and 2.6 should be included in 



section 2.3 as it details the different steps of the calculation flow. A clear justification 

on why a neural network approach was adopted should be included in this section. 

Response: We have made the revision accordingly. The structure for the Data and 

Method Section is now as follows: 

‘2 Data and methods 

2.1 Data for the production of global long-term surface soil moisture data 

2.1.1 Satellite-based surface soil moisture data products 

2.1.2 The quality impact factors of soil moisture retrievals 

2.2 Methods for the production of global long-term surface soil moisture data 

The steps taken to produce global long-term surface soil moisture data include three 

basic parts, which are as follows. 1) Preprocessing: the production of high-quality 

neural network inputs; 2) neural network operation: the network training and soil 

moisture simulation; and 3) postprocessing: the correction of potential errors or 

deficiencies in the soil moisture simulation outputs… 

2.2.1 Neural network design (1): localized neural networks 

2.2.2 Preprocessing and postprocessing steps 

2.2.3 Neural network design (2)- five rounds of simulations 

2.3 Methods for the validation of surface soil moisture products 

2.4 Methods for the intra-annual variation analysis of surface soil moisture’. 

The justification of the neural network approach is now in the Introduction: ‘Among 

these three approaches, machine learning has been proven to be the best choice 

according to the connection between precipitation and the changes in soil moisture, as 

evaluated through a data assimilation technique and triple collocation analysis results 

(Van der Schalie et al., 2018).’ In section 2.1.2, we have already mentioned the use of 

neural network approach in this study, ‘…were used as ancillary neural network inputs 

to improve the soil moisture simulation (Lu et al., 2015; Qu et al., 2019; Yao et al., 

2017)’. 

 

Specific comment 18: L223: what is a hidden layer? 

Response: In neural networks, the hidden layer is located between the input and output 



layers. This layer is the result of nonlinear transformations of the input data through the 

activation function and can also be transformed into the output data. We have revised 

the sentence as ‘…, and the number of nodes in the hidden layer (between the input and 

output layers (Stinchcombe and White, 1989)) of each subnetwork was set to 7.’ 

 

Specific comment 19: L242: reference required for the “suspicious value removal”. 

Response: We apologize for the confusing phrase. Actually, it is a detailed method 

invented by this study to ensure that only the most reliable estimates are applied as the 

training target of the next round of neural networks to avoid significant error 

propagation along the subsequence of neural network rounds. Because multiple rounds 

of the neural network is a characteristic of this study, this processing step was not found 

in previous studies (i.e., no reference). We have revised the sentence, removing the 

phrase ‘suspicious value removal’. It now reads: ‘On the other hand, to avoid error 

propagation with training times by ensuring a high-quality training target for the next 

round’s simulation, we remove all suspicious values for every simulated result. This 

preprocessing step is performed by first obtaining the maximal and minimum values of 

SMAP_E soil moisture in each pixel. If the simulated value is out of the range of the 

SMAP data during 2015~2018, the value is considered suspicious and is not used as a 

training target.’ 

 

Specific comment 20: L259: Here you are referring to a 1 degree pixel a presume? 

Please specify. 

Response: We apologize for the confusing sentences. We have revised the sentences to: 

‘For data simulation in a 0.1° pixel, the most preferable independent neural network is 

expected to be trained using all the available soil moisture data sources in that pixel. 

However, in the 1° zone where it is located, the subnetwork belonging to that preferable 

independent neural network may not exist due to limited valid data points (see section 

2.2.1). Then, an alternative subnetwork driven by the combination of fewer soil 

moisture data inputs should be applied instead..’ In the revised manuscript, the word 

‘pixel’ only stands for 0.1-degree resolution, while the word ‘zone’ indicates 1° scale. 



 

Specific comment 21: Please specify. L268: why 74 networks? Please explain. 

