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Abstract.

Climate impact assessments require information about climate change at regional and ideally local scales. In
dendroecological studies, this information has traditionally been obtained using statistical methods, which preclude the
linkage of local climate changes to large-scale drivers in a process-based way. As part of recent efforts to investigate the
impact of climate change on forest ecosystems in Bavaria, Germany, within the BayTreeNet project, we developed a high-
resolution atmospheric modelling dataset, BAYWREF, for the region of Bavaria over the thirty-year period of September
1987 to August 2018. The atmospheric model employed in this study, WRF, was configured with two nested domains of 7.5-
and 1.5-km grid spacing, centred over Bavaria and forced at the outer lateral boundaries by ERAS reanalysis data. Based on
a shorter evaluation period of September 2017 to August 2018, we evaluate two aspects of the simulations: (i) we assess
model biases compared with an extensive network of observational data at both two-hourly and daily mean temporal
resolutions, and (ii) we investigate the influence of using grid analysis nudging. The model represents variability in near-
surface meteorological conditions well, with a clear improvement when nudging is used, although there are cold and warm
biases in winter and summer, respectively. We also present a brief overview of the full dataset, which will provide a unique
and valuable tool for investigating climate change in Bavaria with high interdisciplinary relevance. Data from the finest
resolution WRF domain are available for download at daily temporal resolution from a public repository at the Open Science

Framework (Collier, 2020; https://www.doi.org/10.17605/0OSF.I0O/AQ58B).

1 Introduction

The forcing of climate change in modern times is clearly of global nature, and many important scientific problems can be
understood at the global scale as well (e.g., Held and Soden, 2006). Climate impact assessments, however, must also
understand the effects at regional and even local scales in order to develop appropriate adaptation and mitigation measures.
Although local phenomena such as glaciers, lakes, vegetation patterns, or stream flow show a strong dependence on the

large-scale climate dynamics, these proxies experience further variability when the large-scale signal is transferred to their
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location (e.g., Molg et al., 2014). In order to contextualize local changes, there is a need to link local climate to the large-

scale climate, ideally in a process-based way.

In dendroclimatological studies, the traditional approach is to compute a calibration function between local or regional tree-
ring parameters and climatic variables. Typically, such a statistical relationship would try to utilize local station data (which
are generally sparse), gridded observations (which tend to be coarse resolution), or indices of large-scale climate dynamics
(which describe coupled atmosphere-ocean modes) as the climatic influence (e.g., Hochreuther et al., 2016). Besides known
problems like stationarity (e.g., Frias et al., 2006), statistical approaches also limit the possibilities to explain the influences
at the various scales on a process-resolving level. Dynamical downscaling with a full numerical atmospheric model provides
a physical answer (Giorgi and Mearns, 1991), yet the disadvantage is the high computational cost. Hence, dynamical
downscaling at near-kilometer resolution has traditionally been performed on a case-study basis for weather events (e.g.,
Gohm et al., 2008). Multi-decadal simulations, on the other hand, were typically limited to resolutions of tens of kilometers
(e.g., Di Luca et al., 2016). With the progress of computational resources, dynamical downscaling is becoming a candidate
for climate impact studies that require local-scale information, and the first decadal simulations at ~1-km resolution are now
available (e.g., Collier et al., 2018). From the resultant model output, impact studies could utilize information about local
meteorological conditions at high-spatial and high-temporal resolution, and over long, climatologically relevant temporal
periods. Moreover, the physically consistent output would enable to generate the said process understanding of influences

across the various climatic scales.

