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Abstract. This paper presents a new global, operational burned area (BA) product at 300 m, called C3SBA10, generated 10 

from Sentinel-3 Ocean and Land Colour Instrument (OLCI) near-infrared (NIR) reflectance and Moderate Resolution 

Imaging Spectroradiometer (MODIS) thermal anomaly data. This product was generated within the Copernicus Climate 

Change Service (C3S). Since C3S is a European service, it aims to use extensively the European Copernicus satellite 

missions, named Sentinels. Therefore, one of the components of the service is adapting previous developed algorithms to the 

Sentinel sensors. In the case of BA datasets, the precursor BA dataset (FireCCI51), which was developed within the 15 

European Space Agency’s (ESA) Climate Change Initiative (CCI), was based on the 250m-resolution NIR band of the 

MODIS sensor, and the effort has been focused on adapting this BA algorithm to the characteristics of the Sentinel-3 OLCI 

sensor, which provides similar spatial and temporal resolution to MODIS. As the precursor BA algorithm, the OLCI’s one 

combines thermal anomalies and spectral information in a two-phase approach, where first thermal anomalies with a high 

probability of being burned are selected, reducing commission errors, and then a contextual growing is applied to fully detect 20 

the BA patch, reducing omission errors. The new BA product includes the full time-series of S3 OLCI data (2017-present). 

Following the specifications of the FireCCI project, the final datasets are provided in two different formats: monthly full-

resolution continental tiles, and monthly global files with aggregated data at 0.25-degree resolution. To facilitate the use by 

global vegetation dynamics and atmospheric emission models several auxiliary layers were included, such as land cover and 

cloud-free observations. The C3SBA10 product detected 3.77 Mkm2, 3.59 Mkm2, and 3.63 Mkm2 of annual BA from 2017 25 

to 2019, respectively. The quality and consistency assessment of C3SBA10 and the precursor FireCCI51 was done for the 

common period (2017-2019). The global spatial validation was performed using reference data derived from Landsat-8 

images, following a stratified random sampling design. The C3SBA10 showed commission errors between 14-22% and 

omission errors from 50 to 53%, similar to those presented by the FireCCI51 product. The temporal reporting accuracy was 

also validated using 4.7 million active fires. 88% of the detections were made within 10 days after the fire by both products. 30 

The spatial and temporal consistency assessment performed between C3SBA10 and FireCCI51 using four different grid 
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sizes (0.05º, 0.10º, 0.25º, and 0.50º) showed global, annual correlations between 0.93 and 0.99. This high consistency 

between both products ensures a global BA data provision from 2001 to present. The datasets are freely available through the 

Copernicus Climate Data Store (CDS) repository (DOI: https://doi.org/10.24381/cds.f333cf85, Lizundia-Loiola et al. 

(2020a)).  35 

1 Introduction 

Interactions between climate and fire are bidirectional. On the one hand, climate impacts fire regimes (Marlon et al., 

2013;Turco et al., 2019b), mostly by modifying temperature and precipitation patterns, which in turn impact fire ignition and 

behaviour through changes in soil and fuel moisture, vegetation productivity, and fuel availability (Andela and van der Werf, 

2014;Daniau et al., 2013;Enright et al., 2015;Moritz et al., 2012;Bowman et al., 2020). On the other hand, biomass burning 40 

is a critical source of aerosols and greenhouse gases that directly affect atmospheric chemistry (van der Werf et al., 

2017;Ward et al., 2012) and carbon budgets (Yue et al., 2020;Poulter et al., 2015) and carbon stocks (Friedlingstein et al., 

2020). Emissions from fires increase aerosol optical depth, modifying the radiation budget and, thus, warming the lower 

atmosphere, which affects regional temperature, clouds, and precipitation patterns (Tosca et al., 2010;Tosca et al., 2014).  

Fires have important ecological implications as well. They are a critical component supporting biodiversity (Kelly and 45 

Brotons, 2017), since they alter vegetation composition, structure, and succession (Bowman et al., 2009). Furthermore, 

wildfires have significant societal impacts, particularly when extreme events occur as a result of climate anomalies. Large 

damages on people’s lives, health and infrastructures have been observed in recent catastrophic fire seasons of Southern 

Europe, Australia and Western USA (Bowman et al., 2020;Turco et al., 2019b). 

The Global Climate Observing System (GCOS) programme promotes international efforts to generate a wide range of 50 

observations required for monitoring the Earth’s climate system (https://gcos.wmo.int/en/home, last accessed December 

2020). These observations are commonly categorized under the umbrella of Essential climate variables (ECV) (Bojinski et 

al., 2014), which critically contribute to the characterisation of Earth’s climate system. The European Space Agency (ESA) 

responded to the GCOS needs with the Climate Change Initiative (CCI) in 2009. The CCI programme was initially focused 

on 13 GCOS ECVs (now extended to 21 ECVs), each of them addressed within a dedicated project that encompassed 55 

algorithm development, validation, uncertainty characterisation, and large-scale EO data processing among other tasks 

(Plummer et al., 2017).  

Fire disturbance is one of the initial ECVs tackled within the CCI programme through the FireCCI project 

(https://climate.esa.int/en/projects/fire/, last accessed December 2020). GCOS identified burned area (BA) as the key 

parameter for defining the Fire Disturbance ECV, complemented by active fires and fire radiative power (FRP) (GCOS, 60 

2016). Therefore, the principal objective of FireCCI is to produce long-term time series of global BA data. Although BA 

information is required for a wide range of applications (Chuvieco et al., 2019;Mouillot et al., 2014), the FireCCI project is 

mainly oriented towards climate modellers and, hence, BA data have been mainly used for the characterisation of fire 
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emissions for atmospheric chemistry modelling (Seiler and Crutzen, 1980;van der Werf et al., 2017) and the 

parameterization of fire-enabled Dynamic Global Vegetation Models (DGVMs) (Forkel et al., 2017;Forkel et al., 65 

2019;Hantson et al., 2016;Hantson et al., 2020). These applications strongly benefit from an extended temporal coverage of 

BA datasets, while assuring their temporal and spatial consistency (Heil, 2019). 

The FireCCI project has developed three BA algorithms to generate BA data from moderate-resolution sensors. The three 

resulting BA products were named FireCCI41, based on Envisat satellite’s Medium Resolution Imaging Spectrometer 

(MERIS) data (Alonso-Canas and Chuvieco, 2015), covering the period 2005-2011 at 300m spatial resolution; the 70 

FireCCI50 product, based on 250m resolution Moderate Resolution Imaging Spectroradiometer’s (MODIS) bands (Chuvieco 

et al., 2018), and an improved version of this product, named FireCCI51, which extends from 2001 to 2019 (Lizundia-Loiola 

et al., 2020b). These three algorithms are based on a hybrid approach, combining Near-Infrared (NIR) and Red reflectance 

with active fires detections obtained from thermal anomalies. The three algorithms also followed a two-phase approach (seed 

detection + region growing), although the newest one overcame the previous version’s weaknesses by improving BA 75 

detection using active fire cluster-based thresholds (Lizundia-Loiola et al., 2020b). 

A few years after the ESA CCI programme started, the European Commission launched the Copernicus programme, which 

included different services mostly based on Earth observation data. One of them is the Copernicus Climate Change Service 

(C3S, https://climate.copernicus.eu/, last accessed December 2020). C3S has been developed as an operational service that 

routinely produces datasets for more than 20 ECVs (Thépaut et al., 2018). It builds upon the research and development 80 

carried out by the worldwide scientific community, especially the European one. In this regard, the C3S programme is now 

in charge of the operational processing of several ECVs, many of which were generated within the CCI programme (Thépaut 

et al., 2018). Since C3S is a European service, it aims to use extensively the European Copernicus satellite missions, named 

Sentinels. Therefore, one of the components of the service is adapting previous developed algorithms to the Sentinel sensors. 