Response: We have corrected it to ‘67 independent neural networks’ because the 

remaining 7 networks are optional and not independent. There are multiple independent 

networks included in each round. That is because ‘… While increasing the sources of 

soil moisture data inputs can be beneficial to the training efficiency, the spatial 

coverage of the simulation output is sacrificed because the overlapping area decreases 

with the increase in the number of soil moisture products. After all, most products have 

missing data in specific regions … To solve that dilemma, we classified all 0.1° pixels 

according to the available predictor soil moisture products over a 10-day period (for 

example, if there are at most four soil moisture data inputs in one round, there should 

be 4+3+2+1=10 combinations). However, to avoid soil moisture simulation under 

snow or ice cover (Section 2.2.2), not all combinations are considered. Then, 

corresponding to each selected combination, an independent neural network is trained’ 

(Lines 269~277 in the revised manuscript). The revised explanations are clearer than 

the original version. 

In addition, the training periods of the 67 independent neural networks are now shown 

in Figure R2 (Figure 1 in the revised manuscript). Therefore, this sentence is now 

revised to: ‘Based on these principles, five rounds of neural networks are designed as 

follows, with 8 substeps containing a total of 67 independent neural networks. The 

training period for each neural network and the simulation period for each substep are 

shown in Figure 1 (below the timeline), and the details are as follows: …’ 

 

Specific comment 22: Section 2.7 Figure S2 should be included in the main manuscript 

as the spatial distribution of validation data is critically important to evaluate the overall 

strength of this validation. It is surprising that none of the Canadian sites of the Russian 

sites made it to the final set of sites for validation. 

Response: Thank you for this advice. We have moved the figure showing the spatial 

distribution of the validation sites to the main manuscript (shown in Figure 3). 

The soil moisture measurement depths for the Russian sites are 0~10 cm (RUSWET-



GRASS) or 0~20 cm (RUSWET-AGRO and RUSWET-VALDAI) (Robock et al., 2000), 

which do not match the nominal simulation depth (0~5 cm) of our soil moisture product 

(constrained by SMAP). 

On the other hand, the Canadian sites are actually very limited (Dorigo et al., 2011; 

Dorigo et al., 2013) (https://www.geo.tuwien.ac.at/insitu/data_viewer/) and are often 

wetland sites with nonnegligible water fractions, which should be removed. Previous 

studies also utilized very few sites in Canada and Russia (Kolassa et al., 2018; Lievens 

et al., 2017; Zhang et al., 2019). 

In the revised manuscript, we added the information ‘Accordingly, the measurements 

used for validation are limited to ≤ 5 cm in depth (e.g., the Russian networks were not 

applicable for this reason).’ 

 

Specific comment 23: L304/306: This is an important point. Soil moisture being so 

spatially variable, validation based on single site observations within 0.1 degree pixels 

can be quite meaningless. Especially when one considers that site selection for in situ 

measurement is rarely motivated by representativity of the surrounding landscape, but 

by specific ecological reasons. 

Response: Thank you for your careful consideration. Because grid-scale soil moisture 

measurements are unavailable, almost all recent studies rely on in situ soil moisture 

records for the validation of remote sensing soil moisture products. Moreover, we have 

taken the average of the data at multiple stations in a 0.1° grid and excluded grids with 

potentially high spatial heterogeneity of surface soil moisture. Please see the response 

to Major comment 3 for details. 

 

Specific comment 24: Section 2.8 L335: “probably the best choice for periodic 

function fitting” : please support this statement by adequate reference to literature. 

Response: We have revised it to ‘Fourier functions can characterize intra-annual 

variation well (Brooks et al., 2012; Hermance et al., 2007). Therefore, for the remaining 

areas …, we fit the intra-annual cycle of soil moisture using the Fourier function…’ 

 

https://www.geo.tuwien.ac.at/insitu/data_viewer/


Specific comment 25: L344/345: I don’t understand this argument. Why restricting 

this analysis to 10 consecutive rainless days and not the whole range of 10-days sum of 

precipitation? 

Response: This study explored the impact of dry periods (20 consecutive days without 

effective rainfall) on the surface soil moisture in different areas. Moreover, without 

effective precipitation, the surface soil moisture changes are mainly driven by 

evaporation and deep percolation and thus should be negative. This process is simpler 

and can help us exclude unreliable soil moisture values from the analysis. However, if 

we consider the sum of precipitation over 10 days, the surface soil moisture changes 

will be rather complex, and there would be much more erroneous data included, leading 

to unreliable analysis results. 