The management of forests is a classical impact study where adaptation and mitigation measures meet the heterogeneous
effects of climate change at local scales (e.g., Lindner et al., 2014). With this background, the project BayTreeNet was
started recently under the umbrella of the interdisciplinary climatological research network Bayklif (https://www.bayklif.de;

last accessed 1 March 2020), and aims to investigate the response of forest ecosystems to current and future climate
dynamics across different growth areas in Bavaria, Germany. The project comprises a network of 10 measurement sites
where meteorological and dendroecological data will be monitored and used both for research and for public and educational
outreach. The locations were selected carefully to account for ecological and elevational variety in the study region, and the
sites are currently in the process of being installed. High-temporal (approximately daily) and high-spatial resolution data is a
key component of dendroecological impact studies, since the physiological behavior of trees, their structural properties and
functional wood anatomy, as well as other important parameters such as wood density and mortality risk are not only

influenced by seasonal averages, but also by short-term extreme events and weather anomalies (e.g., Brauning et al., 2016).

Previous regional climate simulations including Bavaria over continuous multi-decadal periods were performed with model
resolutions as high as 5-7 km and up to the year 2009 (e.g., Berg et al., 2013; Warscher et al., 2019). However, to the best of

our knowledge, such datasets at the kilometer scale and up to the near present do not yet exist, despite previous research
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highlighting the importance of convection-permitting resolution in this region (Fosser et al., 2014). We address this data gap
by performing simulations with an atmospheric model, configured with convection-permitting spatial resolution in a nested
domain over Bavaria, for the recent climatological period of 1987 to 2018. These data were generated as part of the
aforementioned BayTreeNet project in order to assess the dendroecological consequences of local climate change on forests
in the study region. These data will also find multidisciplinary interest among researchers assessing ecological and human

dependencies on the climate for scientific and practical questions.

2 Methods
2.1 Atmospheric model

The atmospheric simulations were performed using the advanced research version of the Weather Research & Forecasting
(WRF) model v. 4.1 (Skamarock and Klemp, 2008) configured with two one-way-nested domains of 7.5- and 1.5-km grid
spacing situated over Bavaria (Fig. 1), hereafter referred to as D1 and D2. Terrain data were taken from NASA Shuttle Radar
Topographic Mission data re-sampled to 1-km and 500-m grids (Jarvis et al., 2008; https://cgiarcsi.community/data/srtm-
90m-digital-elevation-database-v4-1; last accessed 24 May 2020) for D1 and D2, respectively, while land-use data was

updated based on the European Space Agency Climate Change Initiative Land Cover data at 300-m spatial resolution

(http://maps.elie.ucl.ac.be/CCl/viewer/download.php; last accessed 18 April 2018). The physics and dynamics options used
in the simulations are based on recent convection-permitting applications of WRF by the authors (Collier et al., 2019) and
are summarized in Table 1. We note that no additional urban physics were enabled beyond the default parameterization used

by the Noah family of land surface models (Liu et al., 2006) and land-use sub-tiling was not enabled.

Forcing data at the lateral boundary of D1 and bottom boundaries of both domains was taken from the ERAS5 reanalysis
(Copernicus Climate Change Service (C3S), 2017) at three-hourly temporal resolution. The 30-year simulation was divided
into 30 annual simulations that were run continuously from 15 August of year n-/ to 31 August of year n. The first 16 days
of each simulation were discarded as spin-up time, retaining data from 1 September of year n-/ onwards. Atmospheric
carbon dioxide (CO2) was updated in WRF for each simulation year using annually and globally averaged concentrations at
the surface from the National Oceanic and Atmospheric Administration Earth System Research Laboratory (Tans and
Keeling, 2019). Each simulation employed the CO2 concentration of year »n, which ranged from 351 to 407 ppm between
1988 and 2018. All other parameters and bottom boundary conditions (e.g., vegetation and land use) were held constant for
all simulations. Therefore, they do not capture the impact of known land-use changes over the study period (e.g., Fuchs et

al., 2013).

Each run required 12 days of wall-time with 320 processors on the Meggie compute cluster at the Erlangen Regional

Computing Center, for a total of 2.86 million core hours. The model was compiled using intel 17.0 compilers and run using
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distributed-memory parallelization. Model output was written at two-hourly intervals, amounting to more than 55 TB of

data, in addition to ~30 TB of pre-processing and input files.

