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Dear Dr. Carlson, 
 
Please find below the reviewer comments (black) as well as our responses and 
modifications to the manuscript (blue) below.  
 
Best regards, 
Emily Collier & Thomas Mölg 
 
 
Reviewer 1: Benjamin Poschlod 
 
General comments 
The manuscript by Emily Collier & Thomas Mölg gives a comprehensive overview of a 
high-resolution 30-year climatological data set over Bavaria. The climate simulations 
were produced by the WRF model in 1.5 km resolution, nested in a 7.5-km-resolution 
domain and driven by ERA5 boundary conditions. The authors evaluate the model 
performance for air temperature, relative humidity, winds, surface pressure, precipitation, 
and land surface temperature for a 12-month period where they compare simulated 
values to observational data. Additionally, the effect of the application of nudging is 
assessed. Generally, the manuscript is well-written, and the figures support the presentation 
of the data set and its evaluation. In particular, the authors’ handling of errors 
in the data set (e.g. sub-surface temperature in single glacier pixels) and explanation 
of deviations/biases (e.g. urban heat islands, connection between overestimated air 
temperature and overestimated radiation) are very valuable features of the data description. 
 
The data are easily accessible and valuable for further application with focus 
on impact-related studies. Though, the total size of the 30-year daily-resolution data 
set (~450 GB) may not be easy to handle for users, who are new to the application 
of high-resolution climate data. On the other hand, users from the field of climate science 
would be interested in even higher temporal resolution, especially regarding the 
precipitation data. In sum, I consider the manuscript and the data appropriate for the 
publication within ESSD, although I recommend minor revisions based on the following 
remarks. 
Thank you for your favorable assessment of our manuscript. Although the total dataset size 
is ~450 GB, the 3D variables that are most likely to be used for impacts assessments (e.g., 
near-surface air temperature, humidity and precipitation) amount to a more manageable 57 
GB. With regards to the provision of higher temporal resolution precipitation data, please see 
our response to Michael Warscher for more details. 
 
Specific comments 
L1: Title: the data set is described as “convection-resolving”. Though, within the whole 
manuscript, no convective events have been evaluated. Furthermore, the data set is 
provided in daily resolution, which is why short convective events cannot be investigated 
properly. Hence, I would suggest replacing “convection-resolving” by “high resolution”. 
We used the term “convection resolving” to describe the dataset following convention for 
atmospheric simulations with grid spacings below ~4-km. We did not mean to imply that we 
analyze convective events, however we agree that the use of this term could be misleading, 
especially to a wider audience, and therefore changed the title as suggested. 
 
L80 / Table 1: The Kain-Fritsch cumulus scheme is applied for the 7.5 km domain, but 
not for the 1.5 km domain. According to that, not only deep, but also shallow convection 
is explicitly resolved in the 1.5 km domain? I would suggest clarifying this in the text. 
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Yes, as no additional parameterization is employed, deep and shallow convection are 
explicitly represented in the 1.5 km domain. We added to Sect. 2.1 “As no cumulus 
parameterization was employed in D2, both deep and shallow convection are assumed to be 
explicitly resolved. 
 
L143: “For the distributed trend analysis, we did not apply a field significance test (e.g., 
Wilks, 2016) due to the small sample size.” – Does the “distributed trend analysis” refer 
to the results in L241 – 246 and Fig. 9? If yes – can you explain why is the sample 
size too small? If you test the trend at all 351x351 locations, the p-value should be 
adjusted for statistical tests at many locations (following e.g. Wilks 2016). Moreover, the 
reference (Wilks, 2016) is missing in your Reference section. Please also clarify, 
which test or method you used to detect trends. 
Here we were referring to the sample size of years. Please note that based on the 
suggestion of the other reviewer, we removed the trends analysis from the manuscript in 
favor of expanding the model evaluation. Please see our response to this reviewer for more 
details. 
 
L180: Has the observational precipitation data from DWD been corrected for undercatch? 
Especially in (pre-)alpine regions, this plays a major role, in particular for solid 
precipitation. I would recommend to briefly discuss this source of uncertainty. 
We did not correct precipitation for undercatch and have added this information in Section 
2.2. We also added to Section 3.1: “The MD is positive at the majority of stations, indicating 
that WRF generally underestimates observed precipitation. The underestimate is likely 
greater than reported here, since the observations were not corrected for wind-induced 
undercatch.” 
 
L385: Figure 4 gives a good overview of the biases averaged for all locations. Though, 
the spatial distribution of biases would be of high interest as well. As the manuscript is 
already quite long and contains many figures, I would suggest creating such bias maps 
and moving these additional figures to a supplementary file. 
We added some spatially distributed bias analysis as part of the expanded model evaluation. 
 
Technical corrections 
L156: 273.16 unit is missing 
We changed to “exceeded the melting point.” 
 
Figures 3,4,5,7,8: Temperature unit is “C” instead of “C”. Figure 6: Here the unit is 
missing in the figure (and given in the caption instead) Figure 9: Here you use “K” –> 
Please unify. 
We changed the units to degrees Celsius throughout the paper and corrected the figure 
labels and captions. 
 
Reviewer 2: Michael Warscher 
 
In their manuscript “BAYWRF: a convection-resolving, present-day climatological 
atmospheric dataset for Bavaria”, the authors present a new high-resolution RCM simulation 
using WRF and ERA5 reanalysis data as boundary condition. They evaluate the 
performance for the target region of Bavaria using station observations. 
 
General Comments 
The manuscript is very well written and of high technical and scientific quality. It fits very well 
in the scope of ESSD. However, I have several issues, questions, and suggestions which at 



 3 

large could lead to major revisions. However, I understand that the manuscript is mainly an 
overview of the presented data and thereby, the amount and detail of the analyses and 
following content has to be limited at certain points. I would gladly leave the decision to the 
editors on how much of and at what detail level my suggestions should be addressed. The 
dataset they produced is generally very valuable for the scientific community, as well as for 
many users in different sectors. 
 
The authors have chosen a single year as specific validation period. In addition, they point 
out in L. 101 that it is not an average year in terms of seasonal climatology (record heatwave 
in 2018). The chosen year might therefore not be a representative period for the RCM 
performance in other years. However, an extension of the evaluation period seems just 
limited by a missing run using the NO_NUDGE configuration. As the whole exercise is a 
historic / present-day reanalysis driven simulation effort, the NUDGE setup was run for the 
whole 30-year period anyways and would be available for additional validation years. I would 
highly recommend to add at least one additional year of validation (the more the better) to 
strengthen the results under different conditions. The validation could potentially even be 
done for the whole 30-years (just being limited by available observations and – by now - the 
missing NO_NUDGE for more than one year). I am also quite sure that an extension of the 
analysis would not limited by available observation data. If no additional simulations 
(NO_NUDGE) can be performed, the authors might think of some additional validation using 
the 30-year NUDGE run only. 
 
While I really acknowledge the direct comparison to station data, the study would highly 
benefit from a comparison to gridded observation data sets such as REG- NIE (1 km, 
https://www.dwd.de/DE/leistungen/regnie/regnie.html) or HYRAS (5 km, 
https://www.dwd.de/DE/leistungen/hyras/hyras.html). Besides the correct representation of 
single stations, the real benefit of such a computationally expensive high- resolution 
simulation might or should be – besides the reproduction of observed station data - the 
resolving of spatial distributions. 
To address this comment, we replaced the trend analysis with a new section evaluating the 
performance of BAYWRF over the whole simulation period compared with all available 
station data from the DWD datasets TT_TU_MN009, RF_TU_MN009, and R1_MN008 (T, 
RH and PREC) at daily timescales. We note that the PREC dataset is only available after 1 
September 1995. We therefore also added a brief pattern correlation analysis between 
simulated monthly total precipitation and the suggested REGNIE dataset for the full 
simulation period. 
 
We note that we have added the following information after posting this response in the 
interactive discussion: 
Added section: 3.2 Evaluation of BAYWRF 
“Averaged over the full simulation period, BAYWRF shows a similar magnitude of agreement 
with station T and RH data at daily timescales as found at sub-diurnal timescales for the 
single evaluation year (Fig. 8; cf. Fig. 3). For T, the MD has lower and upper quartiles of -0.3 
and 0.4°C, respectively, while the values of R2 uniformly exceed 0.92. For RH, the MD has 
lower and upper quartiles of 0.4 and 4.4% while the respective values for R2 are 0.57 and 
0.65. For PREC, the upper and lower quartiles of MDs considering days with observed 
precipitation are -0.1 and 0.1 mm while for R2 the values are 0.41 and 0.47. A similar 
number and magnitude of wet false events are simulated (twenty times less than the sample 
size of observed events). Spatially, BAYWRF exhibits a positive bias in T and a negative 
bias in RH in the interior of Bavaria, and the converse anomalies in the pre-alpine and alpine 
areas in the south and along the eastern border of the region (Fig. 8a, c). The mean R2 
values for RH show a clear meridional gradient (Fig. 8d), which suggests that the model has 
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some difficulty capturing processes governing near-surface moisture fluctuations in the 
southern part of Bavaria. Nonetheless, the highest correlation coefficients for observed 
precipitation events are found in this region (Fig. 8f). In addition, considering monthly 
precipitation sums, the centered pattern correlation between REGNIE and BAYWRF ranges 
from a lower quartile of 0.64 to an upper quartile of 0.82. Therefore, the characteristics of 
precipitation variability in time and space are captured by the dataset.” 
 
