Dear Oliver Bothe,

Thanks for your positive comments and suggestions. Please, find our answers below.

General comments

There is one suggestion for the future of the database. I would like to invite the authors to reconsider the general structure of the database and/or to provide a set of functions that allow an even easier interaction with the data than is already the case. Obviously, it is unlikely that there is a set of tools that accounts for all preferences of all potential users, and neither is it likely that there is a database structure that is intuitive even for the most inexperienced user. This suggestion originates from my struggles to access the data.

Accessing and querying any database is challenging for non-specialists but, as the reviewer acknowledges, it would be impossible to provide functions for all types of software and that addresses all the preferences that data users may have. To facilitate potential database users, we have created a set of "example queries" that are available along with the database files. While these 27 queries do not cover all potential needs of the researchers using the database, they provide a starting point. The existence of the example queries is mentioned in the README file available with the database in the data repository, but we will add text in the manuscript to make this clearer.

The structure of the database was agreed with the wider speleothem community as the most efficient way to capture the metadata and data available from speleothem records. A detailed description of the database and all its parameters is available in the paper describing the first version of the database (Atsawawaranunt et al., 2018). We will make sure that this is clear in the text. Note that it is also possible to download the individual tables comprising the database, allowing a user to reconfigure this in any format they prefer.

Minor

Suggestion: Add a list of abbreviations and technical terms. From my point of view, a database and a database paper is of interest for a community that extends beyond the specialists in a field. Therefore it might be advisable to provide a table or an appendix with definitions of technical terms and abbreviations. Otherwise, already Figure 1 may overwhelm some potential users.

In this paper, we did not define all concepts presented in the current database structure because these are already defined in Atsawawaranunt et al., 2018. This publication is cited in the manuscript as the source to look at for a detailed description of the database (L170-172: "The structure and contents of all tables except the new sisal_chronology table are described in detail in Atsawawaranunt et al. (2018a). Here, we focus on the new sisal_chronology table and on the changes that were made to other tables in order to accommodate this new table (See section 2.3).").

We are unsure as to whether providing that information again in the supplementary material of this paper would make things substantially different than referring to a paper previously published in the same journal. However, we will make it clear earlier in the manuscript that all concepts that appear in the database are defined in that publication and we hope that this will address the reviewer's concern satisfactorily.

Line 16: The authors write here 294 and later 293. Obviously "cave sites" and "cave systems" may mean different things, but I would like to ask the authors to clarify.

We used cave sites and cave systems interchangeably but will change it to cave sites throughout.

Line 81: 10.5281/zenodo.3591197 is not a valid doi, i.e. the link is broken.

Thank you for spotting this. The link to the ensemble file is now working.

This occurs again at line 271.

Thank you for spotting this. This link is now working properly.

The doi in line 270 is not valid either.

Thank you for spotting this. This link is now working properly.

Finally, in section 6 (lines 273,274, 276) and in the supplementary materials there are a few dois given as links but missing the "doi.org"-part and therefore not working directly.

Thanks. We will revise the hyperlinks in the manuscript as well as in the supplementary material before submitting a revised version of this manuscript.

Line 96: "This is consistent" implies that there are differences to these previous approaches. If these differences can be summarised shortly, it may be helpful to detail them.

By "this is consistent" we mean that our approach is equivalent, in that it produces highly similar results (apart from small numerical differences we expect due to the choice of random number generator and interpolation depths as well as, for COPRA the different programming language). We will clarify this in the revised document.

Provide a script to reproduce Figure 5. I would like to suggest to provide a script that reproduces Figure 5. Parts of this are already included in the GitHubrepository for SISAL.AM, cf. the plot_sisal_overview.R script. However, the final.plot function is only partially doing this and the script does not run as it is. The reading of the input-files has two errors (that can be easily corrected).

We have updated the GitHub repository for SISAL.AM with a script to successfully produce figure 5 as requested by the reviewer: https://github.com/paleovar/SISAL.AM/tree/master/SISAL_plot_functions

Technicalities

Some of the following technicalities are purely subjective. Some are meant to capture already at this stage some of the annotations that will come because of Copernicus' copy editing efforts.

Line 22: Please rephrase the sentence in combination with the parentheses. I am also unsure whether the tense of the verb in the parentheses is correct.

We will rephrase this sentence to: "Speleothems are a rich terrestrial palaeoclimate archive that forms from infiltrating rainwater after it percolates through the soil, epikarst, and carbonate bedrock."

Line 23: I stumbled between the first and second sentence of the paragraph as I felt they were rather badly connected. But that is rather subjective.

We agree with this comment and we will revise these two sentences to: "Speleothems are a rich terrestrial palaeoclimate archive that forms from infiltrating rainwater after it percolates through the soil, epikarst, and carbonate bedrock. In particular, stable oxygen and carbon isotope (δ 18O, δ 13C) measurements made on speleothems have been widely used to reconstruct regional and local hydroclimate changes."

Line 25: Again subjectively, I felt there should already be a new paragraph here.

We agree with the reviewer and we will move the sentence starting with "The Speleothem Isotope Synthesis..." to a new paragraph.

Line 40: I assume it should read "pointed to the" instead of "pointed the".

We agree and we will apply this change.

Line 48: The authors use two different notations for COPRA; COPRA and copRa. It may be that copRa is meant only to refer to the implementation of COPRA, but that does not become clear. I invite the authors to either only use one notation or to clearly specify that copRa is COPRA for R. In this context, I also would invite the authors of copRa to make copRa publically available. Giving an official acronym to the author's COPRA implementation in R already suggests such an availability.

Indeed, copRa is the R implementation of COPRA created specifically for this paper. We will revise the text to make this clear.

As stated in the data availability section, this new copRa implementation is already publicly available at https://github.com/paleovar/SISAL.AM.

Similarly it would be nice, if the authors' updated version of StalAge could be made available. This may be already the case, then I missed the pointer. It may be that all what I am writing here is already fulfilled by Roesch (2020, https://github.com/paleovar/SISAL.AM). If that is the case then please put the link at all positions where it is relevant.

Yes, as stated in the data availability section, the modified version of StalAge is already publicly available at https://github.com/paleovar/SISAL.AM. We will add the links were appropriate in addition to the "data availability section" to make this clear.

Oh, and the link to github.com/palaeovar/SISAL.AM given by the authors does not work.

Apologies, the correct link is https://github.com/paleovar/SISAL.AM (without the "a" of palaeo). We will correct the link in the manuscript.

Line 154: The authors mention the function *pchip* but not the package. I ask them to add the package and a citation for it. There may be other instances where this is necessary.

The *pchip* function comes from the signal R package, we will add this in the reference list.

We will provide the package name and a citation for it every time that an R function is mentioned in the manuscript.

Personal communications: If I remember correctly, Copernicus' editors are asking authors to provide the year of personal communication and also full names.

We will revise this to: "(Christoph Bronk Ramsey, personal communication, 2019)."

Similarly, the copy editors/typesetting editors are going to check for completeness of citations. I think I noted some missing information, e.g., the DOI for Rehfeld and Kurths (2014). Maybe the authors want to check all citations for completeness already at this stage.

Thanks for spotting this. We will revise all DOIs and references before submitting a revised version of the manuscript.

All links: please provide last accessed dates for all URLs.

We will do.

R packages: I did not check in detail - and I do not always follow this idea myself - but I think it would be nice if the authors could not only mention the R packages they use but also provide references for each of them. It may be that they already do this. I only noted that, e.g., for rBacon there is not a direct reference given, but maybe this is already fulfilled with the references in line 124. Another example is the mentioning of Hmisc on line 99.

We will make sure that all R packages that we used are cited were appropriate and that links are always copied where relevant.

There is an R package with rBacon. We mention it in the data availability section: "rBacon package (version 2.3.9.1) is available on CRAN (https://cran.rproject.org/web/packages/rbacon/index.html)." but we will also add its citation where appropriate in the text.

We will also cite the packages of Hmisc (L99) and pchip (L154) in the manuscript.

Software in general: The last comment, obviously, also applies to all other sorts of software, e.g., github-links in the manuscript. Similarly, the authors probably should also provide references for the zenodo-dois in the manuscript.

We will double check that all links are properly working before submitting a revised version of the manuscript. We will also properly cite the zenodo-dois mentioned in the manuscript. Dear Jud W. Partin,

Thanks for your comments and suggestions. Indeed, data compilations are an enormous community-based effort that we believe will have a strong impact on how science is done. Please, find our answers below highlighted in blue.

Can you please describe in more detail how the 95% confidence intervals are calculated (line 227) in the SISAL chronologies? I'm not sure, but I think it is the 95% spread in the ages using all of the age models, i.e. the spread in the curves in Figure 5 a and b. If so, I wholeheartedly support this idea. If not, then please describe in more detail.

The 95% confidence intervals are the spread for each type of age model separately not the spread considering all of the age models. Specifically, the SISAL chronology table has three columns per age-depth model technique. The first is the median age-depth model and the other two are their corresponding 2 sigma confidence intervals. These confidence intervals have been calculated from the spread of the individual ensembles for each technique that support this approach (specifically, linear interpolation, linear regression, Bchron, Bacon, OxCal and copRa)) and the last 1000 have been kept – and made available – for further analyses. For StalAge we report the uncertainties of the returned age model which are internally calculated and based on iterative fits as well as dating uncertainty. Fig. 5a and 5b show the median age models for each technique (the mean for StalAge). Each of these lines has corresponding confidence intervals which are individually reported.

We have not attempted to merge all SISAL chronologies for any given entity. Different modelling approaches give stronger weighting to some age determinations, so averaging across several methods could yield age-depth relationships that are unrealistic and/or not robust compared to the available U-Th dates.

We will add a statement on how the uncertainties are obtained in the description of each age-depth model technique in section 2.1.

Lines 204-210 are hard to follow. (Author's comment: Please note that we have separated this comment from the paragraph above as it refers to different things). Original text in L204-210 copied for reference: "The conception and the test of the R workflow, integrating all methods but OxCal, was outlined in Roesch and Rehfeld (2019) and includes automatized checks for the final chronologies except for OxCal. The quality control parameters obtained from OxCal were compared with the recommended values of Agreement Index (A) larger than 60 % and Convergence (C) larger than 95 %, in accordance with the guidelines in Bronk Ramsey (2008). In addition to both model agreement and P-Sequence convergence meeting these criteria, at least 90 % of individual dates had to have an acceptable Agreement and Convergence themselves. OxCal agedepth models failing to meet these criteria were not included in the SISAL chronology table."

We acknowledge that this paragraph needs rewriting and we will add the following text instead:

"We used an automated approach to age-depth modelling in R because of the large number of records. Roesch and Rehfeld (2019) have described the basic workflow concept and tested it using all of the age-modelling approaches used here except OxCal. The basic workflow involves step-by-step inspection and formatting of the data for the different methods, and the use of pre-defined parameter choices specific to each method. Each age-modelling method is called sequentially. An error message is recorded in the log file if a particular age-modelling method fails, and the algorithm then progresses to the next method. If output is produced for a particular age-modelling method, these age models are checked for monotonicity. Finally, the output standardization routine writes out, for each entity and age-modelling approach, the median age model, the ensembles (if applicable) and information of which hiatuses and dates were used in the construction of the age models. These outputs are then added to the sisal-chronology table (Table 2). All functions are available at https://github.com/paleovar/SISAL.AM (last access: 23 July 2020) and CRAN (https://cran.r-project.org/web/packages/ rbacon/index. html; last access: 31 January 2020).

The general approach for the OxCal age models was similar, and step-by-step details and scripts are provided in https: //doi. org/10.5281/zenodo.3586280 (Amirnezhad-Mozhdehi and Comas-Bru, 2019). The quality control parameters obtained from OxCal were compared with the recommended values of Agreement Index (A) larger than 60% and Convergence (C) larger than 95%, in accordance with the guidelines in Bronk Ramsey (2008), both for the overall model and for at least 90% of the individual dates. OxCal age-depth models failing to meet these criteria were not included in the sisal-chronology table (Table 2)." We agree that the spread of the median age models is useful. However, we do not think it is useful to calculate cross-model uncertainties based on the medians/ensembles of all age models. As explained above, in many cases the resulting merged chronology would not be consistent with the available U-Th dates. However, we supply all the data (medians, uncertainties, ensembles) so that this could be done by individual researchers on an entity by entity basis. Medians and uncertainties are available in the database and ensembles are stored in zenodo: http://doi.org/10.5281/zenodo.3816804 (Rehfeld et al., 2020).

Our approach does not penalize records with many dates. Usually, the better the spread in dates along a speleothem sample, the more constrained the agedepth model, and the lower the final uncertainty of the best-estimate median age model. However, it should be noted that this is not the case when there is a large number of conflicting U-Th dates with high analytical and correction uncertainties as the resulting age-depth model realisations will substantially differ amongst them.