In the case of BA datasets, the precursor BA dataset (FireCCI51) was based on 250m resolution bands of the MODIS sensor 85 

(Lizundia-Loiola et al., 2020b) and, hence, the effort has been focused on adapting this BA algorithm to the characteristics of 

the Ocean and Land Colour Instrument (OLCI) on board Sentinel-3 (S3), which provides similar spatial and temporal 

resolution to MODIS. Built upon the experience of the Envisat’s MERIS sensor, OLCI was initially designed for ocean 

monitoring, but it has been successfully used in several land applications (Zhang et al., 2020;Pastor-Guzman et al., 2020). 

MERIS was the basis of the abovementioned FireCCI41 BA dataset (Alonso-Canas and Chuvieco, 2015), and therefore, it 90 

was expected that OLCI would show similar BA detection capabilities. In fact, due to its better temporal resolution (3-day 

revisit time for MERIS and 1 day for OLCI, when the two S3 are available), it was expected that OLCI would detect BA 

more accurately than MERIS. 

This paper aims to present the new operational, global BA product OLCI C3S Burned Area v1.0 (hereafter C3SBA10) 

developed under the framework of the C3S, based on OLCI data. The manuscript briefly describes the original algorithm 95 

(FireCCI51) in Section 2.1, while the pre-processing, adaptation, uncertainty characterisation, generation, and distribution of 

the operational BA dataset are explained in Sections 2.2-2.5. The operational dataset (2017-present) was designed to be as 
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consistent as possible with its predecessor FireCCI51 (2001-2019) to ensure that multi-decadal analyses can benefit from 

both datasets uninterruptedly. Hence, quality assessment was performed in two stages. First, the period 2017-2019 was 

spatially validated using reference data obtained from multitemporal Landsat-8 images and temporally using active fire 100 

information (Section 2.6). Then, an inter-comparison was performed between FireCCI51 and C3SBA10 datasets to provide 

users with insights about the consistency between the two products, pointing out similarities and discrepancies (Section 2.7). 

The results of the BA detections for the common time series (2017-2019) as well as the quality assessment of the product are 

presented in Section 3, followed by the discussion and conclusion (Section 4 and Section 5, respectively). 

2 Methods 105 

2.1 Original burned area algorithm 

The original FireCCI51 algorithm was initially developed for the Terra MODIS NIR band at 250m spatial resolution and, 

therefore, some minor changes were introduced to adapt it to the new sensor (Section 2.3). A detailed description of the 

original algorithm can be found on Lizundia-Loiola et al. (2020b), although a simplified description is provided in the 

following paragraphs and in Figure 1. 110 

The FireCCI51 algorithm follows a hybrid approach that takes advantage of combining active fires and spectral information. 

It first creates monthly composites of NIR reflectance by searching for minimum NIR reflectance while maximising the 

proximity to the fire date determined by the nearest active fire. Then, a second variable is computed from the relative NIR 

drop of consecutive composites. The third variable is generated from neighbour active fires that are close enough in space 

(<1875m) and time (<4 days) to be aggregated into spatio-temporal clusters (STC)  (Lizundia-Loiola et al., 2020b). 115 

These variables are the basis for the two-phase hybrid approach used by the FireCCI51 algorithm. The aim of the first step is 

to minimise commission errors by selecting seed-pixels with a high probability of being burned (seed-phase). NIR and 

relative NIR drop thresholds are obtained for each STC based on specific burned and unburned samples. The burned sample 

is defined by the active fires that belong to the STC. The unburned one is composed by pixels from the vicinity of the STC, 

i.e. those located within a strip between 10 and 20 km from the STC. Active fires are filtered out using in each case the 120 

thresholds of the corresponding STC to obtain seed-pixels. Then, a contextual growing is applied from each seed-pixel, 

being the growing stop criteria the thresholds of the STC to which the seed-pixel belongs (growing-phase). The purpose of 

this second step is to minimise omission errors by detecting the full burned patch. 

The final result is a monthly classification where each burned pixel is labelled by its day of detection, i.e. the day of the year 

from which the NIR value of the monthly composite was extracted. 125 

The adaptation of FireCCI51 to C3SBA10 BA algorithm was done in two steps. First, it was checked whether any parameter 

that controlled the original BA algorithm needed to be adapted. Second, the most suitable input band among the different 

NIR bands of the OLCI sensor was selected. Both aspects depend on the datasets used as input for the BA algorithm and, 

hence, Section 2.2 provides information about them. This is used in Section 2.3 to justify how the adaptation was performed.  
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2.2 Input data 130 

2.2.1 OLCI Surface directional reflectances 

The S3 satellites were designed to provide operational ocean and land observation services 

(https://sentinel.esa.int/web/sentinel/missions/sentinel-3, last accessed December 2020). They represent the continuity of the 

European Remote Sensing satellites (ERS-1 and ERS-2), the Envisat and the Satellite Pour l’Observation de la Terre 

(SPOT). S3 have a low (814.5 km), high inclination (98.65º), sun-synchronous Earth-orbit. With a period of ⁓101 minutes, 135 

S3 need 27 days to complete a full cycle (385 orbits). The first satellite, called S3A, was launched in February 2016 and the 

second one, called S3B, was launched two years later. The orbit of S3B is identical to S3A but flies ±140º out of phase to 

improve revisit time. The design life of S3 is 7.5 years (consumables for 12 years), but the mission is expected to last longer, 

as two additional satellites will be launched during the first years of the current decade. 

The OLCI sensor, one of S3’s main payloads, is a push-broom imaging spectrometer composed of five cameras that are 140 

12.6º tiled in western direction to mitigate potential sun-glint effects (https://sentinel.esa.int/web/sentinel/technical-

guides/sentinel-3-olci, last accessed December 2020). It has a swath width of 1270 km (Field-of-View = 68.6º) and it offers 

global coverage at 300m every ⁓2 or ⁓1 day depending on the number of satellites available (S3A or S3A+S3B, 

respectively) and application (ocean or land). The OLCI instrument includes the same 15 spectral bands of MERIS (400-

1020 nm), and six extra channels that were included to improve the atmospheric and aerosol corrections (Table 1). All this 145 

information is included in the OL_1_EFR Level 1B product, which provides full resolution, calibrated, ortho-geolocated and 

spatially re-sampled Top-of-Atmosphere (TOA) radiances (https://sentinel.esa.int/web/sentinel/user-guides/sentinel-3-

olci/product-types/level-1b, last accessed December 2020). 

This product was converted to surface directional reflectance (SDR) using an automated pre-processing chain that generates 

OLCI Level 3 SDR. The first module of the chain converted the TOA spectral radiance to the apparent SDR. Then, a pixel 150 

identification module calculates a set of pixel classification attributes, like clear, cloud, snow/ice, cloud shadows, etc.  The 

third module is an atmospheric correction algorithm, which included the correction for the absorbing and scattering effects of 

atmospheric gases, in particular ozone, oxygen and water vapour, of the scattering of air molecules (Rayleigh scattering) and 

the correction of absorption and scattering due to aerosol particles. The atmospheric correction including aerosol retrieval 

was first developed in the GlobAlbedo project (GlobAlbedo, 2013). The last processing module of the pre-processing chain 155 

(compositing and mosaicking) was applied to retrieve the final Level 3 products. These 1-day SDR composites were derived 

from an input set of single satellite observations (i.e., SDR and pixel classification data described previously). Thus, those 

single observations were (i) reprojected onto a Plate Carrée grid, (ii) temporally aggregated for given binning cells (tiles), 

and (iii) mosaicked based on the binning cells onto a Level 3 product of 10x10 degrees tiles (Figure 2). 
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2.2.2 Auxiliary data 160 

Information on active fires was used to guide both the seed and the growing phase of the BA algorithm. The input product 

was the MODIS MCD14ML Collection 6, which provides global monthly information on the location of thermal anomalies 

using both Terra and Aqua MODIS bands (Giglio et al., 2018b) at 1 km spatial resolution. The MCD14ML product is 

provided in ASCII format and one of its attributes specifies the presumed origin of the thermal anomaly: 0 for presumed 

vegetation fire, 1 for active volcano, 2 for other static land sources, and 3 for offshore thermal anomalies. Among these 165 

categories, only those anomalies labelled as 0 were considered. This product was selected as it was the one used by the 

original FireCCI51 algorithm (Lizundia-Loiola et al., 2020b). 