We have revised the sentence to: ‘Because RSSSM indicates the average soil moisture 

condition during every 10-day period, we evaluate the surface soil moisture decline 

after 20 consecutive days (i.e., two adjacent 10-day periods) without effective 

precipitation to explore the impact of dry periods on surface soil moisture.’ 

 

Specific comment 26: Tables 3 to 8 could be synthesized into only two tables: one for 

temporal accuracy assessment and one for spatial accuracy assessment for the three 

products comparisons with SIM. Similarly, it would be nice to have figures 3, 4, 6, 7, 9 

and 10 summarized in 2 figures where all four products appear (SIM, SMAP, GLDAS 

and ASCAT). This would facilitate comparison between products. 

Response: Thank you for this advice. The periods corresponding to these comparisons 

differ from each other. SMAP has data since March 2015, ASCAT is available from 

2007, while SIM (named ‘RSSSM’ in the revised manuscript), GLDAS, ERA5 Land 

and GLEAM v3.3a all cover the whole study period (2003~2018), but with missing 

values in different areas. Although CCI (ECV) also covers the entire period, it lacks 

data in many places, especially before 2007 (Figure 13d). Therefore, the in situ surface 

soil moisture measurements entering the comparison between RSSSM and SMAP are 

limited to March 2015~2018, whereas only the ISMN site data during 2007~2018 were 

applied for the accuracy comparison between RSSSM and ASCAT. Additionally, when 



comparing RSSSM against CCI (ECV), we included the soil moisture records in only 

the grids with both RSSSM and CCI data during the specific period. As we can see, the 

overall accuracy of RSSSM in Figure 4c (for the comparison with SMAP, during April 

2015~2018) is R2=0.46, RMSE=0.083, but in Figure 10 (for comparison against 

GLDAS, during 2003~2018), the overall R2 of RSSSM is 0.42, and the RMSE is 0.087. 

In addition, the temporal accuracy of RSSSM in all climatic regions (Figure 5, Figure 

8, Figure 11 in the revised paper) and its spatial accuracy during all seasons (Figure 6, 

Figure 9, Figure 12) are different among the comparisons against different soil moisture 

products. For that reason, if the 6 figures are combined into 2 figures, they will be too 

crowded, and the comparison will be not clear enough. 

Following your comment, we have combined the tables as follows: 

Table R1 (Table 2 in the revised manuscript): The mean and median values of the five 

evaluation indexes (correlation coefficient: r, RMSE, bias, unbiased RMSE (ubRMSE), 

and the anomalies r (A.R)) on the temporal accuracy of the surface soil moisture 

simulated in this study (RSSSM) and the other surface soil moisture products when 

validated using ISMN in situ measurements. Note: 1) for the comparison of RSSSM 

against the SMAP_E (SMAP) product, the validation period is from April 2015 to 2018; 

2) for the comparison between RSSSM and ASCAT-SWI (ASCAT), the period is 

2007~2018; 3) the comparison period for RSSSM and GLDAS Noah v2.1 (GLDAS), 

ERA5-Land (ERA5-L), CCI or GLEAM v3.3a (GLE-a) surface soil moisture product is 

2003~2018; 4) the common period for RSSSM and GLEAM v3.3b (GLE-b) is from 2003 

to September 2018. 

