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In what follows, we have copied the Reviewers comment verbatim in black color text and have 

provided our point-by-point response to their comments in blue color. 

Reviewer 2 
 
General Comments 

The manuscript is well written and the concept for this paper is well thought out. The length and 

structure of the article are appropriate. High Mountain Asia could certainly benefit from more AR 

analysis due to its unique topography. However, I do not think that this manuscript is ready for 

publication in its current form. I have several suggestions for improvement of this paper (see 

below). 

Response 

The authors would like to sincerely thank the Reviewer for recognizing the importance of 

our work, for carefully reviewing our work, for the positive feedback, and for the suggestions to 

improve the quality of our work. 

Specific Comments 

It is unclear how this AR detection algorithm is unique compared to other AR detection algorithms 

available for Southern Asia. I agree with Reviewer 1 that spatio-temporal availability of ERA5 

data could be leveraged for an improved detection algorithm (i.e. 1-hourly, 0.1° horizontal 



resolution) in this region. At the very least, the authors could comment on why they chose 6-hourly 

and 0.25° horizontal resolution. 

Response 

We agree with the Reviewer that there are indeed many algorithms available to detect ARs. 

Two recent reviews on comparison of AR algorithms (Lora et al., 2020; Rutz et al., 2019) have 

highlighted that all AR algorithms provide robust identification of AR features and good 

agreement in the detection of moderate (𝐼𝑉𝑇~500	𝑘𝑔	𝑚!"	𝑠!") and strong 

(𝐼𝑉𝑇~700	𝑘𝑔	𝑚!"	𝑠!") AR events. These reviews, based on in the ARTMIP (Atmospheric River 

Tracking Method intercomparison Project), also included the algorithm by Lavers et al., (2012), a 

modified version of which is adopted in the present study. The major differences among these 

algorithms come from the exclusion or inadequately identifying “weak” AR features (<

250	𝑘𝑔	𝑚!"	𝑠!"); however, 𝐼𝑉𝑇 < 250𝑘𝑔.𝑚!"𝑠!" may not be considered “weak” depending on 

the season and region of interest. The “weak” or less intense ARs are usually found in cold regions 

like Antarctica, Arctic, and the western Himalaya, or when ARs are just forming or dissipating. 

These ARs are the ones that account for the major differences among the AR detection algorithms 

(Lora et al., 2020). Weak ARs are generally excluded by high threshold detection algorithms like 

Sellars et al., (2017) and Mahoney et al., (2016). For the Himalaya region, we want to identify and 

include weak ARs in our database as many authors have reported the importance of weak ARs in 

modulating the hydroclimate of cold regions like Antarctic and Artic (Gorodetskaya et al., 2014; 

Mattingly et al., 2018; Nash et al., 2018; Wille et al., 2019). 

We do not believe that the Lavers et al., (2012) (Lavers) is unique for use over the 

Himalaya; however, it has a few advantages that appear appealing in the present context. Lavers 

algorithm is region-specific i.e., a detection transect can be defined precisely at the location 

required, which will help detect only those ARs that penetrate the Himalayan base. Many 

algorithms, for example, the Pan & Lu, (2019), require defining a rectangular region and ARs 

detected within the region may not necessarily impact or cross a specific location of interest. 

Another advantage of the Lavers algorithm is that it uses climatology-based threshold, dependent 

on location and season, which can account for the smaller saturation capacity of ARs in cold season 

over the Himalayas. Many algorithms, such as Sellars et al., (2017) and Liang & Yong, (2020), 



use a fixed threshold, 𝑒. 𝑔. , 750	or	500	𝑘𝑔.𝑚!". 𝑠!", regardless of season and location, which is 

too extreme to identify “weak” ARs, most likely present in the Himalayas. Many algorithms 

(Gershunov et al., 2017; Mahoney et al., 2016; Sellars et al., 2017), which track the life cycle of 

ARs, are complex, and are not suited for the present work, since our aim is provide a database of 

ARs, not necessarily their origin, moisture sources, and life cycle. In summary, we preferred the 

Lavers algorithm mainly for its conceptual and computational simplicity. 

