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Abstract.

Climate impact assessments require information about climate change at regional and ideally local scales. In
dendroecological studies, this information has traditionally been obtained using statistical methods, which preclude the
linkage of local climate changes to large-scale drivers in a process-based way. As part of recent efforts to investigate the
impact of climate change on forest ecosystems in Bavaria, Germany, we developed a high-resolution atmospheric modelling
dataset, BAYWREF, for this region over the thirty-year period of September 1987 to August 2018. The atmospheric model
employed in this study, WRF, was configured with two nested domains of 7.5- and 1.5-km grid spacing, centred over
Bavaria and forced at the outer lateral boundaries by ERAS reanalysis data. Using an extensive network of observational
data, we evaluate: (i) the impact of using grid-analysis nudging for a single-year simulation of the period of September 2017
to August 2018; and (ii) the full BAYWREF dataset generated using nudging. The evaluation shows that the model represents
variability in near-surface meteorological conditions generally well, although there are both seasonal and spatial biases in the
dataset that interested users should take into account. BAYWRF provides a unique and valuable tool for investigating
climate change in Bavaria with high-interdisciplinary relevance. Data from the finest resolution WRF domain are available
for download at daily temporal resolution from a public repository at the Open Science Framework (Collier, 2020;

https://www.doi.org/10.17605/OSF.IO/AQ58B).

1 Introduction

The forcing of climate change in modern times is clearly of global nature, and many important scientific problems can be
understood at the global scale as well (e.g., Held and Soden, 2006). Climate impact assessments, however, must also
understand the effects at regional and even local scales in order to develop appropriate adaptation and mitigation measures.
Although local phenomena such as glaciers, lakes, vegetation patterns, or stream flow show a strong dependence on the

large-scale climate dynamics, these proxies experience further variability when the large-scale signal is transferred to their
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location (e.g., Molg et al., 2014). In order to contextualize local changes, there is a need to link local climate to the large-

scale climate, ideally in a process-based way.

In dendroclimatological studies, the traditional approach is to compute a calibration function between local or regional tree-
ring parameters and climatic variables. Typically, such a statistical relationship would try to utilize local station data (which
are generally sparse), gridded observations (which tend to be coarse resolution), or indices of large-scale climate dynamics
(which describe coupled atmosphere-ocean modes) as the climatic influence (e.g., Hochreuther et al., 2016). Besides known
problems like stationarity (e.g., Frias et al., 2006), statistical approaches also limit the possibilities to explain the influences
at the various scales on a process-resolving level. Dynamical downscaling with a full numerical atmospheric model provides
a physical answer (Giorgi and Mearns, 1991), yet the disadvantage is the high computational cost. Hence, dynamical
downscaling at near-kilometer resolution has traditionally been performed on a case-study basis for weather events (e.g.,
Gohm et al., 2008). Multi-decadal simulations, on the other hand, were typically limited to resolutions of tens of kilometers
(e.g., Di Luca et al., 2016). With the progress of computational resources, dynamical downscaling is becoming a candidate
for climate impact studies that require local-scale information, and the first decadal simulations at ~1-km resolution are now
available (e.g., Collier et al., 2018). From the resultant model output, impact studies could utilize information about local
meteorological conditions at high-spatial and high-temporal resolution, and over long, climatologically relevant temporal
periods. Moreover, the physically consistent output would enable to generate the said process understanding of influences

across the various climatic scales.

The management of forests is a classical impact study where adaptation and mitigation measures meet the heterogeneous
effects of climate change at local scales (e.g., Lindner et al., 2014). With this background, the project BayTreeNet was
started recently under the umbrella of the interdisciplinary climatological research network Bayklif (https://www.bayklif.de;

last accessed 1 March 2020), and aims to investigate the response of forest ecosystems to current and future climate
dynamics across different growth areas in Bavaria, Germany. The project comprises a network of 10 measurement sites
where meteorological and dendroecological data will be monitored and used both for research and for public and educational
outreach, which are currently in the process of being established. High-temporal (approximately daily) and high-spatial
resolution data is a key component of dendroecological impact studies, since the physiological behavior of trees, their
structural properties and functional wood anatomy, as well as other important parameters such as wood density and mortality
risk are not only influenced by seasonal averages, but also by short-term extreme events and weather anomalies (e.g.,

Bréauning et al., 2016).

