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Referee 3 
 
The authors created a dataset of atmospheric rivers for the Himalayan region derived from ERA5 

data. This dataset could be useful for the community for research into extreme precipitation and 

flooding. The manuscript is well written and presented. 

Response: 

We thank the Referee for appreciating our manuscript and his/her thoughtful comments. 

We agree with the Referee and believe that the dataset will advance AR studies over the unexplored 

Himalayas. 

I think the manuscript could benefit from a bit more explanation on the choice of the AR detection 

algorithm and the chosen time step. Why did the authors decide to use 6-hourly data despite ERA5 

being available on a higher temporal resolution? What made the authors choose this AR 

identification method over other available methods? 

Response: 

Thank you for the comments. We have used the modified version of Lavers et al., (2012) 

algorithm for AR identification in this study as the algorithm is region-specific and allows for a 

space-time varying threshold criteria. This allows identification of ARs of “weak” and “moderate” 

ARs in this region in all seasons; for example, in winter season in the western Himalaya, ARs 

rarely cross the 500	𝑘𝑔	𝑚!"𝑠!" (Figure 3) IVT, which will be disqualified by strict high-threshold 



algorithms. We wanted to include “weak” ARs in the database as these can have influence on this 

regional precipitation and important hydrological impacts as observed in some recent studies over 

other cold regions (Gorodetskaya et al., 2014; Nash et al., 2018; Wille et al., 2019). Also, we would 

like to highlight that two recent review studies on comparison of AR algorithms (Lora et al., 2020; 

Rutz et al., 2019) concluded that most of these algorithms identify ARs with fairly good agreement, 

especially the moderate to intense ARs, and that high-threshold algorithms ignore “weak ARs” 

from their records. The “weak” ARs are often the instances of ARs formation, dissipation, and 

merging (Lora et al., 2020), hence can provide important insights into the dynamical evolution of 

ARs formation and may have important societal impacts.  

We have used 6-hourly ERA5 datasets because of four main reasons:  

(1) This temporal resolution is commonly used in AR-detection algorithms when using 

global reanalysis products (Nash & Carvalho, 2020; Waliser & Guan, 2017),  

(2) Our main goal is to identify ARs in the Himalayas and provide a ready-to-use and 

easily-manageable AR database for AR studies over this region for a sufficiently long period i.e., 

37 years. We realize that for such a lengthy duration (including all the seasons) to reduce the data 

volume, 6-hourly analysis is sufficient to produce a distinct and manageable database that can be 

loaded in most of the software on a home desktop machine. In contrast, 1-hourly AR data will 

consume more RAM due to larger size, thereby reduce the system performance, while only adding 

marginal information than 6-hourly data. 

(3) 6-hourly datasets provide sufficient temporal information to show the gradual evolution 

of AR over time (Nash et al., 2018; Ramos et al., 2015), rather than abrupt changes. It is worth 

mentioning that most climate model simulations for ARs are also archived at this temporal 

resolution.  

(4) A previous study (Rutz et al., 2014) has found similar results in mean AR duration 

when 6-hourly ERA-Interim IVT dataset is used compared to 1-hourly observational based dataset 

used by an earlier study (Ralph et al., 2013) for the same study area in Bodega Bay, US West 

Coast. Another study (Dettinger, 2011) also observed similar results in AR duration when daily 

observations are used instead of 1-hourly in northern California.  

When looking into the dataset I think there could be a bit more additional information on how the 

data is organised. I am not sure that someone downloading the dataset would be able to understand 



it in its current form. For example, it took me a while to figure out that a detected AR has a unique 

id but still has multiple rows as it consists of multiple timesteps. The description in the read me 

file is very short and could say more about the structure in the .csv files, e.g. that there is a line for 

every time step in an identified AR. The manuscript and meta data say that the covered period is 

1982-2018 while the first detected AR in the files is from January 1979. For one AR timestep the 

IVT max says one value but when looking into the columns there is a higher IVT value. It seems 

a bit complicated organised that the longitudes and latitudes corresponding to the AR locations are 

in different files from the actual IVT values. 

Response 

We agree with the Reviewer, perhaps we were not detailed enough. We have updated the 

readme file, which now reads as:  

We have also included a note regarding the 1979 to 1981 ARs, where we mention that 

cyclone dates have not been removed in these years due to unavailability of cyclone dates, so some 

cyclones may have been identified as ARs in this period. 