The authors point out, that they use a convection-permitting resolution of 1.5 km. However, 
the topic of simulating convective precipitation is not referred to again in the manuscript. This 
is still a very important and relevant topic, and the presented data would be ideally suited to 
look into this. Several questions arise and could easily be tackled. E.g. the authors show an 
underestimation of precipitation at some point. Could this be explained by the 1.5 km still 
being too coarse to resolve all or enough convective events? Are the results of the KF 
parameterization in the 7.5 km (D1) similar or totally different? Are sub-daily precipitation 
dynamics captured? Some of these questions could quite easily be investigated by 
comparing your results of D1 (convection parameterized) and D2 (convection resolved) to 
gridded precipitation products such as REGNIE and maybe even to station data. 
 
This leads to another question regarding the resolution. While I do not question the validity 
and satisfying performance of the presented simulation, I would be very glad to see more 
about the added value of such a high resolution. This could be done by a comparison of the 
performance between the results of Domain D1 and Domain D2. There are no analyses in 
the manuscript that try to address this important question. 
We agree that the question of convective characteristics is an interesting one, yet do not 
evaluate sub-diurnal precipitation or the added value in D2 in this manuscript for several 
reasons.  do not evaluate sub-diurnal precipitation or the added value in D2 in this 
manuscript for several reasons. First, we made this dataset for (dendroclimatological) impact 
studies, which require kilometer-scale resolution but only daily (e.g., Dietrich et al., 2019) or 
even monthly temporal resolution. Given the intended application of the dataset for impact 
studies, we have also only made data from D2 available through the OSF repository, since 
users interested in climate data at ~ O(10 km) grid spacing are likely to use the ERA5 data 
directly.  
 
Second, we note that there is already some consensus in the literature as to the added value 
of kilometer-scale grid spacing, in particular for precipitation (e.g., Ban et al., 2014; Mölg and 
Kaser, 2011; Prein et al., 2015) and examination of this scientific question (data 
interpretation) would appear to be outside of the scope of ESSD. 
 
Finally, the full two-hourly time series of precipitation alone amounts to nearly 50 GB of data. 
As our project already exceeds the desired size for (free) data storage on the OSF, 
uploading more data to the repository is problematic – as would be presenting and 
evaluating data that are not available for download. 
 
Another important issue regarding the trend analysis can be found in the specific comments. 
 
Specific Comments 
 
L. 12: I suggest to remove the reference to the project here (and at other positions in the 
manuscript) and state the project name solely in the acknowledgement section. 
We removed the reference to the project from the abstract and the last paragraph of the 
introduction. Please see below for our reply about removing references elsewhere in the 
manuscript. 
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L. 32 – 38: I see that the linkage to dendroclimatological studies refers to the research 
project, but in my opinion, this is not needed here. You don’t show any further results 
regarding this topic, and the general effort and method of dynamical downscaling does not 
really need to be justified or explained within this manuscript. 
While we agree that the introduction could be re-formulated to focus only on climate 
downscaling, we feel the project description and dendroecological discussion in the 
introduction provides an important context for why we generated these data as well as some 
configuration choices (e.g., the temporal resolution of the dataset). While we have removed 
two references to our specific project in the manuscript, we would prefer to keep some 
mention of this information in the introduction. 
 
L. 49 – 59: The same as the comments above: this is in general interesting information, but 
not within this manuscript. The paragraph should be shortened, maybe only keep the last 
sentence: “High-temporal. . .” 
Please see above. 
 
L. 66 – 68: Please remove the sentence: “These data. . .“ for the reason stated above. 
We removed this sentence. 
 
L. 69: While your statement here is certainly true, I would prefer a more moderate phrasing, 
e.g., “These data has the potential to find. . .“ instead of “These data will also find. . .”. 
We made this change. 
 
L. 78: Could you please give some more information on how the WRF configuration was 
chosen? This should then also be added to the manuscript. You state that the setup is based 
on Collier et al. (2019) but the study seems to be located in completely different climate and 
terrain conditions (East Africa). It is widely shown in literature that the performance of the 
chosen configuration strongly depends on the region. I understand that it is not feasible to 
perform a full configuration optimization ensemble, but some more information on this issue 
should be added. 
The configuration is based on all of our previous convection resolving modelling efforts, 
including some mesoscale and LES simulations for the European Alps that are as-of-yet 
unpublished and therefore cannot be cited. The configuration was not specifically optimized 
for the Bavaria domain, given temporal and computational constraints. To clarify, we 
amended this sentence to: “The physics and dynamics options used in the simulations are 
based on several recent convection-permitting applications of WRF by the authors (e.g., 
Collier et al., 2019) but were not specifically optimized for these domains due to the 
computational expense of the simulations.” 
 
L. 122: It would be very interesting to see sub-daily results also for precipitation from such a 
simulation. By permitting convective events, this could potentially be one of the strong points 
of such a high-resolution simulation. 
Please see our response to the general comment on this issue. 
 
L. 123: What about all the cases where modeled precipitation > 0 but the observed 
precipitation = 0? These cases should somehow be analyzed too and not be neglected in 
the performance analysis. 
Excellent point. If these events are included in the evaluation in Fig. 3, the bias evaluation is 
artificially improved, because WRF underestimates the magnitude of observed precipitation 
events and the magnitude of simulated “false” events is generally small (for example, the 
mean and median magnitudes are ~ 0.6 and 0.1 mm /day in WRF_NUDGE). We therefore 
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left Figure 3 as is but added the following sentence to Section 3.1: “In addition to 
underestimating observed daily precipitation events (total sample size of 35,791 for all 
stations and record lengths), the simulations also produce false daily precipitation events, 
the vast majority of which are very small in magnitude (the median value in both WRF 
simulations is less than 0.1 mm/day). Considering wetter days (precipitation exceeding 1 
mm/day; Ban et al., 2014), the number of false events is more than ten times smaller than 
the number of observed events (sample sizes of 3,096 and 2,249 in WRF_NO_NUDGE and 
WRF_NUDGE, respectively).” 
 
L. 128: Why did you choose two hourly WRF output? I see that the output somehow has to 
be confined, but hourly values would also be very valuable! Do you still have these 
available? I think it is fine for the manuscript to keep two hourly results, but at least for the 
main surface variables, it would be very useful to have hourly values as well. If they are 
available upon request, you could add this information to the data availability section. 
The history write frequency for the WRF simulations was set to two-hourly, so hourly data 
were not stored and are not available. This choice was made as a compromise between 
temporal resolution and storage requirements, and because the dendroclimatological part of 
the project only requires daily resolution. At two-hourly temporal resolution, the unprocessed 
model output already amounts to 55 TB of storage, which represented a huge logistical 
challenge to store, analyze, and make available through the public repository.  
 
We added a sentence to emphasize this point in the last paragraph of Section 2.1: “We 
selected this write frequency as a compromise between high-temporal resolution and the 
logistical challenges of storing, analyzing, and disseminating the data. 
 
L. 147 - 157: I highly appreciate the very well investigated and documented error handling 
here! 
Thank you! 
 
L. 160: See comment above: why did you choose two-hourly output? Was it just to save 
storage or is there another reason? 
Please see our reply above. 
 
L. 169 - 170: It is very valuable that you try to compare the results to other studies (here to 
the work by Warscher et al. 2019), but the numbers are not really comparable here (different 
investigation area, nudging strategy, stations, terrain, etc.). I would either keep your 
statement and add an explanation regarding the differences in the analyses or remove the 
statement or phrase it differently (“similar but lower” is quite inexplicit). 
Our intention was to contextualize our results with previous literature without going into great 
detail, since method comparison is outside of the scope of ESSD and the exact biases 
depend on many factors. We rephrased this sentence to “These values are comparable to 
previous high-resolution applications of WRF over Bavaria (Warscher et al., 2019)” and hope 
this change addresses your concern. 
 
L. 180 - 181: To me, this is a strong hint that the used resolution is still not high enough to 
correctly simulate absolute convective precipitation amounts. That’s one reason why it would 
be so valuable to analyze more than one year of data and to compare results between D1 
and D2. 
Given the resolution requirements for explicitly simulating the evolution of individual clouds, it 
is likely that some influence of moist convection is not being captured at 1.5-km grid spacing. 
We added to this paragraph: “The reported seasonal and mean biases in daily precipitation 
are consistent with a potential underestimate of deep convection and convective 
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precipitation at 1.5-km grid spacing. Although simulated mean precipitation shows a weak 
grid dependency below a spacing of ~ 4 km (Langhans et al., 2012), sub-kilometer spatial 
resolution is required to explicitly resolve the evolution and characteristics of clouds (e.g., 
Bryan et al., 2003; Craig and Dörnbrack, 2008; Prein et al., 2015). 
 