Previous regional climate simulations including Bavaria over continuous multi-decadal periods were performed with model
resolutions as high as 5-7 km and up to the year 2009 (e.g., Berg et al., 2013; Warscher et al., 2019). However, to the best of

our knowledge, such datasets at the kilometer scale and up to the near present do not yet exist, despite previous research
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highlighting the importance of convection-permitting resolution in this region (Fosser et al., 2014). We address this data gap
by performing simulations with an atmospheric model, configured with convection-permitting spatial resolution in a nested
domain over Bavaria, for the recent climatological period of 1987 to 2018. These data have the potential to find
multidisciplinary interest among researchers assessing ecological and human dependencies on the climate for scientific and

practical questions.

2 Methods
2.1 Atmospheric model

The atmospheric simulations were performed using the advanced research version of the Weather Research & Forecasting
(WRF) model v. 4.1 (Skamarock and Klemp, 2008) configured with two one-way-nested domains of 7.5- and 1.5-km grid
spacing situated over Bavaria (Fig. 1), hereafter referred to as D1 and D2. Terrain data were taken from NASA Shuttle Radar
Topographic Mission data re-sampled to 1-km and 500-m grids (Jarvis et al., 2008; https://cgiarcsi.community/data/srtm-
90m-digital-elevation-database-v4-1; last accessed 24 May 2020) for D1 and D2, respectively, while land-use data was
updated based on the European Space Agency Climate Change Initiative Land Cover data at 300-m spatial resolution

(http://maps.elie.ucl.ac.be/CCl/viewer/download.php; last accessed 18 April 2018). The physics and dynamics options used

in the simulations are based on several recent convection-permitting applications of WRF by the authors (e.g., Collier et al.,
2019) but were not specifically optimized for these domains due to the computational expense of the simulations. The
options are summarized in Table 1. As no cumulus parameterization was employed in D2, both deep and shallow convection
are assumed to be explicitly resolved. We note that no additional urban physics were enabled beyond the default

parameterization used by the Noah family of land surface models (Liu et al., 2006) and land-use sub-tiling was not enabled.

Forcing data at the lateral boundary of D1 and bottom boundaries of both domains was taken from the ERAS reanalysis
(Copernicus Climate Change Service (C3S), 2017) at three-hourly temporal resolution. The 30-year simulation was divided
into 30 annual simulations that were run continuously from 15 August of year n-/ to 31 August of year n. The first 16 days
of each simulation were discarded as spin-up time, retaining data from 1 September of year n-/ onwards. Atmospheric
carbon dioxide (CO2) was updated in WRF for each simulation year using annually and globally averaged concentrations at
the surface from the National Oceanic and Atmospheric Administration Earth System Research Laboratory (Tans and
Keeling, 2019). Each simulation employed the COz concentration of year n, which ranged from 351 to 407 ppm between
1988 and 2018. All other parameters and bottom boundary conditions (e.g., vegetation and land use) were held constant for

all simulations. Therefore, they do not capture the impact of known land-use changes over the study period (e.g., Fuchs et
al., 2013).
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Each run required 12 days of wall-time with 320 processors on the Meggie compute cluster at the Erlangen Regional
Computing Center, for a total of 2.86 million core hours. The model was compiled using intel 17.0 compilers and run using
distributed-memory parallelization. Model output was written at two-hourly intervals, amounting to more than 55 TB of
data, in addition to ~30 TB of pre-processing and input files. We selected this write frequency as a compromise between

high-temporal resolution and the logistical challenges of storing, analyzing, and disseminating the data.

2.2 Evaluation of Forcing Strategy

For the period of 00 UTC 1 September 2017 to 00 UTC 1 September 2018, we compared two simulations with different
forcing approaches: one excluding and one including grid-analysis nudging to constrain drift in the large-scale circulation
(e.g., Bowden et al., 2013). This period was selected due to the higher availability of observational data closer to present day
and because the summer of 2018 contained a record heatwave with drought conditions (Beyer, 2018), permitting evaluation
of an extreme event. We refer to these simulations as WRF NO NUDGE and WRF NUDGE, respectively. For the
WRF_NUDGE simulation, analysis nudging was applied in D1 outside of the planetary boundary layer and above the lowest
10 model levels using the default strength (3.0 x 10™#) for temperature and winds and reduced strength (5.0 x 107%) for the
water vapor mixing ratio (e.g., Otte et al., 2012), consistent with a previous decadal application of WRF (Collier et al.,
2018). Given the computational expense of each annual simulation, we did not attempt to optimize the nudging coefficients
for our study area and instead evaluate simply whether nudging in this form improves the simulated atmospheric variables or

not.

