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Abstract.  

Climate impact assessments require information about climate change at regional and ideally local scales. In 

dendroecological studies, this information has traditionally been obtained using statistical methods, which preclude the 10 

linkage of local climate changes to large-scale drivers in a process-based way. As part of recent efforts to investigate the 

impact of climate change on forest ecosystems in Bavaria, Germany, we developed a high-resolution atmospheric modelling 

dataset, BAYWRF, for this region over the thirty-year period of September 1987 to August 2018. The atmospheric model 

employed in this study, WRF, was configured with two nested domains of 7.5- and 1.5-km grid spacing, centred over 

Bavaria and forced at the outer lateral boundaries by ERA5 reanalysis data. Using an extensive network of observational 15 

data, we evaluate: (i) the impact of using grid-analysis nudging for a single-year simulation of the period of September 2017 

to August 2018; and (ii) the full BAYWRF dataset generated using nudging. The evaluation shows that the model represents 

variability in near-surface meteorological conditions generally well, although there are both seasonal and spatial biases in the 

dataset that interested users should take into account. BAYWRF provides a unique and valuable tool for investigating 

climate change in Bavaria with high-interdisciplinary relevance. Data from the finest resolution WRF domain are available 20 

for download at daily temporal resolution from a public repository at the Open Science Framework (Collier, 2020; 

https://www.doi.org/10.17605/OSF.IO/AQ58B). 

1 Introduction 

The forcing of climate change in modern times is clearly of global nature, and many important scientific problems can be 

understood at the global scale as well (e.g., Held and Soden, 2006). Climate impact assessments, however, must also 25 

understand the effects at regional and even local scales in order to develop appropriate adaptation and mitigation measures. 

Although local phenomena such as glaciers, lakes, vegetation patterns, or stream flow show a strong dependence on the 

large-scale climate dynamics, these proxies experience further variability when the large-scale signal is transferred to their 
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location (e.g., Mölg et al., 2014). In order to contextualize local changes, there is a need to link local climate to the large-

scale climate, ideally in a process-based way. 30 

 

In dendroclimatological studies, the traditional approach is to compute a calibration function between local or regional tree-

ring parameters and climatic variables. Typically, such a statistical relationship would try to utilize local station data (which 

are generally sparse), gridded observations (which tend to be coarse resolution), or indices of large-scale climate dynamics 

(which describe coupled atmosphere-ocean modes) as the climatic influence (e.g., Hochreuther et al., 2016). Besides known 35 

problems like stationarity (e.g., Frías et al., 2006), statistical approaches also limit the possibilities to explain the influences 

at the various scales on a process-resolving level. Dynamical downscaling with a full numerical atmospheric model provides 

a physical answer (Giorgi and Mearns, 1991), yet the disadvantage is the high computational cost. Hence, dynamical 

downscaling at near-kilometer resolution has traditionally been performed on a case-study basis for weather events (e.g., 

Gohm et al., 2008). Multi-decadal simulations, on the other hand, were typically limited to resolutions of tens of kilometers 40 

(e.g., Di Luca et al., 2016). With the progress of computational resources, dynamical downscaling is becoming a candidate 

for climate impact studies that require local-scale information, and the first decadal simulations at ~1-km resolution are now 

available (e.g., Collier et al., 2018). From the resultant model output, impact studies could utilize information about local 

meteorological conditions at high-spatial and high-temporal resolution, and over long, climatologically relevant temporal 

periods. Moreover, the physically consistent output would enable to generate the said process understanding of influences 45 

across the various climatic scales. 

 

The management of forests is a classical impact study where adaptation and mitigation measures meet the heterogeneous 

effects of climate change at local scales (e.g., Lindner et al., 2014). With this background, the project BayTreeNet was 

started recently under the umbrella of the interdisciplinary climatological research network Bayklif (https://www.bayklif.de; 50 

last accessed 1 March 2020), and aims to investigate the response of forest ecosystems to current and future climate 

dynamics across different growth areas in Bavaria, Germany. The project comprises a network of 10 measurement sites 

where meteorological and dendroecological data will be monitored and used both for research and for public and educational 

outreach, which are currently in the process of being established. High-temporal (approximately daily) and high-spatial 

resolution data is a key component of dendroecological impact studies, since the physiological behavior of trees, their 55 

structural properties and functional wood anatomy, as well as other important parameters such as wood density and mortality 

risk are not only influenced by seasonal averages, but also by short-term extreme events and weather anomalies (e.g., 

Bräuning et al., 2016). 

 

Previous regional climate simulations including Bavaria over continuous multi-decadal periods were performed with model 60 

resolutions as high as 5-7 km and up to the year 2009 (e.g., Berg et al., 2013; Warscher et al., 2019). However, to the best of 

our knowledge, such datasets at the kilometer scale and up to the near present do not yet exist, despite previous research 
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highlighting the importance of convection-permitting resolution in this region (Fosser et al., 2014). We address this data gap 

by performing simulations with an atmospheric model, configured with convection-permitting spatial resolution in a nested 

domain over Bavaria, for the recent climatological period of 1987 to 2018. These data have the potential to find 65 

multidisciplinary interest among researchers assessing ecological and human dependencies on the climate for scientific and 

practical questions. 