2.2 Model Evaluation

For detailed model evaluation, we selected the period of 00 UTC 1 September 2017 to 00 UTC 1 September 2018, as data
availability is highest closest to present day and the summer of 2018 contained a record heatwave with drought conditions
(Beyer, 2018). Neither extensive physics optimization nor a longer evaluation period was possible due to the computational
expense of the simulations. For the evaluation period, we compared two test simulations (see Sect. 2.3) with data from the
German Weather Service (DWD) Climate Data Center for all stations in Bavaria with hourly temporal resolution available,
which provide good spatial coverage of our study area (Table 2; Fig. 2). We compared the following near-surface
atmospheric variables: air temperature and relative humidity at 2 m (7 and RH), zonal and meridional wind components at 10
m (U and V), surface pressure (PS), and precipitation (PR). In our comparison, we excluded measurement sites where the
observed terrain height differed from the modelled value by more than 100 m (similar to e.g., Vionnet et al., 2019),
corresponding to four sites in total for all variables except for PS (three) and PR (nine). After this exclusion, the average
difference between modelled and observed terrain height at all stations is within + 8 m for each dataset. We also excluded
any days with missing observational data when computing daily statistics. We did not evaluate radiation variables, as only
sunshine hours are available from the DWD in sufficiently large sample sizes. However, for understanding temperature
biases in WRF during summer 2018, we used incoming shortwave radiation from the DWD Climate Data Center dataset
entitled “Hourly station observations of solar incoming (total/diffuse) and longwave downward radiation for Germany”
(Table 2). In total, there were four sites with both incoming shortwave (SW) and T data available in Bavaria between 1 June
and 31 August 2018 whose elevation was represented within £100 m in D2: Niirnberg (id 3668), Weihenstephan-Diirnast
(5404), Wiirzburg (5705), and Fiirstenzell (5856).

For statistical analysis, we computed the mean deviation (MD), mean absolute deviation (MAD), and the coefficient of
determination (R?) between station data and data from the closest grid point in D2 without spatial interpolation at two-hourly
and daily temporal frequency. The MD, also referred to here as the model bias, and the MAD were computed from
observation minus model. For precipitation, only daily totals were evaluated, and the MD and MAD were computed

considering only days with non-zero observed precipitation.

Finally, we also compared night-time land surface temperature (LST) from the MODIS MYD11A1 dataset (Table 2) at 1-km
spatial and daily temporal resolution with simulated skin temperature in D2 for the period of 1 June to 31 August 2018. The
night view time ranged from 1.2 to 2.8 hours in local solar time, with a domain and time averaged value of 2.2 hours. As

WREF data were only available at two-hourly timesteps, we averaged 00 and 02 UTC (01 and 03 local time) data from D2 for

4
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comparison with MODIS. In our comparison, we excluded nights when MODIS had more than 50% missing data over D2,

leaving a sample size of 52.

2.3 Forcing Strategy

For the evaluation period, we compared two simulations with different forcing approaches, one excluding and one including
grid analysis nudging to constrain drift in the large-scale circulation (e.g., Bowden et al., 2013). We refer to these
simulations as WRF _NO NUDGE and WRF NUDGE in Section 3.1, respectively. For the WRF NUDGE simulation,
analysis nudging was applied in D1 outside of the planetary boundary layer and above the lowest 10 model levels using the
default strength (3.0 x 10™*) for temperature and winds and reduced strength (5.0 x 10) for the water vapor mixing ratio
(e.g., Otte et al., 2012), consistent with a previous decadal application of WRF (Collier et al., 2018). Given the
computational expense of each annual simulation, we did not attempt to optimize the nudging coefficients for our study area

and instead evaluate simply whether nudging in this form improves the simulated atmospheric variables or not.