2.3 Observational Data

For model evaluation, we used data from the German Weather Service (DWD) Climate Data Center for all stations in
Bavaria with hourly temporal resolution available, which provide good spatial coverage of our study area (Table 2; Fig. 2).
To evaluate the forcing approach, we compared the following near-surface atmospheric variables at the highest temporal
resolution available in the simulations, which is two-hourly: air temperature and relative humidity at 2 m (7 and RH), zonal
and meridional wind components at 10 m (U and V), and surface pressure (PS). In addition, we compared with daily total
precipitation (PR). In our comparison with observations, we excluded measurement sites where the observed terrain height
differed from the modelled value by more than 100 m (similar to e.g., Vionnet et al., 2019), corresponding to four sites in
total for all variables except for PS (three) and PR (nine). After this exclusion, the average difference between modelled and
observed terrain height at all stations is within = 8 m for each dataset. We also excluded any days with missing observational
data when computing daily statistics. We note that observed precipitation was not corrected for undercatch. We did not
evaluate radiation variables, as only sunshine hours are available from the DWD in sufficiently large sample sizes. However,
for understanding temperature biases in WRF during summer 2018, we used incoming shortwave radiation from the DWD
Climate Data Center dataset entitled “Hourly station observations of solar incoming (total/diffuse) and longwave downward

radiation for Germany” (Table 2). In total, there were four sites with both incoming shortwave (SW) and T data available in
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Bavaria between 1 June and 31 August 2018 whose elevation was represented within £100 m in D2: Niirnberg (id 3668),
Weihenstephan-Diirnast (5404), Wiirzburg (5705), and Fiirstenzell (5856).

For statistical analysis, we computed the mean deviation (MD), mean absolute deviation (MAD), and the coefficient of
determination (R?) between station data and data from the closest grid point in D2 without spatial interpolation at two-hourly
and, for precipitation, at daily temporal frequency. The MD, also referred to here as the model bias, and the MAD were
computed from observation minus model data. For precipitation, only daily totals were evaluated, and the MD and MAD

were computed considering only days with non-zero observed precipitation.

Finally, we also compared night-time land surface temperature (LST) from the MODIS MYD11A1 dataset (Table 2) at 1-km
spatial and daily temporal resolution with simulated skin temperature in D2 for the period of 1 June to 31 August 2018. The
night view time ranged from 1.2 to 2.8 hours in local solar time, with a domain and time averaged value of 2.2 hours. As
WREF data were only available at two-hourly timesteps, we averaged 00 and 02 UTC (01 and 03 local time) data from D2 for
comparison with MODIS. In our comparison, we excluded nights when MODIS had more than 50% missing data over D2,

leaving a sample size of 52.

For evaluating the full simulation, we performed a similar analysis with the aforementioned station datasets for 7, RH and
PREC (Table 2), however we averaged and summed the data to daily timescales for comparison with BAYWREF. In addition
to comparing with individual stations, we also compared monthly total precipitation in BAYWRF with the gridded dataset
REGNIE from the DWD CDC, which is based on interpolated station data and available at 1-km spatial resolution (e.g.,
Rauthe et al., 2013). For the comparison, REGNIE data were regridded to the WRF grid using patch interpolation and the
ESMF regridding toolbox in NCL (https://www.ncl.ucar.edu/Document/Functions/ESMF/ESMF _regrid.shtml; last accessed

10 September 2020) and the centered pattern correlation between the two datasets was computed.

2.4 Numerical issue in BAYWRF

We note that unphysically large sub-surface temperatures were simulated at a number of glacierized grid points, primarily

during the months of July to September. Considering all of D2, the daily average number of affected grid cells was 24,
compared with 294 glacierized and 122,500 total cells. The maximum number of affected grid points was 274 on 31 August
2017, corresponding to 0.2% of D2. In addition, over the climatological simulation, only one grid point in Bavaria was
affected (J = 71, I = 285; 47.4952°N, 13.6039°E). Surface temperature remained physical, since it is limited at the melting
point over glacier surfaces, and soil moisture was unaffected, since it is specified to be fully saturated in glacierized grid
cells. No other land-use categories were affected, and adjacent grid points were also unaffected, as the land surface model
operates as a column model with no lateral communication. To preclude usage of these data, sub-surface temperature was set

to missing where it exceeded the melting point at glacierized grid points in BAYWRF. More information about this
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numerical issue is available on the model’s GitHub repository (https:/github.com/wrf-model/WRF/issues/1185; last
accessed 24 May 2020).