For example, in Figure 5, there are a string of ages from 3400 - 3550 year BP that all follow each other. For this region of the d18O curve, there is fairly good agreement between the various age modeling techniques. Therefore, when all of those ages are viewed together, our confidence in the timing of any d18O excursion is less than that based on the error bars on each individual date (seen by less 'blur' in Figure 5c between the alternate age models). In other words, the multiple ages help to decrease our uncertainty to less than that of the analytical error bars on each U-Th dates. It's a bit like decreasing the signal to noise ratio by taking more measurements (by the square root of N). (Again SISAL may be doing this, but I'm not sure)

We agree with the reviewer that taking into account multiple chronologies for a given record provides more insights into the age-depth relationship. However, given that all the age models are consistent with the available dates, none of the individual chronologies should be discarded by default. Merging the chronologies obtained using different techniques to obtain "master chronologies for all the SISAL records would lead to a bias towards certain age-modelling approaches. For example, age models created using linear interpolation (successful 403 times) or Bchron (successful 420 times) would usually have a larger weight in a master chronology than Oxcal (successful 106 times) or linear regression (successful 182 times). Unless there is other information that suggests one age model type is better than others for a specific entity, all the chronologies should be considered equally likely. To quantify the degree to which multiple age modeling techniques may reduce temporal uncertainty, I recommend that this manuscript includes a plot of the average of the analytical error in a record versus the average SISAL 95% chronology error in a record (i.e. average of 5b). Is the fit to that scatter plot a 1:1 line? Or is there a systematic reduction in the error across many records in the database b/c of time periods like 3400-3550 BP in Figure 5? Or do problematic areas, like unresolved hiatuses, compensate the reduction in errors for when the age model is tightly constrained? This would be an enlightening plot.

We do not expect a systematic reduction of the error as a result of the age-depth model techniques used and the data shows that the SISAL uncertainties ultimately depend on the uncertainties of the original U-Th dates and their spread/consistency. In any case, however, this would depend on the robustness of the approach used treat the uncertainties in each age-depth model.

As suggested by the reviewer, we will add a plot of the average analytical error per record vs the average SISAL chronology uncertainty as attached. The accompanying text will be:

"The published age-depth models of all speleothems are accessible in the originalchronology metadata table and our standardised age-depth models are available at the sisal-chronology table for 512 speleothems. Temporal uncertainties are now provided for 79% of the records in the SISAL database. This is a significantly larger number than in SISALv1b, where most age-depth models lacked temporal uncertainties. Most speleothem records show average U-Th age errors between 100-1,000 years (Figure 6), which are only slightly changed by using age-depth modelling software. Nevertheless, when comparing the mean uncertainties of the U-Th ages with those of their corresponding age-depth model, the slope between both parameters is smaller than one. This indicates that age-depth models tend to reduce uncertainties especially when dating errors are large while they increase uncertainties, when U-Th age errors are small."

Please give more detail in the text of the principles used in your calculations for when the SISAL chronology decides that there is a hiatus in the record. While you reference Breitenbach, 2012, it would be good to review the guiding principles that SISAL is using in lines 83-86 in more detail to make the manuscript more self contained. Also, what happens if there is disagreement among the various techniques about a hiatus – how does SISAL decide on a 'yes' or 'no' to split the record? Does majority rule??

Our age-depth model calculations use the U-Th dates and the depths of the hiatuses as entered in the database and which were provided by the researchers that produced the raw data and/or their publications.

We do not decide in our workflow whether there is (or should be) a hiatus in a section and therefore, all AM approaches use the same input data. For clarity, the input variables for the sisal chronologies are: depths of dating samples and isotopes, U-Th corrected ages and their uncertainties (if used to create the original or published age model), depth information of hiatuses if applicable, information on whether the speleothem was actively growing when collected and the year of collection. We did not attempt to assess whether the information provided by the data contributors/publications was correct. However, together with experts from the SISAL age modelling group we have checked whether the dates and hiatuses were visually consistent with the rest of the data.

We believe there is a misunderstanding as lines 83-86 refer to age reversals that occurred during the construction of the sisal chronologies instead of hiatuses:

"Major challenges arise through hiatuses (growth interruptions) and age reversals. In the classification of the reversals, we distinguish between tractable reversals (with overlapping confidence intervals) and non-tractable reversals (i.e., where the two-sigma-dating uncertainties do not overlap) following the definition of Breitenbach et al. (2012)."

We will rephrase this paragraph to clarify this point:

"Major challenges arise through hiatuses (growth interruptions) and age reversals. We developed a workflow to deal with records with known hiatuses that allowed the construction of age-depth models for 20% of the records with one or more hiatuses (Roesch and Rehfeld, 2019; details below for each age-depth modelling technique). Regarding the age reversals, we distinguish between tractable reversals (with overlapping confidence intervals) and non-tractable reversals (i.e., where the two-sigma-dating uncertainties do not overlap) following the definition of Breitenbach et al. (2012). Details such as the hiatus treatment and outlier age modification are recorded in a logfile created when running the age models. We followed the original author's choices regarding date usage. If an age was marked as "not used" or "usage unknown", we did not consider this in the construction of the new chronologies except in OxCal, where dates with "usage unknown" were considered."

Details on how each technique tackled the histuses are copied below (with their corresponding line numbers):

Linear Interpolation: "Hiatuses are modelled following the approach of Roesch and Rehfeld (2019), where rather than modelling each segment separately, synthetic ages with uncertainties spanning the entire hiatus duration are introduced for use in age-depth model construction. These synthetic ages are removed after age-depth model construction. " (lines 100-104)

Linear Regression: "If hiatuses are present, the segments in-between were split at the depth of the hiatus without an artificial age." (lines 110-111)

Bchron: "Since Bchron cannot handle hiatuses, we implemented a new workflow that adds synthetic ages with uncertainties spanning the entire hiatus duration (Roesch and Rehfeld, 2019), as performed with linear interpolation, StalAge and our implementation of COPRA." (lines 116-118)

Bacon: "The R package rBacon can handle both outliers and hiatuses and apart from giving the median age-depth model, (...)." (lines 125-126)

Oxcal: "OxCal can deal with hiatuses and outliers and accounts for the non-uniform nature of the deposition process (Poisson process using the P-Sequence command)." (lines 134-136)

COPRA: "(...) we implemented a new workflow in R that adds artificial dates at the location of the hiatuses and prevents the creation of age reversals (Roesch and Rehfeld, 2019) as done with linear interpolation, StalAge and Bchron. " (lines 150-152)

StalAge: "The StalAge v1.0 R function has been updated to R version 3.4 and the default outlier and reversal checks were enabled to run automatically. Hiatuses cannot be entered in StalAge v1.0, but the updated version incorporates a treatment of hiatuses based on the creation of temporary synthetic ages following Roesch and Rehfeld (2019). " (lines 160-163)

SISALv2: A comprehensive speleothem isotope database with multiple age-depth models

Laia Comas-Bru 1, Kira Rehfeld 2, Carla Roesch 2, Sahar Amirnezhad-Mozhdehi 3, Sandy P. Harrison 1, Kamolphat Atsawawaranunt 1, Syed Masood Ahmad 4, Yassine Ait Brahim 5, Andy Baker 6, Matthew Bosomworth 1, Sebastian F.M. Breitenbach 7, Yuval Burstyn 8, Andrea Columbu 9, Michael Deininger 10, Attila Demény 11, Bronwyn Dixon <u>1</u>,12, Jens Fohlmeister 13, István Gábor Hatvani 11, Jun Hu 14, Nikita Kaushal 15, Zoltán Kern 11, Inga Labuhn 16, Franziska A. Lechleitner 17, Andrew Lorrey 18, Belen Martrat 19, Valdir Felipe Novello 20, Jessica Oster 21, Carlos Pérez-Mejías 5, Denis Scholz 10, Nick Scroxton 22, Nitesh Sinha 23,<u>24</u> Brittany Marie Ward <u>2425</u>, Sophie Warken <u>2526</u>, Haiwei Zhang 5 and SISAL Working Group members*.

Correspondence: Laia Comas-Bru (l.comasbru@reading.ac.uk)

Affiliations:

1 School of Archaeology, Geography, and Environmental Science, University of Reading, UK

2 Institute of Environmental Physics and Interdisciplinary Center for Scientific Computing, Heidelberg University, Germany

3 School of Geography. University College Dublin. Belfield, Dublin 4, Ireland

4 Department of Geography, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, India

5 Institute of Global Environmental Change, Xi'an Jiaotong University, Xi'an, Shaanxi, China

6 Connected Waters Initiative Research Centre, UNSW Sydney, Sydney, New South Wales 2052, Australia 7 Department of Geography and Environmental Sciences, Northumbria University, Newcastle upon Tyne, UK

8 The Fredy & Nadine Herrmann Institute Earth Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, Jerusalem 9190401, Israel

9 Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Via Zamboni 67, 40126, Bologna, Italy

10 Institute for Geosciences, Johannes Gutenberg University Mainz, J.-J.-Becher-Weg 21, 55128 Mainz, Germany

11 Institute for Geological and Geochemical Research, Research Centre for Astronomy and Earth Sciences, H-1112, Budaörsi út 45, Budapest, Hungary

12 School of Geography, University of Melbourne, Australia; School of Archaeology, Geography, and Environmental Science, University of Reading, UK

13 Potsdam Institute for Climate Impact Research PIK, Potsdam, Germany

14 Department of Earth, Environmental and Planetary Sciences, Rice University, US

15 Asian School of the Environment, Nanyang Technological University, Singapore

16 Institute of Geography, University of Bremen, Celsiusstraße 2, 28359 Bremen, Germany

17 Department of Earth Sciences, South Parks Road, Oxford OX1 3AN, UK

18 National Institute of Water and Atmospheric Research, Auckland, 1010, New Zealand

19 Department of Environmental Chemistry, Spanish Council for Scientific Research (CSIC), Institute of Environmental Assessment and Water Research (IDAEA), Barcelona, Spain

20 Institute of Geoscience, University of São Paulo

21 Department of Earth and Environmental Sciences, Vanderbilt University, Nashville, TN 37240, US

22 School of Earth Sciences, University College Dublin, Belfield, Dublin 4, Ireland

23 IBS-Center for Climate Physics (ICCP), Institute for Basic Science, Busan, Republic of Korea, 46241 24 Pusan National University, SouthBusan, Republic of Korea, 46241

2425 Environmental Research Institute, University of Waikato, Hamilton, New Zealand

2526 Institute of Earth Sciences and Institute of Environmental Physics, Heidelberg University, Germany * A full list of authors appears at the end of the paper.

1 Abstract:

2 Characterising the temporal uncertainty in palaeoclimate records is crucial for analysing past climate 3 change, for correlating climate events between records, for assessing climate periodicities, identifying 4 potential triggers, and to evaluate climate model simulations. The first global compilation of speleothem 5 isotope records by the SISAL (Speleothem Isotope Synthesis and Analysis) Working Group showed that 6 age-model uncertainties are not systematically reported in the published literature and these are only 7 available for a limited number of records (ca. 15%, n = 107/691). To improve the usefulness of the SISAL 8 database, we have (i) improved the database's spatio-temporal coverage and (ii) created new 9 chronologies using seven different approaches for age-depth modelling. We have applied these 10 alternative chronologies to the records from the first version of the SISAL database (SISALv1) and to new 11 records compiled since the release of SISALv1. This paper documents the necessary changes in the 12 structure of the SISAL database to accommodate the inclusion of the new age-models and their 13 uncertainties as well as the expansion of the database to include new records and the quality-control 14 measures applied. This paper also documents the age-depth model approaches used to calculate the new 15 chronologies. The updated version of the SISAL database (SISALv2) contains isotopic data from 691 16 speleothem records from 294 cave sites and new age-depth models, including age-depth temporal 17 uncertainties for 512 speleothems. SISALv2 is available at http://dx.doi.org/10.17864/1947.242http:// 18 doi.org/10.17864/1947.256 (Comas-Bru et al., 20202020a).

Copyright statement: This dataset is licensed by the rights-holder(s) under a Creative Commons Attribution 4.0
 International Licence: https://creativecommons.org/licenses/by/4.0/

21 **1. Introduction**

Speleothems (secondary cave carbonates formare a rich terrestrial palaeoclimate archive that forms from infiltrating rainwater after it percolates through the soil, epikarst, and carbonate bedrock) are a rich terrestrial palaeoclimate archive. In particular, stable oxygen and carbon isotopesisotope (δ^{18} O, δ^{13} C) measurements made on speleothems have been widely used to reconstruct regional and local hydroclimate changes. 27 The Speleothem Isotope Synthesis and Analyses (SISAL) Working Group is an international effort, under 28 the auspices of Past Global Changes (PAGES), to compile speleothem isotopic records globally for the 29 analysis of past climates (Comas-Bru and Harrison, 2019). The first version of the SISAL database 30 (Atsawawaranunt et al., 2018a; Atsawawaranunt et al., 2018b) contained 381 speleothem records from 31 174 cave sites and has been used for analysing regional climate changes (Braun et al., 2019a; Burstyn et 32 al., 2019; Comas-Bru and Harrison, 2019; Deininger et al., 2019; Kaushal et al., 2018; Kern et al., 2019; 33 Lechleitner et al., 2018; Oster et al., 2019; Zhang et al., 2019). The potential for using the SISAL database 34 to evaluate climate models was explored using an updated version of the database (SISALv1b; 35 Atsawawaranunt et al., 2019) that contains 455 speleothem records from 211 sites (Comas-Bru et al., 36 2019).