L. 213: You clearly show that the grid-nudged run is performing better than the “free” 
simulation, which again leads to the question of the benefits of the simulation. This result 
indicates that WRF adds biases compared to the ERA5 forcing simulation when not grid-
nudged to them. The DWD stations you used for your validation might even have been 
assimilated in ERA5 which again questions to some point the added value of the simulation. 
Simulation drift is a well-known issue with regional climate simulations, especially when 
larger domains are used, as in our simulations (e.g., Prein et al., 2015 and references 
therein). We contacted DWD to inquire which datasets may have been used for data 
assimilation in ERA5 but unfortunately have not received a reply. Nonetheless, we think it is 
a logical consequence (and not a particular drawback of the model or simulations) that 
nudging towards a dataset that assimilates some observational data produces results that 
agree more closely with the same, or other, observations. The benefit of the simulations is 
the dynamically consistent (and in D2 where no nudging occurs, physically consistent) 
representation of local climate at the kilometer scale. 
 
L. 215 - 216 Remove “(the temporal resolution of data available in BAYWRF)”. This is not 
important here. 
We made this change. 
 
L. 228: Three typos: add spaces after “WRF:” 
We corrected these typos. 
 
Sect. 3.5: Trend analysis: it is quite obvious that the trends are reproduced by the simulation 
when it is forced by a reanalysis product such as ERA5 (and grid-nudging is used). You 
could think about removing the whole section, as I do not see a value in this information. If 
the trends would not have been reproduced, it would be an argument that something goes 
wrong, but – the other way round - these results are not proving a good performance of WRF 
(as stated in the paragraph). You simply see the overall dynamics of the forcing (which 
includes assimilations of historic observations and therefore reproduces historic trends). 
We removed the trend section in favour of expanded model evaluation, as suggested above.  
 
L. 241 - 246: The paragraph falls a bit short compared to the other ones. The spatial 
distribution of trends could be more elaborated (if a trend section is kept). The fine scale 
spatial differences of trends is in the end the information that is produced by the RCM 
simulations (see the statements regarding trends and reanalysis above). 
We removed this paragraph. 
 
L. 261 - 263: The statement regarding grid-nudging may be true, but I do not see it as a 
success, as the forcing obviously includes assimilated observations (see comments above). 
We intended this statement to report a result rather than a success. We attempted to clarify 
by re-phrasing: “Comparison of simulations for the period of September 2017 to August 2018 
with and without grid-analysis nudging against extensive meteorological measurements 
across Bavaria showed that nudging decreased the mean deviations and increased the 
coefficient of determinations at the majority of sites for nearly all evaluated atmospheric 
variables, in particular precipitation. This approach was therefore adopted for generating the 
full BAYWRF dataset.” 
 



 8 

Fig. 7 c) and d): If I understand it right, the values in the legend should be reversed (wrong 
sign). 
The difference in night-time land-surface temperature was computed as MODIS minus WRF. 
Somewhat unconventionally, here orange colors delineate negative values, i.e. where WRF 
is warmer. We realize the color choice is somewhat confusing and added an additional 
sentence to the figure caption: “Note that the orange and red colours in panels c and d 
shade areas where WRF is warmer than MODIS (MODIS minus WRF is negative) and vice 
versa for blues.” 
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Abstract.  

Climate impact assessments require information about climate change at regional and ideally local scales. In 

dendroecological studies, this information has traditionally been obtained using statistical methods, which preclude the 10 

linkage of local climate changes to large-scale drivers in a process-based way. As part of recent efforts to investigate the 

impact of climate change on forest ecosystems in Bavaria, Germany, we developed a high-resolution atmospheric modelling 

dataset, BAYWRF, for this region over the thirty-year period of September 1987 to August 2018. The atmospheric model 

employed in this study, WRF, was configured with two nested domains of 7.5- and 1.5-km grid spacing, centred over 

Bavaria and forced at the outer lateral boundaries by ERA5 reanalysis data. Using an extensive network of observational 15 

data, we evaluate: (i) the impact of using grid-analysis nudging for a single-year simulation of the period of September 2017 

to August 2018; and (ii) the full BAYWRF dataset generated using nudging. The evaluation shows that the model represents 

variability in near-surface meteorological conditions generally well, although there are both seasonal and spatial biases in the 

dataset that interested users should take into account. BAYWRF provides a unique and valuable tool for investigating 

climate change in Bavaria with high-interdisciplinary relevance. Data from the finest resolution WRF domain are available 20 

for download at daily temporal resolution from a public repository at the Open Science Framework (Collier, 2020; 

https://www.doi.org/10.17605/OSF.IO/AQ58B). 

1 Introduction 

The forcing of climate change in modern times is clearly of global nature, and many important scientific problems can be 

understood at the global scale as well (e.g., Held and Soden, 2006). Climate impact assessments, however, must also 25 

understand the effects at regional and even local scales in order to develop appropriate adaptation and mitigation measures. 

Although local phenomena such as glaciers, lakes, vegetation patterns, or stream flow show a strong dependence on the 

large-scale climate dynamics, these proxies experience further variability when the large-scale signal is transferred to their 
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location (e.g., Mölg et al., 2014). In order to contextualize local changes, there is a need to link local climate to the large-

scale climate, ideally in a process-based way. 

 

In dendroclimatological studies, the traditional approach is to compute a calibration function between local or regional tree-

ring parameters and climatic variables. Typically, such a statistical relationship would try to utilize local station data (which 50 

are generally sparse), gridded observations (which tend to be coarse resolution), or indices of large-scale climate dynamics 

(which describe coupled atmosphere-ocean modes) as the climatic influence (e.g., Hochreuther et al., 2016). Besides known 

problems like stationarity (e.g., Frías et al., 2006), statistical approaches also limit the possibilities to explain the influences 

at the various scales on a process-resolving level. Dynamical downscaling with a full numerical atmospheric model provides 

a physical answer (Giorgi and Mearns, 1991), yet the disadvantage is the high computational cost. Hence, dynamical 55 

downscaling at near-kilometer resolution has traditionally been performed on a case-study basis for weather events (e.g., 

Gohm et al., 2008). Multi-decadal simulations, on the other hand, were typically limited to resolutions of tens of kilometers 

(e.g., Di Luca et al., 2016). With the progress of computational resources, dynamical downscaling is becoming a candidate 

for climate impact studies that require local-scale information, and the first decadal simulations at ~1-km resolution are now 

available (e.g., Collier et al., 2018). From the resultant model output, impact studies could utilize information about local 60 

meteorological conditions at high-spatial and high-temporal resolution, and over long, climatologically relevant temporal 

periods. Moreover, the physically consistent output would enable to generate the said process understanding of influences 

across the various climatic scales. 

 

The management of forests is a classical impact study where adaptation and mitigation measures meet the heterogeneous 65 

effects of climate change at local scales (e.g., Lindner et al., 2014). With this background, the project BayTreeNet was 

started recently under the umbrella of the interdisciplinary climatological research network Bayklif (https://www.bayklif.de; 

last accessed 1 March 2020), and aims to investigate the response of forest ecosystems to current and future climate 

dynamics across different growth areas in Bavaria, Germany. The project comprises a network of 10 measurement sites 

where meteorological and dendroecological data will be monitored and used both for research and for public and educational 70 

outreach, which are currently in the process of being established. High-temporal (approximately daily) and high-spatial 

resolution data is a key component of dendroecological impact studies, since the physiological behavior of trees, their 

structural properties and functional wood anatomy, as well as other important parameters such as wood density and mortality 

risk are not only influenced by seasonal averages, but also by short-term extreme events and weather anomalies (e.g., 

Bräuning et al., 2016). 75 

 

Previous regional climate simulations including Bavaria over continuous multi-decadal periods were performed with model 

resolutions as high as 5-7 km and up to the year 2009 (e.g., Berg et al., 2013; Warscher et al., 2019). However, to the best of 

our knowledge, such datasets at the kilometer scale and up to the near present do not yet exist, despite previous research 
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highlighting the importance of convection-permitting resolution in this region (Fosser et al., 2014). We address this data gap 

by performing simulations with an atmospheric model, configured with convection-permitting spatial resolution in a nested 

domain over Bavaria, for the recent climatological period of 1987 to 2018. These data have the potential to find 85 

multidisciplinary interest among researchers assessing ecological and human dependencies on the climate for scientific and 

practical questions. 