2 Methods 

2.1 Atmospheric model 

The atmospheric simulations were performed using the advanced research version of the Weather Research & Forecasting 70 

(WRF) model v. 4.1 (Skamarock and Klemp, 2008) configured with two one-way-nested domains of 7.5- and 1.5-km grid 

spacing situated over Bavaria (Fig. 1), hereafter referred to as D1 and D2. Terrain data were taken from NASA Shuttle Radar 

Topographic Mission data re-sampled to 1-km and 500-m grids (Jarvis et al., 2008; https://cgiarcsi.community/data/srtm-

90m-digital-elevation-database-v4-1; last accessed 24 May 2020) for D1 and D2, respectively, while land-use data was 

updated based on the European Space Agency Climate Change Initiative Land Cover data at 300-m spatial resolution 75 

(http://maps.elie.ucl.ac.be/CCI/viewer/download.php; last accessed 18 April 2018). The physics and dynamics options used 

in the simulations are based on several recent convection-permitting applications of WRF by the authors (e.g., Collier et al., 

2019) but were not specifically optimized for these domains due to the computational expense of the simulations. The 

options are summarized in Table 1 and a sample namelist is provided in Appendix A. As no cumulus parameterization was 

employed in D2, both deep and shallow convection are assumed to be explicitly resolved. We note that no additional urban 80 

physics were enabled beyond the default parameterization used by the Noah family of land surface models (Liu et al., 2006) 

and land-use sub-tiling was not enabled. 

 

Forcing data at the lateral boundary of D1 and bottom boundaries of both domains was taken from the ERA5 reanalysis 

(Copernicus Climate Change Service (C3S), 2017) at three-hourly temporal resolution. The 30-year simulation was divided 85 

into 30 annual simulations that were run continuously from 15 August of year n-1 to 31 August of year n. The first 16 days 

of each simulation were discarded as spin-up time, retaining data from 1 September of year n-1 onwards. Atmospheric 

carbon dioxide (CO2) was updated in WRF for each simulation year using annually and globally averaged concentrations at 

the surface from the National Oceanic and Atmospheric Administration Earth System Research Laboratory (Tans and 

Keeling, 2019). Each simulation employed the CO2 concentration of year n, which ranged from 351 to 407 ppm between 90 

1988 and 2018. All other parameters and bottom boundary conditions (e.g., vegetation and land use) were held constant for 

all simulations. Therefore, they do not capture the impact of known land-use changes over the study period (e.g., Fuchs et 

al., 2013). 
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Each run required 12 days of wall-time with 320 processors on the Meggie compute cluster at the Erlangen Regional 95 

Computing Center, for a total of 2.86 million core hours. The model was compiled using intel 17.0 compilers and run using 

distributed-memory parallelization. Model output was written at two-hourly intervals, amounting to more than 55 TB of 

data, in addition to ~30 TB of pre-processing and input files. We selected this write frequency as a compromise between 

high-temporal resolution and the logistical challenges of storing, analyzing, and disseminating the data. 

2.2 Evaluation of Forcing Strategy 100 

For the period of 00 UTC 1 September 2017 to 00 UTC 1 September 2018, we compared two simulations with different 

forcing approaches: one excluding and one including grid-analysis nudging to constrain drift in the large-scale circulation 

(e.g., Bowden et al., 2013). This period was selected due to the higher availability of observational data closer to present day 

and because the summer of 2018 contained a record heatwave with drought conditions (Beyer, 2018), permitting evaluation 

of an extreme event. We refer to these simulations as WRF_NO_NUDGE and WRF_NUDGE, respectively. For the 105 

WRF_NUDGE simulation, analysis nudging was applied in D1 outside of the planetary boundary layer and above the lowest 

10 model levels using the default strength (3.0 x 10-4) for temperature and winds and reduced strength (5.0 x 10-5) for the 

water vapor mixing ratio (e.g., Otte et al., 2012), consistent with a previous decadal application of WRF (Collier et al., 

2018). Given the computational expense of each annual simulation, we did not attempt to optimize the nudging coefficients 

for our study area and instead evaluate simply whether nudging in this form improves the simulated atmospheric variables or 110 

not.  

2.3 Observational Data  

For model evaluation, we used data from the German Weather Service (DWD) Climate Data Center for all stations in 

Bavaria with hourly temporal resolution available, which provide good spatial coverage of our study area (Table 2; Fig. 2). 