37 SISAL is continuing to expand the global database by including new records (Comas-Bru et al., 20202020a). 38 Although most of the records in SISALv2 (79.7%: Figure 1a) have been dated using the generally very 39 precise, absolute radiometric ²³⁰Th/U dating method, a variety of age-modelling approaches were 40 employed (Figure 1b) in constructing the original records. The vast majority of records provide no 41 information on the uncertainty of the age-depth relationship. However, many of the regional studies using 42 SISAL pointed to the limited statistical power of analyses of speleothem records because of the lack of 43 temporal uncertainties. For example, these missing uncertainties prevented the extraction of underlying 44 climate modes during the last 2k years in Europe (Lechleitner et al., 2018). To overcome this limitation, 45 we have developed additional age-depth models for the SISALv2 records (Figure 2) in order to provide 46 robust chronologies with temporal uncertainties. The results of the various age-depth modelling 47 approaches differ because of differences in their underlying assumptions. We have used seven alternative 48 methods: linear interpolation, linear regression, Bchron (Haslett and Parnell, 2008), Bacon (Blaauw, 2010; 49 Blaauw and Christen, 2011; Blaauw et al., 2019), OxCal (Bronk Ramsey, 2008, 2009; Bronk Ramsey and 50 Lee, 2013), COPRA (Breitenbach et al., 2012) and StalAge (Scholz and Hoffmann, 2011). Comparison of 51 these different approaches provides a robust measure of the age uncertainty associated with any specific 52 speleothem record.

53 **2. Data and Methods**

54 **2.1** Construction of age-depth models: the SISAL chronology

55 We attempted to construct age-depth models for 533 entities in an automated mode. For eight records, 56 this automated construction failed for all methods. For these records we provide manually constructed 57 chronologies, where no age model previously existed, and added a note in the database with details on 58 the construction procedure. Age models for 21 records were successfully computed but later dropped in

> 3 3

the screening process due to inconsistent information or incompatibility for an automated routine. In
 total, we provide a new chronologyadditional chronologies for 512 speleothem records in SISALv2.

61 The SISAL chronology provides alternative age-depth models for SISAL records that are not composites 62 (i.e., time-series based on more than one speleothem record), that have not been superseded in the database by a newer entity and which are purely ²³⁰Th/U dated. We therefore excluded records for which 63 64 the chronology is based on lamina counting, radiocarbon ages or a combination of methods. This decision 65 was based on the low uncertainties of the age-depth models based on lamina counting and the challenge 66 of reproducing age-depth models based on radiocarbon ages. We made an exception with the case of 67 entity_id 163 (Talma et al., 1992), which covers two key periods, the Mid-Holocene and the Last Glacial 68 Maximum, at high temporal resolution. In this case, we calculated a new SISAL chronology based on the 69 provided ²³⁰Th/U dates but did not consider the uncorrected ¹⁴C ages upon which the original age-depth 70 model is based. We also excluded records for which isotopic data is not available (i.e., entities that are 71 part of composites) and entities that are constrained by less than three dates. Additionally, the dating 72 information for 23 entities shows hiatuses at the top/bottom of the speleothem that are not constrained 73 by any date. For these records, we partially masked the new chronologies to remove the unconstrained 74 section(s). Original dates were used without modification in the age-depth modelling.

75 To allow a comprehensive cross-examination of uncertainties, seven age-depth modelling techniques 76 were implemented here across all selected records. Due to the high number of records (n = 533), all 77 methods were run in batch mode. A preliminary study, using the database version v1b demonstrated the 78 feasibility of the automated construction and evaluation of age-depth models using a subset of records 79 and methods (Roesch and Rehfeld, 2019). Further details on the evaluation of the updated age-depth 80 models are provided in Section 3.2. The seven different methods are briefly described below. All methods 81 assume that growth occurred along a single growth axis. For one entity, where it was previously known 82 that two growth axes exist, we added an explanatory statement in the database. All approaches except 83 StalAge produce Monte Carlo (MC) iterations of the age-depth models. We provide aimed at providing 84 1,000 MC iterations for each new SISALv2 chronology (https://doi.org/10.5281/zenodo.3591197).in 85 http://doi.org/10.5281/zenodo.3816804 (Rehfeld et al., 2020) but this was not always possible because 86 some records (n=12) yield a substantial number of non-monotonic ensembles that were not kept.

Major challenges arise through hiatuses (growth interruptions) and age reversals. In We developed a
 workflow to deal with records with known hiatuses that allowed the classification construction of age depth models for 20% of the records with one or more hiatuses (Roesch and Rehfeld, 2019; details below
 for each age-depth modelling technique). Regarding the age reversals, we distinguish between tractable

91 reversals (with overlapping confidence intervals) and non-tractable reversals (i.e., where the two-sigma-92 dating uncertainties do not overlap) following the definition of Breitenbach et al. (2012). We developed a 93 workflow to treat records with hiatuses (Roesch and Rehfeld, 2019; details below), which allowed the 94 construction of age-depth models for 20% of the records with one or more hiatuses. Changes, Details such 95 as the hiatus treatment and outlier age modification, are recorded in a logfile created when running the 96 age models. We followed the original author's choices with regard to regarding date usage. If an age was 97 marked as "not used" or "usage unknown", we did not consider this in the construction of the new 98 chronologies except in OxCal, where dates with "usage unknown" were considered.

99 1) Linear Interpolation (*lin_interp_age*) between radiometric dates. This is the classic approach for age-100 depth model construction for palaeoclimate archives and was used in 32.1% of the original age-depth 101 models in SISALv2. Here, we extend this approach and calculate the age uncertainty by sampling the range 102 of uncertainty of each ²³⁰Th/U-age 2,000 times, assuming a Gaussian distribution. This approach is 103 consistent with the implementation of linear interpolation in CLAM (Blaauw, 2010) and COPRA 104 (Breitenbach et al., 2012). Linear interpolation was implemented in R (R Core Team, 2019), using the 105 approxExtrap() function in the Hmisc package. We included an automated reversal check that 106 increases the dating uncertainties until a monotonic age model is achieved, similar to that of StalAge 107 (Scholz and Hoffmann, 2011). Hiatuses are modelled following the approach of Roesch and Rehfeld (2019), 108 where rather than modelling each segment separately, synthetic ages with uncertainties spanning the 109 entire hiatus duration are introduced for use in age-depth model construction. These synthetic ages are 110 removed after age-depth model construction. Linear interpolation was applied to 80% (n=408/512) of the 111 SISAL records for which new chronologies were developed.

112 2) Linear Regression (lin req age) provides a single best fit line through all available radiometric ages 113 assuming a constant growth rate. Linear regression was used in 6.7% of the original SISALv2 age models. 114 As with linear interpolation, age uncertainties are based on randomly sampling the U-series dates to 115 produce 2,000 age-depth models (i.e., ensembles). Temporal uncertainties are then given by the 116 uncertainty of the median-based fit to each ensemble member. If hiatuses are present, the segments in-117 between were split at the depth of the hiatus without an artificial age. The method is implemented in R, 118 using the lm() function from the base package. Linear regression was applied to 36% (n=185/512) of the 119 SISAL records for which new chronologies were developed.

3) Bchron (Bchron_age) is a Bayesian method based on a continuous Markov processes (Haslett and
 Parnell, 2008) and available as an R package (Parnell, 2018). This method was originally used for only one
 speleothem record in SISALv2. Since Bchron cannot handle hiatuses, we implemented a new workflow

5 5 that adds synthetic ages with uncertainties spanning the entire hiatus duration (Roesch and Rehfeld, 2019), as performed with linear interpolation, StalAge and our implementation of COPRA. Behron provides age-depth model ensembles of which we have kept the last 2,000. We calculate the age uncertainties from the spread of the individual ensembles. Here we use the function behron() with jitter.positions = true to mitigate problems due to rounded-off depth values. This method has been applied to 83% (n=426/512) of the SISAL records for which new chronologies were developed.

129 4) Bacon (Bacon_age) is a semi-parametric Bayesian method based on autoregressive gamma-processes 130 (Blaauw, 2010; Blaauw and Christen, 2011; Blaauw et al., 2019). It was used in three of the original 131 chronologies in SISALv2. The R package *rBacon* can handle both outliers and hiatuses and apart from 132 giving the median age-depth model, it also returns the Monte Carlo realisations (i.e. ensembles), from 133 which the median age-depth model is calculated. During the creation of the SISAL chronologies, the 134 existing rBacon package (version 2.3.9.1) was updated to improve the handling of stalagmite growth rates 135 hiatuses. We use this revised version, available on CRAN (https://cran.rand 136 project.org/web/packages/rbacon/index.html), https://cran.r-

project.org/web/packages/rbacon/index.html; last access date: 31 January 2020), to provide a median age-depth model and an ensemble of age-model realisations for 65% (n=335/512) of the SISAL records for which new chronologies were developed.

140 5) **OxCal** (Oxcal_age) is a Bayesian chronological modelling tool that uses Markov Chain Monte Carlo 141 (Bronk Ramsey, 2009). This method was used in 4.1% of the original SISALv2 chronologies. OxCal can deal 142 with hiatuses and outliers and accounts for the non-uniform nature of the deposition process (Poisson 143 process using the P_Sequence command). Here we used the analysis module of OxCal version 4.3 with a 144 default initial value of interpolation rate of 1 and an initial value of model rigidity (k) of k₀=1 with a uniform 145 distribution from 0.01 to 100 for the range of k/k_0 (log10(k/k_0)=(-2,2)) (C.<u>Christoph</u> Bronk Ramsey, 146 personal communication, 2019). The initial value of the interpolation rate determines the number of 147 points between any two dates, for which an age will be calculated. We subsequently linearly interpolated 148 the age-depth model to the depths of individual isotope measurements. WereWhere multiple dates are 149 given for the same depth for any given entity, the date with the smallest uncertainty was used to construct 150 the SISAL chronology. In case of asymmetric uncertainties in the dating table, the largest uncertainty value 151 was chosen. We kept the last 2,000 realisations of the age-depth models for each entity. We calculate the 152 age uncertainties from the spread of the individual ensembles. Details of the workflow used to construct 153 these chronologies are available at Amirnezhad-Mozhdehi and Comas-Bru (2019). OxCal chronologies are 154 available for 21% (n=106/512) of the SISAL records for which new chronologies were developed.

155 6) **COPRA** (copRa_age) is an approach based on interpolation-between-dates (Breitenbach et al., 2012) 156 and was used for 9.7% of the original SISALv2 chronologies. COPRA is available as a Matlab package_in 157 Rehfeld et al. (2017) with a graphical user interface (GUI) that has interactive checks for reversals and 158 hiatuses. The Matlab version can handle multiple hiatuses and (to some extent) layer-counted segments. 159 However, age-reversals can occur near short-lived hiatuses. To overcome this, we implemented a new 160 workflow in R that adds artificial dates at the location of the hiatuses and prevents the creation of age 161 reversals (Roesch and Rehfeld, 2019) as done with linear interpolation, StalAge and Bchron. Additionally, 162 we also incorporated an automated reversal check similar to that already embedded into StalAge (Scholz 163 and Hoffmann, 2011). This R version, copRa, uses the default piecewise-cubic-hermite-interpolation 164 (pchip) algorithm in R without consideration of layer counting. We calculate the age uncertainties from 165 the spread of the individual ensembles. This approach was used for 76% (n= 389/512) of the SISAL records 166 for which new chronologies were developed.

167 7) StalAge (StalAge_age) fits straight lines through three adjacent dates using weights based on the dating 168 measurement errors (Scholz and Hoffmann, 2011). Age uncertainties are iteratively obtained through a 169 Monte Carlo approach, but ensembles are not given in the output. StalAge was used to construct 13.1% 170 of the original SISALv2 chronologies. The StalAge v1.0 R function has been updated to R version 3.4 and 171 the default outlier and reversal checks were enabled to run automatically. Hiatuses cannot be entered in 172 StalAge v1.0, but the updated version incorporates a treatment of hiatuses based on the creation of 173 temporary synthetic ages following Roesch and Rehfeld (2019). In contrast to other methods, mean ages 174 instead of median ages are reported for StalAge-and the uncertainties are internally calculated and based 175 on iterative fits considering dating uncertainties. StalAge was applied to 62% (n=320/512) of the SISAL 176 records for which new chronologies were developed.

2.2 Revised structure of the database

The data are stored in a relational database (MySQL), which consists of 15 linked tables: *site, entity, sample, dating, dating_lamina, gap, hiatus, original_chronology, d13C, d18O, entity_link_reference, references, composite_link_entity, notes* and *sisal_chronology*. Figure 3 shows the relationships between these tables and the type of each field (e.g. numeric, text). The structure and contents of all tables except the new *sisal_chronology* table are described in detail in Atsawawaranunt et al. (2018a). Here, we focus on the new *sisal_chronology* table and on the changes that were made to other tables in order to accommodate this new table (See section 2.3). Details of the fields in this new table are listed in Table 1.

185 Changes were also made to the dating table (*dating*) to accommodate information about whether a 186 specific date was used to construct each of the age-depth models in the *sisal_chronology* table (Table 2).