Comment on temporal resolution 

We have used 6-hourly ERA5 datasets because of four main reasons:  

(1) This temporal resolution is commonly used in AR-detection algorithms when using 

global reanalysis products (Nash & Carvalho, 2020; Waliser & Guan, 2017),  

(2) Our main goal is to identify ARs in the Himalayas and provide a ready-to-use and 

easily-manageable AR database for AR studies over this region for a sufficiently long period i.e., 

37 years. We realize that for such a lengthy duration (including all the seasons) to reduce the data 

volume, 6-hourly analysis is sufficient to produce a distinct and manageable database that can be 

loaded in most of the software on a home desktop machine. In contrast, 1-hourly AR data will 

consume more RAM due to larger size, thereby reduce the system performance, while only adding 

marginal information than 6-hourly data. If we carefully assess the benefits of hourly ARs versus 

6-hourly ARs, we notice that there are no significant advantages in using hourly observation. For 

example, since we compute the integrated water vapor transport (IVT) at 4-time steps i.e., 00UTC, 

06UTC, 12UTC, and 18 UTC a day, if an AR is identified at any of these time steps say at 06 

UTC, five hours before 06 UTC (01, 02, 03, 04, 05 UTC) is considered in the AR duration, but if 

no AR is identified for one-time step, we will only miss 5-hour analysis in the worst case scenario. 

(3) 6-hourly datasets provide sufficient temporal information to show the gradual evolution 

of AR over time (Nash et al., 2018; Ramos et al., 2015), rather than abrupt changes. It is worth 

mentioning that most climate model simulations for ARs are also archived at this temporal 

resolution.  

(4) A previous study (Rutz et al., 2014) has found similar results in mean AR duration 

when 6-hourly ERA-Interim IVT dataset is used compared to 1-hourly observational based dataset 

used by an earlier study (Ralph et al., 2013) for the same study area in Bodega Bay, US West 

Coast. Another study (Dettinger, 2011) also observed similar results in AR duration when daily 



observations are used instead of 1-hourly in northern California. Other studies (Guan & Waliser, 

2015, 2017; Rutz et al., 2014; Shields et al., 2018) have also shown small differences in AR 

characteristics (frequency, duration, length, etc.) when temporal resolutions of dataset are varied 

from 6-hourly to 1-hourly or from 6-hourly to 3-hourly or from 6-hourly to 12-hourly. 

We have added more information in the revised manuscript (Data Section) to justify the 

choice of temporal resolution. The text there reads as: 

“The 6-hourly interval is chosen for four main reasons 1.) it is a common denominator 

among AR detection algorithms using atmospheric reanalysis datasets (Brands et al., 2017; Guan 

& Waliser, 2015; Mundhenk et al., 2016; Rutz et al., 2014), 2) it provides sufficient temporal 

information on AR events and captures the gradual changes of AR characteristics (Nash & 

Carvalho, 2020; Ramos et al., 2015), 3.) many studies have found minor differences in ARs based 

on differing the temporal resolutions (Guan & Waliser, 2015, 2017; Rutz et al., 2014; Shields et 

al., 2018), and 4.) as compared to 1-hourly data, it is easily-manageable on a desktop machine 

with small random access memory (RAM), while marginally compromising on the extent of 

information available on AR characteristics”. 

The authors do note that there are many algorithms available that identify ARs (lines 207-208) but 

do not employ any comparison with their algorithm and others that are available. For example, 

other AR detection algorithms on a global, 6-hourly basis (e.g. Guan & Waliser, (2015), (B. Guan 

et al., (2018), Guan & Waliser, (2019), Sellars et al., (2017) are freely available to the public and 

could be used for statistical evaluation. This would also give the authors the chance to give error 

estimates for their data set. Table 1 in Rutz et al (2019) would be a good place to look for available 

AR detection algorithms in HMA. This would improve the article greatly as it would give the 

authors a chance to show how novel their algorithm is and why the AR community needs yet 

another AR detection algorithm. Unless the authors can show that this detection algorithm is better 

suited for HMA compared to other available AR detection algorithms, this study does not 

significantly contribute to the current body of work. 



Response 

Thank you for the detailed suggestions. Though we justify the use of modified version of 

Lavers et al., 2012 AR-detection algorithm to the study region (in our response to the Reviewer’s 

previous comment and in the revised version of the manuscript), we believe a comparison with a 

few global algorithms will undoubtedly enhance the quality of the dataset. To this end, we have 

requested a few authors (Dr. Bin Guan and Dr. Scott Sellers) to share their AR identification codes; 

we are waiting for their responses. Regardless, since there is an open AR global database based on 

MERRA, we may still be able to compare ARs detected here with a few global AR-detection 

algorithms. Accordingly, the comparison results will be added to the revised manuscript. 