2.4 Climatological Analysis

To briefly evaluate the full climatological simulation, we compared simulated and observed monthly mean 7" from the DWD
dataset ‘MO _TT MNO004’ (Table 2), with a sample size of 26 stations that remained after filtering for height differences
exceeding 100 m, the presence of missing data, and stations located in grid cells classified as urban (see Sect. 3.1). For the
distributed trend analysis, we did not apply a field significance test (e.g., Wilks, 2016) due to the small sample size. Future
users should rigorously evaluate biases for the variables, time periods, and resolutions relevant to their particular

applications.

We note that unphysically large sub-surface temperatures were simulated at a number of glacierized grid points, primarily

during the months of July to September. Considering all of D2, the daily average number of affected grid cells was 24,
compared with 294 glacierized and 122,500 total cells. The maximum number of affected grid points was 274 on 31 August
2017, corresponding to 0.2% of D2. In addition, over the climatological simulation, only one grid point in Bavaria was
affected (J = 71, I = 285; 47.4952°N, 13.6039°E). Surface temperature remained physical, since it is limited at the melting
point over glacier surfaces, and soil moisture was unaffected, since it is specified to be fully saturated in glacierized grid
cells. No other land-use categories were affected, and adjacent grid points were also unaffected, as the land surface model
operates as a column model with no lateral communication. To preclude usage of these data, sub-surface temperature was set
to missing where it exceeded 273.16 at glacierized grid points in BAYWRF. More information about this numerical issue is

available on the model’s GitHub repository (https://github.com/wrf-model/WRF/issues/1185; last accessed 24 May 2020).
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3 Results & Discussion
3.1 Model Evaluation

Averaged over the evaluation year, both WRF simulations capture the magnitude and variability of sub-diurnal near-surface
meteorological conditions at most sites well (Fig. 3; Table 3). The interquartile range (IQR; range between upper and lower
quartile) of MDs is one order of magnitude smaller than the observed standard deviation for all variables. As expected,
variability is best captured for 7 and PS, with R? values that uniformly exceed 0.87 and 0.96, respectively. Those of RH have
a larger range but a lower quartile above ~0.55. Compared with these variables, the model shows less skill in simulating sub-
diurnal variability in winds, with lower quartiles of R? for U and V of approximately 0.39 and 0.27, respectively. Shifting to
daily timescales, both simulations represent variability in daily total PR surprisingly well, with IQRs of MDs below ~1.25
mm and lower quartiles of R? exceeding 0.18 and 0.33, depending on the simulation. Previous studies have reported Root
Mean Square Deviations (RMSD). For direct comparison, the mean RMSD in WRF NUDGE for two-hourly 7 and RH is
2.67 K and 13.7%, respectively, and for daily total precipitation is 5.27 mm. These values are similar to but lower than

previously reported biases in WRF at 5-km grid spacing over Bavaria for the period of 2001—2009 (Warscher et al., 2019).

Examination of model biases on a monthly basis reveals further insights into the model performance (Fig. 4). The amplitude
of the annual cycle is overpredicted in WRF, indicating that the good average agreement in 7 results from compensating
biases: there is a cold bias in WRF in winter, a well-known issue with the model over snow-covered surfaces (e.g., Tomasi et
al., 2017), and a warm bias in summer (Fig. 4a). The latter bias results in an underprediction of RH during this season (Fig.
4b), suggesting that WRF represents absolute humidity more accurately. The summer temperature bias is also more sustained
than the winter one, resulting in the long tails (heads) in the distribution of MDs of 7 (RH) in Fig. 3. There is also a general
underprediction of near-surface winds from fall to early winter, as exemplified by the results for U in Fig. 4c and the slight
positive skewness of the distribution of MDs for both U and V in Fig. 3, consistent with overly stable atmospheric conditions
resulting from the cold bias. Finally, the model tends to overestimate precipitation in early spring and underestimate it in

summer and fall.