To evaluate the forcing approach, we compared the following near-surface atmospheric variables at the highest temporal 115 

resolution available in the simulations, which is two-hourly: air temperature and relative humidity at 2 m (T and RH), zonal 

and meridional wind components at 10 m (U and V), and surface pressure (PS). In addition, we compared with daily total 

precipitation (PR). In our comparison with observations, we excluded measurement sites where the observed terrain height 

differed from the modelled value by more than 100 m (similar to e.g., Vionnet et al., 2019), corresponding to four sites in 

total for all variables except for PS (three) and PR (nine). After this exclusion, the average difference between modelled and 120 

observed terrain height at all stations is within ± 8 m for each dataset. We also excluded any days with missing observational 

data when computing daily statistics. We note that observed precipitation was not corrected for undercatch. We did not 

evaluate radiation variables, as only sunshine hours are available from the DWD in sufficiently large sample sizes. However, 

for understanding temperature biases in WRF during summer 2018, we used incoming shortwave radiation from the DWD 

Climate Data Center dataset entitled “Hourly station observations of solar incoming (total/diffuse) and longwave downward 125 

radiation for Germany” (Table 2). In total, there were four sites with both incoming shortwave (SW) and T data available in 
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Bavaria between 1 June and 31 August 2018 whose elevation was represented within ±100 m in D2: Nürnberg (id 3668), 

Weihenstephan-Dürnast (5404), Würzburg (5705), and Fürstenzell (5856).  

 

For statistical analysis, we computed the mean deviation (MD), mean absolute deviation (MAD), and the coefficient of 130 

determination (R2) between station data and data from the closest grid point in D2 without spatial interpolation at two-hourly 

and, for precipitation, at daily temporal frequency. The MD, also referred to here as the model bias, and the MAD were 

computed from observation minus model data. For precipitation, only daily totals were evaluated, and the MD and MAD 

were computed considering only days with non-zero observed precipitation.  

 135 

Finally, we also compared night-time land surface temperature (LST) from the MODIS MYD11A1 dataset (Table 2) at 1-km 

spatial and daily temporal resolution with simulated skin temperature in D2 for the period of 1 June to 31 August 2018. The 

night view time ranged from 1.2 to 2.8 hours in local solar time, with a domain and time averaged value of 2.2 hours. As 

WRF data were only available at two-hourly timesteps, we averaged 00 and 02 UTC (01 and 03 local time) data from D2 for 

comparison with MODIS. In our comparison, we excluded nights when MODIS had more than 50% missing data over D2, 140 

leaving a sample size of 52. 

 

For evaluating the full simulation, we performed a similar analysis with the aforementioned station datasets for T, RH and 

PREC (Table 2), however we averaged and summed the data to daily timescales for comparison with BAYWRF. In addition 

to comparing with individual stations, we also compared monthly total precipitation in BAYWRF with the gridded dataset 145 

REGNIE from the DWD CDC, which is based on interpolated station data and available at 1-km spatial resolution (e.g., 

Rauthe et al., 2013). For the comparison, REGNIE data were regridded to the WRF grid using patch interpolation and the 

ESMF regridding toolbox in NCL (https://www.ncl.ucar.edu/Document/Functions/ESMF/ESMF_regrid.shtml; last accessed 

10 September 2020) and the centered pattern correlation between the two datasets was computed. 

2.4 Numerical issue in BAYWRF 150 

We note that unphysically large sub-surface temperatures were simulated at a number of glacierized grid points, primarily  

during the months of July to September. Considering all of D2, the daily average number of affected grid cells was 24, 

compared with 294 glacierized and 122,500 total cells. The maximum number of affected grid points was 274 on 31 August 

2017, corresponding to 0.2% of D2. In addition, over the climatological simulation, only one grid point in Bavaria was 

affected (J = 71, I = 285; 47.4952°N, 13.6039°E). Surface temperature remained physical, since it is limited at the melting 155 

point over glacier surfaces, and soil moisture was unaffected, since it is specified to be fully saturated in glacierized grid 

cells. No other land-use categories were affected, and adjacent grid points were also unaffected, as the land surface model 

operates as a column model with no lateral communication. To preclude usage of these data, sub-surface temperature was set 

to missing where it exceeded the melting point at glacierized grid points in BAYWRF. More information about this 
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numerical issue is available on the model’s GitHub repository (https://github.com/wrf-model/WRF/issues/1185; last 160 

accessed 24 May 2020). 

3 Results & Discussion 

3.1 Evaluation of forcing approach  

Averaged over the evaluation year, both WRF simulations capture the magnitude and variability of sub-diurnal near-surface 

meteorological conditions at most sites well (Fig. 3; Table 3). The interquartile range (IQR; range between upper and lower 165 

quartile) of MDs is one order of magnitude smaller than the observed standard deviation for all variables. As expected, 

variability is best captured for T and PS, with R2 values that uniformly exceed 0.87 and 0.96, respectively. Those of RH have 

a larger range but a lower quartile above ~0.55. Compared with these variables, the model shows less skill in simulating sub-

diurnal variability in winds, with lower quartiles of R2 for U and V of approximately 0.39 and 0.27, respectively.  