Global, annual land cover (LC) maps, which were provided by the Land Cover C3S, were used as well 

(https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-land-cover?tab=overview, last accessed December 2020). LC 

production was transferred from CCI to C3S at the same time as the BA datasets, which meant that the same working group 170 

was the responsible of adapting the algorithms. So, although the FireCCI51 BA algorithm used the latest LC v2.0.7 of CCI 

project (ESA, 2017), the LC version v2.1.1 from C3S was considered fully consistent with its predecessor (Defourny et al., 

2020). In fact, the annual land cover maps from 1992 to 2015 developed within the CCI were brokered to C3S and extended 

for the years 2016-2018. Data at 333m spatial resolution from PROBA-V was used to generate the global, annual LC maps 

of 2016, 2017, and 2018. The use of the LC products had two main objectives. On the one hand, they were used to mask 175 

unburnable areas, i.e. bare areas, urban areas, water bodies, and permanent snow and ice classes, to decrease the amount of 

data to be processed. On the other hand, they were used to report which land cover class was burned. Since the idea was to 

characterise the situation before the fire, the LC map that was applied in each year was the one prior to the BA analysis, e.g. 

LC of 2016 was used for the BA processing of 2017. This product was selected to 1) ensure consistency with the original 

algorithm, 2) ensure consistency within the C3S, and 3) use a product that offered LC information at a similar spatial 180 

resolution of the input OLCI SDR. 

2.3 Adapted burned area algorithm 

The adaptation was based on the analysis of the same study sites that were used for the FireCCI algorithm (Lizundia-Loiola 

et al., 2020b) (Figure 2) as they encompassed a wide variety of vegetation types and fire regimes. This study sites were the 

thirteen equivalent 10x10º degree OLCI tiles of the MODIS standard, sinusoidal tiles used in the development of the original 185 

FireCCI51 algorithm (Lizundia-Loiola et al., 2020b). Six of those tiles were distributed in regions where fire perimeters from 

different official services were available. The western coast of US, in California, was chosen as representative of temperate 

forests, where fire perimeters were obtained through the Fire and Resource Assessment Program (FRAP, 

http://frap.fire.ca.gov/  last accessed on December 2020). Fire perimeters from the Northern Australian Fire Information 

(NAFI, http://www.firenorth.org.au/nafi3/, last accessed on December 2020) served to assess the adapted algorithm’s 190 

performance in tropical savanna. Finally, as an example of the boreal forests, perimeters of fires larger than 200 ha were 
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downloaded from the Canadian National Fire Database (CNFDB, http://cwfis.cfs.nrcan.gc.ca/ha/nfdb, last accessed 

December 2020). The remaining seven tiles were used to visually check that no major problems arise when applying the 

adapted algorithm to the new sensor, e.g. border effects in Central Africa, problems on the thresholds due to contrasted fire 

regimes within the same tile in Angola or region-growing problems due to high BA/active fire ratios found near Kazakhstan. 195 

The adaptation of the algorithm to OLCI and its integration in the C3S operational system were carried out during 2018 and, 

hence, the training dataset’s temporal coverage was limited to 2017, when only S3A was available. 

Most of the parameters that control the FireCCI51 BA algorithm were independent from the base sensor used to detect BA, 

such as the time-gap used to temporally aggregate active fires or the absolute thresholds that were fixed for global detection 

(Lizundia-Loiola et al., 2020b). However, parameters linked to a distance might be affected by the spatial resolution of both 200 

the surface reflectance product and the active fire product. The fixed distance used to spatially aggregate active fires into a 

same cluster (Section 2.1), for example, might depend on the spatial resolution of the input active fires product. Higher 

spatial resolution thermal bands can lead to higher densities of active fire pixels within a same burned patch (Oliva and 

Schroeder, 2015;Schroeder et al., 2014) and, therefore, the distance that is needed to spatially aggregate them could be 

smaller. In this case, there was no difference between the input active fire product used in the development of the original 205 

algorithm and the adapted one (Section 2.2.2). Similarly, the distances used to define the unburned region around active fire 

clusters (Section 2.1) depend on both the spatial resolution of the input surface reflectance and the density of active fires per 

burned patch. The spatial resolution of the base sensor directly affects the number of surface reflectance pixels that fall into 

the unburned strip and, hence, could be used to estimate the thresholds. The same distance could imply the selection of much 

more pixels when the spatial resolution of the input sensor was high while in coarser resolutions could lead to a number of 210 

pixels that may be insufficient. The difference of the spatial resolution of the input sensors used in the original algorithm 

(250m) and the adapted one (300m) were considered sufficiently similar to keep the parameters that defined the unburned 

strip. 

Since the original FireCCI51 BA algorithm and, hence, the adapted one, needed only one input NIR band, the most suitable 

OLCI band (Table 1) had to be selected. In the case of MODIS it was not necessary to make such selection because it offers 215 

only one NIR band (Lizundia-Loiola et al., 2020b). Based on a sensitivity analysis of the MERIS bands carried out by Oliva 

et al. (2011) during the development of FireCCI41, two NIR bands were considered candidates to be the input of the adapted 

BA algorithm: Oa12 centred at 753.75nm and Oa17 centred at 865nm (Table 1). These spectral bands were the most 

sensitive bands for BA detection, although no significant differences were found between them (Oliva et al., 2011). 

The adapted BA algorithm was run two times with the training dataset, i.e. thirteen study sites and year 2017, using in each 220 

process one of the mentioned bands. The assessment against the services’ fire perimeters showed slightly more accurate 

results of the 865nm band over the 753.75nm one (same commission error and ⁓1% lower omission error). None of the 

bands showed unexpected anomalies in the rest of the tiles. Taking into account these results and the similarity between the 

OLCI 865 ± 10 nm band and the MODIS 858.5 ± 17.5 nm band used in the original FireCCI51 BA algorithm, which implied 
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a greater consistency between the algorithms, the OLCI’s 865nm NIR band was selected as main input for the adapted 225 

algorithm. 

2.4 Product generation 

The adapted algorithm was processed in a monthly basis for each 10ºx10º tile and, hence, the raw outputs were provided per 

month and tile. Pre-processing and BA processing took advantage of the independence of tiles and were produced in parallel 

for multiple tiles. BA processing needed a time series of two prior composites to detect the NIR drops, and it required active 230 

fire data as seeds for the growing step, which introduced constraints for sequential processing of the time series. These raw 

outputs were formatted, following mainly the specifications of the FireCCI project (Chuvieco et al., 2017), to obtain the 

pixel and grid products that were delivered to the final users in NetCDF4 format. The former provided the original BA 

classification at the original spatial resolution (300m) distributed in six continental tiles (Figure 3). The latter computed a 

global aggregated summary of the raw results at 0.25º spatial resolution. Both the pixel and grid products provided auxiliary 235 

layers suggested by the project end-users, including the land cover that was burned, and the uncertainty, fraction of observed 

area and burnable area (Table 2).  

A total of 273 tiles that encompass the main burnable areas of the Earth, except from Antarctica, some small islands and 

regions northern than 80º latitude, were processed. The C3SBA10 extended the spatial coverage provided by the FireCCI51 

dataset. The northern latitudes between 70º and 80º N of North America and Greenland not processed before were included 240 

since rare fire events were observed in the last years in far northern latitudes (Amos, 2019;Evangeliou et al., 2019). This 

change affected the original bounding box of the Area 1 of the pixel product defined by Chuvieco et al. (2017) within the 

FireCCI, whose eastern border was extended from 50º W to 26º W in C3SBA10 (Figure 3). 