Figure 5 shows a representative timeseries of 7" and SW for the station in Niirnberg (3668) in June 2018. The timeseries
illustrates that the positive temperature bias in summer 2018 results from two distinct contributions. First, there is an
overestimation of daytime maximum 7, coinciding with an overestimation of SW. This relationship is observed both at
Niirnberg and at the other three stations for which both datasets are available (Fig. 6a; cf. Sect. 2.2). The overestimation
suggests there is an underestimation of either daytime cloudiness or its impact on incoming SW at the surface, likely
stemming from the microphysics parameterization. Second, there is an overestimation of night-time minimum 7, suggesting
that land-surface processes may play a role. Of the 101 stations with 7 measurements available, the dominant land-use

categories of the grid cells containing stations are: 'Urban’ (10 sites); '‘Dryland Cropland and Pasture' (4 sites); 'Grassland'
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(72 sites); 'Deciduous Broadleaf Forest' (1 sites); 'Evergreen Needleleaf Forest' (11 sites); and, 'Mixed Forest' (3 sites). The
overestimation of night-time 7 is greatest at stations located in grid cells classified as urban (Fig. 6b), consistent with a
previous evaluation of WRF with the Noah-MP LSM for urban and rural stations in summer (Salamanca et al., 2018). The
bias amplification in urban grid cells may reflect an incorrect classification of the underlying land surface in WRF, as only
the Miinchen-Stadt station (id 3379) is listed as an urban station on the DWD’s list for computing heat island effects. It may
also result from an overestimation of heat storage when a mosaic approach is not used, and therefore the entire grid cell is
treated as urban (Daniel Fenner, personal communication). The potential role of the land-surface specification or properties
is reinforced by the comparison with MODIS data (Fig. 7), which shows the largest warm biases over grid cells classified as
urban or croplands while biases are smaller in forested areas. There is also a cold bias along the foothills and at higher
elevations in the Alps. The biases are slightly smaller in WRF _NUDGE than in WRF _NO NUDGE, consistent with the

station-based assessment.

In addition to factors internal to WRF, we note that the driving reanalysis data may also contribute to the warm bias, at least
at some locations. From the available observations, 60 stations have both valid 7" data between June and August 2018 and a
modelled elevation in ERAS that is within £100 m of reality. Averaged over the summer months and all stations, ERAS5 has
a mean warm bias of 0.37°C. At 25 of the sites, a warm bias exceeding 0.5°C is present, with an average value over these

sites of 0.92°C.

3.2 Impact of Grid Analysis Nudging

The inclusion of grid analysis nudging leads to a small but nearly uniform improvement in agreement between observed and
simulated variables. The distribution of MDs is closer to zero for all variables except U and PS, while those of MADs are
closer for all variables (cf. Fig. 3 and Table 3). R? values are also uniformly higher when nudging is used, and the lowest
lower-quartile value is 0.3 in WRF NUDGE compared with only 0.18 in WRF NO _NUDGE. Nudging produces a
particularly noticeable improvement in simulated precipitation, halving the MD and nearly doubling the R? values (cf. Fig. 3,
Fig. 4 and Table 3). Its usage also reduces the magnitude of the seasonal temperature biases and the number of extreme
occurrences of the warm bias in summer (cf. Fig. 4 and Fig. 6). Considering daily timescales (the temporal resolution of data
available in BAYWRF), the agreement of WRF _NUDGE with the observations is similar or even improved (Table 4): the
mean MD is largely unaffected, but the average MAD decreases and average R? increases. Based on these improvements,

grid analysis nudging was adopted for the climatological simulations.