 170 

Shifting to daily timescales, both simulations represent variability in daily total PR surprisingly well, with the upper quartile 

of MDs below ~1.25 mm and lower quartiles of R2 exceeding 0.18 and 0.33, depending on the simulation. The MD is 

positive at the majority of stations, indicating that WRF generally underestimates observed precipitation. The underestimate 

is likely greater than reported here, since the observations were not corrected for wind-induced undercatch. In addition to 

underestimating observed daily precipitation events (total sample size of 35,791 for all stations and record lengths), the 175 

simulations also produce false daily precipitation events, the vast majority of which are very small in magnitude (the median 

value in both WRF simulations is less than 0.1 mm/day). Considering wetter days (precipitation exceeding 1 mm/day; Ban et 

al., 2014), the number of false events is more than ten times smaller than the number of observed events (sample sizes of 

3,096 and 2,249 in WRF_NO_NUDGE and WRF_NUDGE, respectively).   

 180 

Previous studies evaluating WRF over this region have reported Root Mean Square Deviations (RMSD). For direct 

comparison, the mean RMSD in WRF_NUDGE for two-hourly T and RH is 2.67°C and 13.7%, respectively, and for daily 

total precipitation is 5.27 mm. These values are comparable to previous high-resolution applications of WRF over Bavaria 

(Warscher et al., 2019).  

 185 

Examination of model biases on a monthly basis reveals further insights into the model performance (Fig. 4). The amplitude 

of the annual cycle is overpredicted in WRF, indicating that the good average agreement in T results from compensating 

biases: there is a cold bias in WRF in winter, a well-known issue with the model over snow-covered surfaces (e.g., Tomasi et 

al., 2017), and a warm bias in summer (Fig. 4a). The latter bias results in an underprediction of RH during this season (Fig. 

4b), suggesting that WRF represents absolute humidity more accurately. The summer temperature bias is also more sustained 190 

than the winter one, resulting in the long tails (heads) in the distribution of MDs of T (RH) in Fig. 3. There is also a general 
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underprediction of near-surface winds from fall to early winter, as exemplified by the results for U in Fig. 4c and the slight 

positive skewness of the distribution of MDs for both U and V in Fig. 3, consistent with overly stable atmospheric conditions 

resulting from the cold bias. Finally, the model tends to overestimate precipitation in early spring and underestimate it in 

summer and fall. The reported seasonal and mean biases in daily precipitation are consistent with a potential underestimate 195 

of deep convection and convective precipitation at 1.5-km grid spacing. Although simulated mean precipitation shows a 

weak grid dependency below a spacing of ~ 4 km (Langhans et al., 2012), sub-kilometer spatial resolution is required to 

explicitly resolve the evolution and characteristics of clouds (e.g., Bryan et al., 2003; Craig and Dörnbrack, 2008; Prein et 

al., 2015). 

 200 

Figure 5 shows a representative timeseries of T and SW for the station in Nürnberg (3668) in June 2018. The timeseries 

illustrates that the positive temperature bias in summer 2018 results from two distinct contributions. First, there is an 

overestimation of daytime maximum T, coinciding with an overestimation of SW. This relationship is observed both at 

Nürnberg and at the other three stations for which both datasets are available (Fig. 6a; cf. Sect. 2.2). The overestimation 

suggests there is an underestimation of either daytime cloudiness or its impact on incoming SW at the surface, likely 205 

stemming from the microphysics parameterization. Ban et al. (2014) identified similar processes underlying a warm bias in 

summer in a convection-permitting decadal simulation over central Europe. Second, there is an overestimation of night-time 

minimum T, suggesting that land-surface processes may play a role. Of the 101 stations with T measurements available, the 

dominant land-use categories of the grid cells containing stations are: 'Urban’ (10 sites); 'Dryland Cropland and Pasture' (4 

sites); 'Grassland' (72 sites); 'Deciduous Broadleaf Forest' (1 sites); 'Evergreen Needleleaf Forest' (11 sites); and, 'Mixed 210 

Forest' (3 sites). The overestimation of night-time T is greatest at stations located in grid cells classified as urban (Fig. 6b), 

consistent with a previous evaluation of WRF with the Noah-MP LSM for urban and rural stations in summer (Salamanca et 

al., 2018). The bias amplification in urban grid cells may reflect an incorrect classification of the underlying land surface in 

WRF, as only the München-Stadt station (id 3379) is listed as an urban station on the DWD’s list for computing heat island 

effects. It may also result from an overestimation of heat storage when a mosaic approach is not used, and therefore the 215 

entire grid cell is treated as urban (Daniel Fenner, personal communication). The potential role of the land-surface 

specification or properties is reinforced by the comparison with MODIS data (Fig. 7), which shows the largest warm biases 

over grid cells classified as urban or croplands while biases are smaller in forested areas. There is also a cold bias along the 

foothills and at higher elevations in the Alps. The biases are slightly smaller in WRF_NUDGE than in WRF_NO_NUDGE, 

consistent with the station-based assessment.  220 

 

In addition to factors internal to WRF, we note that the driving reanalysis data may also contribute to the warm bias, at least 

at some locations. From the available observations, 60 stations have both valid T data between June and August 2018 and a 

modelled elevation in ERA5 that is within ±100 m of reality. Averaged over the summer months and all stations, ERA5 has 
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a mean warm bias of 0.37°C. At 25 of the sites, a warm bias exceeding 0.5°C is present, with an average value over these 225 

sites of 0.92°C.  