The operational dataset was processed since January 2017, ensuring up to three years of overlap (2017-2019) between the 

FireCCI51 and C3SBA10 products. The delivery frequency of the operational product ranged from three to six months 245 

depending on the availability of the MODIS active fire MCD14ML product. 

2.5 Uncertainty characterisation 

Uncertainty characterisation is increasingly demanded by the end-users of BA products since it greatly helps the 

parameterization of climate models (Heil, 2019). Although important advances have been made in the last years regarding 

uncertainty characterisation of ECVs (Merchant et al., 2017;Mittaz et al., 2019;Sayer et al., 2019), methods to standardise 250 

the generation of this variable are still needed (Chuvieco et al., 2019). Therefore, the CS3BA10 algorithm follows the same 

approach used in the FireCCI51 product. Four input variables related to different phases of the original algorithm were used 

to compute the estimation of BA detection uncertainty: monthly NIR composite (NIR), monthly relative NIR drop 

(RelΔNIR), number of valid observations in the first 10 post-fire days (obs) and the distance to the nearest seed-pixel (dist). 

The uncertainty was computed using a logistic regression. Based on those four variables and the results of 2008 of the study 255 

sites that were used to develop the original algorithm, the final coefficients of the regression were obtained. 
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In the case of the adapted C3SBA10 algorithm, the coefficients of the logistic regression were updated (Eq. 1) using the four 

input variables and results of the training dataset described in Section 2.3: 

𝑝𝑏 =
1

1+𝑒𝑐            𝑐 = −(4.068 − 0.002926 ∙ 𝑁𝐼𝑅 + 0.003942 ∙ 𝑅𝑒𝑙∆𝑁𝐼𝑅 − 0.01303 ∙ 𝑜𝑏𝑠 − 17.29 ∙ 𝑑𝑖𝑠𝑡)  (1) 

2.6 Validation 260 

2.6.1 Spatial assessment 

The spatial accuracy assessment was conducted for the period 2017-2019 for both the FireCCI51 and C3SBA10 products. 

An independent reference BA dataset derived from Landsat-8 OLI imagery was produced in compliance with the CEOS 

LPVS stage 3 validation requirements (Morisette et al., 2006), which implies a rigorous statistical selection of reference sites 

representing diverse global conditions. Hence, for each calendar year 100 sample units were randomly selected using a 265 

stratified random sampling design. The sampling units were spatially defined by the Thiessen scene areas (TSAs) 

constructed by Cohen et al. (2010) and Kennedy et al. (2010) from the Landsat-frames World Reference System 2 (WRS-2). 

TSAs enable the partition of the earth's surface into non-overlapping spatial units, allowing the computation of unbiased 

estimators (Gallego, 2005). 

To ensure that sampled units were distributed across the main biogeographic regions, a first level of stratification was 270 

applied based on the biomes defined by the ecoregions2017 map (Dinerstein et al., 2017). The original 14 biomes were 

aggregated into 8 major biomes, i.e. boreal forest, deserts and xeric shrublands, Mediterranean, temperate forest, temperate 

savanna, tropical forest, tropical savanna, and tundra (Figure 4). A second level of stratification was applied based on the 

FireCCI51 BA extent for each calendar year. Thus, each TSA within each biome and year was assigned to a high or low BA 

stratum following the approach of Padilla et al. (2014). Then, the sample’s allocation within the 16 resulting strata (8 biomes 275 

x 2 high-low strata) was established proportionally to 𝑁ℎ√𝐵𝐴̅̅ ̅̅
ℎ, where 𝑁ℎ is the number of units in stratum h and 𝐵𝐴̅̅ ̅̅

ℎ is the 

mean mapped BA for stratum h (Padilla et al., 2017). 

The reference data for the selected sites were obtained from pairs of Landsat-8 images using a semi-automatic classification 

algorithm (Bastarrika et al., 2014), followed by a visual inspection to confirm the correct identification of burned patches. 

Consecutive pairs of images were used to obtain long temporal reference data, covering several months, the entire fire season 280 

or the whole year, depending on the image availability. These long temporal reference data allow for an extended temporal 

overlapping between reference and BA datasets, which makes it possible to improve the spatial accuracy assessment of the 

BA products, minimizing the impact of the product’s temporal reporting accuracy (Section 2.6.2) in the spatial accuracy 

estimates (Franquesa et al., 2020b). 

Accuracy metrics were computed based on the error matrix, which is widely used by the scientific community for thematic 285 

accuracy assessment (Congalton, 1991). This matrix was derived from the cross tabulation of reference data and the BA 

products. The metrics used to assess the product accuracy were the Dice coefficient (DC) (Dice, 1945), the relative bias 
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(relB) and the commission (Ce) and omission (Oe) errors. DC measures the similarity between the two sets of data; the 

higher its value, the more the accuracy of the burned category. The relB informs about the bias of the BA product relative to 

the reference BA, negative relB means BA product underestimation and positive relB, overestimation. Ce refers to the 290 

burned area mapped by the BA product but not classified as burned in the reference data, and Oe to the burned area in the 

reference data not mapped in the BA product. All the accuracy metrics and their associated standard errors were estimated 

for the whole population applying the formulas described in Padilla et al. (2014) and Padilla et al. (2015). 

2.6.2 Temporal reporting accuracy assessment 

A validation of the temporal reporting accuracy of the products was performed as well. Unlike the assessment of the spatial 295 

accuracy, which is already addressed in the previous section, the assessment of the temporal accuracy aims to show how 

accurately the day-of-burn (JD in Table 2) is determined by the BA product. Then, following the approach of Boschetti et al. 

(2010), the day-of-detection reported by the active fires (Section 2.2.2) was used as ground truth and compared with the day-

of-detection reported by the corresponding pixel of the global BA product. These differences where then analysed per biome 

as well. 300 

2.7 Consistency assessment 

The estimates of accuracy metrics provided by the validation exercise provide an objective, valuable information regarding 

the spatial and temporal accuracy of the validated products. However, along with the spatial and temporal accuracy, 

consistency between products is also of primary interest for multi-decadal analyses, e.g. climate modelling (Chuvieco et al., 

2019;Heil, 2019). From this perspective, the C3SBA10 operational product cannot be understood as a unique, independent 305 

dataset, but as a continuation of its predecessor FireCCI51 product, ensuring uninterrupted global BA estimations from 2001 

to present. To account for the similarities and differences that can arise between both datasets spatial and temporal trends of 

BA were compared. 

A fundamental step when comparing global BA datasets is to define both spatially and temporally the comparison grid that 

will be used to aggregate the information. Although different spatial and temporal comparison units can be found in the 310 

literature (Boschetti et al., 2004;Giglio et al., 2010;Humber et al., 2018;Turco et al., 2019a), in this case the requirements of 

some of the most relevant applications of global BA datasets were used to determine the comparison framework (Chuvieco 

et al., 2019;Heil, 2019). However, in most cases, different applications use different spatial and temporal analysis units. The 

“fire model intercomparison project” (FireMIP), for example, which systematically compares different fire-enabled DGVMs, 

uses global, monthly BA data aggregated at 0.5º spatial resolution for model benchmarking (Hantson et al., 2016). Statistical 315 

analyses that target at identifying factors that control fire patterns at global and regional scales commonly require monthly 

BA data aggregated at 0.25º or coarser spatial resolutions (Andela and van der Werf, 2014;Bistinas et al., 2013;Forkel et al., 

2019;Knorr et al., 2014). The Global Fire Emission Database (van der Werf et al., 2017), one of the most widely used 

inventories in atmospheric chemistry modelling, provides global emissions derived from BA in monthly, daily and 3-hourly 
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temporal scales at 0.25º resolution. However, several global fire emission databases are already available at 0.1º (e.g. Kaiser 320 

et al. (2012) updated) and even 0.05º (e.g. Kuenen et al. (2014)) following the increasing spatial resolution of some global 

atmospheric chemistry models (Aleksankina et al., 2018;Hu et al., 2018). Thus, it was decided to aggregate BA information 

into four different geographic grid cell sizes, i.e. 0.05º, 0.1º, 0.25º, and 0.5º, in a monthly and annual basis. 