> 7 7

We followed the original authors' decision regarding the exclusion of dates (i.e. because of high uncertainties, age reversals or high detrital content). However, some dates used in the original age-depth model were not used in the SISALv2 chronologies to prevent unrealistic age-depth relationships (i.e. age inversions). Information on whether a particular date was used for the construction of specific type of age-depth model is provided in the dating table, under columns labelled *date_used_lin_interp*, *date_used_lin_reg*, *date_used_Bchron*, *date_used_Bacon*, *date_used_OxCal*, *date_used_copRa* and *date_used_StalAge* (Table 2).

The dating and the sample tables were modified to accommodate the inclusion of new entities in the database. Specifically, the pre-defined options lists were expanded, options that had never been used were removed, and some typographical errors in the field names were corrected; these changes are listed in Table 3.

198**3. Quality Control**

3.1 Quality control of individual speleothem records

The quality control procedure for individual records newly incorporated in the SISALv2 database is based on the steps described in Atsawawaranunt et al. (2018a). We have updated the Python database scripts to provide a more thorough quality assessment of individual records. Additional checks of the dating table resulted in modifications in the 230Th_232Th, 230Th_238U, 234U_238U, ini230Th_232Th, 238U_content, 230Th_content, 232Th_content and decay constant fields in the dating table for 60 entities. A summary of the fields that are both automatically and manually checked before uploading a record to the database is available in Appendix 1.

Analyses of the data included in SISALv1 (Braun et al., 2019a; Burstyn et al., 2019; Deininger et al., 2019; Kaushal et al., 2018; Kern et al., 2019; Lechleitner et al., 2018; Oster et al., 2019; Zhang et al., 2019) and SISALv1b (Comas-Bru et al., 2019) revealed a number of errors in specific records that have now been corrected. These revisions include, for example, updates in mineralogies (*sample.mineralogy*), revised coordinates (*site.latitude* and/or *site.longitude*) and addition of missing information that was previously entered as "unknown". The fields affected and the number of records with modifications are listed in Table 4. All revisions are also documented at Comas-Bru et al., 2020, (2020a).

214 **3.2** QualityAutomation and quality control of the age-depth models in the SISAL chronology

215 The conception and the test of the R workflow, integrating all methods but OxCal, was outlined in Roesch

- 216 and Rehfeld (2019) and includes automatized checks for the final chronologies except for OxCal.We used
- an automated approach to age-depth modelling in R because of the large number of records. Roesch and

218 Rehfeld (2019) have described the basic workflow concept and tested it using all of the age-modelling 219 approaches used here except OxCal. The basic workflow involves step-by-step inspection and formatting 220 of the data for the different methods, and the use of pre-defined parameter choices specific to each 221 method. Each age-modelling method is called sequentially. An error message is recorded in the log file if 222 a particular age-modelling method fails, and the algorithm then progresses to the next method. If output 223 is produced for a particular age-modelling method, these age models are checked for monotonicity. 224 Finally, the output standardization routine writes out, for each entity and age-modelling approach, the 225 median age model, the ensembles (if applicable) and information of which hiatuses and dates were used 226 in the construction of the age models. These outputs are then added to the sisal chronology table (Table 227 2). All functions are available at https://github.com/paleovar/SISAL.AM (last access: 23 July 2020) and 228 CRAN (https://cran.r-project.org/web/packages/rbacon/index.html; last access: 31 January 2020).

229 The general approach for the OxCal age models was similar, and step-by-step details and scripts are 230 provided in https://doi.org/10.5281/zenodo.3586280 (Amirnezhad-Mozhdehi and Comas-Bru, 2019). The 231 quality control parameters obtained from OxCal were compared with the recommended values of 232 Agreement Index (A) > 60% and Convergence (C) > 95%, in accordance with the guidelines in Bronk Ramsey 233 (2008). In addition to), both for the overall model agreement and P_Sequence convergence meeting these 234 criteria, for at least 90% of the individual dates had to have an acceptable Agreement and Convergence 235 themselves. OxCal age-depth models failing to meet these criteria were not included in the SISAL 236 <u>sisal_chronology table</u>. (Table 2).

237 An overview of the evaluation results for the age-depth models constructed in automated mode is given 238 in Figure 4. Three nested criteria are used to evaluate them. Firstly, chronologies with reversals (Check 1) 239 are automatically rejected (score -1). Secondly, the final chronology should flexibly follow clear growth 240 rate changes (Check 2), such that 70% of the dates are encompassed in the final age-depth model within 241 4 sigma uncertainty (score +1). Thirdly, temporal uncertainties are expected to increase between dates 242 and near hiatuses (Check 3). This criterion is met in the automated screening (score +1) if the Interguartile 243 range (IQR) is higher between dates or at hiatuses than at dates. Only entities that pass all three criteria 244 are considered successful. All age-depth models that satisfied Check 1 were also evaluated in an expert-245 based manual screening by ten people. If more than two experts agreed that an individual age-depth 246 model was unreliable or inconsistencies, such as large offsets between the original age model and the 247 dates marked as 'used', occurred, the model was not included in the SISAL chronology table. This 248 automatic and expert-based quality control screening resulted in 2,138 new age-depth models 249 constructed for 503 SISAL entities.

4. Recommendation for the use of SISAL chronologies

251 The original age-depth models for every entity are available in SISALv2. However, given the lack of age 252 uncertainties for most of the records, we recommend considering the SISAL chronologies with their 253 respective 95% confidence intervals whenever possible. No single age-depth modelling approach is 254 successful for all entities, and we therefore recommend that all the methods for a specific entity are used 255 together in visual and/or statistical comparisons. Depending on methodological choices, age-depth 256 models compatible with the dating evidence can result in considerable temporal differences for 257 transitions (Figure 5). For analyses relying on the temporal alignment of records (e.g. cross-correlation), 258 age-depth model uncertainties should be considered using the ensemble of compatible age-depth models 259 as described, e.g., in Mudelsee et al. (2012), Rehfeld and Kurths (2014) and Hu et al. (2017).

260 **5. Overview of database contents**

261 SISALv2 contains 353, 976 δ^{18} O and 200,613 δ^{13} C measurements from 673 individual speleothem records 262 and 18 composite records from 293 cave systemsites (Table 5; Figure 2; Comas-Bru et al., 20202020a). 263 There are 20 records included in SISALv2 that are identified as being superseded and linked to the newer 264 records; their original datasets are included in the database for completeness. This is an improvement of 265 235 records from SISALv1b (Atsawawaranunt et al., 2019; Comas-Bru et al., 2019; Table 6). SISALv2 266 represents 72% of the existing speleothem records identified by the SISAL Working Group and more than 267 three times the number of speleothem records in the NCEI-NOAA repository (n = 210 as of November 268 2019), which is the one most commonly used by the speleothem community to make their data publicly 269 available. SISALv2 also contains nine records that have not been published or are only available in PhD 270 theses.

271 The published age-depth models of all speleothems are accessible in the original_chronology metadata 272 table and our standardised age-depth models are available at the sisal_chronology table for 512 273 speleothems. Temporal uncertainties are now provided for 79% of the records in the SISAL database. This 274 is a significantly larger number than in SISALv1b, where most age-depth models lacked temporal 275 uncertainties. Most speleothem records show average U-Th age errors between 100-1,000 years (Figure 276 6), which are only slightly changed by using age-depth modelling software. Nevertheless, when comparing 277 the mean uncertainties of the U-Th ages with those of their corresponding age-depth model, the slope 278 between both parameters is smaller than one. This indicates that age-depth models tend to reduce 279 uncertainties especially when dating errors are large while they increase uncertainties, when U-Th age 280 errors are small.

This second version of the SISAL database has an improved spatial coverage compared to SISALv1 (Atsawawaranunt et al., 2018b) and SISALv1b (Figure 3; Atsawawaranunt et al., 2019). SISALv2 contains most published records from Oceania (80.2%), Africa (73.7%) and South America (77.6%), but improvements are still possible in regions like the Middle East (42.3%) and Asia (64.8%) (Table 6).

285 The temporal distribution of records for the past 2,000 years is good, with 181 speleothems covering at 286 least one-third of this period and 84 records covering the entire last 2k (-68 to 2,000 years BP) with an 287 average resolution of 20 isotope measurements in every 100-year slice (Figure 6a7a). There are 182 288 records that cover at least one-third of the Holocene (last 11,700 years BP) with 37 of these covering the 289 whole period with at least one isotope measurement in every 500-year period (Figure $\frac{6b7b}{}$). There are 290 84 entities during the deglaciation period (21,000 to 11,700 years BP) with at least one measurement in 291 every 500-year time period (Figure 6b7b). The Last Interglacial (130,000 to 115,000 years BP) is covered 292 by 47 speleothem records that record at least one-third of this period with, on average, 25 isotope 293 measurements at every 1,000-year time-slice (Fig. 6cFigure 7c).

This updated SISALv2 database now provides the basis not only for comparing a large number of speleothem-based environmental reconstructions on regional to a global scale, but also allows for comprehensive analyses of stable isotope records on various timescales from multi-decadal to orbital.

297 6. Data and code availability:

298 The database SQL CSV format is available in and from 299 http://dx.doi.org/10.17864/1947.242 https://dx.doi.org/10.17864/1947.256 (Comas-Bru al., et 300 20202020a). The code used for constructing the linear interpolation, linear regression, Bchron, Bacon, 301 copRa and StalAge age-depth models is available at 302 https://github.com/palaeovar/SISAL.AM.https://github.com/paleovar/SISAL.AM (last access: 23 July 303 2020). rBacon package (version 2.3.9.1) is available on CRAN (https://cran.r-304 project.org/web/packages/rbacon/index.html).https://cran.r-305 project.org/web/packages/rbacon/index.html; last access: 31 January 2020). The code used to construct 306 the OxCal age-depth models and trim the ensembles output to the last 2,000 iterations is available at 307 https://doi.org/10.5281/zenodo.3586280.https://doi.org/10.5281/zenodo.3586280 (Amirnezhad-308 Mozhdehi and Comas-Bru, 2019). The ensembles available are at

- 309 <u>https://doi.org/10.5281/zenodo.3591197</u>.https://doi.org/10.5281/zenodo.3816804 (Rehfeld et al.,
- 310 <u>2020).</u> The workbook used to submit data to SISAL is available and the codes for its quality assessment
- are available at https://doi.org/10.5281/zenodo.3631403 (Atsawawaranunt and Comas-Bru, 2020). The
- B12 workbook is also available as a supplementary document of Comas-Bru and Harrison (2019); also available

313at https://10.5281/zenodo.3631403.). The codes to assess the data submitted314to SISAL can be obtained from https://10.5281/zenodo.3631403.). The codes to assess the dating table in315SISALv2 are available at https://github.com/jensfohlmeister/QC_SISALv2_dating_metadata (last access:31623July2020)andhttps://github.com/jensfohlmeister/QC_SISALv2_dating_metadata and317https://10.5281/zenodo.3631443 (Comas-Bru et al., 2020b)

318 the Quality Control assessments are available in the Supplementary material.

319 **Author contributions:**

320 LCB is the coordinator of the SISAL working group. LCB, SPH and KR designed the new version of the 321 database. KR coordinated the construction of the new age-depth models except OxCal. All age-depth 322 models except OxCal were run by CR and KR. LCB coordinated the construction of the OxCal age-depth 323 models, which were run by SAM and LCB. LCB implemented the changes in the v2 of the database with 324 the assistance of KA. SMA, YAB, AB, YB, MB, AC, MD, AD, BD, IGH, JH, NK, ZK, FAL, AL, BM, VFN, JO, CPM, 325 NS, NS, BMW, SW and HZ coordinated the regional data collection and the age-model screening. SFMB, 326 MB and DS provided support for COPRA, Bacon and StalAge, respectively. JF assisted in the Quality Control 327 procedure of the SISAL database. Figures 1, 4 and 5 were created by CR and KR. Figures 2, 3 and 6 were 328 created by LCB. All authors listed as "SISAL Working Group members" provided data for this version of the 329 database and/or helped to complete data entry. The first draft of the paper was written by LCB with inputs 330 by KR and SPH and all authors contributed to the final version.