 

The inclusion of grid-analysis nudging leads to a small but nearly uniform improvement in agreement between observed and 

simulated variables. The distribution of MDs is closer to zero for all variables except U and PS, while those of MADs are 

closer for all variables (cf. Fig. 3 and Table 3). R2 values are also uniformly higher when nudging is used, and the lowest 230 

lower-quartile value is 0.3 in WRF_NUDGE compared with only 0.18 in WRF_NO_NUDGE. Nudging produces a 

particularly noticeable improvement in simulated precipitation, halving the MD and nearly doubling the R2 values (cf. Fig. 3, 

Fig. 4 and Table 3). Its usage also reduces the magnitude of the seasonal temperature biases and the number of extreme 

occurrences of the warm bias in summer (cf. Fig. 4 and Fig. 6). Considering daily timescales, the agreement of 

WRF_NUDGE with the observations is similar or even improved (Table 4): the mean MD is largely unaffected, but the 235 

average MAD decreases and average R2 increases. Based on these improvements, grid-analysis nudging was adopted for the 

climatological simulations. 

3.2 Evaluation of BAYWRF 

Averaged over the full simulation period, BAYWRF shows a similar magnitude of agreement with station T and RH data at 

daily timescales as found at sub-diurnal timescales for the single evaluation year (Fig. 8; cf. Fig. 3). For T, the MD has lower 240 

and upper quartiles of -0.3 and 0.4°C, respectively, while the values of R2 uniformly exceed 0.92. For RH, the MD has lower 

and upper quartiles of 0.4 and 4.4% while the respective values for R2 are 0.57 and 0.65. For PREC, the upper and lower 

quartiles of MDs considering days with observed precipitation are -0.1 and 0.1 mm while for R2 the values are 0.41 and 0.47. 

A similar number and magnitude of wet false events are simulated (twenty times less than the sample size of observed 

events). Spatially, BAYWRF exhibits a positive bias in T and a negative bias in RH in the interior of Bavaria, and the 245 

converse anomalies in the pre-alpine and alpine areas in the south and along the eastern border of the region (Fig. 8a, c). The 

mean R2 values for RH show a clear meridional gradient (Fig. 8d), which suggests that the model has some difficulty 

capturing processes governing near-surface moisture fluctuations in the southern part of Bavaria. Nonetheless, the highest 

correlation coefficients for observed precipitation events are found in this region (Fig. 8f). In addition, considering monthly 

precipitation sums, the centered pattern correlation between REGNIE and BAYWRF ranges from a lower quartile of 0.64 to 250 

an upper quartile of 0.82. Therefore, the characteristics of precipitation variability in time and space are captured by the 

dataset. 

 

For BAYWRF, we note that in addition to the potential factors contributing to temperature biases discussed in Section 3.1, 

evaluation of the climatological simulation is also affected by discontinuities in station location and instrumentation. One 255 

example is Nürnberg (id 3668), which moved on 4 December 1995 from (49.4947ºN, 11.0806ºE) to (49.5030ºN, 11.0549ºE). 

The older station position is shifted one grid cell to the south and one grid cell to the west compared with its current location, 
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corresponding to a shift in land use from urban (old position) to grasslands (new). Any discontinuities in location and 

underlying surface type are not captured since the most recent station positions are used for extracting meteorological data 

from D2. This potential source of discrepancies should be taken into consideration for climatological analyses (e.g., 260 

comparing observed and simulated trends). 

4 Data Availability 

Data from BAYWRF are available for download on the Open Science Framework (OSF; Collier, 2020; 

https://www.doi.org/10.17605/OSF.IO/AQ58B). Due to the size of the simulations, we have only provided daily mean data 

from the finest WRF domain (D2; 1.5-km grid spacing) after cropping close to the extent of Bavaria and removing vertical 265 

levels above ~ 200 hPa, amounting to 450 GB in total. Data are divided into three- and four-dimensional fields by year and 

month, with respective file sizes of ~150 MB and 1.1 GB. For the four-dimensional data, perturbation and base-state 

atmospheric pressure (WRF variables P and PB) and geopotential (PH and PHB) were combined to generate full model 

fields, while perturbation potential temperature (T) was converted to atmospheric temperature.  

5 Conclusions 270 

We presented a climatological kilometer-scale simulation with the atmospheric model WRF over Bavaria for the period of 

September 1987 to August 2018. Comparison of simulations for the period of September 2017 to August 2018 with and 

without grid-analysis nudging against extensive meteorological measurements across Bavaria showed that nudging 

decreased the mean deviations and increased the coefficient of determinations at the majority of sites for nearly all evaluated 

atmospheric variables, in particular precipitation. This approach was therefore adopted for generating the full BAYWRF 275 

dataset. In general, BAYWRF represents the variability of near-surface meteorological conditions well, albeit with both 

seasonal and spatial biases that are explored briefly here. Future users of this dataset are encouraged to rigorously evaluate 

biases for the variables and time periods relevant to their particular study areas and applications. BAYWRF provides a useful 

database for linking large-scale climate, as represented by the ERA5 reanalysis, to mesoscale climate over Germany, to local 

conditions in Bavaria, in a physically based way. The data are intended for dendroecological research applications but would 280 

also provide a valuable tool for investigations of the climate dependence of economic, societal, ecological, and agricultural 

processes in Bavaria. 