The results were aggregated spatially into eight biomes as well, following the first stratification of the validation exercise. 

Four comparison cases were identified: biome-specific monthly BA, biome-specific annual BA, global monthly BA and 325 

global annual BA. A total of 1404 scatterplots (3 years x (12 monthly +1 annual) x (eight biomes + 1 global) x 4 spatial 

resolutions) were generated based on these comparison cases and the four comparison grids defined above for the analysed 

years (2017-2019). A linear regression was calculated for each one (Humber et al., 2018;Turco et al., 2019a). Three metrics 

were used to determine the agreement of the products for a given case. The slope of the regression line was used to analyse 

the bias, the correlation coefficient (r) was used to determine the agreement between products and the root mean square error 330 

(RMSE) was used to account for the dispersion of the estimations. 

3 Results 

3.1 Trends on global burned area 

More than three years (2017 – present) of S3 OLCI data were processed to generate the C3SBA10 global BA product. A 

total of 273 10ºx10º tiles were needed to cover almost all the burnable areas on the Earth. The algorithm results were 335 

summarised and published in pixel (300 m resolution) and grid (0.25-degree resolution) products, using in both the NetCDF4 

format. Figure 5 shows the annual accumulated grid BA product for the year 2019 while Figure 6 shows the latitudinal and 

seasonal contribution of BA for the same year. The amount of BA detect per biome for the three complete natural years can 

be found in Table 3. 

The C3SBA10 product detected 3.77, 3.68, and 3.59 Mkm2 of BA for the years 2017, 2018 and 2019, respectively. The 340 

main land cover contributor to global BA was tropical savanna, which had burned 2.8 Mkm2 per year (Table 3), representing 

between 74 and 78% of global burns. Tropical forest had between 9 and 11% of total BA (average 0.35 Mkm2). Almost all 

the BA of these biomes was located on a relatively small latitudinal band between 20ºN and 20ºS (Figure 5 and Figure 6) 

that covers part of South America, Central America, Africa, South East Asia, Indonesia and the northern part of Australia. 

Among these tropical regions several studies have shown that the African savannas are responsible of around 70% of global 345 

BA, followed by the Australian ones, the Brazilian Cerrado and the Orinoquia region in Colombia and Venezuela (Chuvieco 

et al., 2018;Chuvieco et al., 2016;Giglio et al., 2018a;Lizundia-Loiola et al., 2020b;Roy et al., 2008;van der Werf et al., 

2017). In the case of tropical forest, the impacts of deforestation fires on agricultural frontiers can be observed in South 

America and SE Asia (Chen et al., 2013;van der Werf et al., 2008;van der Werf et al., 2010). A lesser contribution, but still 

important, comes from the peatland areas of Kalimantan and Sumatra in Indonesia. 350 
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The influence of the dry season in these tropical biomes is quite evident, with a marked fire period from November to March 

in the Northern Hemisphere, and from June to October in the Southern hemisphere (Figure 6). This trend slightly differs in 

South East Asia where the fire season continues until May. 

Another significant belt of fire activity can be found in the temperate forest and grasslands of the Northern hemisphere 

(Figure 5), with relative maximum around 50º N (Figure 6). The C3SBA10 detected that on average the accumulated 355 

contribution to the global fire activity of these biomes was 0.27 Mkm2 (7.5%). Most of this BA comes from the grasslands 

on the Asian steppe, which is dominated by large fires, although there is also an important agricultural activity (Hall et al., 

2016;Zhu et al., 2017). The central plain of United States also exhibits fire activity linked to croplands as well as the forest 

areas of the north-western territories. In the southern hemisphere, the BA derived from the extreme wildfires of 2019-2020 in 

the temperate forest of south-eastern Australia (Bowman et al., 2020) is noticeable in Figure 5. The monthly variability of 360 

BA in temperate areas is marked by both human agricultural practices and dry summer conditions, leading to two separated 

fire activity periods: one in March-April and the other in July-August. 

The deserts and xeric shrublands’ amount of BA detected by the C3SBA10 product showed a similar contribution to that of 

temperate areas, although with much more inter annual variability. The BA on 2017 was 0.26 MKm2 while on 2019 this 

number decreased by a half (0.11 Mkm2) (Table 3). Two areas on the Earth are responsible of most of this BA: central and 365 

southern Kazakhstan are affected by large fires in summer (July-August) while the xeric shrublands and grasslands of central 

and western Australia show fire activity from October to January. 

In the highest latitudes (>60ºN), the boreal forest showed a clear increasing trend in BA for the three-year period when the 

C3SBA10 product was computed, from 61,173 km2 in 2017 to 90,503 km2 in 2019 (50% increase). In the Tundra region, 

BA showed even higher increases, as in 2019 the product estimated 6 times more BA than the previous year (13,044 km2 370 

versus 1,697 km2, respectively) (Table 3). In fact, in 2019 the contribution of these two biomes was almost as much as that 

of temperate forest. Figure 6 shows how the fire season in the northern latitudes has a clear seasonal pattern, with highest 

activity in the Summer months (July-August). 

Finally, BA on Mediterranean areas showed a significant contrast between the BA of 2018 (8,884 km2) and the other two 

years (24,975 and 27,421 km2 in 2017 and 2019, respectively). This inter-annual variation seems to be related to the extreme 375 

fire seasons of Portugal in 2017 and in 2019. 

3.2 Validation 

3.2.1 Spatial assessment 

Table 4 shows the estimated accuracy measures and their standard errors (SE) for the validation dataset. The Dice coefficient 

varied from 0.59 in 2017 (SE=0.03) and 2019 (SE=0.04) to 0.64 (SE=0.03) in 2018. These values were similar to those 380 

obtained for the FireCCI51 product, although this one showed higher accuracy for the years 2017 and 2018, but not 

significantly higher for 2019 (Table 4). The availability of more images due to the presence of two S3 satellites can explain 
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why 2019 was the most similar year. In general terms, C3SBA10 showed similar (2017 and 2019) or lower (2018) 

commission errors (Ce) and higher omission errors (Oe) than FireCCI51 through the three-year period. Both products 

showed negative relative bias for all the years, indicating a systematic underestimation of BA, which is common to other 385 

global BA datasets (Boschetti et al., 2019). 

Although three years are not enough to extract significant conclusions about the temporal trends of accuracy, a similar 

behaviour can be observed in both products. Thus, the year that presented the highest accuracy metrics in one product also it 

did in the other product. 

3.2.2 Temporal reporting accuracy assessment 390 

About 4.7 million of active fires were used to estimate the temporal reporting accuracy of the three-year period of both 

products (Figure 7). On average (2017-2019) the results of the C3SBA10 showed that for deserts and xeric shrubland, both 

tropical and temperate savanna and Mediterranean biomes more than 90% of burned pixels were detected within the first 10 

days after the fire (Table A1). This proportion was slightly lower in temperate and tropical forest where 80% and 86% of the 

pixels were labelled within 10 days of detection, respectively. The less accurate biomes were the boreal ones, where only the 395 

70% (forest) and 69% (tundra) of the burned pixels were detected within the 10-day period. Although this period could be 

reasonable for some applications (e.g. dynamic vegetation modelling) there are other applications where it is important to 

know the precise date of burn. The analysis showed that, on average, only in both savannas and desert and xeric shrubland 

biomes C3SBA10 was able to detect within 0- or 1-day difference more than 20% of the cases. This accuracy significantly 

increased if the difference was set to a maximum of 3-days difference, where all biomes double the number of cases that 400 

were detected within this accuracy. 

The comparison between products showed that the temporal reporting accuracy is quite similar, having little or no impact the 

availability of more S3 images in 2019. In fact, for all forest biomes and tundra C3SBA10 provides a slightly more accurate 

reporting of the date of burn (Figure 7). 