2 Methods 

2.1 Atmospheric model 

The atmospheric simulations were performed using the advanced research version of the Weather Research & Forecasting 90 

(WRF) model v. 4.1 (Skamarock and Klemp, 2008) configured with two one-way-nested domains of 7.5- and 1.5-km grid 

spacing situated over Bavaria (Fig. 1), hereafter referred to as D1 and D2. Terrain data were taken from NASA Shuttle Radar 

Topographic Mission data re-sampled to 1-km and 500-m grids (Jarvis et al., 2008; https://cgiarcsi.community/data/srtm-

90m-digital-elevation-database-v4-1; last accessed 24 May 2020) for D1 and D2, respectively, while land-use data was 

updated based on the European Space Agency Climate Change Initiative Land Cover data at 300-m spatial resolution 95 

(http://maps.elie.ucl.ac.be/CCI/viewer/download.php; last accessed 18 April 2018). The physics and dynamics options used 

in the simulations are based on several recent convection-permitting applications of WRF by the authors (e.g., Collier et al., 

2019) but were not specifically optimized for these domains due to the computational expense of the simulations. The 

options are summarized in Table 1. As no cumulus parameterization was employed in D2, both deep and shallow convection 

are assumed to be explicitly resolved. We note that no additional urban physics were enabled beyond the default 100 

parameterization used by the Noah family of land surface models (Liu et al., 2006) and land-use sub-tiling was not enabled. 

 

Forcing data at the lateral boundary of D1 and bottom boundaries of both domains was taken from the ERA5 reanalysis 

(Copernicus Climate Change Service (C3S), 2017) at three-hourly temporal resolution. The 30-year simulation was divided 

into 30 annual simulations that were run continuously from 15 August of year n-1 to 31 August of year n. The first 16 days 105 

of each simulation were discarded as spin-up time, retaining data from 1 September of year n-1 onwards. Atmospheric 

carbon dioxide (CO2) was updated in WRF for each simulation year using annually and globally averaged concentrations at 

the surface from the National Oceanic and Atmospheric Administration Earth System Research Laboratory (Tans and 

Keeling, 2019). Each simulation employed the CO2 concentration of year n, which ranged from 351 to 407 ppm between 

1988 and 2018. All other parameters and bottom boundary conditions (e.g., vegetation and land use) were held constant for 110 

all simulations. Therefore, they do not capture the impact of known land-use changes over the study period (e.g., Fuchs et 

al., 2013). 
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Each run required 12 days of wall-time with 320 processors on the Meggie compute cluster at the Erlangen Regional 

Computing Center, for a total of 2.86 million core hours. The model was compiled using intel 17.0 compilers and run using 

distributed-memory parallelization. Model output was written at two-hourly intervals, amounting to more than 55 TB of 

data, in addition to ~30 TB of pre-processing and input files. We selected this write frequency as a compromise between 

high-temporal resolution and the logistical challenges of storing, analyzing, and disseminating the data. 125 

2.2 Evaluation of Forcing Strategy 

For the period of 00 UTC 1 September 2017 to 00 UTC 1 September 2018, we compared two simulations with different 

forcing approaches: one excluding and one including grid-analysis nudging to constrain drift in the large-scale circulation 

(e.g., Bowden et al., 2013). This period was selected due to the higher availability of observational data closer to present day 

and because the summer of 2018 contained a record heatwave with drought conditions (Beyer, 2018), permitting evaluation 130 

of an extreme event. We refer to these simulations as WRF_NO_NUDGE and WRF_NUDGE, respectively. For the 

WRF_NUDGE simulation, analysis nudging was applied in D1 outside of the planetary boundary layer and above the lowest 

10 model levels using the default strength (3.0 x 10-4) for temperature and winds and reduced strength (5.0 x 10-5) for the 

water vapor mixing ratio (e.g., Otte et al., 2012), consistent with a previous decadal application of WRF (Collier et al., 

2018). Given the computational expense of each annual simulation, we did not attempt to optimize the nudging coefficients 135 

for our study area and instead evaluate simply whether nudging in this form improves the simulated atmospheric variables or 

not.  

2.3 Observational Data  

For model evaluation, we used data from the German Weather Service (DWD) Climate Data Center for all stations in 

Bavaria with hourly temporal resolution available, which provide good spatial coverage of our study area (Table 2; Fig. 2). 140 

To evaluate the forcing approach, we compared the following near-surface atmospheric variables at the highest temporal 

resolution available in the simulations, which is two-hourly: air temperature and relative humidity at 2 m (T and RH), zonal 

and meridional wind components at 10 m (U and V), and surface pressure (PS). In addition, we compared with daily total 

precipitation (PR). In our comparison with observations, we excluded measurement sites where the observed terrain height 

differed from the modelled value by more than 100 m (similar to e.g., Vionnet et al., 2019), corresponding to four sites in 145 

total for all variables except for PS (three) and PR (nine). After this exclusion, the average difference between modelled and 

observed terrain height at all stations is within ± 8 m for each dataset. We also excluded any days with missing observational 

data when computing daily statistics. We note that observed precipitation was not corrected for undercatch. We did not 

evaluate radiation variables, as only sunshine hours are available from the DWD in sufficiently large sample sizes. However, 

for understanding temperature biases in WRF during summer 2018, we used incoming shortwave radiation from the DWD 150 

Climate Data Center dataset entitled “Hourly station observations of solar incoming (total/diffuse) and longwave downward 

radiation for Germany” (Table 2). In total, there were four sites with both incoming shortwave (SW) and T data available in 
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Bavaria between 1 June and 31 August 2018 whose elevation was represented within ±100 m in D2: Nürnberg (id 3668), 165 

Weihenstephan-Dürnast (5404), Würzburg (5705), and Fürstenzell (5856).  

 

For statistical analysis, we computed the mean deviation (MD), mean absolute deviation (MAD), and the coefficient of 

determination (R2) between station data and data from the closest grid point in D2 without spatial interpolation at two-hourly 

and, for precipitation, at daily temporal frequency. The MD, also referred to here as the model bias, and the MAD were 170 

computed from observation minus model data. For precipitation, only daily totals were evaluated, and the MD and MAD 

were computed considering only days with non-zero observed precipitation.  

 

Finally, we also compared night-time land surface temperature (LST) from the MODIS MYD11A1 dataset (Table 2) at 1-km 

spatial and daily temporal resolution with simulated skin temperature in D2 for the period of 1 June to 31 August 2018. The 175 

night view time ranged from 1.2 to 2.8 hours in local solar time, with a domain and time averaged value of 2.2 hours. As 

WRF data were only available at two-hourly timesteps, we averaged 00 and 02 UTC (01 and 03 local time) data from D2 for 

comparison with MODIS. In our comparison, we excluded nights when MODIS had more than 50% missing data over D2, 

leaving a sample size of 52. 

 180 

For evaluating the full simulation, we performed a similar analysis with the aforementioned station datasets for T, RH and 

PREC (Table 2), however we averaged and summed the data to daily timescales for comparison with BAYWRF. In addition 

to comparing with individual stations, we also compared monthly total precipitation in BAYWRF with the gridded dataset 

REGNIE from the DWD CDC, which is based on interpolated station data and available at 1-km spatial resolution (e.g., 

Rauthe et al., 2013). For the comparison, REGNIE data were regridded to the WRF grid using patch interpolation and the 185 

ESMF regridding toolbox in NCL (https://www.ncl.ucar.edu/Document/Functions/ESMF/ESMF_regrid.shtml; last accessed 

10 September 2020) and the centered pattern correlation between the two datasets was computed. 

2.4 Numerical issue in BAYWRF 

We note that unphysically large sub-surface temperatures were simulated at a number of glacierized grid points, primarily  

during the months of July to September. Considering all of D2, the daily average number of affected grid cells was 24, 190 

compared with 294 glacierized and 122,500 total cells. The maximum number of affected grid points was 274 on 31 August 

2017, corresponding to 0.2% of D2. In addition, over the climatological simulation, only one grid point in Bavaria was 

affected (J = 71, I = 285; 47.4952°N, 13.6039°E). Surface temperature remained physical, since it is limited at the melting 

point over glacier surfaces, and soil moisture was unaffected, since it is specified to be fully saturated in glacierized grid 

cells. No other land-use categories were affected, and adjacent grid points were also unaffected, as the land surface model 195 

operates as a column model with no lateral communication. To preclude usage of these data, sub-surface temperature was set 

to missing where it exceeded the melting point at glacierized grid points in BAYWRF. More information about this 

Deleted: 2.3 Forcing Strategy¶
For the evaluation period, we compared two simulations with 
different forcing approaches, one excluding and one including grid 200 
analysis nudging to constrain drift in the large-scale circulation (e.g., 
Bowden et al., 2013). We refer to these simulations as 
WRF_NO_NUDGE and WRF_NUDGE in Section 3.1, 

Moved up [1]:  For the WRF_NUDGE simulation, analysis 
nudging was applied in D1 outside of the planetary boundary layer 205 
and above the lowest 10 model levels using the default strength (3.0 x 
10-4) for temperature and winds and reduced strength (5.0 x 10-5) for 
the water vapor mixing ratio (e.g., Otte et al., 2012), consistent with a 
previous decadal application of WRF (Collier et al., 2018). Given the 
computational expense of each annual simulation, we did not attempt 210 
to optimize the nudging coefficients for our study area and instead 
evaluate simply whether nudging in this form improves the simulated 
atmospheric variables or not.¶

Deleted: ¶
2.4 Climatological Analysis¶215 
To briefly evaluate the full climatological simulation, we compared 
simulated and observed monthly mean T from the DWD dataset 
‘MO_TT_MN004’ (Table 2), with a sample size of 26 stations that 
remained after filtering for height differences exceeding 100 m, the 
presence of missing data, and stations located in grid cells classified 220 
as urban (see Sect. 3.1). For the distributed trend analysis, we did not 
apply a field significance test (e.g., Wilks, 2016) due to the small 
sample size. Future users should rigorously evaluate biases for the 
variables, time periods, and resolutions relevant to their particular 
applications.¶225 

Deleted: 273.16



 

6 
 

numerical issue is available on the model’s GitHub repository (https://github.com/wrf-model/WRF/issues/1185; last 

accessed 24 May 2020). 