3.3 Climatological Simulations

Figure 8a compares simulated and observed annual mean 7" between 1988 and 2018 at the 33 stations with data available

after filtering (cf. Sect. 2.4). WRF captures the variability in annual 7 well, although the data and its spread are slightly

underestimated during the late 1990s and 2000s. The observations have a statistically significant trend of 0.28 K/decade (p =
7
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0.04) while the model data do not (0.2 K/decade, p = 0.2) although this statistical analysis is very sensitive with such a small
sample size. However, inspection of 7 trends by month reveals that WRF overestimates the slight cooling trends observed
between January and March (statistically insignificant in both data sources; not shown), due to the winter cold bias and/or
potential errors in snow depth and extent, which may contribute to an underestimate of the annual warming trend. Trends are
otherwise well captured, including the three months with statistically significant observed trends: April (OBS: 0.83;
WRF:0.75 K/decade); June (OBS: 0.75; WRF:0.71 K/decade); and, November (OBS: 0.72; WRF:0.71 K/decade). WRF
similarly captures the variability of summer mean (June, July, August; JJA) temperature (Fig. 8b), although the warm bias at
the station locations is again apparent. The observed trend is 0.49 K/decade compared with 0.48 in WRF (p<0.05).
Furthermore, the model captures recent extreme summers in Western and Central Europe in 2003, 2015 and 2018, which in
combination with drought have had severe impacts on economies, public health (e.g., Muthers et al., 2017), and primary

productivity (e.g., Ciais et al., 2005).

Here we note that in addition to the potential factors contributing to temperature biases discussed in Section 3.1, evaluation
of the climatological simulation is also affected by discontinuities in station location. One example is Niirnberg (id 3668),
which moved on 4 December 1995 from (49.4947°N, 11.0806°E) to (49.5030°N, 11.0549°E). The older station position is
shifted one grid cell to the south and one grid cell to the west compared with its current location, corresponding to a shift in
land use from urban (old position) to grasslands (new). Any discontinuities in location and underlying surface type are not

captured since the most recent station positions are used for extracting 7 data from D2.

Spatially distributed trends in 7T are strongest and significant over the largest in area during JJA (Fig. 9a; other seasons not
shown), ranging from ~0.3 to 0.7 K/decade over Bavaria. Trends in precipitable water are likewise uniformly positive over
the study region, ranging from ~0.2 to 0.3 mm/decade. The trends of both fields also have a positive gradient between
southwestern and northeastern Bavaria. These results agree qualitatively and quantitively with previous studies (e.g.,

Alshawaf et al., 2017).

4 Data Availability

Data from BAYWRF are available for download on the Open Science Framework (OSF; Collier, 2020;
https://www.doi.org/10.17605/OSF.I0/AQ58B). Due to the size of the simulations, we have only provided daily mean data
from the finest WRF domain (D2; 1.5-km grid spacing) after cropping close to the extent of Bavaria and removing vertical
levels above ~ 200 hPa, amounting to 450 GB in total. Data are divided into three- and four-dimensional fields by year and
month, with respective file sizes of ~150 MB and 1.1 GB. For the four-dimensional data, perturbation and base-state

atmospheric pressure (WRF variables P and PB) and geopotential (PH and PHB) were combined to generate full model
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fields, while perturbation potential temperature (T) was converted to atmospheric temperature. Subsets of D1 or sub-diurnal

data can be made available upon request.

5 Conclusions

We presented a climatological, convection-permitting simulation with the atmospheric model WRF over Bavaria for the
period of September 1987 to August 2018. For the evaluation period of September 2017 to August 2018, we compared the
simulations with meteorological measurements across Bavaria and evaluated the impact of using grid-analysis nudging. We
found that the model reproduced variability in near-surface meteorological conditions well, although seasonal temperature
biases were present. Grid analysis nudging decreased the mean deviations and increased the correlations between simulations
and observations at the majority of sites for nearly all evaluated atmospheric variables, with a particularly noticeable
improvement for simulated daily precipitation. BAYWRF provides a useful database for linking large-scale climate, as
represented by the ERAS reanalysis, to mesoscale climate over Germany, to local conditions in Bavaria, in a physically
based way. The data are intended for dendroecological research applications but would also provide a valuable tool for

investigations of the climate dependence of economic, societal, ecological, and agricultural processes in Bavaria.
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Figure 1: Extent and modelled topographic height [m] in WRF D1 (a) and D2 (b). The extent of D2 and of Bavaria are
delineated in black in the top and bottom panels, respectively.
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Figure 2: The location of the stations used for model evaluation for each dataset listed in Table 2. Datasets labelled in black

are shown by filled black circles, while datasets labelled in pink are shown by open pink circles, illustrating that locations for

measurements of air temperature and humidity (a; TT TU MNO009 & RF TU MNO009) and of wind speed and direction (b;