Index r RMSE bias ubRMSE A.R 

Product RSSSM SMAP RSSSM SMAP RSSSM SMAP RSSSM SMAP RSSSM SMAP 

Mean 0.756 0.762 0.075 0.074 0.015 0.016 0.043 0.043 0.700 0.707 

Median 0.795 0.798 0.067 0.066 0.009 0.013 0.043 0.043 0.720 0.744 

Product RSSSM ASCAT RSSSM ASCAT RSSSM ASCAT RSSSM ASCAT RSSSM ASCAT 

Mean 0.687 0.561 0.079 0.095 0.002 -0.007 0.047 0.062 0.627 0.554 

Median 0.735 0.627 0.074 0.088 -0.001 -0.010 0.048 0.062 0.654 0.595 

Product RSSSM GLDAS RSSSM GLDAS RSSSM GLDAS RSSSM GLDAS RSSSM GLDAS 

Mean 0.689 0.613 0.080 0.091 0.001 0.028 0.047 0.051 0.620 0.519 

Median 0.737 0.661 0.075 0.082 -0.002 0.029 0.048 0.049 0.661 0.567 



Product RSSSM ERA5-L RSSSM ERA5-L RSSSM ERA5-L RSSSM ERA5-L RSSSM ERA5-L 

Mean 0.689 0.734 0.080 0.112 0.001 0.082 0.047 0.050 0.620 0.648 

Median 0.737 0.758 0.075 0.094 -0.002 0.073 0.048 0.049 0.661 0.672 

Product RSSSM CCI RSSSM CCI RSSSM CCI RSSSM CCI RSSSM CCI 

Mean 0.690 0.642 0.080 0.091 0.002 -0.002 0.047 0.049 0.620 0.530 

Median 0.735 0.666 0.074 0.080 -0.002 0.006 0.049 0.047 0.658 0.552 

Product RSSSM GLE-a RSSSM GLE-a RSSSM GLE-a RSSSM GLE-a RSSSM GLE-a 

Mean 0.689 0.735 0.080 0.126 0.001 0.093 0.047 0.047 0.620 0.681 

Median 0.737 0.771 0.075 0.119 -0.002 0.104 0.048 0.046 0.661 0.715 

Product RSSSM GLE-b RSSSM GLE-b RSSSM GLE-b RSSSM GLE-b RSSSM GLE-b 

Mean 0.688 0.729 0.080 0.117 0.001 0.077 0.047 0.046 0.618 0.670 

Median 0.730 0.762 0.075 0.112 -0.002 0.091 0.048 0.045 0.659 0.705 

 

Table R2 (Table 3 in the revised manuscript): The mean and median values of the four 

evaluation indexes (r, RMSE, bias and ubRMSE) on the spatial pattern accuracy of 

RSSSM and the other global long-term surface soil moisture products (SMAP_E, 

ASCAT-SWI, GLDAS Noah v2.1, ERA5-Land, CCI, GLEAM v3.3a and GLEAM v3.3b) 

in every 10-day period. For each pair of comparisons, the evaluation indexes are for 

the common period of the two products, which is the same as Table 2. The abbreviations 

for the products are also the same as those in Table 2. 

Index r RMSE bias ubRMSE 

Product RSSSM SMAP RSSSM SMAP RSSSM SMAP RSSSM SMAP 

Mean 0.652 0.659 0.084 0.084 0.016 0.016 0.082 0.081 

Median 0.655 0.664 0.082 0.081 0.019 0.019 0.080 0.078 

Product RSSSM ASCAT RSSSM ASCAT RSSSM ASCAT RSSSM ASCAT 

Mean 0.636 0.561 0.087 0.102 0.005 -0.010 0.085 0.097 

Median 0.650 0.572 0.086 0.100 0.007 -0.009 0.085 0.095 

Product RSSSM GLDAS RSSSM GLDAS RSSSM GLDAS RSSSM GLDAS 

Mean 0.617 0.593 0.090 0.097 -0.005 0.035 0.086 0.087 

Median 0.643 0.630 0.089 0.096 0.001 0.041 0.086 0.086 

Product RSSSM ERA5-L RSSSM ERA5-L RSSSM ERA5-L RSSSM ERA5-L 

Mean 0.616 0.575 0.090 0.125 -0.005 0.077 0.086 0.095 

Median 0.641 0.633 0.089 0.125 0.001 0.082 0.086 0.092 

Product RSSSM CCI RSSSM CCI RSSSM CCI RSSSM CCI 

Mean 0.618 0.497 0.090 0.099 -0.004 0.003 0.086 0.093 

Median 0.647 0.554 0.089 0.098 0.002 0.006 0.086 0.093 

Product RSSSM GLE-a RSSSM GLE-a RSSSM GLE-a RSSSM GLE-a 

Mean 0.617 0.576 0.090 0.139 -0.005 0.105 0.086 0.089 

Median 0.643 0.616 0.089 0.142 0.001 0.112 0.086 0.088 



Product RSSSM GLE-b RSSSM GLE-b RSSSM GLE-b RSSSM GLE-b 

Mean 0.616 0.560 0.090 0.128 -0.005 0.088 0.086 0.090 

Median 0.643 0.613 0.089 0.130 0.001 0.094 0.086 0.089 

 

Specific comment 27: L380-383: However, it looks like the relationship between SIM 

estimates and in situ observations is nonlinear (Figure 5a). Furthermore, SIM seems to 

overestimate soil moisture in the lowest range (winter?) when a density of pixels is 

quite high. Please include these remarks in the results. 