3 Results & Discussion 

3.1 Evaluation of forcing approach  230 

Averaged over the evaluation year, both WRF simulations capture the magnitude and variability of sub-diurnal near-surface 

meteorological conditions at most sites well (Fig. 3; Table 3). The interquartile range (IQR; range between upper and lower 

quartile) of MDs is one order of magnitude smaller than the observed standard deviation for all variables. As expected, 

variability is best captured for T and PS, with R2 values that uniformly exceed 0.87 and 0.96, respectively. Those of RH have 

a larger range but a lower quartile above ~0.55. Compared with these variables, the model shows less skill in simulating sub-235 

diurnal variability in winds, with lower quartiles of R2 for U and V of approximately 0.39 and 0.27, respectively.  

 

Shifting to daily timescales, both simulations represent variability in daily total PR surprisingly well, with the upper quartile 

of MDs below ~1.25 mm and lower quartiles of R2 exceeding 0.18 and 0.33, depending on the simulation. The MD is 

positive at the majority of stations, indicating that WRF generally underestimates observed precipitation. The underestimate 240 

is likely greater than reported here, since the observations were not corrected for wind-induced undercatch. In addition to 

underestimating observed daily precipitation events (total sample size of 35,791 for all stations and record lengths), the 

simulations also produce false daily precipitation events, the vast majority of which are very small in magnitude (the median 

value in both WRF simulations is less than 0.1 mm/day). Considering wetter days (precipitation exceeding 1 mm/day; Ban et 

al., 2014), the number of false events is more than ten times smaller than the number of observed events (sample sizes of 245 

3,096 and 2,249 in WRF_NO_NUDGE and WRF_NUDGE, respectively).   

 

Previous studies evaluating WRF over this region have reported Root Mean Square Deviations (RMSD). For direct 

comparison, the mean RMSD in WRF_NUDGE for two-hourly T and RH is 2.67°C and 13.7%, respectively, and for daily 

total precipitation is 5.27 mm. These values are comparable to previous high-resolution applications of WRF over Bavaria 250 

(Warscher et al., 2019).  

 

Examination of model biases on a monthly basis reveals further insights into the model performance (Fig. 4). The amplitude 

of the annual cycle is overpredicted in WRF, indicating that the good average agreement in T results from compensating 

biases: there is a cold bias in WRF in winter, a well-known issue with the model over snow-covered surfaces (e.g., Tomasi et 255 

al., 2017), and a warm bias in summer (Fig. 4a). The latter bias results in an underprediction of RH during this season (Fig. 

4b), suggesting that WRF represents absolute humidity more accurately. The summer temperature bias is also more sustained 

than the winter one, resulting in the long tails (heads) in the distribution of MDs of T (RH) in Fig. 3. There is also a general 
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underprediction of near-surface winds from fall to early winter, as exemplified by the results for U in Fig. 4c and the slight 

positive skewness of the distribution of MDs for both U and V in Fig. 3, consistent with overly stable atmospheric conditions 

resulting from the cold bias. Finally, the model tends to overestimate precipitation in early spring and underestimate it in 

summer and fall. The reported seasonal and mean biases in daily precipitation are consistent with a potential underestimate 

of deep convection and convective precipitation at 1.5-km grid spacing. Although simulated mean precipitation shows a 270 

weak grid dependency below a spacing of ~ 4 km (Langhans et al., 2012), sub-kilometer spatial resolution is required to 

explicitly resolve the evolution and characteristics of clouds (e.g., Bryan et al., 2003; Craig and Dörnbrack, 2008; Prein et 

al., 2015). 

 

Figure 5 shows a representative timeseries of T and SW for the station in Nürnberg (3668) in June 2018. The timeseries 275 

illustrates that the positive temperature bias in summer 2018 results from two distinct contributions. First, there is an 

overestimation of daytime maximum T, coinciding with an overestimation of SW. This relationship is observed both at 

Nürnberg and at the other three stations for which both datasets are available (Fig. 6a; cf. Sect. 2.2). The overestimation 

suggests there is an underestimation of either daytime cloudiness or its impact on incoming SW at the surface, likely 

stemming from the microphysics parameterization. Ban et al. (2014) identified similar processes underlying a warm bias in 280 

summer in a convection-permitting decadal simulation over central Europe. Second, there is an overestimation of night-time 

minimum T, suggesting that land-surface processes may play a role. Of the 101 stations with T measurements available, the 

dominant land-use categories of the grid cells containing stations are: 'Urban’ (10 sites); 'Dryland Cropland and Pasture' (4 

sites); 'Grassland' (72 sites); 'Deciduous Broadleaf Forest' (1 sites); 'Evergreen Needleleaf Forest' (11 sites); and, 'Mixed 

Forest' (3 sites). The overestimation of night-time T is greatest at stations located in grid cells classified as urban (Fig. 6b), 285 

consistent with a previous evaluation of WRF with the Noah-MP LSM for urban and rural stations in summer (Salamanca et 

al., 2018). The bias amplification in urban grid cells may reflect an incorrect classification of the underlying land surface in 

WRF, as only the München-Stadt station (id 3379) is listed as an urban station on the DWD’s list for computing heat island 

effects. It may also result from an overestimation of heat storage when a mosaic approach is not used, and therefore the 

entire grid cell is treated as urban (Daniel Fenner, personal communication). The potential role of the land-surface 290 

specification or properties is reinforced by the comparison with MODIS data (Fig. 7), which shows the largest warm biases 

over grid cells classified as urban or croplands while biases are smaller in forested areas. There is also a cold bias along the 

foothills and at higher elevations in the Alps. The biases are slightly smaller in WRF_NUDGE than in WRF_NO_NUDGE, 

consistent with the station-based assessment.  

 295 

In addition to factors internal to WRF, we note that the driving reanalysis data may also contribute to the warm bias, at least 

at some locations. From the available observations, 60 stations have both valid T data between June and August 2018 and a 

modelled elevation in ERA5 that is within ±100 m of reality. Averaged over the summer months and all stations, ERA5 has 
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a mean warm bias of 0.37°C. At 25 of the sites, a warm bias exceeding 0.5°C is present, with an average value over these 

sites of 0.92°C.  300 

The inclusion of grid-analysis nudging leads to a small but nearly uniform improvement in agreement between observed and 

simulated variables. The distribution of MDs is closer to zero for all variables except U and PS, while those of MADs are 

closer for all variables (cf. Fig. 3 and Table 3). R2 values are also uniformly higher when nudging is used, and the lowest 

lower-quartile value is 0.3 in WRF_NUDGE compared with only 0.18 in WRF_NO_NUDGE. Nudging produces a 

particularly noticeable improvement in simulated precipitation, halving the MD and nearly doubling the R2 values (cf. Fig. 3, 305 

Fig. 4 and Table 3). Its usage also reduces the magnitude of the seasonal temperature biases and the number of extreme 

occurrences of the warm bias in summer (cf. Fig. 4 and Fig. 6). Considering daily timescales, the agreement of 

WRF_NUDGE with the observations is similar or even improved (Table 4): the mean MD is largely unaffected, but the 

average MAD decreases and average R2 increases. Based on these improvements, grid-analysis nudging was adopted for the 

climatological simulations. 310 

3.2 Evaluation of BAYWRF 

Averaged over the full simulation period, BAYWRF shows a similar magnitude of agreement with station T and RH data at 

daily timescales as found at sub-diurnal timescales for the single evaluation year (Fig. 8; cf. Fig. 3). For T, the MD has lower 

and upper quartiles of -0.3 and 0.4°C, respectively, while the values of R2 uniformly exceed 0.92. For RH, the MD has lower 

and upper quartiles of 0.4 and 4.4% while the respective values for R2 are 0.57 and 0.65. For PREC, the upper and lower 315 

quartiles of MDs considering days with observed precipitation are -0.1 and 0.1 mm while for R2 the values are 0.41 and 0.47. 