331 Team list:

332 The following SISAL Working Group members contributed with data or age-modelling advice 333 to SISALv2: James Apaéstegui (Instituto Geofísico del Perú, Lima, Peru), Lisa M. Baldini (School of Health 334 & Life Sciences, Teesside University, Middlesbrough, UK), Shraddha Band (Geoscience Department, 335 National Taiwan University, No.1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan), Maarten Blaauw (School of 336 Natural and Built Environment, Queen's University Belfast, U.K.), Ronny Boch (Institute of Applied 337 Geosciences, Graz University of Technology, Rechbauerstraße 12,8010 Graz, Austria, Andrea Borsato 338 (School of Environmental and Life Sciences, University of Newcastle, Challaghan 2308, NSW, Australia), 339 Alexander Budsky (Institute for Geosciences, Johannes Gutenberg University Mainz, Johann-Joachim-340 Becher-Weg 21, 55128 Mainz, Germany), Maria Gracia Bustamante Rosell (Department of Geology and 341 Environmental Science, University of Pittsburgh, USA), Sakonvan Chawchai (Department of Geology, 342 Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand), Silviu Constantin (Emil Racovita 343 Institute of Speleology, Bucharest, Romania and Centro Nacional de Investigación sobre la Evolución 344 Humana, CENIEH, Burgos, Spain), Rhawn Denniston (Department of Geology, Cornell College, Mount 345 Vernon, IA 52314, USA), Virgil Dragusin (Emil Racovita Institute of Speleology, 010986, Strada Frumoasă 346 31, Bucharest, Romania), Russell Drysdale (School of Geography, University of Melbourne, Melbourne, 347 Australia), Oana Dumitru (Karst Research Group, School of Geosciences, University of South Florida, 4202 348 E. Fowler Ave., NES 107, Tampa, FL 33620, USA), Amy Frappier (Department of Geosciences, Skidmore 349 College, Saratoga Springs, New York, USA), Naveen Gandhi (Indian Institute of Tropical Meteorology, Dr. 350 Homi Bhabha Road, Pashan, Pune-411008, India), Pawan Gautam (Centre for Earth, Ocean and 351 Atmospheric Sciences, University of Hyderabad, India; now at Geological Survey of India, Northern Region, 352 India), Li Hanying (Institute of Global Environmental Change, Xi'an Jiaotong University, China), Ilaria Isola 353 (Istituto Nazionale di Geofisica e Vulcanologia, Pisa, Italy), Xiuyang Jiang (College of Geography Science, 354 Fujian Normal University, Fuzhou 350007, China), Zhao Jingyao (Institute of Global Environmental Change,

355 Xi'an Jiaotong University, China), Kathleen Johnson (Dept. of Earth System Science, University of 356 California, Irvine, 3200 Croul Hall, Irvine, CA 92697 USA), Vanessa Johnston (Research Centre of Slovenian 357 Academy of Sciences and Arts ZRC SAZU, Novi trg 2, Ljubljana, Slovenia), Gayatri Kathayat (Institute of 358 Global Environmental Change, Xi'an Jiaotong University, China), Jennifer Klose (Institut für 359 Geowissenschaften, Johannes Gutenberg-Universität Mainz, Germany), Claire Krause (Geoscience 360 Australia, Canberra, Australian Capital Territory, 2601, Australia), Matthew Lachniet (Department of 361 Geoscience, University of Nevada Las Vegas, Las Vegas, NV 89154), Amzad Laskar (Geosciences Division, 362 Physical Research Laboratory, Navrangpura, Ahmedabad 380009, India), Stein-Erik Lauritzen (University 363 of Bergen, Earth science, Norway), Nina Loncar (University of Zadar, Department of Geography, 23000, 364 Ulica Mihovila Pavlinovića, Zadar, Croatia), Gina Moseley (Institute of Geology, University of Innsbruck, 365 Innrain 52, 6020 Innsbruck, Austria), Allu C Narayana (Centre for Earth, Ocean and Atmospheric Sciences, 366 University of Hyderabad, India), Bogdan P. Onac (University of South Florida, School of Geosciences, 4202 367 E Fowler Ave, Tampa, FL 33620, USA, Emil Racovita Institute of Speleology, Cluj-Napoca, Romania), Jacek 368 Pawlak (Institute of Geological Sciences, Polish Academy of Sciences, 00-818, Twarda 51/55, Warsaw, 369 Poland), Christopher Bronk Ramsey (Research Laboratory for Archaeology and the History of Art, Oxford 370 University, Oxford, UK), Isabel Rivera-Collazo (Department of Anthropology and the Scripps Institution of 371 Oceanography, UC San Diego, USA), Carlos Rossi (Dept. Petrología y Geoquímica, Facultad de Ciencias 372 Geologicas, Universidad Complutense, Madrid, Spain), Peter J. Rowe (School of Environmental Sciences, 373 University of East Anglia, NR4 7TJ, Norwich Research Park, Norwich, UK), Nicolás M. Stríkis (Department 374 of Geochemistry, Universidade Federal Fluminense, Niterói, Brazil), Liangcheng Tan (State Key Laboratory 375 of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 376 710075, China), Sophie Verheyden (Politique scientifique fédérale belge BELSPO, Bvd. Simon Bolivar 377 30,1000 Brussels), Hubert Vonhof (Max Planck Institute for Chemistry, Mainz, Germany), Michael Weber

> 13 13

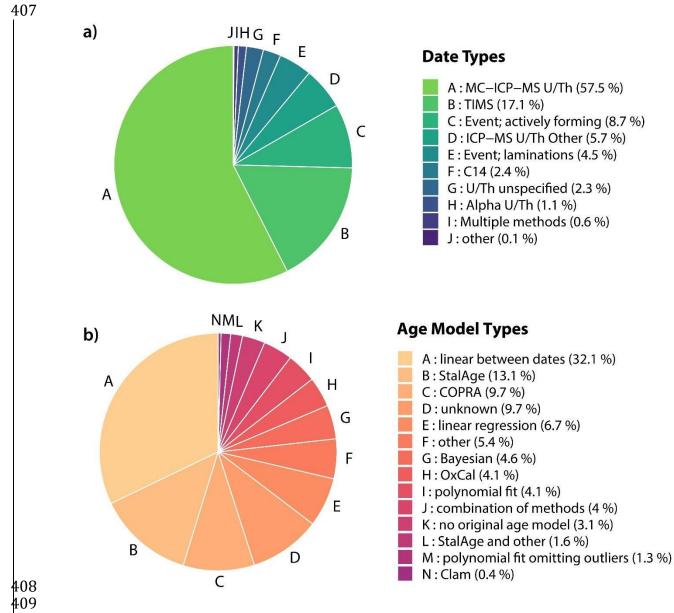
378 (Johannes Gutenberg-Universität Mainz, Germany), Kathleen Wendt (Geo- und 379 Atmosphärenwissenschaften, UniversitätInstitute of Geology, University of Innsbruck, Austria), Paul 380 Wilcox (Institute of Geology, University of Innsbruck, Austria), Amos Winter (Dept. of Earth and 381 Environmental Systems, Indiana State University, USA), Jiangying Wu (School of Geography, Nanjing 382 Normal University, Nanjing, China), Peter Wynn (Lancaster Environment Centre, University of Lancaster, 383 Lancaster, LA1 4YQ UK), Madhusudan G. Yadava (Geosciences Division, Physical Research Laboratory, 384 Navrangpura, Ahmedabad 380009, India).

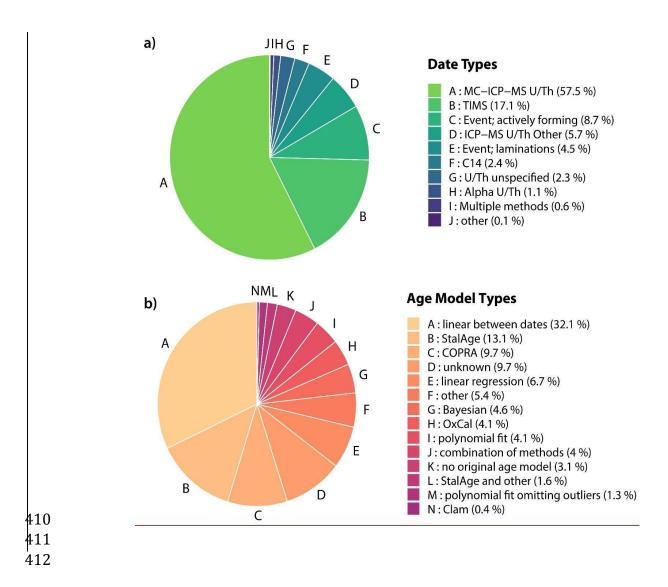
385 **Competing Interests:**

386 The authors declare no competing interests.

387 Funding:

388 SISAL (Speleothem Isotopes Synthesis and Analysis) is a working group of the Past Global Changes (PAGES) 389 programme. We thank PAGES for their support for this activity. The design and creation of v2 of the 390 database was supported by funding to SPH from the ERC-funded project GC2.0 (Global Change 2.0: 391 Unlocking the past for a clearer future, grant number 694481) and the Geological Survey Ireland Short Call 392 2017 (Developing a toolkit for model evaluation using speleothem isotope data, grant number 2017-SC-393 056) award to LCB. SPH and LCB acknowledge additional support from the ERC-funded project GC2.0 and 394 from the JPI-Belmont project "PAlaeo-Constraints on Monsoon Evolution and Dynamics (PACMEDY)" 395 through the UK Natural Environmental Research Council (NERC). KR and DS acknowledge support by the 396 Deutsche Forschungsgemeinschaft (DFG, codes RE3994/2-1 and SCHO 1274/11-1).


397 Acknowledgements


SISAL (Speleothem Isotopes Synthesis and Analysis) is a working group of the Past Global Changes (PAGES) programme. We thank PAGES for their support for this activity. We thank SISAL members who contributed their published data to the database and provided additional information when necessary. We thank all experts who engaged in the age-depth model evaluation. The authors would like to acknowledge Avner Ayalon, Jordi López, Bahadur Singh Kotlia, and Dennis Rupprecht.

403

404 List of Figures and Tables

405 Figure 1: Summary of the dating information on which the original age-depth models are based406 (a) and the original age-depth model types (b) present in SISALv2.

- 413 **Figure 2:** Cave sites included in the version 1, 1b and 2 of the SISAL database on the Global Karst
- 414 Aquifer Map (WOKAM-project; Chen et al., 2017: https://www.un-igrac.org/resource/world-415 karst-aquifer-map-wokam; Goldscheider et al., 2020).

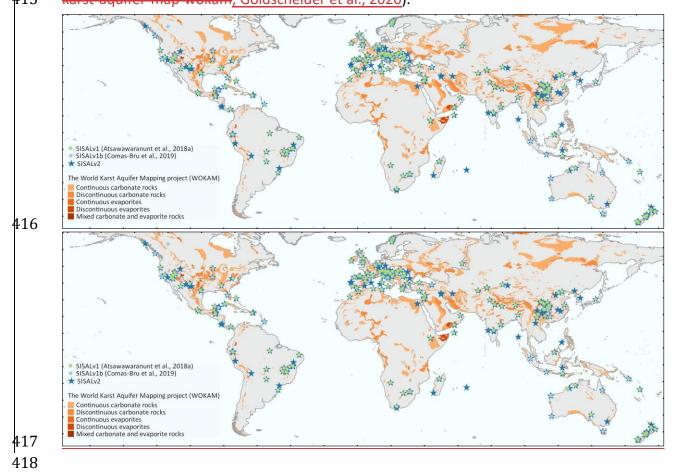
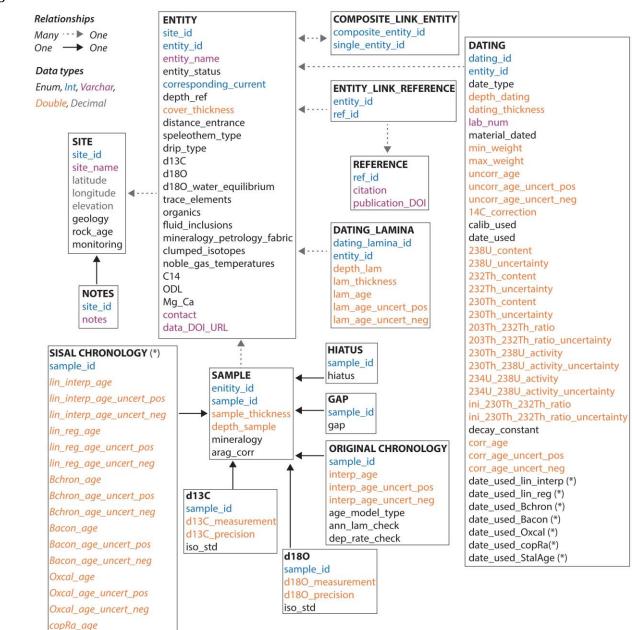
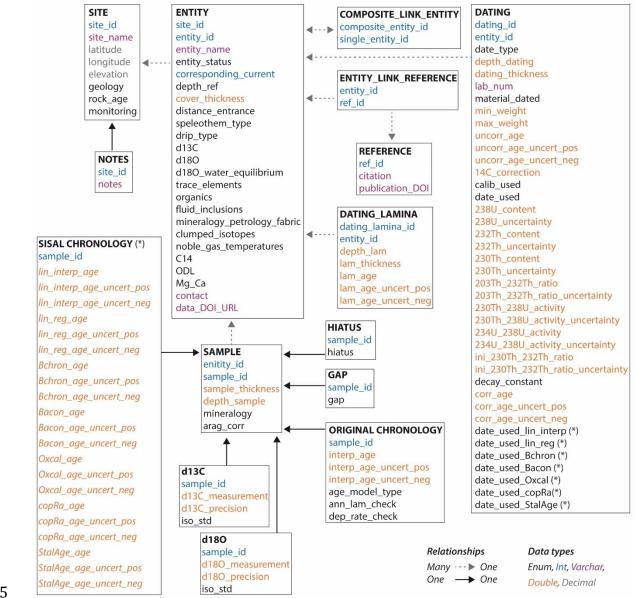
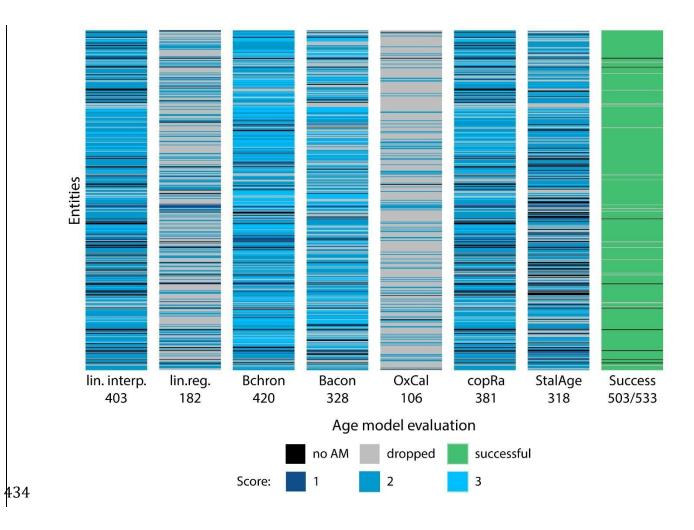
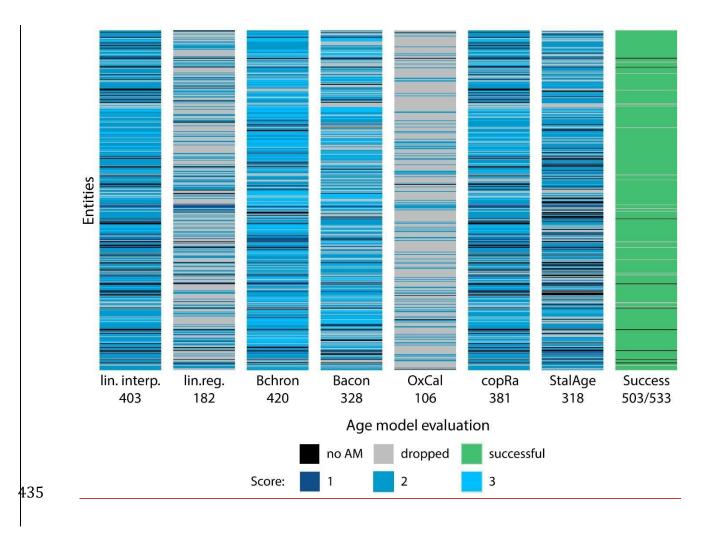
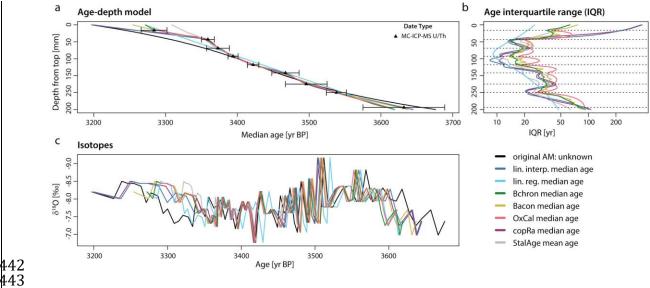