I would also recommend the author review the ARTMIP articles that complete an in-depth 

comparison of most of the available AR detection algorithms (Shields et al, 2018; Rutz et al, 2019; 

Lora et al, 2020) and elaborate on why they chose to emulate the Lavers et al (2012) method over 

others. For example, why is this method more appropriate for HMA? 

Response: 

Thank you for the suggestion. We have reviewed a few ARTMIP studies and accordingly 

added the most relevant references in the revised manuscript, which read as: 

“Many algorithms are available to identify or track ARs. The AR Tracking Method 

Intercomparison Project (ARTMIP) was initiated to compare different AR algorithms using a 

common reanalysis dataset (Shields et al., 2018). Rutz et al., (2019) found differences among 

algorithms when compared in their native configuration (setup), but highlighted the agreements 

on AR distribution across latitudes in US and Europe when normalized. Lora et al., (2020) then 

expanded this study globally and found robust agreements among algorithms in identifying 

“strong” and “moderate” ARs but considerable differences for “weak” ARs. They attributed the 

disagreement mainly to the high-threshold algorithms that only detect “strong” ARs or identify 

only the core regions of ARs, while low-threshold algorithms capture overall ARs intensities at 

different locations, even outside the widely accepted extratropical regions. Here, we modified the 

algorithm developed by Lavers et al., (2012) to identify ARs over the Himalayas, since the 

algorithm is conceptually and computationally simple. The algorithm is region specific and allows 



for the use of space and time varying threshold. The algorithm has been successfully employed in 

many AR studies over the US West Coast (Barth et al., 2017), Europe (Lavers &Villarini, 2015a, 

2015b), and the central US (Lavers &Villarini, 2013a; Nayak et al., 2016; Nayak & Villarini, 

2017). For the Himalayas, we want to identify and include “weak” ARs in our database, as they 

may have important impacts on regional precipitation, as observed by various studies on cold 

regions like Antarctic and Artic (Gorodetskaya et al., 2014; Mattingly et al., 2018; Nash et al., 

2018; Wille et al., 2019).” 

Regarding the choice of Lavers et al., (2012) algorithm for AR identification, we refer the 

Reviewer to our response to her/his first specific comment. 

The author briefly mentions the AR study over the Bay of Bengal (Yang et al, 2018) in the results 

section, but it is not mentioned in the introduction paragraph where the author discusses other 

studies that examine ARs in Southern Asia (lines 102-118). 

Response 

Thank you for noting this. We have added the following points in the revised version of 

the manuscript:  

“Yang et al., 2018 identified ARs originating in the Bay of Bengal over the period 1979 to 

2011 using ERA-Interim reanalysis. It is observed that these ARs made landfall exclusively over 

the southern foothills of the Himalayas, mainly in Bangladesh, Burma, and occasionally in India. 

Since the study did not consider ARs originating from the western sources, including the Arabian 

Sea and the Mediterranean Sea, ARs were not detected in the northern and central Himalaya.” 

 

The readme for the AR track data seems incomplete. I’m not sure the data set would be able to be 

easily understood and re-used in the future. For example, what do all the columns mean in each of 

the files? Is there a unique ID for each of the AR tracks, or would a potential user have to join the 

tables on multiple columns? I would suggest clarification in the readme that describes the columns 

to prevent misuse of this database in the future. 



Response 

Thank you for pointing this out; we agree that the readme file may have not been thorough 

enough. We have now updated it by explaining the data in each column, along with units, and 

examples wherever necessary. The readme file now reads as: 

“Atmospheric Rivers (ARs) are long and narrow regions of intense moisture transport in the lower 
troposphere. The dataset comprises of ARs that have happened over the Himalayan Basins from 
1982 to 2018. It includes the dates and times, duration, intensity/magnitude, tracks, and categories 
of the ARs. 

File Names and description: 

1. ERA5_Persistant_Database2000km: This file includes the date, times, average Integrated 
Water Vapor Transport (IVT) magnitude (𝑘𝑔.𝑚!". 𝑠!"), starting IVT, maximum IVT, and 
duration of ARs. These terms are explained below in greater details. 

Column “Date”: 

Gives the date and time (in Coordinated Universal Time UTC) of each AR timestep. The IVT data 
used to identify ARs is 6-hourly (00UTC, 06UTC, 12UTC and 18UTC). 