A similar number and magnitude of wet false events are simulated (twenty times less than the sample size of observed 

events). Spatially, BAYWRF exhibits a positive bias in T and a negative bias in RH in the interior of Bavaria, and the 

converse anomalies in the pre-alpine and alpine areas in the south and along the eastern border of the region (Fig. 8a, c). The 

mean R2 values for RH show a clear meridional gradient (Fig. 8d), which suggests that the model has some difficulty 320 

capturing processes governing near-surface moisture fluctuations in the southern part of Bavaria. Nonetheless, the highest 

correlation coefficients for observed precipitation events are found in this region (Fig. 8f). In addition, considering monthly 

precipitation sums, the centered pattern correlation between REGNIE and BAYWRF ranges from a lower quartile of 0.64 to 

an upper quartile of 0.82. Therefore, the characteristics of precipitation variability in time and space are captured by the 

dataset. 325 

 

For BAYWRF, we note that in addition to the potential factors contributing to temperature biases discussed in Section 3.1, 

evaluation of the climatological simulation is also affected by discontinuities in station location and instrumentation. One 

example is Nürnberg (id 3668), which moved on 4 December 1995 from (49.4947ºN, 11.0806ºE) to (49.5030ºN, 11.0549ºE). 

The older station position is shifted one grid cell to the south and one grid cell to the west compared with its current location, 330 

corresponding to a shift in land use from urban (old position) to grasslands (new). Any discontinuities in location and 
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underlying surface type are not captured since the most recent station positions are used for extracting meteorological data 365 

from D2. This potential source of discrepancies should be taken into consideration for climatological analyses (e.g., 

comparing observed and simulated trends). 

4 Data Availability 

Data from BAYWRF are available for download on the Open Science Framework (OSF; Collier, 2020; 

https://www.doi.org/10.17605/OSF.IO/AQ58B). Due to the size of the simulations, we have only provided daily mean data 370 

from the finest WRF domain (D2; 1.5-km grid spacing) after cropping close to the extent of Bavaria and removing vertical 

levels above ~ 200 hPa, amounting to 450 GB in total. Data are divided into three- and four-dimensional fields by year and 

month, with respective file sizes of ~150 MB and 1.1 GB. For the four-dimensional data, perturbation and base-state 

atmospheric pressure (WRF variables P and PB) and geopotential (PH and PHB) were combined to generate full model 

fields, while perturbation potential temperature (T) was converted to atmospheric temperature.  375 

5 Conclusions 

We presented a climatological kilometer-scale simulation with the atmospheric model WRF over Bavaria for the period of 

September 1987 to August 2018. Comparison of simulations for the period of September 2017 to August 2018 with and 

without grid-analysis nudging against extensive meteorological measurements across Bavaria showed that nudging 

decreased the mean deviations and increased the coefficient of determinations at the majority of sites for nearly all evaluated 380 

atmospheric variables, in particular precipitation. This approach was therefore adopted for generating the full BAYWRF 

dataset. In general, BAYWRF represents the variability of near-surface meteorological conditions well, albeit with both 

seasonal and spatial biases that are explored briefly here. Future users of this dataset are encouraged to rigorously evaluate 

biases for the variables and time periods relevant to their particular study areas and applications. BAYWRF provides a useful 

database for linking large-scale climate, as represented by the ERA5 reanalysis, to mesoscale climate over Germany, to local 385 

conditions in Bavaria, in a physically based way. The data are intended for dendroecological research applications but would 

also provide a valuable tool for investigations of the climate dependence of economic, societal, ecological, and agricultural 

processes in Bavaria. 

6 Author contributions 

EC performed the simulations, analyzed the data and wrote the manuscript. TM developed the study concept and wrote the 390 

manuscript. 

Deleted: T

Deleted: ¶

Deleted: Spatially distributed trends in T are strongest and 
significant over the largest in area during JJA (Fig. 9a; other seasons 395 
not shown), ranging from ~0.3 to 0.7 K/decade over Bavaria. Trends 
in precipitable water are likewise uniformly positive over the study 
region, ranging from ~0.2 to 0.3 mm/decade. The trends of both 
fields also have a positive gradient between southwestern and 
northeastern Bavaria. These results agree qualitatively and 400 
quantitively with previous studies (e.g., Alshawaf et al., 2017). ¶

Deleted: (OSF; Collier, 2020; 
https://www.doi.org/10.17605/OSF.IO/AQ58B)…

Deleted: Subsets of D1 or sub-diurnal data can be made available 
upon request. …405 

Deleted: , convection-permitting

Deleted: For

Deleted: evaluation 

Deleted: , we compared the simulations 

Deleted: and evaluated the impact of using grid-analysis nudging. 410 
We found that the model reproduced variability in near-surface 

Deleted: the model reproduced variability in near-surface 
meteorological conditions well, although seasonal temperature biases 
were present. Grid analysis …

Deleted: correlations between simulations and observations415 
Deleted: with a particularly noticeable improvement for simulated 
daily precipitation. 



 

10 
 

7 Competing interests 

The authors declare that they have no conflict of interest. 

8 Acknowledgements 420 

This project is sponsored by the Bavarian State Ministry of Science and the Arts in the context of the Bavarian Climate 

Research Network (bayklif). We gratefully acknowledge the compute resources and support provided by the Erlangen 

Regional Computing Center (RRZE) and we thank Thomas Zeiser for his assistance with the timely completion of the 

simulations. 

References 425 

Alshawaf, F., Balidakis, K., Dick, G., Heise, S. and Wickert, J.: Estimating trends in atmospheric water vapor and 

temperature time series over Germany, Atmos. Meas. Tech., doi:10.5194/amt-10-3117-2017, 2017. 

Berg, P., Wagner, S., Kunstmann, H. and Schädler, G.: High resolution regional climate model simulations for Germany: 

Part I-validation, Clim. Dyn., doi:10.1007/s00382-012-1508-8, 2013. 

Beyer, M.: Hitzewelle Sommer 2018 - Einordnung und Ausblick, [online] Available from: 430 

https://www.dwd.de/DE/wetter/thema_des_tages/2018/8/6.html (Accessed 1 August 2019), 2018. 

Bowden, J. H., Nolte, C. G. and Otte, T. L.: Simulating the impact of the large-scale circulation on the 2-m temperature and 

precipitation climatology, Clim. Dyn. [online] Available from: http://link.springer.com/article/10.1007/s00382-012-1440-y, 

2013. 

Bräuning, A., De Ridder, M., Zafirov, N., García-González, I., Dimitrov, D. P. and Gärtner, H.: TREE-RING FEATURES: 435 

INDICATORS of EXTREME EVENT IMPACTS, IAWA J., doi:10.1163/22941932-20160131, 2016. 

Ciais, P., Reichstein, M., Viovy, N., Granier, A., Ogée, J., Allard, V., Aubinet, M., Buchmann, N., Bernhofer, C., Carrara, 

A., Chevallier, F., De Noblet, N., Friend, A. D., Friedlingstein, P., Grünwald, T., Heinesch, B., Keronen, P., Knohl, A., 

Krinner, G., Loustau, D., Manca, G., Matteucci, G., Miglietta, F., Ourcival, J. M., Papale, D., Pilegaard, K., Rambal, S., 

Seufert, G., Soussana, J. F., Sanz, M. J., Schulze, E. D., Vesala, T. and Valentini, R.: Europe-wide reduction in primary 440 

productivity caused by the heat and drought in 2003, Nature, doi:10.1038/nature03972, 2005. 

Collier, E.: BAYWRF, [online] Available from: https://www.doi.org/10.17605/OSF.IO/AQ58B, 2020. 

Collier, E., Mölg, T. and Sauter, T.: Recent atmospheric variability at Kibo summit, Kilimanjaro, and its relation to climate 

mode activity, J. Clim., 31(10), 3875–3891, doi:10.1175/JCLI-D-17-0551.1, 2018. 

Collier, E., Sauter, T., Mölg, T. and Hardy, D.: The influence of tropical cyclones on circulation, moisture transport, and 445 

snow accumulation at Kilimanjaro during the 2006 - 2007 season, J. Geophys. Res. Atmos., 2019. 

Copernicus Climate Change Service (C3S): ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global 



 

11 
 

climate., Copernicus Clim. Chang. Serv. Clim. Data Store [online] Available from: 

https://cds.climate.copernicus.eu/cdsapp#!/home (Accessed 16 June 2019), 2017. 

Esty, W. W. and Banfield, J. D.: The Box-Percentile Plot, J. Stat. Softw., doi:10.18637/jss.v008.i17, 2003. 450 

Fosser, G., Khodayar, S. and Berg, P.: Benefit of convection permitting climate model simulations in the representation of 

convective precipitation, Clim. Dyn., doi:10.1007/s00382-014-2242-1, 2014. 

Frías, M. D., Zorita, E., Fernández, J. and Rodríguez-Puebla, C.: Testing statistical downscaling methods in simulated 

climates, Geophys. Res. Lett., doi:10.1029/2006GL027453, 2006. 

Fuchs, R., Herold, M., Verburg, P. H. and Clevers, J. G. P. W.: A high-resolution and harmonized model approach for 455 

reconstructing and analysing historic land changes in Europe, Biogeosciences, doi:10.5194/bg-10-1543-2013, 2013. 

Giorgi, F. and Mearns, L. O.: Approaches to the simulation of regional climate change: A review, Rev. Geophys., 

doi:10.1029/90RG02636, 1991. 