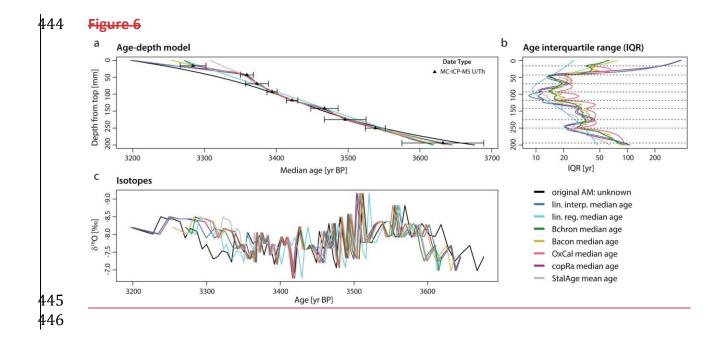
Figure 3: The structure of the SISAL database version 2. Fields and table marked with (*) refer to
new information added to SISALv1b; see tables 1 and 2 for details. The colours refer to the format
of that field: Enum, Int, Varchar, Double or Decimal. More information on the list of pre-defined
menus can be found in Atsawawaranunt et al. (2018a).





424




- 427 **Figure 4:** Visual summary of quality control of the automated SISAL chronology construction.
- 428 The evaluation of the age-depth models for each method (x-axis) is given for each entity (y-axis)
- that was considered for the construction (n=533). Black lines mark age-depth models that could
- 430 not be computed. Age-depth models dropped in the automated or expert evaluation are
- 431 marked by grey lines. Age-depth models retained in SISALv2 are scored from 1 (only one
- 432 criterion satisfied) to 3 (all criteria satisfied) in shades of blue. For 504503 records alternative
- 433 age-depth models with uncertainties are provided (green lines) in the "success" column.

- 436 **Figure 5:** Illustration of the impact of the age model choice on reconstructed speleothem
- 437 chronology illustrated by the KNI-51-H speleothem record (entity_id 342; Denniston et al.,
- 438 2013b). Panel (a) shows the median and mean age estimates for each downcore sample from
- the different age models; (b) shows the interquartile range (IQR) of the ages. Horizontal dashed
- 440 lines show the depths of the measured dates; (c) shows the isotopic record using the different
- 441 age models.

- 447 Figure 6: Scatter plot of average uncertainties in the sisal chronology table and U/Th mean
- 448 <u>dating uncertainties for each entity and age-depth model technique. The 1:1 line is shown in</u> 449 <u>black.</u>

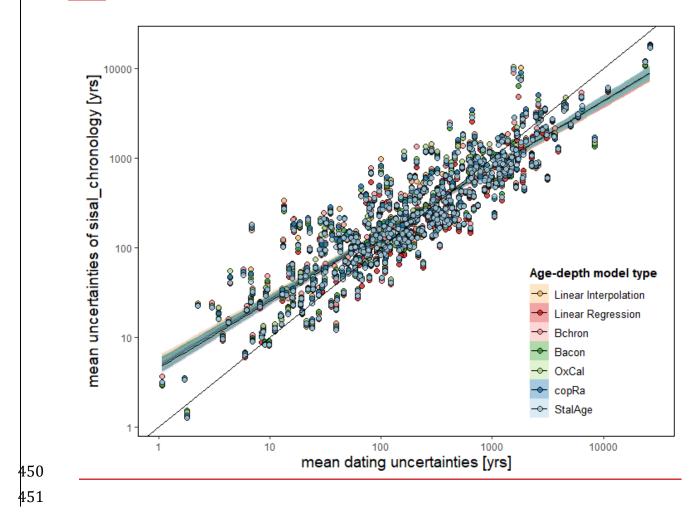
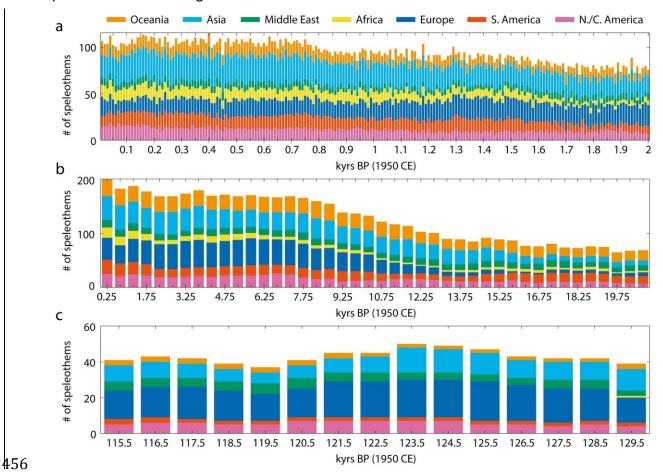
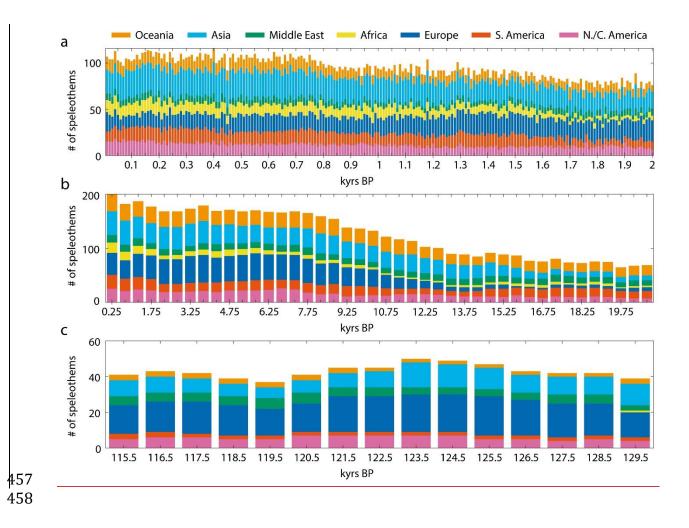




Figure 7: Global and regional temporal coverage of entities in the SISALv2. (a) last 2,000 years with a bin size of 10 years; (b) last 21,000 years with a bin size of 500 years; (c) the period between 115,000 and 130,000 years BP with a bin size of 1,000 yrs. BP refers to "Before Present" where present is 1950 CE. Regions defined as in Table 7.

- 459 **Table 1:** Details of the sisal_chronology table. All ages in SISAL are reported as years BP (Before
- 460 Present) where present is 1950 CE.
- 461

Field label	Description	Format	Constraints
sample_id	Refers to the unique identifier for the sample (as given in the sample table)	Numeric	Positive integer
lin_interp_age	Age of the sample in years calculated with linear interpolation between dates	Numeric	None
lin_interp_age_uncert_pos	Positive 2-sigma uncertainty of the age of the sample in years calculated with linear interpolation between dates	Numeric	Positive decimal
lin_interp_age_uncert_neg	Negative 2-sigma uncertainty of the age of the sample in years calculated with linear interpolation between dates	Numeric	Positive decimal
lin_reg_age	Age of the sample in years calculated with linear regression	Numeric	None
lin_reg_age_uncert_pos	Positive 2-sigma uncertainty of the age of the sample in years calculated with linear regression	Numeric	Positive decimal
lin_reg_age_uncert_neg	Negative 2-sigma uncertainty of the age of the sample in years calculated with linear regression	Numeric	Positive decimal
Bchron_age	Age of the sample in years calculated with Bchron	Numeric	None
Bchron_age_uncert_pos	Positive 2-sigma uncertainty of the age of the sample in years calculated with Bchron	Numeric	Positive decimal
Bchron_age_uncert_neg	Negative 2-sigma uncertainty of the age of the sample in years calculated with Bchron	Numeric	Positive decimal
Bacon_age	Age of the sample in years calculated with Bacon	Numeric	None
Bacon_age_uncert_pos	Positive 2-sigma uncertainty of the age of the sample in years calculated with Bacon	Numeric	Positive decimal
Bacon_age_uncert_neg	Negative 2-sigma uncertainty of the age of the sample in years calculated with Bacon	Numeric	Positive decimal
OxCal_age	Age of the sample in years calculated with OxCal	Numeric	None
OxCal_age_uncert_pos	Positive 2-sigma uncertainty of the age of the sample in years calculated with OxCal	Numeric	Positive decimal
OxCal_age_uncert_neg	Negative 2-sigma uncertainty of the age of the sample in years calculated with OxCal	Numeric	Positive decimal
copRa_age	Age of the sample in years calculated with copRa	Numeric	None

copRa_age_uncert_pos	Positive 2-sigma uncertainty of the age of the sample in years calculated with copRa	Numeric	Positive decimal
copRa_age_uncert_neg	Negative 2-sigma uncertainty of the age of the sample in years calculated with copRa	Numeric	Positive decimal
Stalage_age	Age of the sample in years calculated with StalAge	Numeric	None
Stalage_age_uncert_pos	Positive 2-sigma uncertainty of the age of the sample in years calculated with StalAge	Numeric	Positive decimal
Stalage_age_uncert_neg	Negative 2-sigma uncertainty of the age of the sample in years calculated with StalAge	Numeric	Positive decimal

Table 2: Changes made to the Dating table to accommodate the new age models. These

- 464 changes are marked with (*) in Figure 2.

Action	Field label	Description	Format	Constraints
Field added	date_used_lin_age	Indication whether that date was used to construct the linear age model	Text	Selected from pre-defined list: "yes", "no".
Field added	date_used_lin_reg	Indication whether that date was used to construct the age model based on linear regression	Text	Selected from pre-defined list: "yes", "no".
Field added	date_used_Bchron	Indication whether that date was used to construct the age model based on Bcrhon	Text	Selected from pre-defined list: "yes", "no".
Field added	date_used_Bacon	Indication whether that date was used to construct the age model based on Bacon	Text	Selected from pre-defined list: "yes", "no".
Field added	date_used_OxCal	Indication whether that date was used to construct the age model based on OxCal	Text	Selected from pre-defined list: "yes", "no".
Field added	date_used_copRa	Indication whether that date was used to construct the copRa_based age model	Text	Selected from pre-defined list: "yes", "no".
Field added	date_used_StalAge	Indication whether that date was used to construct the age model based on StalAge	Text	Selected from pre-defined list: "yes", "no".