Column “AR_ID”: 

Each identified persistent AR, lasting for at least 18 hours, is given a unique ID, which remains 
same for all timesteps of the AR. This column gives the ID of ARs. The ID of an AR is based on 
the year in which the AR occurred, the letters “AR”, and the occurrence serial of the AR in the 
year. For example, the first AR in 1990 has ID 1980AR1. If the AR lasted for 10 timesteps, all 10 
timesteps will have the same ID. 

Column “Ind”: 

This column gives the python index of IVT data in 6-hour yearly data, giving the date and time of 
each AR timestep. This column can be ignored since the same information is more directly 
available in “Date” column. 

Column “AvgIVT”: 

This column gives the average IVT magnitude (𝑘𝑔.𝑚!". 𝑠!") along the AR major axis, i.e., the 
gridcells that have maximum IVT along the AR track. For example, the first value corresponds to 
the average of all values from column “0” to column “88”, which give the IVT magnitude at each 
gridcell of the major axis of the first timestep. 

Column “StartIVT”: 



This column gives the IVT magnitude (𝑘𝑔.𝑚!". 𝑠!") at the initial gridcell on the first timestep 
when AR condition was identified. 

Column “ARDuration”: 

This column gives duration of the AR in hours; for example, an AR lasting for three timesteps will 
have the duration of 18 hours, an AR lasting for four timesteps will have duration of 24 hours. 

Column “MaxIVT”: 

This column gives the maximum of all IVT values (𝑘𝑔.𝑚!". 𝑠!") at the starting gridcells on each 
timestep of an AR. 

Column “ARCat”: 

This column gives category of the AR, based on IVT magnitude and duration of the ARs. Six 
categories have been defined, Cat0 denoting the weakest AR and Cat5 denoting the strongest AR. 
More details on this can be found in the accompanying paper. 

Column “0” to the end. 

These columns give the IVT magnitude (𝑘𝑔.𝑚!". 𝑠!") at each gridcell of the major axis of each 
AR timestep. 

 

Note that the cyclone dates were not available before 1982, so AR dates for 1979 to 1981 includes 
cyclonic IVT structures. 

2. ERA5_Persistant_Database_lats_2000km: The file gives the latitudes of grid points of 
maximum IVT, i.e., the latitude of major axes of ARs throughout their duration. 

Columns “Date”, “AR_ID”, “Ind”, “AvgIVT”, “StartIVT”, “ARDuration”, “MaxIVT”, 
“ARCat” are the same as given above for “ERA5_Persistant_Database2000km.csv” file. 

Column “0” to end. 

These columns give the latitude (in degrees North) at each gridcell of the major axis of each AR 
timestep. 

3. ERA5_Persistant_Database_lons_2000km: The file gives the longitudes of grid points of 
maximum IVT, i.e., the longitudes of major axes of ARs throughout their duration 

Columns “Date”, “AR_ID”, “Ind”, “AvgIVT”, “StartIVT”, “ARDuration”, “MaxIVT”, “ARCat” 
are the same as given above for “ERA5_Persistant_Database2000km.csv” file. 



Column “0” to end. 

These columns give the longitude (in degrees East) at each gridcell of the major axis of each AR 
timestep” 

 

Technical Corrections 

Line 345-346: The sentence beginning with “The minimum” is confusing to read and should be 

rewritten for clarity. 

Response 

Thank you for highlight this. We have rephrased the sentence for better clarity, and it reads as 

below in the revised manuscript. 

“The minimum number of ARs observed is 15 (in 1987), while the maximum annual frequency is 

37( in 2006).” 

 

Line 287 (and others) The formatting of ð���ð��� ð���−1 ð��  −1 (𝑘𝑔𝑚!"𝑠!") is off. 

For example, there does not appear to be a space between kg and m. This occurs in the 

supplemental material as well. 

Response 

Corrected, thank you pointing this out. 

The folder containing the Supplemental materials is misspelled as “Supplementary Information”. 

Response 

Corrected, thank you. 

 



The authors would again like to thank the Reviewer for her/his thoughtful suggestions, which have 

greatly improved the quality of the manuscript. 
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Two corrections to the previous review: 

1) ERA5 has a horizontal resolution of 0.25°, not 0.1°. So, the author should only comment 

on their choice to use 6-hourly compared to 3-hourly or even hourly temporal resolution. 

Response 

Done. This is responded in the first comment under specific comments. 

2) The technical correction for Line 287 (and others) should read: The formatting of kg m-1 s-

1 is off in the manuscript. For example, there does not appear to be a space between kg and 

m. This occurs in the supplemental material as well. 

Response 

Done, thank you. 
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