Gohm, A., Mayr, G. J., Fix, A. and Giez, A.: On the onset of bora and the formation of rotors and jumps near a mountain 

gap, Q. J. R. Meteorol. Soc., doi:10.1002/qj.206, 2008. 460 

Held, I. M. and Soden, B. J.: Robust responses of the hydrological cycle to global warming, J. Clim., 

doi:10.1175/JCLI3990.1, 2006. 

Hochreuther, P., Wernicke, J., Grießinger, J., Mölg, T., Zhu, H., Wang, L. and Bräuning, A.: Influence of the Indian Ocean 

Dipole on tree-ring δ18O of monsoonal Southeast Tibet, Clim. Change, doi:10.1007/s10584-016-1663-8, 2016. 

Hong, S. Y., Noh, Y. and Dudhia, J.: A new vertical diffusion package with an explicit treatment of entrainment processes, 465 

Mon. Weather Rev. [online] Available from: http://journals.ametsoc.org/doi/abs/10.1175/MWR3199.1, 2006. 

Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A. and Collins, W. D.: Radiative forcing by long-

lived greenhouse gases: Calculations with the AER radiative transfer models, J. Geophys. Res., 113(D13), D13103, 

doi:10.1029/2008JD009944, 2008. 

Jarvis, A., Reuter, H. I., Nelson, A. and Guevara, E.: Hole-filled SRTM for the globe Version 4, available from CGIAR-CSI 470 

SRTM 90m Database (http//srtm. csi. cgiar. org), 2008. 

Jiménez, P. A., Dudhia, J., González-Rouco, J. F., Navarro, J., Montávez, J. P. and García-Bustamante, E.: A Revised 

Scheme for the WRF Surface Layer Formulation, Mon. Weather Rev., 140(3), 898–918 [online] Available from: 

http://journals.ametsoc.org/doi/abs/10.1175/MWR-D-11-00056.1, 2012. 

Kain, J. S.: The Kain–Fritsch Convective Parameterization: An Update, J. Appl. Meteorol., 43(1), 170–181, 2004. 475 

Lindner, M., Fitzgerald, J. B., Zimmermann, N. E., Reyer, C., Delzon, S., van der Maaten, E., Schelhaas, M. J., Lasch, P., 

Eggers, J., van der Maaten-Theunissen, M., Suckow, F., Psomas, A., Poulter, B. and Hanewinkel, M.: Climate change and 

European forests: What do we know, what are the uncertainties, and what are the implications for forest management?, J. 

Environ. Manage., doi:10.1016/j.jenvman.2014.07.030, 2014. 

Liu, Y., Chen, F., Warner, T. and Basara, J.: Verification of a mesoscale data-assimilation and forecasting system for the 480 

Oklahoma City area during the joint urban 2003 field project, J. Appl. Meteorol. Climatol., doi:10.1175/JAM2383.1, 2006. 



 

12 
 

Di Luca, A., Argüeso, D., Evans, J. P., De Elía, R. and Laprise, R.: Quantifying the overall added value of dynamical 

downscaling and the contribution from different spatial scales, J. Geophys. Res., doi:10.1002/2015JD024009, 2016. 

Mölg, T., Maussion, F. and Scherer, D.: Mid-latitude westerlies as a driver of glacier variability in monsoonal High Asia, 

Nat. Clim. Chang. [online] Available from: http://www.nature.com/nclimate/journal/v4/n1/full/nclimate2055.html, 2014. 485 

Morrison, H., Thompson, G. and Tatarskii, V.: Impact of Cloud Microphysics on the Development of Trailing Stratiform 

Precipitation in a Simulated Squall Line: Comparison of One- and Two-Moment Schemes, Mon. Weather Rev., 137(3), 991–

1007, doi:10.1175/2008MWR2556.1, 2009. 

Muthers, S., Laschewski, G. and Matzarakis, A.: The summers 2003 and 2015 in South-West Germany: Heat waves and 

heat-related mortality in the context of climate change, Atmosphere (Basel)., doi:10.3390/atmos8110224, 2017. 490 

Niu, G.-Y., Yang, Z.-L., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M., Kumar, A., Manning, K., Niyogi, D., Rosero, E., 

Tewari, M. and Xia, Y.: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model 

description and evaluation with local-scale measurements, J. Geophys. Res., 116(D12) [online] Available from: 

http://www.agu.org/pubs/crossref/2011/2010JD015139.shtml, 2011. 

Otte, T. L., Nolte, C. G., Otte, M. J. and Bowden, J. H.: Does nudging squelch the extremes in regional climate modeling?, J. 495 

Clim., 25(20), 7046–7066, 2012. 

Salamanca, F., Zhang, Y., Barlage, M., Chen, F., Mahalov, A. and Miao, S.: Evaluation of the WRF-Urban Modeling 

System Coupled to Noah and Noah-MP Land Surface Models Over a Semiarid Urban Environment, J. Geophys. Res. 

Atmos., doi:10.1002/2018JD028377, 2018. 

Skamarock, W. C. and Klemp, J. B.: ScienceDirect - Journal of Computational Physics : A time-split nonhydrostatic 500 

atmospheric model for weather research and forecasting applications, J. Comput. Phys., 227, 3465–3485, 2008. 

Tans, P. and Keeling, R.: Trends in Atmospheric Carbon Dioxide, [online] Available from: 

https://www.esrl.noaa.gov/gmd/ccgg/trends/data.html (Accessed 1 August 2019), 2019. 

Tomasi, E., Giovannini, L., Zardi, D. and de Franceschi, M.: Optimization of Noah and Noah_MP WRF land surface 

schemes in snow-melting conditions over complex terrain, Mon. Weather Rev., doi:10.1175/MWR-D-16-0408.1, 2017. 505 

Vionnet, V., Six, D., Auger, L., Dumont, M., Lafaysse, M., Quéno, L., Réveillet, M., Dombrowski-Etchevers, I., Thibert, E. 

and Vincent, C.: Sub-kilometer Precipitation Datasets for Snowpack and Glacier Modeling in Alpine Terrain, Front. Earth 

Sci., doi:10.3389/feart.2019.00182, 2019. 

Warscher, M., Wagner, S., Marke, T., Laux, P., Smiatek, G., Strasser, U. and Kunstmann, H.: A 5 km Resolution Regional 

Climate Simulation for Central Europe: Performance in High Mountain Areas and Seasonal, Regional and Elevation-510 

Dependent Variations, Atmosphere (Basel)., 10(11), 682, 2019. 

 

Deleted: ¶

[m]

D1

D2

(a)

(b)



 

13 
 

 515 

 

Figure 1: Extent and modelled topographic height in WRF D1 (a) and D2 (b). The extent of D2 and of Bavaria are 
delineated in black in the top and bottom panels, respectively.  
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Figure 2: The location of the stations used for model evaluation during the most recent simulation year (September 2017 to 525 
August 2018) for each dataset listed in Table 2. Datasets labelled in black are shown by filled black circles, while datasets 
labelled in pink are shown by open pink circles, illustrating that locations for measurements of air temperature and humidity 
(a; TT_TU_MN009 & RF_TU_MN009) and of wind speed and direction (b; F_MN003 & D_MN003) were the same. The 
locations for measurements of surface pressure (P0_MN008) and of precipitation (R1_MN008) are shown in panels c and d, 
respectively. 530 
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Figure 3: Box-percentile plots (Esty and Banfield, 2003) of mean deviation (MD), mean absolute deviation (MAD), and 535 
coefficient of determination (R2) between observations and the two WRF simulations, WRF_NO_NUDGE (blue) and 
WRF_NUDGE (green), for 2-m (a) air temperature and (b) relative humidity, 10-m (c) zonal and (d) meridional winds, (e) 
surface pressure and (f) precipitation. The statistics for all variables except for precipitation were computed from two-hourly 
instantaneous values, while those for precipitation were computed using daily totals. The shape of the plots shows the 
distribution of data over their range of values, white lines delineate 25th, 50th and 75th percentiles, and a black dot indicates 540 
the mean. The observed standard deviation (σobs) for each variable is provided in the left column.  
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Figure 4: Timeseries of monthly mean 2-m (a) air temperature and (b) relative humidity, (c) 10-m zonal winds, and (d) daily 545 
total precipitation (left column) between September 2017 and August 2018. Observational, WRF_NO_NUDGE and 
WRF_NUDGE data are shown in black, blue and green, respectively. Timeseries of monthly mean biases of the same 
variables (right column). The mean bias over all stations is shown for each simulation using the same colour assignment, 
while the lower and upper quartile of the station biases is shown as a blue polygon and green bars for WRF_NO_NUDGE 
and WRF_NUDGE data, respectively. 550 
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Figure 5: Timeseries of (a) 2-m air temperature and (b) incoming shortwave radiation at the station in Nürnberg (id 3668) 
from 1 June to 1 July 2018. Observational, WRF_NO_NUDGE and WRF_NUDGE data are shown in black, blue and green, 565 
respectively. 
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 575 