3.3 Consistency assessment 405 

The relative differences on the amount of BA detected by each product are presented in Table 3. Table 5 shows the 

consistency metrics (correlation coefficient (r), slope and RMSE) at global and annual scale for the three-years period and 

the four comparison grid sizes. Figure 8 and Figure 9 show the spatial agreements between FireCCI51 and C3SBA10 for the 

year 2019.  

The global BA detected by the predecessor version FireCCI51 was 0.65 Mkm2, 0.56 Mkm2, 0.28 Mkm2 higher than that 410 

one detected by the C3SBA10 product from 2017 to 2019, respectively. Almost all the disparities in terms of total BA can be 

explained considering the differences shown by both products in tropical savanna (see slope in Figure 8b), where C3SBA10 

detected 0.49 Mkm2, 0.46 Mkm2, 0.26 Mkm2 less BA, respectively in the 3 years of the series. The availability of both S3 

and, hence, a higher temporal resolution, had a significant impact in the amount of BA detected by the C3SBA10 in those 
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biomes where fire activity is frequent. Thus, the difference between both products was reduced more than a half in tropical 415 

forest, temperate savanna, desert and xeric shrubland, and temperate forest and almost a half in tropical savanna (Table 3). In 

2019, if tropical savanna was not considered, only 30,000 km2 of BA were underestimated by the C3SBA10 versus those of 

the FireCCI51. This underestimation was partially compensated by the detection of more BA (5,305 km2) in boreal forest 

and tundra. 

Even though the annual BA detected by the global BA products differs through the study period, the correlation coefficient 420 

(r) showed a significant agreement between them at all comparison grid sizes (Table 5). For instance, the r value at the finest 

comparison resolution (0.05º) was found to be 0.937 in the year with less agreement (2017) and 0.952 in the year with the 

highest agreement (2019). This agreement increases if the spatial resolution of the comparison is decreased reaching a 0.99 r 

value for all the years at 0.5º grid size. However, the slope shows a clear bias towards FireCCI51, pointing an 

underestimation of the C3SBA10 product at global and annual scale, confirming the differences in the accuracy metrics 425 

shown above.  

There is a clear increase on the agreement between products in 2019 as well. The correlation metric is the highest in that year 

(from 0.95 at 0.05º to 0.99 at 0.50º grid resolutions), as well as the slope (from 0.88 at 0.05º to 0.91 at 0.50º grid resolutions), 

which means an increase in the amount of BA detected by the C3SBA10. The RMSE is also the lowest for that year, 

indicating that the availability of more images from both Sentinels makes the differences smaller. That is why a more 430 

detailed analysis of the results of 2019 was conducted to better understand the spatial and temporal trends of the 

discrepancies between the products. 

Through the eight biomes the lowest correlations at annual scale were those of deserts and xeric shrublands with an r=0.86 at 

0.05º grid resolution (Figure 8e). Tropical savanna showed the highest annual agreement with correlations from 0.96 (at 

0.05º) to 0.99 (at 0.50º). However, it had the highest RMSE (2.28 km2 at 0.05º) due to the large amount of BA per grid cell. 435 

Boreal forest and tundra show a very high agreement as well, with correlation coefficients between 0.94 and 0.98 for all grid 

sizes and the lowest RMSE, i.e. 0.27 km2 for boreal forest and 0.14 km2 for tundra at 0.05º. The rest of the biomes presented 

r values between 0.87-0.89 at 0.05º spatial resolution and above 0.90 from 0.10º upwards.  

The two biomes that showed to be unbiased or with a little bias towards C3SBA10 were those located at highest latitudes 

(boreal and tundra) with slope values near to 1. The rest of the biomes showed an underestimation of the C3SBA10, although 440 

in different proportion. Temperate forest and savannas, for instance, had a slope around 0.88 at 0.05º grid size, while at 0.50º 

it increased up to 0.97 for forest and 0.94 for savanna. The most noticeable underestimation was linked to the Mediterranean 

(Figure 8f) biome (maximum slope of 0.80 at 0.50º grid resolution). The rest of biomes presented slopes ranging from 0.8 to 

0.9. 

At monthly scale (Figure 8) the agreement between products changes depending on the month. Undoubtedly, the more stable 445 

biome through the year is tropical savanna (Figure 8b), since it is the most frequently burned biome and where most of the 

global BA is located. The lowest r is found in those months that contribute less to annual BA, i.e. February, March, April and 

May, with correlations from 0.86 to 0.89 at the finest comparison resolution, respectively. The rest of the months showed 
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correlations above 0.92 at 0.05º grid size, being higher in the rest of the comparison resolutions. In fact, at 0.50º the lowest 

correlation, which was found in April, showed a value higher than 0.95. A systematic underestimation of the C3SBA10 450 

below 25% of the annual BA was noticeable through all the grid cells that belong to tropical savanna (Figure 9), which was 

traduced in slopes between 0.83 (April) and 0.90 (October) at 0.05º spatial resolution. The influence of tropical savanna is 

clear in the global metrics, which can in some cases obscure subjacent trends in other biomes. 

In most cases, the correlation increases with the proportional contribution to the annual BA. This was the case of boreal 

forest (Figure 8g) and tundra (Figure 8h) whose peak months clearly matches the summer months, i.e. July and August, 455 

which are responsible of the 70% and 77% annual BA in those biomes, respectively, and, at the same time, showed the 

highest agreement (r > 0.91 and slope > 0.92). However, not all biomes have a marked unimodal fire season since they 

encompass different continents and hemispheres and, therefore, fire activity is affected by diverse climatic and human 

conditions. In the case of deserts and xeric shrubland biome (Figure 8e) two separate peaks can be found, one in January 

(20% of annual BA, r=0.83, slope=0.92 at 0.05º grid size) and another in July (19% of annual BA, r=0.92, slope = 0.88 at 460 

0.05º). Something similar occurs in tropical forests (Figure 8a) where January (13% of annual BA, r=0.87, slope=0.77 at 

0.05º) and August (14% of annual BA, r=0.92, slope=0.88) have the maximum monthly BA values. The tropical savanna 

shows two clear fire seasons as well (Figure 8b), following the dry seasons of each hemisphere. 

The agreement shown between C3SBA10 and FireCCI51 is not as stable in the case of temperate and Mediterranean biomes. 

In the former case there is a clear discrepancy in the monthly contribution of April to the annual BA. In the case of temperate 465 

forest (Figure 8c), the monthly contribution corresponds to 21.3% for C3SBA10 while FireCCI51 estimated it at 16.8%. The 

same occurs in the temperate savanna (Figure 8d) where the contribution increases from 20.4% (FireCCI51) to 26.8% 

(C3SBA10). However, this discrepancy affected mainly the RMSE, which is much higher for this month than for the rest of 

the months in both biomes (RMSE=0.44 km2 in savanna and RMSE=0.27 km2 in forest at 0.05º grid size).  In the 

Mediterranean biome (Figure 8f), from July to November there is a significant increase in the bias towards FireCCI51, losing 470 

the stability shown in the first half of the year, and with slope values as low as 0.51, e.g. in the case of October. 

4 Discussion 

After adapting the original FireCCI51 algorithm to the characteristics of the C3SBA10, we found that the spatial and 

temporal trends in global BA of the two products showed consistent temporal and spatial trends. Most differences were 

observed in the first two years of the time series (2017 and 2018) when only one S3 satellite was operating, and therefore the 475 

temporal resolution of OLCI (2-3 days) was much lower than the MODIS sensor (1 day). BA estimations between the two 

products were very similar in 2019, although C3SBA10 had 0.28 Mkm2 less BA (global BA: 3.63 Mkm2 for C3SBA10 and 

3.91 Mkm2 for FireCCI51). Most of this difference (92%) was found in tropical savanna, where a systematic underestimation 

of the C3SBA10 product was noticeable (Figure 9). This tendency towards underestimation was observed in other global BA 

products (generally based on coarse spatial resolution sensors) when comparing with regional products based on medium 480 
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resolution sensors. For instance, a continental BA product at 20 m derived from Sentinel-2 (S2) for the year 2016 and Sub-

Saharan Africa found that global BA products significantly underestimate total BA, as they included 80% less area than the 

S2 BA product (Roteta et al., 2019). This was mainly caused by the poor detection of small fires (< 250 ha) in global 

products. C3SBA10 is likely missing more small fires than FireCCI51 due to its coarser spatial resolution (300 m vs 250 m). 