6 Appendix A: Sample WRF namelist 

&time_control 

 run_days  = 31, 285 
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 run_hours  = 0, 

 run_minutes  = 0, 

 run_seconds  = 0, 

 start_year  = 2018, 2018, 

 start_month  = 08,   08,  290 

 start_day  = 01,   01,  

 start_hour  = 00,   00,  

 start_minute  = 00,   00,  

 start_second  = 00,   00,   

 end_year  = 2018, 2018,  295 

 end_month  = 09,   09,  

 end_day  = 01,   01,    

 end_hour  = 00,   00,   

 end_minute  = 00,   00,  

 end_second  = 00,   00,   300 

 interval_seconds  = 10800, 

 input_from_file  = .true.,.true., 

 history_interval  = 120,  120,   

 frames_per_outfile = 12, 12,  

 restart   = .true., 305 

 restart_interval  = 44640, 

 override_restart_timers = .true., 

 write_hist_at_0h_rst = .true., 

 io_form_history  = 2 

 io_form_restart  = 102 310 

 io_form_input  = 2 

 io_form_boundary = 2 

 debug_level  = 0 

 auxinput4_inname = "wrflowinp_d<domain>", 

 auxinput4_interval = 180, 315 

 io_form_auxinput4 = 2 

/ 

 &domains 

 time_step  = 45, 
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 time_step_fract_num = 0, 320 

 time_step_fract_den  = 1, 

 max_dom  = 2, 

 e_we   = 351, 351,  

 e_sn   = 301, 351,  

 e_vert   = 60,  60, 325 

 auto_levels_opt   = 2, 

 max_dz   = 600., 

 dzbot   = 20., 

 dzstretch_s  = 1.5, 

 dzstretch_u  = 1.3,  330 

 p_top_requested   = 1000, 

 num_metgrid_levels = 33, 

 num_metgrid_soil_levels = 4, 

 dx   = 7500, 1500,  

 dy   = 7500, 1500,  335 

 grid_id   = 1,     2,  

 parent_id  = 0,     1,   

 i_parent_start  = 1,     145,  

 j_parent_start  = 1,     126,  

 parent_grid_ratio  = 1,     5,     340 

 parent_time_step_ratio  = 1,     5,      

 feedback  = 0, 

 smooth_option  = 0, 

 / 

 &physics 345 

 mp_physics  = 10,    10,     

 ra_lw_physics  = 4,     4,      

 ra_sw_physics  = 4,     4,     

 radt   = 5,     5,      

 sf_sfclay_physics = 1,     1,      350 

 sf_surface_physics = 4,     4,      

 bl_pbl_physics  = 1,     1,    

 topo_wind  = 1,     1,     
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 bldt   = 0,     0,     

 cu_physics  = 1,     0,      355 

 cudt   = 0,     0,    

 ysu_topdown_pblmix = 1,    

 isfflx   = 1, 

 ifsnow   = 1, 

 num_soil_layers  = 4, 360 

 num_land_cat  = 24, 

 sf_urban_physics = 0,     0,       

 slope_rad  = 0,     1,      

 topo_shading  = 0,     1,    

 cu_rad_feedback  = .true.,.true., 365 

 usemonalb  = .true., 

 bucket_mm  = 100., 

 sst_update  = 1, 

 tmn_update  = 1, 

 lagday   = 150, 370 

 sst_skin   = 1, 

 / 

 &noah_mp 

 opt_alb   = 2, 

 opt_snf    = 1, 375 

 dveg   = 5, 

 / 

 &fdda 

 grid_fdda  = 1,0, 

 gfdda_inname  = "wrffdda_d<domain>", 380 

 gfdda_interval_m = 180, 180,  

 gfdda_end_h  = 100000, 100000, 

 io_form_gfdda  = 2, 

 fgdt   = 0,  0,  0, 

 if_no_pbl_nudging_uv = 1,  0,  0, 385 

 if_no_pbl_nudging_t = 1,  0,  0, 

 if_no_pbl_nudging_q = 1,  0,  0, 
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 if_zfac_uv  = 1,  0,  0, 

 k_zfac_uv  = 10, 0,  0, 

 if_zfac_t  = 1,  0,  0, 390 

 k_zfac_t   = 10, 0,  0, 

 if_zfac_q  = 1,  0,  0, 

 k_zfac_q  = 10, 0,  0, 

 guv   = 0.0003, 0.0, 0.0, 

 gt   = 0.0003, 0.0, 0.0, 395 

 gq   = 0.00005, 0.0, 0.0, 

 if_ramping  = 0, 

 / 

 &dynamics 

 w_damping  = 0, 400 

 diff_opt   = 2,      2,    

 km_opt   = 4,      4,   

 diff_6th_opt  = 0,      0,         

 diff_6th_factor  = 0.12,   0.12,   

 base_temp  = 290. 405 

 damp_opt  = 3, 

 zdamp   = 5000.,  5000., 

 dampcoef   = 0.2,    0.2,     

 khdif   = 0,      0,     

 kvdif   = 0,      0,         410 

 non_hydrostatic  = .true., .true.,  

 moist_adv_opt  = 2,      2,          

 scalar_adv_opt  = 2,      2,             

 epssm   = 0.2,    0.5,      

 mix_full_fields  = .true., 415 

 / 

 &bdy_control 

 spec_bdy_width  = 5,  

 spec_zone  = 1, 

 relax_zone  = 4, 420 

 specified  = .true., .false., 
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 nested   = .false., .true., 