Figure 6: Scatter plots of (a) air temperature bias vs. incoming shortwave radiation bias and (b) air temperature bias vs. 
land-use category in closest grid cell to station. The category abbreviations from left to right describe: 'Urban and Built-Up 
Land’ (10 sites); 'Dryland Cropland and Pasture' (4 sites); 'Grassland' (72 sites); 'Deciduous Broadleaf Forest' (1 sites); 
'Evergreen Needleleaf Forest' (11 sites); and, 'Mixed Forest' (3 sites). For both panels, data from WRF_NO_NUDGE and 
WRF_NUDGE are displayed as blue square and green circle markers, respectively. 580 
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Figure 7: (a) Land-use classification in D2. (b) Number of timesteps with valid night-time LST data in the MODIS 
MYD11A1 dataset between 1 June and 31 August 2018 out of a maximum of 52 with less than 50% missing data in D2. The 
average difference in observed and simulated LST for (c) WRF_NO_NUDGE and (d) WRF_NUDGE. Note that the orange 595 
and red colours in panels c and d shade areas where WRF is warmer than MODIS (MODIS minus WRF is negative) and vice 
versa for blues. 
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Figure 8: Spatial maps of mean MD (left column) and R2 (right) at all stations with valid data between September 1987 and 
August 2018 for daily mean (a, b) T and (c, d) RH, and for daily total (e, f) PREC. The four marker sizes group the 
percentage of the total timesteps (11,323 days) for which data were available at each station into the four quartiles. The 
largest marker size, which delineates records with more than 75% valid data points, is therefore not available for PREC, as 615 
this dataset begins on 1 September 1995. 
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Table 1: A summary of the WRF configuration used for the simulations. 

Table 1: WRF 
configuration 

  

Domain configuration   
Horizontal grid spacing 7.5 & 1.5 km (D1–2)  
Grid dimensions 351x301, 351x351  
Time step 45 & 9 s  
Vertical levels 60  
Model top pressure 10 hPa  
Model physics   
Radiation RRTMG (Iacono et al., 2008) 
Microphysics Morrison (Morrison et al., 2009) 
Cumulus Kain-Fritsch (none in D2) (Kain, 2004) 
Planetary boundary layer Yonsei State University (Hong et al., 2006) 
Atmospheric surface layer Monin Obukhov  (Jiménez et al., 2012) 
Land surface Noah-MP (Niu et al., 2011) 
Dynamics   
Top boundary condition Rayleigh damping  
Diffusion Calculated in physical space  

 

Table 2: A summary of data used for model evaluation. Rows highlighted in grey provide information about 655 
observational data from the DWD CDC Data Portal, whose measurement locations for the evaluation for the 2017 to 
2018 period are shown in Figure 2. 

 

 

 660 

 

Dataset Name Variable [unit] Temporal 
Resolution

Total Stations in 
Bavaria                    

2017-2018        
(1987-2018)

Version Access URL Last 
Accessed Dataset Description

TT_TU_MN009 2-m air temperature [℃] Hourly 106 (120) v19.3 https://cdc.dwd.de/portal https://cdc.dwd.de/sdi/pid/TT_TU_MN009/DESCRIPTION_TT_TU_MN009_en.pdf

RF_TU_MN009 2-m relative humidity [%] Hourly 106 (120) v19.3 https://cdc.dwd.de/portal https://cdc.dwd.de/sdi/pid/RF_TU_MN009/DESCRIPTION_RF_TU_MN009_en.pdf

F_MN003 10-m wind speed [m/s] Hourly 57 v19.3 https://cdc.dwd.de/portal https://cdc.dwd.de/sdi/pid/F_MN003/DESCRIPTION_F_MN003_en.pdf

D_MN003 10-m wind direction [deg] Hourly 57 v19.3 https://cdc.dwd.de/portal https://cdc.dwd.de/sdi/pid/D_MN003/DESCRIPTION_D_MN003_en.pdf

P0_MN008 surface pressure [hPa] Hourly 38 v19.3 https://cdc.dwd.de/portal https://cdc.dwd.de/sdi/pid/P0_MN008/DESCRIPTION_P0_MN008_en.pdf

R1_MN008 precipitation [mm] Hourly 213 (219) v19.3 https://cdc.dwd.de/portal https://cdc.dwd.de/sdi/pid/R1_MN008/DESCRIPTION_R1_MN008_en.pdf

Hourly station 
observations of solar 

incoming 
(total/diffuse) and 

longwave downward 
radiation for Germany

Incoming longwave and 
shortwave radiation [J/cm2]

Hourly 10 recent https://cdc.dwd.de/portal
https://opendata.dwd.de/climate_environment/CDC/observations_germany/climate/hourl

y/solar//DESCRIPTION_obsgermany_climate_hourly_solar_en.pdf

REGNIE precipitation [mm]
Monthly 

sum
-- recent

https://opendata.dwd.de/climate_envir
onment/CDC/grids_germany/monthly/

regnie/

https://opendata.dwd.de/climate_environment/CDC/grids_germany/monthly/regnie/DES
CRIPTION_gridsgermany_monthly_regnie_en.pdf

MODIS MYD11A1 land surface temperature [K] Daily -- v006 https://lpdaacsvc.cr.usgs.gov/appeears https://lpdaac.usgs.gov/products/myd11a1v006/

10 S
ep 2020
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Dataset Name Variable [unit] Temporal 
Resolution

Total Stations 
in Bavaria Version Access URL Last Accessed Dataset Description

TT_TU_MN009 2-m air temperature [℃] Hourly 106 v19.3 https://cdc.dwd.de/portal https://cdc.dwd.de/sdi/pid/TT_TU_MN009/DESCRIPTION_TT_TU_MN009_en.pdf

RF_TU_MN009 2-m relative humidity [%] Hourly 106 v19.3 https://cdc.dwd.de/portal https://cdc.dwd.de/sdi/pid/RF_TU_MN009/DESCRIPTION_RF_TU_MN009_en.pdf

F_MN003 10-m wind speed [m/s] Hourly 57 v19.3 https://cdc.dwd.de/portal https://cdc.dwd.de/sdi/pid/F_MN003/DESCRIPTION_F_MN003_en.pdf

D_MN003 10-m wind direction [deg] Hourly 57 v19.3 https://cdc.dwd.de/portal https://cdc.dwd.de/sdi/pid/D_MN003/DESCRIPTION_D_MN003_en.pdf

P0_MN008 surface pressure [hPa] Hourly 38 v19.3 https://cdc.dwd.de/portal https://cdc.dwd.de/sdi/pid/P0_MN008/DESCRIPTION_P0_MN008_en.pdf

R1_MN008 precipitation [mm] Hourly 213 v19.3 https://cdc.dwd.de/portal https://cdc.dwd.de/sdi/pid/R1_MN008/DESCRIPTION_R1_MN008_en.pdf

Hourly station 
observations of solar 

incoming 
(total/diffuse) and 

longwave downward 
radiation for Germany

Incoming longwave and 
shortwave radiation [J/cm2] Hourly 10 recent https://cdc.dwd.de/portal https://opendata.dwd.de/climate_environment/CDC/observations_germany/climate/hourl

y/solar//DESCRIPTION_obsgermany_climate_hourly_solar_en.pdf

MO_TT_MN004 2-m air temperature [℃] Monthly 244 v19.3 https://cdc.dwd.de/portal https://cdc.dwd.de/sdi/pid/MO_TT_MN004/DESCRIPTION_MO_TT_MN004_en.pdf

MODIS MYD11A1 land surface temperature [K] Daily -- v006 https://lpdaacsvc.cr.usgs.gov/appeears https://lpdaac.usgs.gov/products/myd11a1v006/

24 May 2020
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Table 3: A summary of the statistical evaluation of the WRF_NO_NUDGE (italics) and WRF_NUDGE (bold italics) 

simulations, considering the whole evaluation period of 1 September 2017 to 1 September 2018. The table presents 

the mean deviation (MD), the mean absolute deviation (MAD) and the coefficient of determination (R2) for two-

hourly 2-m air temperature (T) and relative humidity RH), 10-m zonal wind (U) and meridional wind (V), surface 670 

pressure (PS), and daily total precipitation (PR). All computations are made from observations minus model data. 

 
 

Table 4: Same as Table 3 but for daily mean variables in WRF_NUDGE only. 

 675 

Variable MD MAD R2
T (WRF_NO_NUDGE) 0.2 2.3 0.94

T (WRF_NUDGE) 0.1 2.0 0.95
RH 3.5 11.3 0.59
RH 3.0 10.5 0.66
U 0.1 1.5 0.48
U 0.2 1.4 0.53
V 0.2 1.2 0.35
V 0.2 1.1 0.40
PS -0.7 2.2 0.97
PS -0.8 2.0 0.99
PR 0.8 3.3 0.25
PR 0.4 2.9 0.42

Variable MD MAD R2
T 0.1 1.7 0.97
RH 3.0 8.4 0.71
U 0.2 0.9 0.72
V 0.2 0.6 0.64
PS -0.8 2.0 0.99
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