3 Results & Discussion
3.1 Evaluation of forcing approach

Averaged over the evaluation year, both WRF simulations capture the magnitude and variability of sub-diurnal near-surface
meteorological conditions at most sites well (Fig. 3; Table 3). The interquartile range (IQR; range between upper and lower
quartile) of MDs is one order of magnitude smaller than the observed standard deviation for all variables. As expected,
variability is best captured for T and PS, with R? values that uniformly exceed 0.87 and 0.96, respectively. Those of RH have
a larger range but a lower quartile above ~0.55. Compared with these variables, the model shows less skill in simulating sub-

diurnal variability in winds, with lower quartiles of R? for U and V of approximately 0.39 and 0.27, respectively.

Shifting to daily timescales, both simulations represent variability in daily total PR surprisingly well, with the upper quartile
of MDs below ~1.25 mm and lower quartiles of R? exceeding 0.18 and 0.33, depending on the simulation. The MD is
positive at the majority of stations, indicating that WRF generally underestimates observed precipitation. The underestimate
is likely greater than reported here, since the observations were not corrected for wind-induced undercatch. In addition to
underestimating observed daily precipitation events (total sample size of 35,791 for all stations and record lengths), the
simulations also produce false daily precipitation events, the vast majority of which are very small in magnitude (the median
value in both WRF simulations is less than 0.1 mm/day). Considering wetter days (precipitation exceeding 1 mm/day; Ban et
al., 2014), the number of false events is more than ten times smaller than the number of observed events (sample sizes of

3,096 and 2,249 in WRF_NO_ NUDGE and WRF_NUDGE, respectively).

Previous studies evaluating WRF over this region have reported Root Mean Square Deviations (RMSD). For direct
comparison, the mean RMSD in WRF NUDGE for two-hourly 7 and RH is 2.67°C and 13.7%, respectively, and for daily
total precipitation is 5.27 mm. These values are comparable to previous high-resolution applications of WRF over Bavaria

(Warscher et al., 2019).

Examination of model biases on a monthly basis reveals further insights into the model performance (Fig. 4). The amplitude
of the annual cycle is overpredicted in WRF, indicating that the good average agreement in 7 results from compensating
biases: there is a cold bias in WRF in winter, a well-known issue with the model over snow-covered surfaces (e.g., Tomasi et
al., 2017), and a warm bias in summer (Fig. 4a). The latter bias results in an underprediction of RH during this season (Fig.
4b), suggesting that WRF represents absolute humidity more accurately. The summer temperature bias is also more sustained

than the winter one, resulting in the long tails (heads) in the distribution of MDs of 7 (RH) in Fig. 3. There is also a general
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underprediction of near-surface winds from fall to early winter, as exemplified by the results for U in Fig. 4c and the slight
positive skewness of the distribution of MDs for both U and V' in Fig. 3, consistent with overly stable atmospheric conditions
resulting from the cold bias. Finally, the model tends to overestimate precipitation in early spring and underestimate it in
summer and fall. The reported seasonal and mean biases in daily precipitation are consistent with a potential underestimate
of deep convection and convective precipitation at 1.5-km grid spacing. Although simulated mean precipitation shows a
weak grid dependency below a spacing of ~ 4 km (Langhans et al., 2012), sub-kilometer spatial resolution is required to
explicitly resolve the evolution and characteristics of clouds (e.g., Bryan et al., 2003; Craig and Dornbrack, 2008; Prein et

al., 2015).