-----Readme document text starts here----- 

“Atmospheric Rivers (ARs) are long and narrow regions of intense moisture transport in the lower 
troposphere. The dataset comprises of Atmospheric Rivers that have happened over the Himalayan 
Basins from 1982 to 2018. It includes the dates and times, duration, intensity/magnitude, tracks, 
and categories of the ARs. 

File Names and description: 

1. ERA5_Persistant_Database2000km: This file includes the date, times, average Integrated 
Water Vapor Transport (IVT) magnitude (𝑘𝑔.𝑚!". 𝑠!"), starting IVT, maximum IVT, and 
duration of ARs. These terms are explained below in greater details. 

Column “Date”: 

Gives the date and time (in Coordinated Universal Time UTC) of each AR timestep. The IVT data 
used to identify ARs is 6-hourly (00UTC, 06UTC, 12UTC and 18UTC). 

Column “AR_ID”: 



Each identified persistent AR, lasting for at least 18 hours, is given a unique ID, which remains 
same for all timesteps of the AR. This column gives the ID of ARs. The ID of an AR is based on 
the year in which the AR occurred, the letters “AR”, and the occurrence serial of the AR in the 
year. For example, the first AR in 1990 has ID 1980AR1. If the AR lasted for 10 timesteps, all 10 
timesteps will have the same ID. 

Column “Ind”: 

This column gives the python index of IVT data in 6-hour yearly data, giving the date and time of 
each AR timestep. This column can be ignored since the same information is more directly 
available in “Date” column. 

Column “AvgIVT”: 

This column gives the average IVT magnitude (𝑘𝑔.𝑚!". 𝑠!") along the AR major axis, i.e., the 
gridcells that have maximum IVT along the AR track. For example, the first value corresponds to 
the average of all values from column “0” to column “88”, which give the IVT magnitude at each 
gridcell of the major axis of the first timestep. 

Column “StartIVT”: 

This column gives the IVT magnitude (𝑘𝑔.𝑚!". 𝑠!") at the initial gridcell on the first timestep 
when AR condition was identified. 

Column “ARDuration”: 

This column gives duration of the AR in hours; for example, an AR lasting for three timesteps will 
have the duration of 18 hours, an AR lasting for four timesteps will have duration of 24 hours. 

Column “MaxIVT”: 

This column gives the maximum of all IVT values (𝑘𝑔.𝑚!". 𝑠!") at the starting gridcells on each 
timestep of an AR. 

Column “ARCat”: 

This column gives category of the AR, based on IVT magnitude and duration of the ARs. Six 
categories have been defined, Cat0 denoting the weakest AR and Cat5 denoting the strongest AR. 
More details on this can be found in the accompanying paper. 

Column “0” to the end. 

These columns give the IVT magnitude (𝑘𝑔.𝑚!". 𝑠!") at each gridcell of the major axis of each 
AR timestep. 

 



Note that the cyclone dates were not available before 1982, so AR dates for 1979 to 1981 includes 
cyclonic IVT structures. 

2. ERA5_Persistant_Database_lats_2000km: The file gives the latitudes of grid points of 
maximum IVT, i.e., the latitude of major axes of ARs throughout their duration. 

Columns “Date”, “AR_ID”, “Ind”,  “AvgIVT”,  “StartIVT”, “ARDuration”,  “MaxIVT”, 
“ARCat” are the same as given above for “ERA5_Persistant_Database2000km.csv” file. 

Column “0”  to end. 

These columns give the latitude (in degrees North) at each gridcell of the major axis of each AR 
timestep. 

3. ERA5_Persistant_Database_lons_2000km: The file gives the longitudes of grid points of 
maximum IVT, i.e., the longitudes of major axes of ARs throughout their duration 

Columns “Date”, “AR_ID”, “Ind”, “AvgIVT”,  “StartIVT”,  “ARDuration”,  “MaxIVT”, 
“ARCat” are the same as given above for “ERA5_Persistant_Database2000km.csv” file. 

Column “0” to end. 

These columns give the longitude (in degrees East) at each gridcell of the major axis of each AR 

timestep” 

 

-----Readme document text end ----- 

 

Line 246-247: there is "southward" twice in this sentence, while I think one of them should be 

"eastward". 

Response 

Corrected, thank you for pointing this out. 
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