F MNO003 & D MNO003) were the same. The locations for measurements of surface pressure (PO_MNOOS) and of
375 precipitation (R1_MNO008) are shown in panels ¢ and d, respectively.
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Figure 3: Box-percentile plots (Esty and Banfield, 2003) of mean deviation (MD), mean absolute deviation (MAD), and
coefficient of determination (R?) between observations and the two WRF simulations, WRF NO NUDGE (blue) and
WRF _NUDGE (green), for 2-m (a) air temperature and (b) relative humidity, 10-m (c) zonal and (d) meridional winds, (e)

surface pressure and (f) precipitation. The statistics for all variables except for precipitation were computed from two-hourly

15

instantaneous values, while those for precipitation were computed using daily totals. The shape of the plots shows the
distribution of data over their range of values, white lines delineate 25", 50" and 75" percentiles, and a black dot indicates
the mean. The observed standard deviation (cobs) for each variable is provided in the left column.
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Figure 4: Timeseries of monthly mean 2-m (a) air temperature and (b) relative humidity, (c¢) 10-m zonal winds, and (d) daily
total precipitation (left column) between September 2017 and August 2018. Observational, WRF NO NUDGE and
WRF_NUDGE data are shown in black, blue and green, respectively. Timeseries of monthly mean biases of the same
variables (right column). The mean bias over all stations is shown for each simulation using the same colour assignment,
while the lower and upper quartile of the station biases is shown as a blue polygon and green bars for WRF_NO_ NUDGE
and WRF_NUDGE data, respectively.
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Figure 6: Scatter plots of (a) air temperature bias [°C] vs. incoming shortwave radiation bias [W m™] and (b) air temperature

bias [°C] vs. land-use category in closest grid cell to station. The category abbreviations from left to right describe: 'Urban

and Built-Up Land’ (10 sites); 'Dryland Cropland and Pasture' (4 sites); 'Grassland' (72 sites); 'Deciduous Broadleaf Forest'

(1 sites); 'Evergreen Needleleaf Forest' (11 sites); and, '"ixed Forest' (3 sites). For both panels, data from
415 WRF NO NUDGE and WRF NUDGE are displayed as blue square and green circle markers, respectively.
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Figure 7: (a) Land-use classification in D2. (b) Number of timesteps with valid night-time LST data in the MODIS
MYD11A1 dataset between 1 June and 31 August 2018 out of a maximum of 52 with less than 50% missing data in D2. The
425 average difference in observed and simulated LST for (¢c) WRF_NO_NUDGE and (d) WRF_NUDGE.
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Table 1: A summary of the WRF configuration used for the simulations.

Table 1: WRF

configuration

Domain configuration

Horizontal grid spacing 7.5 & 1.5 km (D1-2)

Grid dimensions 351x301, 351x351

Time step 45&9s

Vertical levels 60

Model top pressure 1000 hPa

Model physics

Radiation RRTMG (Iacono et al., 2008)
Microphysics Morrison (Morrison et al., 2009)
Cumulus Kain-Fritsch (none in D2) (Kain, 2004)
Planetary boundary layer Yonsei State University (Hong et al., 2006)
Atmospheric surface layer Monin Obukhov (Jiménez et al., 2012)
Land surface Noah-MP (Niu et al., 2011)
Dynamics