Figure 5 shows a representative timeseries of 7 and SW for the station in Niirnberg (3668) in June 2018. The timeseries
illustrates that the positive temperature bias in summer 2018 results from two distinct contributions. First, there is an
overestimation of daytime maximum 7, coinciding with an overestimation of SW. This relationship is observed both at
Niirnberg and at the other three stations for which both datasets are available (Fig. 6a; cf. Sect. 2.2). The overestimation
suggests there is an underestimation of either daytime cloudiness or its impact on incoming SW at the surface, likely
stemming from the microphysics parameterization. Ban et al. (2014) identified similar processes underlying a warm bias in
summer in a convection-permitting decadal simulation over central Europe. Second, there is an overestimation of night-time
minimum 7, suggesting that land-surface processes may play a role. Of the 101 stations with 7 measurements available, the
dominant land-use categories of the grid cells containing stations are: 'Urban’ (10 sites); 'Dryland Cropland and Pasture' (4
sites); 'Grassland' (72 sites); 'Deciduous Broadleaf Forest' (1 sites); 'Evergreen Needleleaf Forest' (11 sites); and, 'Mixed
Forest' (3 sites). The overestimation of night-time 7 is greatest at stations located in grid cells classified as urban (Fig. 6b),
consistent with a previous evaluation of WRF with the Noah-MP LSM for urban and rural stations in summer (Salamanca et
al., 2018). The bias amplification in urban grid cells may reflect an incorrect classification of the underlying land surface in
WREF, as only the Miinchen-Stadt station (id 3379) is listed as an urban station on the DWD’s list for computing heat island
effects. It may also result from an overestimation of heat storage when a mosaic approach is not used, and therefore the
entire grid cell is treated as urban (Daniel Fenner, personal communication). The potential role of the land-surface
specification or properties is reinforced by the comparison with MODIS data (Fig. 7), which shows the largest warm biases
over grid cells classified as urban or croplands while biases are smaller in forested areas. There is also a cold bias along the
foothills and at higher elevations in the Alps. The biases are slightly smaller in WRF _NUDGE than in WRF_NO NUDGE,

consistent with the station-based assessment.

In addition to factors internal to WRF, we note that the driving reanalysis data may also contribute to the warm bias, at least
at some locations. From the available observations, 60 stations have both valid 7" data between June and August 2018 and a

modelled elevation in ERAS that is within £100 m of reality. Averaged over the summer months and all stations, ERAS has
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a mean warm bias of 0.37°C. At 25 of the sites, a warm bias exceeding 0.5°C is present, with an average value over these
sites of 0.92°C.

The inclusion of grid-analysis nudging leads to a small but nearly uniform improvement in agreement between observed and
simulated variables. The distribution of MDs is closer to zero for all variables except U and PS, while those of MADs are
closer for all variables (cf. Fig. 3 and Table 3). R? values are also uniformly higher when nudging is used, and the lowest
lower-quartile value is 0.3 in WRF_NUDGE compared with only 0.18 in WRF _NO NUDGE. Nudging produces a
particularly noticeable improvement in simulated precipitation, halving the MD and nearly doubling the R? values (cf. Fig. 3,
Fig. 4 and Table 3). Its usage also reduces the magnitude of the seasonal temperature biases and the number of extreme
occurrences of the warm bias in summer (cf. Fig. 4 and Fig. 6). Considering daily timescales, the agreement of
WRF _NUDGE with the observations is similar or even improved (Table 4): the mean MD is largely unaffected, but the
average MAD decreases and average R? increases. Based on these improvements, grid-analysis nudging was adopted for the

climatological simulations.

3.2 Evaluation of BAYWRF

Averaged over the full simulation period, BAYWRF shows a similar magnitude of agreement with station 7 and RH data at
daily timescales as found at sub-diurnal timescales for the single evaluation year (Fig. 8; cf. Fig. 3). For 7, the MD has lower
and upper quartiles of -0.3 and 0.4°C, respectively, while the values of R? uniformly exceed 0.92. For RH, the MD has lower
and upper quartiles of 0.4 and 4.4% while the respective values for R? are 0.57 and 0.65. For PREC, the upper and lower
quartiles of MDs considering days with observed precipitation are -0.1 and 0.1 mm while for R? the values are 0.41 and 0.47.
A similar number and magnitude of wet false events are simulated (twenty times less than the sample size of observed
events). Spatially, BAYWRF exhibits a positive bias in 7 and a negative bias in RH in the interior of Bavaria, and the
converse anomalies in the pre-alpine and alpine areas in the south and along the eastern border of the region (Fig. 8a, c). The
mean R? values for RH show a clear meridional gradient (Fig. 8d), which suggests that the model has some difficulty
capturing processes governing near-surface moisture fluctuations in the southern part of Bavaria. Nonetheless, the highest
correlation coefficients for observed precipitation events are found in this region (Fig. 8f). In addition, considering monthly
precipitation sums, the centered pattern correlation between REGNIE and BAYWREF ranges from a lower quartile of 0.64 to
an upper quartile of 0.82. Therefore, the characteristics of precipitation variability in time and space are captured by the

dataset.