- 468 **Table 3:** Changes made to tables other than the sisal_chronology since the publication of SISALv1
- 469 (Atsawawaranunt et al., 2018a; Atsawawaranunt et al., 2018b).

Table name	Action	Field label	Reason	Format	Constraints
Dating	Removed "sampling gap" option	date_type	This option was never used	Text	Selected from pre-defined list
	"others" option changed to "other"	decay_constant	Correction of typo	Text	Selected from pre-defined list
	Added "other" option	calib_used	Option added to accommodate new entities	Text	Selected from pre-defined list
	Added "other" option	date_type	Option added to accommodate new entities	Text	Selected from pre-defined list
Sample	Added "other" option	original_chronology	Option added to accommodate new entities	Text	Selected from pre-defined list
	Added "other" option	ann_lam_check	Option added to accommodate new entities	Text	Selected from pre-defined list

471 **Table 4:** Summary of the modifications applied to records already in version 1 (Atsawawaranunt
472 et al., 2018b) and version 1b (Atsawawaranunt et al., 2019) of the SISAL database. Mistakes in

473 previous versions of the database were identified as outlined in the Supplementary material and

474 through analysing the data for the SISAL publications.

Modification	V1 to v1b	V1b to v2	
Site table	1		
Number of new sites	37	82	
Sites with new entities	11	32	
Sites with altered site.site_name altered	3	15	
Sites with changes in site.latitude	4	29	
Sites with changes in site.longitude	6	32	
Sites with changes in site.elevation	13	11	
Sites with site.geology updated	7	6	
Sites with site.rock_age info updated	3	8	
Sites with site.monitoring info updated	0	13	
Entity table	1		
Number of new entities	74	236	
How many entities were added to pre-existing sites?	17	84	
Entities with revised entity_name	2	25	
Entities with updated entity.entity_status	1	10	

	1	
Entities with altered entity.corresponding current	0	11
Entities with altered entity.depth_ref?	0	1
Entities with altered entity.cover_thickness	1	3
Entities with altered entity.distance_entrance	0	3
Entities with revised entity. speleothem_type	14	4
Entities with revised entity.drip_type	10	2
Entities with altered entity.d13C	1	0
Entities with altered entity.d18O	1	0
Entities with altered entity.d18O_water_equilibrium	4	6
Entities with altered entity.trace_elements	1	2
Entities with altered entity.organics	1	2
Entities with altered entity.fluid_inclusions	1	3
Entities with altered entity.mineralogy_petrology_fabric	1	2
Entities with altered entity.clumped_isotopes	1	3
Entities with altered entity.noble_gas_temperatures	1	2
Entities with altered entity.C14	1	2
Entities with altered entity.ODL	1	2
Entities with altered entity.Mg Ca	1	2
Entities with altered entity.contact (mostly correction of typos)	7	32
Entities with altered entity.Data_DOI_URL (revision mostly to	134	14
permanent links)		-
Dating table		
Entities with changes in the dating table	70	260 269
Addition of "Event: hiatus" to an entity	0	3
How many hiatuses had their depth changed?	2	7
Entities with the depths of "Event: start/end of laminations" changed.	0	5
Entities with altered dating.date type	11	30
Entities with altered dating.depth_dating	14	45
Entities with altered dating.dating thickness	14	37
Entities with altered dating.material dated	5	62
Entities with altered dating.min_weight	13	56
Entities with altered dating.max_weight	19	36
Entities with altered dating.uncorr_age	13	48
Entities with altered dating.uncorr_age	18	53
	12	4140
Entities with altered dating.uncorr_age_uncert_neg		
Entities with altered dating.14C_correction	17	36
Entities with altered dating.calib_used	13	32
Entities with altered dating.date_used	4	51
Entities with altered dating.238U_content	11	<u>4547</u>
Entities with altered dating.238U_uncertainty	16	28 29
Entities with altered dating.232Th_content	15	46
Entities with altered dating.232Th_uncertainty	14	50
Entities with altered dating.230Th_content	11	40
Entities with altered dating.230Th_uncertainty	15	38
Entition with alternal dation 220Th 222Th matic	5	59 60
Entities with altered dating.230Th_232Th_ratio Entities with altered dating.230Th_232Th_ratio_uncertainty Entities with altered dating.230Th_238U_activity	14	<u>4849</u>

I

Entities with altered dating.230Th_238U_activity_uncertainty	17	<u>4449</u>
Entities with altered dating.234U_238U_activity	12	51 40
Entities with altered dating.234U_238U_activity_uncertainty	11	48 <u>40</u>
Entities with altered dating.ini_230Th_232Th_ratio	15	59 41
Entities with altered	8	60<u>49</u>
dating.ini_230Th_232Th_ratio_uncertainty		
Entities with altered dating.decay_constant	17	55
Entities with altered dating.corr_age	17	35 36
Entities with altered dating.corr_age_uncert_pos	13	<u>4647</u>
Entities with altered dating.corr_age_uncert_neg	9	47 <u>52</u>
Sample table		4
Altered sample.depth_sample	0	15
Altered sample.mineralogy	0	20
Altered sample.arag_corr	11	20
How many entities had their d18O time-series altered (i.e.	13	95 96
changes in depth and/or isotope values as in duplicates)?		
How many entities had their d13C time-series altered (i.e.	8	64
changes in depth and/or isotope values as in duplicates)?		
Original chronology		
Entities with altered original_chronology.interp_age	1	42
Entities with altered	0	14
original_chronology.interp_age_uncert_pos		
Entities with altered	0	14
original_chronology.interp_age_uncert_neg		
References		
How many entities had their references changed	6	16
(changes/additions/removals)?		
How many citations have a different pub_DOI?	2	16
Notes		
Sites with notes removed	7	5
Sites with notes added	32	68
Sites with notes modified	21	34<u>33</u>

477 **Table 5**: Information on new speleothem records (entities) added to the SISAL_v2 database from

478 SISALv1b (Comas-Bru et al., 2019). There may be multiple entities from a single cave, here identified as

the site. Latitude (Lat) and Longitude (Lon) are given in decimal degrees North and East respectively.

Site_i d	Site_name	Lat (N)	Lon (E)	Region	Entity_i d	Entity_name	Reference
2	Kesang cave	42.87	81.75	China	620	CNKS-2	Cai et al. (2017)
				621	CNKS-3	Cai et al. (2017)	
					622	CNKS-7	Cai et al. (2017)
					623	CNKS-9	Cai et al. (2017)
6 Hulu cave	Hulu cave 32.5 119.17	119.17	China	617	MSP	Cheng et al. (2006)	
					618	MSX	Cheng et al. (2006)

					619	MSH	Cheng et al. (2006)
12	Mawmluh cave		91.8817 India	India	476	ML.1	Kathayat et al. (2018)
					477	ML.2	Kathayat et al. (2018)
					495	KM-1	Huguet et al. (2018)
13	Ball Gown cave	-17.03	125	Australia	633	BGC-5	Denniston et al. (2013b); Denniston et al. (, 2017a)
					634	BGC-10	Denniston et al. (2013b); Denniston et al. (, 2017a)
					635	BGC-11_2017	Denniston et al. (2013b); Denniston et al. (, 2017a)
					636	BGC-16	Denniston et al. (2013b); Denniston et al. (, 2017a)
14	Lehman caves	Lehman caves 39.01 -114.22	-114.22 United States		641	CDR3	Steponaitis et al. (2015)
					642	WR11	Steponaitis et al. (2015)
15	Baschg cave	47.250 1	250 9.6667	Austria	643	BA-5	Moseley et al. (2019)
					644	BA-7	Moseley et al. (2019)
23	Lapa grande cave	-14.37	-14.37 -44.28	Brazil	614	LG12B	Stríkis et al. (2018)
					615	LG10	Stríkis et al. (2018)
					616	LG25	Stríkis et al. (2018)
24	Lapa sem fim cave	- 16.150	-44.6281	Brazil	603	LSF15	Stríkis et al. (2018)
		3			604	LSF3_2018	Stríkis et al. (2018)
					605	LSF13	Stríkis et al. (2018)
					606	LSF11	Stríkis et al. (2018)
					607	LSF9	Stríkis et al. (2018)
27	Tamboril cave	-16	-47	Brazil	594	TM6	Ward et al. (2019)
39	Dongge cave	25.283 3	108.0833	China	475	DA_2009	Cheng et al. (2009)
54	Sahiya cave	30.6	77.8667	India	478	SAH-2	Kathayat et al. (2017)

					470	CALL 2	
					479	SAH-3	Kathayat et al. (2017)
					480	SAH-6	Kathayat et al. (2017)
65	Whiterock cave	4.15	114.86	Malaysia (Borneo)	685	WR12-01	Carolin et al. (2016)
					686	WR12-12	Carolin et al. (2016)
72	Ascunsa cave	45	22.6	Romania	582	POM1	Staubwasser et al. (2018)
82	Hollywood cave	-41.95	171.47	New Zealand	673	HW-1	Williams et al. (2005)
86	Modric cave	44.256 8	15.5372	Croatia	631	MOD-27	Rudzka- Phillips et al. (2013)
					632	MOD-21	Rudzka et al. (2012)
105	Schneckenloc h cave	47.433 3	9.8667	Austria	663	SCH-6	Moseley et al. (2019)
113	Paixao cave	- 12.618	-41.0184	Brazil	611	PX5	Strikis et al. (2015)
		2			612	PX7_2018	Stríkis et al. (2018)
115	Hölloch im Mahdtal	47.378 1	10.1506	Germany	664	HOL-19	Moseley et al. (2019)
117	Bunker cave	51.367 5	7.6647	Germany	596	Bu2_2018	Weber et al. (2018)
128	Buckeye creek	Buckeye creek 37.98 -		4 United States	681	BCC-9	Cheng et al. (2019)
					682	BCC-10_2019	Cheng et al. (2019)
					683	BCC-30	Cheng et al. (2019)
135	Grotte de Piste	33.95	3.95 -4.246	Morocco	464	GP5	Ait Brahim et al. (2018)
					591	GP2	Ait Brahim et al. (2018)
138	Moomi cave	12.55	54.2	Yemen (Socotra)	481	M1-2	Mangini, Cheng et al., <u>, .</u> (unpublished ;); Burns et al. (2003) Burns et al. (,2004)
140	Sanbao cave	31.667	110.4333	China	482	SB3	Wang et al. (2008)
					483	SB-10_2008	Wang et al. (2008)
					484	SB11	Wang et al. (2008)
					485	SB22	Wang et al. (2008)
					486	SB23	Wang et al. (2008)
					487	SB24	Wang et al. (2008)

					488	SB25-1	Wang et al. (2008)
					489	SB25-2	Wang et al. (2008)
					490	SB-26_2008	Wang et al. (2008)
					491	SB34	Wang et al. (2008)
					492	SB41	Wang et al. (2008)
					493	SB42	Wang et al. (2008)
					494	TF	Wang et al. (2008)
141	141 Sofular cave	41.416 7	31.9333	Turkey	456	SO-2	Badertscher et al. (2011) Fleitmann et al. (2009); Göktürk et al. (2011)
					687	SO-4	Badertscher et al. (2011)
					688	SO-6	Badertscher et al. (2011)
					689	SO-14B	Badertscher et al. (2011)
145	Antro del Corchia	43.983 3	10.2167	Italy	665	CC-1_2018	Tzedakis et al. (2018)
					666	CC-5_2018	Tzedakis et al. (2018)
					667	CC-7_2018	Tzedakis et al. (2018)
					668	CC-28_2018	Tzedakis et al. (2018)
					669	CC_stack	Tzedakis et al. (2018)
					670	CC27	Isola et al. (2019)
155	KNI-51	-15.3	128.62	Australia	637	KNI-51-1	Denniston et al. (2017a)
					638	KNI-51-8	Denniston et al. (2017a)
160	Soreq cave	31.755 8	35.0226	Israel	690	Soreq- composite185	Bar- Matthews et al. (2003)
165	Ruakuri cave	-36.27	175.08	New Zealand	674	RK-A	Williams et al. (2010)
165	Ruakuri cave	-36.27	175.08	New Zealand	675	RK-B	Williams et al. (2010)
165	Ruakuri cave	-36.27	175.08	New Zealand	676	RK05-1	Whittaker (2008)
165	Ruakuri cave	-36.27	175.08	New Zealand	677	RK05-3	Whittaker (2008)
165	Ruakuri cave	-36.27	175.08	New Zealand	678	RK05-4	Whittaker (2008)