 / 

 &namelist_quilt 

 nio_tasks_per_group = 0, 425 

 nio_groups  = 1, 

 / 
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 535 
 

Figure 1: Extent and modelled topographic height in WRF D1 (a) and D2 (b). The extent of D2 and of Bavaria are 
delineated in black in the top and bottom panels, respectively.  
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Figure 2: The location of the stations used for model evaluation during the most recent simulation year (September 2017 to 540 
August 2018) for each dataset listed in Table 2. Datasets labelled in black are shown by filled black circles, while datasets 
labelled in pink are shown by open pink circles, illustrating that locations for measurements of air temperature and humidity 
(a; TT_TU_MN009 & RF_TU_MN009) and of wind speed and direction (b; F_MN003 & D_MN003) were the same. The 
locations for measurements of surface pressure (P0_MN008) and of precipitation (R1_MN008) are shown in panels c and d, 
respectively. 545 
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Figure 3: Box-percentile plots (Esty and Banfield, 2003) of mean deviation (MD), mean absolute deviation (MAD), and 
coefficient of determination (R2) between observations and the two WRF simulations, WRF_NO_NUDGE (blue) and 
WRF_NUDGE (green), for 2-m (a) air temperature and (b) relative humidity, 10-m (c) zonal and (d) meridional winds, (e) 550 
surface pressure and (f) precipitation. The statistics for all variables except for precipitation were computed from two-hourly 
instantaneous values, while those for precipitation were computed using daily totals. The shape of the plots shows the 
distribution of data over their range of values, white lines delineate 25th, 50th and 75th percentiles, and a black dot indicates 
the mean. The observed standard deviation (σobs) for each variable is provided in the left column.  
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 555 

Figure 4: Timeseries of monthly mean 2-m (a) air temperature and (b) relative humidity, (c) 10-m zonal winds, and (d) daily 
total precipitation (left column) between September 2017 and August 2018. Observational, WRF_NO_NUDGE and 
WRF_NUDGE data are shown in black, blue and green, respectively. Timeseries of monthly mean biases of the same 
variables (right column). The mean bias over all stations is shown for each simulation using the same colour assignment, 
while the lower and upper quartile of the station biases is shown as a blue polygon and green bars for WRF_NO_NUDGE 560 
and WRF_NUDGE data, respectively. 
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Figure 5: Timeseries of (a) 2-m air temperature and (b) incoming shortwave radiation at the station in Nürnberg (id 3668) 
from 1 June to 1 July 2018. Observational, WRF_NO_NUDGE and WRF_NUDGE data are shown in black, blue and green, 
respectively. 565 
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Figure 6: Scatter plots of (a) air temperature bias vs. incoming shortwave radiation bias and (b) air temperature bias vs. 
land-use category in closest grid cell to station. The category abbreviations from left to right describe: 'Urban and Built-Up 
Land’ (10 sites); 'Dryland Cropland and Pasture' (4 sites); 'Grassland' (72 sites); 'Deciduous Broadleaf Forest' (1 sites); 570 
'Evergreen Needleleaf Forest' (11 sites); and, 'Mixed Forest' (3 sites). For both panels, data from WRF_NO_NUDGE and 
WRF_NUDGE are displayed as blue square and green circle markers, respectively. 
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Figure 7: (a) Land-use classification in D2. (b) Number of timesteps with valid night-time LST data in the MODIS 
MYD11A1 dataset between 1 June and 31 August 2018 out of a maximum of 52 with less than 50% missing data in D2. The 575 
average difference in observed and simulated LST for (c) WRF_NO_NUDGE and (d) WRF_NUDGE. Note that the orange 
and red colours in panels c and d shade areas where WRF is warmer than MODIS (MODIS minus WRF is negative) and vice 
versa for blues. 
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 580 
Figure 8: Spatial maps of mean MD (left column) and R2 (right) at all stations with valid data between September 1987 and 
August 2018 for daily mean (a, b) T and (c, d) RH, and for daily total (e, f) PREC. The four marker sizes group the 
percentage of the total timesteps (11,323 days) for which data were available at each station into the four quartiles. The 
largest marker size, which delineates records with more than 75% valid data points, is therefore not available for PREC, as 
this dataset begins on 1 September 1995. 585 
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Table 1: Summary of the WRF configuration used for BAYWRF. A full sample namelist is provided in Appendix A. 