For BAYWREF, we note that in addition to the potential factors contributing to temperature biases discussed in Section 3.1,
evaluation of the climatological simulation is also affected by discontinuities in station location and instrumentation. One
example is Niirnberg (id 3668), which moved on 4 December 1995 from (49.4947°N, 11.0806°E) to (49.5030°N, 11.0549°E).
The older station position is shifted one grid cell to the south and one grid cell to the west compared with its current location,

corresponding to a shift in land use from urban (old position) to grasslands (new). Any discontinuities in location and
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underlying surface type are not captured since the most recent station positions are used for extracting meteorological data
from D2. This potential source of discrepancies should be taken into consideration for climatological analyses (e.g.,

comparing observed and simulated trends).

4 Data Availability

Data from BAYWRF are available for download on the Open Science Framework (OSF; Collier, 2020;
https://www.doi.org/10.17605/0OSF.I0/AQ58B). Due to the size of the simulations, we have only provided daily mean data
from the finest WRF domain (D2; 1.5-km grid spacing) after cropping close to the extent of Bavaria and removing vertical
levels above ~ 200 hPa, amounting to 450 GB in total. Data are divided into three- and four-dimensional fields by year and
month, with respective file sizes of ~150 MB and 1.1 GB. For the four-dimensional data, perturbation and base-state
atmospheric pressure (WRF variables P and PB) and geopotential (PH and PHB) were combined to generate full model

fields, while perturbation potential temperature (T) was converted to atmospheric temperature.

5 Conclusions

We presented a climatological kilometer-scale simulation with the atmospheric model WRF over Bavaria for the period of
September 1987 to August 2018. Comparison of simulations for the period of September 2017 to August 2018 with and
without grid-analysis nudging against extensive meteorological measurements across Bavaria showed that nudging
decreased the mean deviations and increased the coefficient of determinations at the majority of sites for nearly all evaluated
atmospheric variables, in particular precipitation. This approach was therefore adopted for generating the full BAYWRF
dataset. In general, BAYWREF represents the variability of near-surface meteorological conditions well, albeit with both
seasonal and spatial biases that are explored briefly here. Future users of this dataset are encouraged to rigorously evaluate
biases for the variables and time periods relevant to their particular study areas and applications. BAYWRF provides a useful
database for linking large-scale climate, as represented by the ERAS reanalysis, to mesoscale climate over Germany, to local
conditions in Bavaria, in a physically based way. The data are intended for dendroecological research applications but would
also provide a valuable tool for investigations of the climate dependence of economic, societal, ecological, and agricultural

processes in Bavaria.
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390 Figure 1: Extent and modelled topographic height in WRF D1 (a) and D2 (b). The extent of D2 and of Bavaria are
delineated in black in the top and bottom panels, respectively.
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Figure 2: The location of the stations used for model evaluation during the most recent simulation year (September 2017 to
August 2018) for each dataset listed in Table 2. Datasets labelled in black are shown by filled black circles, while datasets
labelled in pink are shown by open pink circles, illustrating that locations for measurements of air temperature and humidity
(a; TT_TU _MNO09 & RF_TU_ MNO009) and of wind speed and direction (b; F MN003 & D_MNO003) were the same. The
locations for measurements of surface pressure (PO MNO08) and of precipitation (R1_MNO08) are shown in panels ¢ and d,
respectively.
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440 Table 1: A summary of the WRF configuration used for the simulations.

Table 1: WRF

configuration

Domain configuration

Horizontal grid spacing 7.5 & 1.5 km (D1-2)

Grid dimensions 351x301, 351x351

Time step 45&9s

Vertical levels 60

Model top pressure 10 hPa

Model physics

Radiation RRTMG (Iacono et al., 2008)
Microphysics Morrison (Morrison et al., 2009)
Cumulus Kain-Fritsch (none in D2) (Kain, 2004)
Planetary boundary layer Yonsei State University (Hong et al., 20006)
Atmospheric surface layer Monin Obukhov (Jiménez et al., 2012)
Land surface Noah-MP (Niu et al., 2011)
Dynamics

Top boundary condition Rayleigh damping

Diffusion Calculated in physical space

Table 2: A summary of data used for model evaluation. Rows highlighted in grey provide information about
observational data from the DWD CDC Data Portal, whose measurement locations for the evaluation for the 2017 to

2018 period are shown in Figure 2.