This tendency towards underestimation was confirmed by the validation exercise carried out through the overlapping three-485 

year period (2017-2019), which showed that both global BA products presented higher omission than commission errors. 

This trend agrees with the validation exercises of other global BA products that can be found in the literature (Boschetti et 

al., 2019;Chuvieco et al., 2018;Padilla et al., 2015) as well as with the abovementioned inability of moderate resolution BA 

products to detect small fire patches. The omission errors presented in this paper were lower than those found by previous 

authors, e.g. 72.6% for the NASA’s standard product in Boschetti et al. (2019) or 81% and 71% for two consecutive versions 490 

of FireCCI products (FireCCI41 and FireCCI50) in Chuvieco et al. (2018). However, it must be highlighted that these 

numbers are not fully comparable to those presented in this paper since all these studies used the so called short units 

(reference data generated from a maximum period of 16 days) instead of long units (reference data covering several months, 

as done in this study) to estimate the spatial accuracy of the products. The short units’ approach is more affected by the 

temporal reporting accuracy (Section 3.2.2) of the global BA products than when using long units. A preliminary assessment 495 

of this effect was included in Lizundia-Loiola et al. (2020b) and in Franquesa et al. (2020b), showing a decrease of about 

25% in commission and 15% in omission errors (in FireCCI51) for a validation sample of Sub-Saharan Africa 2016. 

In any case, both the validation exercise and the consistency assessment showed a high agreement between the predecessor 

global BA product FireCCI51 and the operational C3SBA10. Although this consistency is still high in the years where only 

S3A is available (2017-2018) it significantly increased in 2019 due to the availability of the second S3B satellite. In fact, in 500 

2019 the C3SBA10 product showed a similar accuracy (DC=0.59±0.04) to that estimated for the FireCCI51 

(DC=0.61±0.03). The global and annual comparison metrics for that year were r = 0.952, slope = 0.88 and RMSE = 1.07 

km2 with a 0.05º spatial resolution, the finest spatial resolution used in the comparison (Table 5). The agreement between the 

products improved as the comparison resolution decreased (Table 5, and Figure 8). 

A deeper analysis of the year 2019 showed different trends in the consistency between products among the biomes. It was 505 

found that the changes in the correlation between products were linked to the BA detected for each month and biome. 

Although this relationship did not seem to be linear, i.e. a specific increase in BA did not mean a parallel increase in the 

correlation, it was clear that the larger the BA detected the higher the correlation between products. The tropical savanna was 

an obvious example, were most of global BA was found. The boreal regions were another example where the correlation is 

the highest in the months with the highest fire activity, while it significantly decreases for the rest of the months. The 510 

extreme wildfire event of Eastern Australia (Bowman et al., 2020) clearly showed this phenomenon since it significantly 

increased BA and agreement between products in December in the Mediterranean biome and in November and December in 

temperate forests. 
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There were some unusual cases as well, where higher BA did not necessarily mean higher correlation. This was the case of 

the temperate areas where the correlation decreased in April. Temperate savanna and forest biomes encompass almost all the 515 

Northern Hemisphere mid-latitude croplands located in the Russian Federation and Kazakhstan (Hall et al., 2016). Cropland 

fires are characterised to be small and transient (McCarty et al., 2009;Randerson et al., 2012), which made moderate 

resolution BA products (250-500 m) unable to properly characterise the extent of cropland BA patches (Hall et al., 2016;Zhu 

et al., 2017). It is reasonable to assume that the same issue was affecting both the FireCCI51 and C3SBA10 products, which 

clearly increased the uncertainty in those regions and, hence, decreased the agreement. In fact, it was very likely that the rest 520 

of the biomes were affected by a similar issue (Vadrevu et al., 2019), showing a decrease in the agreement of products from 

March to May (Figure 8) when agricultural activity is high globally (Randerson et al., 2012). 

The impact of agricultural fire activity in the performance of moderate BA products is only an example of the importance of 

the human factor in global fire regimes (Andela et al., 2017). Benali et al. (2017) assessed the existence of bimodal fire 

seasons, i.e. areas with two separate peak months, that were directly related to human activities. They found that about 25% 525 

of the areas with relevant fire activity showed this behaviour. In those cases, at least one of the two fire seasons was found to 

take place in sub-optimal weather conditions. Commonly, those periods have less valid images available due to clouds and 

cloud shadows, hindering BA detection, increasing uncertainty, and reducing agreement between products. 

The sensor characteristics are also affecting the correlation between products as well. Different sensors imply different 

observation geometries, different angular effects and different times of overpass, directly influencing what is observed by 530 

each sensor. This led to the detection of different burned patches in one product compared to the other, e.g. in cropland areas, 

or to the detection of different regions of the same burned patch as in some xeric shrublands, were fires can be large, but also 

irregular and with high spread rates (Laurent et al., 2018). Conversely, the temporal reporting accuracy (Section 3.2.2) was 

not significantly affected by this issue since a similar accuracy was shown by both products through the studied three-year 

period (Figure 7). This was due to the use of monthly composites, which tend to select the most suitable observation from 535 

the images available and did not require statistics of several pre- and post-fire images as in the case of multitemporal 

approaches. 

The results presented in this paper represent a first step in the transition from MODIS-based to S3-based BA products. In 

that sense, OLCI sensor have shown a good capacity to detect BA globally, although these estimations still depend on 

MODIS active fires. Future work should be done to assess the impact of changing the source of the active fires to other 540 

sensors such as the Visible Infrared Imaging Radiometer Suite (VIIRS) on board Suomi-NPP and NOAA-20 or the Sea and 

Land Surface Temperature Radiometer (SLSTR) on board S3. In the former case, VIIRS active fires can considerably 

increase the detection of small fires due to its improved spatial resolution of 375m (Oliva and Schroeder, 2015;Schroeder et 

al., 2014), although the impact on the identification of burned patches should be studied, due to the limitations of the 

moderate resolution reflectance data to detect small burned areas. In the latter case, a first study of S3 SLSTR active fire 545 

product has shown a good performance of this product over small fires (Xu et al., 2020), which provides a unique 

opportunity to develop a hybrid BA algorithm entirely based on S3. Therefore, global BA estimations may be improved in 
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the future if the operational algorithm used to detect BA within the C3S is updated with new and/or improved versions 

provided through research projects, such as FireCCI.  

5 Data availability 550 

The C3SBA10 product presented in this paper includes two types of BA files: monthly full resolution continental tiles and 

monthly global grid files at an aggregated resolution of 0.25 degrees, as described in Section 2.4 and Table 2. Both datasets, 

pixel and grid data types, are freely available through the Copernicus Climate Data Store (CDS) repository (DOI: 

https://doi.org/10.24381/cds.f333cf85, Lizundia-Loiola et al. (2020a)), referenced as OLCI C3S Burned Area v1.0. Users 

should note that FireCCI51 is also available through the same DOI, referenced as MODIS FireCCI v5.1.1cds. 555 

Additionally, the reference files generated to spatially validate the data presented in this publication has been released and 

are available at https://doi.org/10.21950/BBQQU7 (Franquesa et al., 2020a).  