Table 1: WRF 
configuration 

  

Domain configuration   
Horizontal grid spacing 7.5 & 1.5 km (D1–2)  
Grid dimensions 351x301, 351x351  
Time step 45 & 9 s  
Vertical levels 60  
Model top pressure 10 hPa  
Model physics   
Radiation RRTMG (Iacono et al., 2008) 
Microphysics Morrison (Morrison et al., 2009) 
Cumulus Kain-Fritsch (none in D2) (Kain, 2004) 
Planetary boundary layer Yonsei State University (Hong et al., 2006) 
Atmospheric surface layer Monin Obukhov  (Jiménez et al., 2012) 
Land surface Noah-MP (Niu et al., 2011) 
Dynamics   
Top boundary condition Rayleigh damping  
Diffusion Calculated in physical space  

 

Table 2: A summary of data used for model evaluation. Rows highlighted in grey provide information about 
observational data from the DWD CDC Data Portal, whose measurement locations for the evaluation for the 2017 to 590 
2018 period are shown in Figure 2. 

 
 

 

 595 

Dataset Name Variable [unit] Temporal 
Resolution

Total Stations in 
Bavaria                    

2017-2018        
(1987-2018)

Version Access URL Last 
Accessed Dataset Description

TT_TU_MN009 2-m air temperature [℃] Hourly 106 (120) v19.3 https://cdc.dwd.de/portal https://cdc.dwd.de/sdi/pid/TT_TU_MN009/DESCRIPTION_TT_TU_MN009_en.pdf

RF_TU_MN009 2-m relative humidity [%] Hourly 106 (120) v19.3 https://cdc.dwd.de/portal https://cdc.dwd.de/sdi/pid/RF_TU_MN009/DESCRIPTION_RF_TU_MN009_en.pdf

F_MN003 10-m wind speed [m/s] Hourly 57 v19.3 https://cdc.dwd.de/portal https://cdc.dwd.de/sdi/pid/F_MN003/DESCRIPTION_F_MN003_en.pdf

D_MN003 10-m wind direction [deg] Hourly 57 v19.3 https://cdc.dwd.de/portal https://cdc.dwd.de/sdi/pid/D_MN003/DESCRIPTION_D_MN003_en.pdf

P0_MN008 surface pressure [hPa] Hourly 38 v19.3 https://cdc.dwd.de/portal https://cdc.dwd.de/sdi/pid/P0_MN008/DESCRIPTION_P0_MN008_en.pdf

R1_MN008 precipitation [mm] Hourly 213 (219) v19.3 https://cdc.dwd.de/portal https://cdc.dwd.de/sdi/pid/R1_MN008/DESCRIPTION_R1_MN008_en.pdf

Hourly station 
observations of solar 

incoming 
(total/diffuse) and 

longwave downward 
radiation for Germany

Incoming longwave and 
shortwave radiation [J/cm2]

Hourly 10 recent https://cdc.dwd.de/portal
https://opendata.dwd.de/climate_environment/CDC/observations_germany/climate/hourl

y/solar//DESCRIPTION_obsgermany_climate_hourly_solar_en.pdf

REGNIE precipitation [mm]
Monthly 

sum
-- recent

https://opendata.dwd.de/climate_envir
onment/CDC/grids_germany/monthly/

regnie/

https://opendata.dwd.de/climate_environment/CDC/grids_germany/monthly/regnie/DES
CRIPTION_gridsgermany_monthly_regnie_en.pdf

MODIS MYD11A1 land surface temperature [K] Daily -- v006 https://lpdaacsvc.cr.usgs.gov/appeears https://lpdaac.usgs.gov/products/myd11a1v006/

10 S
ep 2020
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Table 3: A summary of the statistical evaluation of the WRF_NO_NUDGE (italics) and WRF_NUDGE (bold italics) 

simulations, considering the whole evaluation period of 1 September 2017 to 1 September 2018. The table presents 

the mean deviation (MD), the mean absolute deviation (MAD) and the coefficient of determination (R2) for two-

hourly 2-m air temperature (T) and relative humidity RH), 10-m zonal wind (U) and meridional wind (V), surface 

pressure (PS), and daily total precipitation (PR). All computations are made from observations minus model data. 600 

 
 

Table 4: Same as Table 3 but for daily mean variables in WRF_NUDGE only. 

 

Variable MD MAD R2
T (WRF_NO_NUDGE) 0.2 2.3 0.94

T (WRF_NUDGE) 0.1 2.0 0.95
RH 3.5 11.3 0.59
RH 3.0 10.5 0.66
U 0.1 1.5 0.48
U 0.2 1.4 0.53
V 0.2 1.2 0.35
V 0.2 1.1 0.40
PS -0.7 2.2 0.97
PS -0.8 2.0 0.99
PR 0.8 3.3 0.25
PR 0.4 2.9 0.42

Variable MD MAD R2
T 0.1 1.7 0.97
RH 3.0 8.4 0.71
U 0.2 0.9 0.72
V 0.2 0.6 0.64
PS -0.8 2.0 0.99