Total Stations in
Dataset Nz Variable [unit] Temporal Bavaria Versi Access URL Last Dataset Descripti
ataset Name ariable [uni Resolution 2017-2018 ersion ceess Accessed ataset Description
(1987-2018)
TT _TU_MNO009 2-m air temperature [°C] Hourly 106 (120) v19.3 https://cdc.dwd.de/portal https://cde.dwd.de/sdi/pid/TT_TU_MN009/DESCRIPTION_TT_TU_MNO009_en.pdf
RF_TU_MNO009 2-m relative humidity [%] Hourly 106 (120) v19.3 https://cdc.dwd.de/portal https://cde.dwd.de/sdi/pid/RE_TU_MN009/DESCRIPTION_RF_TU_MNO009_en.pdf
F_MNO003 10-m wind speed [m/s] Hourly 57 v19.3 https://cdc.dwd.de/portal https://cdc.dwd.de/sdi/pid/F_MNO003/DESCRIPTION_F_MN003_en.pdf
D_MNO003 10-m wind direction [deg] Hourly 57 v19.3 https://cdc.dwd.de/portal https:/cdc.dwd.de/sdi/pid/D_MN003/DESCRIPTION_D_MNO003_en.pdf
PO_MNO008 surface pressure [hPa] Hourly 38 v19.3 https://cde.dwd.de/portal https://cde.dwd.de/sdi/pid/P0_MNOOS/DESCRIPTION_P0_MNO08_en.pdf
R1_MNO008 precipitation [mm] Hourly 213 (219) v19.3 https://cdc.dwd.de/portal https://cdc.dwd.de/sdi/pid/R1_MNOOS/DESCRIPTION_R1_MNO008_en.pdf
Hourly station _
observations of solar a
a
incoming Incoming longwave and X b https:, dwd ¢ “DC/observations_germany/climate/hourl
(total/diffuse) and | shortwave radiation [J/em2] ekt e Iecent igpseitel ol S y/solar//DESCRIPTION obsgermany._climate_hourly_solar_en.pdf
longwave downward =
radiation for Germany
Monthly https://opendata.dwd.de/climate_envir od — N
- . htps: Wi grids_ger regnie/
REGNIE precipitation [mm] sum recent onmcm/CDC/gndsifgcrmany/momhly/ CRIPTION, gridsgemmany. monthly, regnie. en.pdf
regnie/
445 MODIS MYD11A1 | land surface temperature [K] Daily v006 | https://Ipdaacsvc.cr.usgs.gov/appeears https:/Ipdaac. usgs.gov/products/myd11al v006/
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Table 3: A summary of the statistical evaluation of the WRF_NO_NUDGE (italics) and WRF_NUDGE (bold italics)
simulations, considering the whole evaluation period of 1 September 2017 to 1 September 2018. The table presents
the mean deviation (MD), the mean absolute deviation (MAD) and the coefficient of determination (R?) for two-
hourly 2-m air temperature (7) and relative humidity RH), 10-m zonal wind (U) and meridional wind (V), surface

pressure (PS), and daily total precipitation (PR). All computations are made from observations minus model data.

Variable MD MAD R2

T (WRF NO NUDGE) 0.2 2.3 0.94
T (WRF NUDGE) 0.1 2.0 0.95
RH 3.5 11.3 0.59

RH 3.0 10.5 0.66

U 0.1 1.5 0.48

U 0.2 1.4 0.53

14 0.2 1.2 0.35

|4 0.2 1.1 0.40

PS -0.7 2.2 0.97

PS -0.8 2.0 0.99

PR 0.8 3.3 0.25

PR 0.4 2.9 0.42

Table 4: Same as Table 3 but for daily mean variables in WRF_NUDGE only.

Variable MD MAD R2
T 0.1 1.7 0.97
RH 3.0 8.4 0.71
U 0.2 0.9 0.72

| 4 0.2 0.6 0.64
PS -0.8 2.0 0.99
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