Response: Thank you for the reminder. We have added a sentence accordingly. It reads: 

‘However, RSSSM overestimates soil moisture when it is low, which is a problem 

inherited from SMAP product (Figure 4), and is a bit nonlinearly correlated with the 

measured values (Figure 7a).’ 

 

Specific comment 28: L393: the relationship between SIM and in situ measurements 

is also obviously nonlinear. Please include this remark in the text for fairness. 

Response: We have revised the description accordingly. It now reads: ‘While RSSSM 

is nonlinearly correlated with measured soil moisture, the relationship between GLDAS 

soil moisture and the measurements appears to be slightly more nonlinear, resulting in 

a smaller R2 of 0.39 and higher RMSE of 0.097 for the GLDAS product than those for 

RSSSM (R2: 0.42; RMSE: 0.087, see Figure 10).’ 

 

Specific comment 29: Why table S19 and Figure S7 do not appear in the main 

document like the other product comparison? Please move them to the main manuscript 

Response: We have combined Table S17, Table S19, Table S21, and Table S22 in the 

original Supplement to Table 2 in the revised manuscript (see Table R1). Table S18, 

Table S20, Table S23 and Table S24 are integrated into Table 3 as well (see Table R2). 

For the reasons described in the response to Specific comment 26 (the time periods and 

spatial extents for the comparisons of RSSSM in this study against the different existing 

surface soil moisture products), the figures were not combined to avoid over-crowding 

the figures and unnecessary confusion. Thus, we retained Figure S7, Figure S8, etc. in 



the Supplement to prevent the main manuscript from being too long and too complex 

to read. 

 

Specific comment 30: L422-434: This belongs to the discussion section. 

Response: We have moved the sentences belonging to the discussion section to the 

Discussion section. The revised sentences in the Results section now read: ‘Next, we 

focus on the interannual change in data quality. According to Figure 13a~c, while the 

correlation coefficient for RSSSM does not vary significantly among different years, the 

RMSE and ubRMSE values in earlier periods are somewhat higher than those after 

2012. Although the data quality of RSSSM is difficult to maintain, the degree of 

degradation is much lower than that of CCI. The comparison of the spatial coverages 

of the 10-day scale RSSSM and CCI data (rainforests are excluded) shows that RSSSM 

covers all land surfaces except for permafrost, while the interannual variation in 

coverage is also negligible throughout the period (the intra-annual cycles of data 

coverages result from the changes in frozen areas), which are preferable to CCI, whose 

data coverage before 2007 is limited (Figure 13d).’ 

After the removal, the Discussion section has been revised as follows: ‘In this study, an 

improved global long-term satellite-based surface soil moisture dataset, …. Our 

product is temporally continuous during 2003~2018 and covers the whole globe except 

for frozen grounds (CCI has limited spatial coverage before 2007, when ASCAT data 

are unavailable), ensuring its applicability to global long-term studies or ecosystem 

modeling…. The RMSE and ubRMSE values in earlier periods are somewhat higher 

than those after 2012 because 1) five rounds of simulations were performed, with the 

output converted into the training target of the next round’s neural networks, leading to 

little error propagation as the simulation period extended to the past; and 2) the quality 

of microwave soil moisture data is generally low in early periods due to the relatively 

unadvanced microwave sensors with low signal-to-noise ratio (SNR). However, due to 

the elaborate design of the neural network set (localized networks, full use of 11 

microwave soil moisture products, the determination of quality impact factors and the 

organization of 67 independent neural networks), high training efficiency is achieved, 



resulting in limited amplification of noise and high maintenance of valid information 

during 16 years of simulation. This method turns out to be better than the simple CDF 

matching algorithm, which may not efficiently calibrate the low-quality soil moisture 

data retrieved from early sensor measurements.’ 
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