Top boundary condition Rayleigh damping

Diffusion Calculated in physical space

Table 2: A summary of data used for model evaluation. Rows highlighted in grey provide information about
observational data from the DWD CDC Data Portal, whose measurement locations are shown in Figure 2.
T al | Total Stati
Dataset Name Variable [unit] empo.ra ? al Sta l?ns Version Access URL Last Accessed Dataset Description
Resolution | in Bavaria
TT_TU_MNO009 2-m air temperature [°C] Hourly 106 v19.3 https://cdc.dwd.de/portal https://edc.dwd.de/sdi/pid/TT_TU_MNO09/DESCRIPTION_TT_TU_MNO09_en.pdf
RF_TU_MNO009 2-m relative humidity [%] Hourly 106 v19.3 https://cdc.dwd.de/portal https://cde.dwd.de/sdi/pid/RF_TU_MNO09/DESCRIPTION_RF_TU_MN009_en.pdf
F_MNO003 10-m wind speed [m/s] Hourly 57 v19.3 https://cdc.dwd.de/portal https://cdc.dwd.de/sdi/pid/F_MNO03/DESCRIPTION_F_MNO003_en.pdf
D _MNO003 10-m wind direction [deg] Hourly 57 v19.3 https://cdc.dwd.de/portal https://edc.dwd.de/sdi/pid/D_MNO003/DESCRIPTION_D_MN003_en.pdf
PO_MNO008 surface pressure [hPa] Hourly 38 v19.3 https://cdc.dwd.de/portal https://cde.dwd.de/sdi/pid/PO_MNOOS/DESCRIPTION P0_MNO08_en.pdf
R1_MNO008 precipitation [mm] Hourly 213 v19.3 https://cdc.dwd.de/portal https://cdc.dwd.de/sdi/pid/R1_MNOOS8/DESCRIPTION_R1_MNOO08_en.pdf
Hourly station
observations of solar 24 May 2020
incoming Incoming longwave and . https: dwd. > envi DC/observations_germany/climate/hourl
(total/diffuse) and | shortwave radiation [J/om2] oy L Rt il Gl alfpaial yi/solar/DESCRIPTION obsgermany._climate_hourly solar en.pdf
longwave downward
radiation for Germany
MO_TT_MNO004 2-m air temperature [°C] Monthly 244 v19.3 https://cdc.dwd.de/portal https://cde.dwd.de/sdi/pid/MO_TT_MN004/DESCRIPTION_MO_TT_MNO004_en.pdf
MODIS MYD11A1 | land surface temperature [K] Daily v006 | https://Ipdaacsvc.cr.usgs.gov/appeears https://Ipdaac.usgs. gov/products/myd11a1v006
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Table 3: A summary of the statistical evaluation of the WRF_NO_NUDGE (italics) and WRF_NUDGE (bold italics)

simulations, considering the whole evaluation period of 1 September 2017 to 1 September 2018. The table presents

the mean deviation (MD), the mean absolute deviation (MAD) and the coefficient of determination (R?) for two-

470 hourly 2-m air temperature (7) and relative humidity RH), 10-m zonal wind (U) and meridional wind (V), surface

475

pressure (PS), and daily total precipitation (PR). All computations are made from observations minus model data.

Variable MD MAD R2

T (WRF NO NUDGE) 0.2 2.3 0.94
T(WRF NUDGE) 0.1 2.0 0.95
RH 3.5 11.3 0.59

RH 3.0 10.5 0.66

U 0.1 1.5 0.48

U 0.2 1.4 0.53

174 0.2 1.2 0.35

|4 0.2 1.1 0.40

PS -0.7 2.2 0.97

PS -0.8 2.0 0.99

PR 0.8 3.3 0.25

PR 0.4 2.9 0.42

Table 4: Same as Table 3 but for daily mean variables in WRF_NUDGE only.

Variable MD MAD R2
T 0.1 1.7 0.97
RH 3.0 8.4 0.71
U 0.2 0.9 0.72

V 0.2 0.6 0.64
PS -0.8 2.0 0.99

23