6 Conclusions 

This paper presents a new global BA product, called C3SBA10, that was developed and produced within the Copernicus 

Climate Change Service. The last version of a series of global BA algorithms developed by the ESA’s FireCCI project, 560 

known as FireCCI51 (Lizundia-Loiola et al., 2020b), was adapted to detect burned area for this Service. The algorithm 

follows a two-phase hybrid approach, which is based on S3 OLCI surface reflectance and MODIS active fires. Initially, the 

algorithm detects pixels with a high probability of being burned based on active fire information and NIR reflectance. Then, 

thresholds adapted to each fire and fuel conditions are computed using spatio-temporal active-fire clusters and their 

surroundings. Finally, a contextual growing is applied to fully detect the burned patch. Thus, the first step aims to reduce 565 

commission errors while the second reduces omission ones. This algorithm is being operationally applied to produce the 

C3SBA10 product, which is the official BA product of the C3S service. At the time of writing this paper more than three 

years (January 2017 – present) of global BA are publicly available at the Climate Data Store in pixel (300 m) and grid 

(0.25º) format. The C3SBA10 may be understood as a continuation of the FireCCI51 global BA product (Lizundia-Loiola et 

al., 2020b), which is available from 2001 to 2019. The spatial and temporal consistency assessment and the temporal 570 

reporting accuracy analysis showed a very high correlation between both products, mainly in 2019 when both S3A and B 

were available, ensuring an uninterrupted provision of global BA information from 2001 to present. 
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Figures 

 

Figure 1. Simplified version of the main scheme of the global BA algorithm. Adapted from Lizundia-Loiola et al. (2020b). 830 

 

Figure 2. The 10x10 degree tiles used for the processing of the operational OLCI global BA product. A total of 273 tiles were 

processed, of which 13 were used to adapt the algorithm (red and green tiles). 
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 835 

Figure 3. Continental tiles of the global BA pixel product. 
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 855 

Figure 4. Biomes representing the first stratum of the validation sampling. The black locations show the 300 validation sites that 

were selected for 2017, 2018, and 2019 (100 for each year). 
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Figure 5. C3SBA10 annual accumulated BA for the year 2019 at 0.25º spatial resolution. 

 

Figure 6. Monthly burned area for 2019 distributed along latitudes determined by C3SBA10. 
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Figure 7. Temporal reporting accuracy assessment of both FireCCI51 and C3SBA10 products. 
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 880 

Figure 8. Monthly correlation between the FireCCI51 and C3SBA10 products per biome and grid size for the year 2019. 
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 885 

Figure 9. Proportional differences of burned area detection between the FireCCI51 and C3SBA10 at 0.5º spatial resolution. The 

negative values (red) means that the FireCCI51 detected more burned area while the positive ones (blue) that the C3SBA10 

detected more. 
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Tables 

Table 1. OLCI bands characteristics. The band indicated in grey was the one used as input for the algorithm. 

Band Band centre (nm) Bandwidth (nm) MERIS heritage 

Oa01 400 15 No 

Oa02 412.5 10 Yes 

Oa03 442.5 10 Yes 

Oa04 490 10 Yes 

Oa05 510 10 Yes 

Oa06 560 10 Yes 

Oa07 620 10 Yes 

Oa08 665 10 Yes 

Oa09 673.75 7.5 No 

Oa10 681.25 7.5 Yes 

Oa11 708.75 10 Yes 

Oa12 753.75 7.5 Yes 

Oa13 761.25 2.5 Yes 

Oa14 764.375 3.75 No 

Oa15 767.5 2.5 No 

Oa16 778.75 15 Yes 

Oa17 865 20 Yes 

Oa18 885 10 Yes 

Oa19 900 10 Yes 

Oa20 940 20 No 

Oa21 1020 40 No 
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Table 2. Pixel and Grid products specifications. 

Product Spatial 

resolution 

Layers Description 

Pixel 300m JD Julian date or day of the year when the burned 

pixel was detected 

CL Confidence level of the classified pixel (both 

burned and unburned) 

LC Land cover class that was burned 

Grid 0.25º Burned area Sum of the burned area within the grid cell 

Standard error Estimation of the standard error of the burned 

area 

Fraction of burnable 

area 

Fraction of the grid cell that could burn 

(vegetated land covers) 

Fraction of observed 

area 

Fraction of the burnable area that was observed 

during the month 

Burned area of each 

land cover class 

Sum of the burned area within the grid cell per 

land cover class 

 

Table 3. Burned area per biome derived from the C3SBA10 product, and relative differences against the predecessor global BA 

product FireCCI51. 915 

Biome 
C3SBA10 Burned area (km2) Difference C3SBA10-FireCCI51 

2017* 2018* 2019** 2017* 2018* 2019** 

Tropical savanna 2782564 2801290 2701210 -17.7% -16.4% -9.5% 

Tropical forest 335032 313597 411926 -22.3% -17.6% -5.2% 

Temperate savanna 210382 135370 164995 -9.8% -3.9% -0.4% 

Desert and xeric shrubland 258622 148073 113707 -20.7% -19.4% -2.8% 

Temperate forest 89537 111662 110884 -8.9% -11.5% -1.0% 

Boreal forest 61173 74014 90503 +4.5% +2.4% +4.4% 

Mediterranean 27421 8884 24975 -18.9% -32.8% -16.8% 

Tundra 5734 1697 13044 +3.8% +4.1% +13.1% 

Global 3770465 3594588 3631243 -17.3% -15.7% -7.8% 

* Only S3A satellite available      ** Both S3A and B satellites available 
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Table 4. Accuracy metrics for the years 2017, 2018 and 2019. Standard errors are shown between parentheses. 

Year 
2017* 2018* 2019** 

FireCCI51 C3SBA10 FireCCI51 C3SBA10 FireCCI51 C3SBA10 

Dice coefficient 0.64(0.03) 0.59(0.03) 0.68(0.03) 0.64(0.03) 0.61(0.03) 0.59(0.04) 

Commission error 0.23(0.03) 0.23(0.03) 0.17(0.02) 0.14(0.02) 0.22(0.02) 0.20(0.02) 

Omission error 0.44(0.03) 0.52(0.04) 0.42(0.04) 0.50(0.04) 0.49(0.04) 0.53(0.04) 

Relative bias -0.27(0.05) -0.38(0.05) -0.31(0.04) -0.41(0.04) -0.35(0.04) -0.42(0.04) 

* Only S3A satellite available      ** Both S3A and B satellites available 920 

 

Table 5. Global correlation coefficient between FireCCI51 and C3SBA10, slope and RMSE for the years 2017, 2018 and 2019 at 

0.05º, 0.10º, 0.25º and 0.50º grid size. 

    Grid Size 

  0.05º 0.1º 0.25º 0.5º 

r 2017* 0.937 0.962 0.981 0.988 
 

2018* 0.943 0.966 0.983 0.989 
 

2019** 0.952 0.972 0.986 0.992 

slope 2017* 0.823 0.836 0.844 0.847 
 

2018* 0.838 0.850 0.857 0.859 
 

2019** 0.882 0.894 0.904 0.907 

RMSE (km2) 2017* 1.347 4.029 17.810 57.404 
 

2018* 1.279 3.807 16.800 54.338 

  2019** 1.073 3.060 12.577 38.092 
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Table A1. Average (2017-2019) temporal reporting accuracies of the C3SBA10. 

Reporting 

accuracy 

Tropical 

forest 

Tropical 

savanna 

Temperate 

forest 

Temperate 

savanna 

Desert & 

xeric 

shrubland 

Medite-

rranean 

Boreal 

forest 

Tundra Global 

0-1 days 18.4% 20.1% 14.3% 22.6% 26.8% 14.8% 7.0% 8.4% 18.8% 

0-3 days 42.3% 49.5% 33.0% 49.4% 57.2% 37.9% 18.5% 20.4% 45.4% 

0-5 days 61.4% 69.5% 51.1% 68.2% 75.4% 59.5% 33.0% 34.7% 64.6% 

0-10 days 85.5% 90.8% 80.3% 91.9% 94.1% 91.0% 70.0% 69.3% 88.1% 
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