					600			
177	Santo Tomas cave	22.55	-83.84	Cuba	608	CM_2019	Warken et al. (2019)	
					609	СМа	Warken et al. (2019)	
					610	CMb	Warken et al. (2019)	
179	Closani Cave	45.10	22.8	Romania	390	C09-2	Warken et al. (2018)	
182	Kotumsar cave	19	82	India	590	КОТ-І	Band et al. (2018)	
192	El Condor cave	-5.93	-77.3	Peru	592	ELC-A	Cheng et al. (2013)	
					593	ELC-B	Cheng et al. (2013)	
198	Lianhua cave, Hunan	29.48	109.5333	China	496	LH-2	Zhang et al. (2013)	
213	Tausoare cave	47.433 3	24.5167	Romania	457	1152	Staubwasser et al. (2018)	
214	Cave C126	-22.1	113.9	Australia	458	C126-117	Denniston et al. (2013a)	
					459	C126-118	Denniston et al. (2013a)	
215	Chaara cave	Chaara cave	33.955 8	-4.2461	Morocco	460	Cha2_2018	Ait Brahim et al. (2018)
				-	588	Cha2_2019	Ait Brahim et al. (2019)	
					589	Cha1	Ait Brahim et al. (2019)	
216	Dark cave 27.2	27.2	7.2 106.1667	China	461	D1	Jiang et al. (2013)	
					462	D2	Jiang et al. (2013)	
217	E'mei cave	29.5	115.5	China	463	EM1	Zhang et al. (2018b)	
218	Nuanhe cave	41.333 3	124.9167	China	465	NH6	Wu et al. (2012)	
					466	NH33	Wu et al. (2012)	
219	Shennong cave	28.71	117.26	China	467	SN17	Zhang et al. (2018a)	
220	Baeg-nyong cave	37.27	128.58	South Korea	468	BN-1	Jo et al. (2017)	
221	La Vierge cave	- 19.757 2	63.3703	Rodrigue s	469	LAVI-4	Li et al. (2018)	
222	Patate cave	- 19.758 3	63.3864	Rodrigue s	470	PATA-1	Li et al. (2018)	
223	Wanxiang cave	Vanxiang 33.32 105	105	105 China	471	WX42B	Zhang et al. (2008]})	
					679	WXSM-51	Johnson et al. (2006)	
					680	WXSM-52	Johnson et al. (2006)	

224	Xianglong cave	33	106.33	China	472	XL16	Tan et al. (2018a)
					473	XL2	Tan et al. (2018a)
					474	XL26	Tan et al. (2018a)
225	Chiflonkhakha cave	- 18.122	-65.7739	Bolivia	497	Boto 1	Apaestegui et al. (2018)
		2			498	Boto 3	Apaestegui et al. (2018)
					499	Boto 7	Apaestegui et al. (2018)
226	Cueva del Diamante	-5.73	-77.5	Peru	500	NAR-C	Cheng et al. (2013)
					501	NAR-C-D	Cheng et al. (2013)
					502	NAR-C-F	Cheng et al. (2013)
					503	NAR-D	Cheng et al. (2013)
					504	NAR-F	Cheng et al. (2013)
227	El Capitan cave	56.162	-133.319	United States	505	EC-16-5-F	Wilcox et al. (2019)
228	Bat cave	32.1	-104.26	United States	506	BC-11	Asmerom et al. (2013)
229	Actun Tunichil Muknal	17.1	-88.85	Belize	507	ATM-7	Frappier et al. (2002); Frappier et al. (2007); Jamieson et al. (2015)
230	Marota cave	- 12.622 7	-41.0216	Brazil	508	MAG	Stríkis et al. (2018)
231	Pacupahuain cave	-11.24	-75.82	Peru	509	P09PH2	Kanner et al. (2012)
232	Rio Secreto cave system	20.59	-87.13	Mexico	510	Itzamna	Medina- Elizalde et al., (2016); Medina- Elizalde et al. (2017)
233	Robinson cave	33	-107.7	United States	511	KR1	Polyak et al. (2017)
234	Santana cave	- 24.530	-48.7267	Brazil	512	St8-a	Cruz et al. (2006)
		8			513	St8-b	Cruz et al. (2006)
235	Cueva del Tigre Perdido	- 5.9406	-77.3081	Peru	514	NC-A	van Breukelen et al. (2008)
					515	NC-B	van Breukelen et al. (2008)

236	Toca da Boa Vista	- 10.160	-40.8605	Brazil	516	TBV40	Wendt et al. (2019)
		2			517	TBV63	Wendt et al. (2019)
237	Umajalanta cave	-18.12	-65.77	Bolivia	518	Boto 10	Apaestegui et al. (2018)
238	Akalagavi cave	14.983 3	74.5167	India	519	MGY	Yadava et al. (2004)
239	Baluk cave	42.433	84.733	China	520	BLK12B	Liu et al. (2019)
240	Baratang cave	12.083 3	92.75	India	521	AN4	Laskar et al. (2013)
					522	AN8	Laskar et al. (2013)
241	Gempa bumi cave	-5	120	Indonesi a	523	GB09-03	Krause et al. (2019)
				(Sulawes i)	524	GB11-09	Krause et al. (2019)
242	Haozhu cave	30.683 3	109.9833	China	525	HZZ-11	Zhang et al. (2016)
					526	HZZ-27	Zhang et al. (2016)
243	Kailash cave	18.844 5	81.9915	India	527	KG-6	Gautam et al. (2019)
244	Lianhua cave, Shanxi	38.166 7	113.7167	China	528	LH1	Dong et al. (2018)
					529	LH4	Dong et al. (2018)
					530	LH5	Dong et al. (2018)
					531	LH6	Dong et al. (2018)
					532	LH9	Dong et al. (2018)
					533	LH30	Dong et al. (2018)
245	Nakarallu cave	14.52	77.99	India	534	NK-1305	Sinha et al. (2018)
246	Palawan cave	10.2	118.9	Malaysia (Norther n Borneo)	535	SR02	Partin et al. (2015)
247	Shalaii cave	35.146 9	45.2958	Iraq	536	SHC-01	Marsh et al. (2018); Amin Al-Manmi et al. (2019)
					537	SHC-02	Marsh et al. (2018); Amin Al-Manmi et al. (2019)
248	Shenqi cave	28.333	103.1	China	538	SQ1	Tan et al. (2018b)
					539	SQ7	Tan et al. (2018b)

249	Shigao cave	28.183	107.167	China	540	SG1	Jiang et al. (2012)
					541	SG2	Jiang et al. (2012)
250	Wuya cave	33.82	105.43	China	542	WY27	Tan et al. (2015)
					543	WY33	Tan et al. (2015)
251	Zhenzhu cave	38.25	113.7	China	544	ZZ12	Yin et al. (2017)
252	Andriamanilok e	- 24.051	43.7569	Madagas car	545	AD4	Scroxton et al. (2019)
253	Hoq cave	12.586 6	54.3543	Yemen (Socotra)	546	Hq-1	Van Rampelbergh et al. (2013)
					547	STM1	Van Rampelbergh et al. (2013)
					548	STM6	Van Rampelbergh et al. (2013)
254	PP29	- 34.207	22.0876	South Africa	549	46745	Braun et al. (2019b)
		8			550	46746-a	Braun et al. (2019b)
					551	46747	Braun et al. (2019b)
					552	138862.1	Braun et al. (2019b)
					553	138862.2a	Braun et al. (2019b)
					554	142828	Braun et al. (2019b)
					555	46746-b	Braun et al. (2019b)
					556	138862.2b	Braun et al. (2019b)
255	Mitoho	- 24.047 7	43.7533	Madagas car	557	MT1	Scroxton et al. (2019)
256	Lithophagus cave	46.828	22.6	Romania	558	LFG-2	Lauritzen and Onac (1999)
257	Akcakale cave	40.449 8	39.5365	Turkey	559	2р	Jex et al. (2010); Jex et al. (2011); Jex et al. (2013)
258	B7 cave	49	7	Germany	560	STAL-B7-7	Niggemann et al. (2003b)
259	Cobre cave	42.98	-4.37	Spain	561	PA-8	Osete et al. (2012); Rossi et al. (2014)
260	Crovassa Azzurra	39.28	8.48	Italy	562	CA	Columbu et al. (2019)
261	El Soplao cave	43.296 2	-4.3937	Spain	563	SIR-1	Rossi et al. (2018)

262	Bleßberg cave	50.424	11.0203	Germany	564	BB-1	Breitenbach
		4					et al. (2019)
					565	BB-3	Breitenbach et al. (2019)
263	Orlova Chuka cave	43.593 7	25.9597	Bulgaria	566	ocz-6	Pawlak et al. (2019)
264	Strašna peć cave	44.004 9	15.0388	Croatia	567	SPD-1	Lončar et al. (2019)
					568	SPD-2	Lončar et al. (2019)
265	Coves de Campanet	39.793 7	2.9683	Spain	569	CAM-1	Dumitru et al. (2018)
266	Cueva Victoria	37.632	-0.8215	Spain	570	Vic-III-4	Budsky et al. (2019)
267	Gruta do Casal da Lebre	39.3	-9.2667	Portugal	571	GCL6	Denniston et al. (2017b)
268	Pere Noel cave	50	5.2	Belgium	572	PN-95-5	Verheyden et al. (2000); Verheyden et al. (2014)
269	Gejkar cave	35.8	45.1645	Iraq	573	Gej-1	Flohr et al. (2017)
270	Gol-E-Zard cave	35.84	52	Iran	574	GZ14-1	Carolin et al. (2019)
271	Jersey cave	-35.72	148.49	Australia	575	YB-F1	Webb et al. (2014)
272	Metro cave	-41.93	171.47	New Zealand	576	M-1	Logan (2011)
273	Crystal cave	36.59	-118.82	United States	577	CRC-3	McCabe- Glynn et al. (2013)
274	Terciopelo cave	10.17	-85.33	Costa Rica	578	CT-1	Lachniet et al. (2009)
					579	CT-5	Lachniet et al. (2009)
					580	CT-6	Lachniet et al. (2009)
					581	CT-7	Lachniet et al. (2009)
275	Buraca Gloriosa	39.533 3	-8.7833	Portugal	583	BG41	Denniston et al. (2017b)
					584	BG66	Denniston et al. (2017b)
					585	BG67	Denniston et al. (2017b)
					586	BG611	Denniston et al. (2017b)
					587	BG6LR	Denniston et al. (2017b)
276	Béke cave	48.483 3	20.5167	Hungary	595	BNT-2	Demény et al. (2019)
							Czuppon et al. (2018)
277	Huagapo cave	-11.27	-75.79	Peru	597	P00-H2	Kanner et al. (2013)

					598	P00-H1	Kanner et al. (2013)
					599	P09-H1b	Burns et al. (2019)
					600	Р10-Н5	Burns et al. (2019)
					601	P10-H2	Burns et al. (2019)
					602	PeruMIS6Compo site	Burns et al. (2019)
278	Pink Panther cave	32	-105.2	United States	613	PP1	Asmerom et al. (2007)
279	Staircase cave	- 34.207	22.0899	South Africa	624	46322	Braun et al. (2019b)
		1			625	46330-a	Braun et al. (2019b)
					626	46861	Braun et al. (2019b)
					627	50100	Braun et al. (2019b)
					628	142819	Braun et al. (2019b)
					629	142820	Braun et al. (2019b)
					630	46330-b	Braun et al. (2019b)
280	Atta cave	51.1	7.9	Germany	639	AH-1	Niggemann et al. (2003a)
281	Venado cave	10.55	-84.77	Costa Rica	640	V1	Lachniet et al. (2004)
282	Wadi Sannur cave	28.616 7	31.2833	Eqypt	691	WS-5d	El-Shenawy et al. (2018)
283	Babylon cave	-41.95	171.47	New Zealand	645	BN-1	Williams et al. (2005)
					646	BN-2	Williams et al. (2005)
					647	BN-3	P. Williams et al., unpublished
284	Creighton`s cave	-40.63	172.47	New Zealand	648	CN-1	Williams et al. (2005)
285	Disbelief cave	-38.82	177.52	New Zealand	649	Disbelief	Lorrey et al. (2008)
286	La Garma cave	43.430 6	-3.6658	Spain	650	GAR-01_drill	Baldini et al. (2015); Baldini et al. (2019)
					651	GAR- 01_laser_d18O	Baldini et al. (2015)
					652	GAR- 01_laser_d13C	Baldini et al. (2015)
287	Twin Forks cave	-40.63	172.48	New Zealand	653	 TF-2	Williams et al. (2005)
288	Wet Neck cave	-40.7	172.48	New Zealand	654	WN-4	Williams et al. (2005)

					655	WN-11	Williams et al. (2005)
289	Gassel Tropfsteinhöhl	47.822 8	13.8428	Austria	656	GAS-12	Moseley et al. (2019)
	е				657	GAS-13	Moseley et al. (2019)
					658	GAS-22	Moseley et al. (2019)
					659	GAS-25	Moseley et al. (2019)
					660	GAS-27	Moseley et al. (2019)
					661	GAS-29	Moseley et al. (2019)
290	Grete-Ruth Shaft	47.542 9	12.0272	Austria	662	HUN-14	Moseley et al. (2019)
292	Limnon cave	37.960 5	22.1403	Greece	671	KTR-2	Peckover et al. (2019)
293	Tham Doun Mai	20.75	102.65	Laos	672	TM-17	Wang et al. (2019)
294	Palco cave	18.35	-66.5	Puerto Rico	684	PA-2b	Rivera- Collazo et al. (2015)
179	Closani Cave	45.10	22.8	Romania	390	C09-2	Warken et al. (2018)

Table 6: Percentage of entities uploaded to the different versions of the SISAL database with483respect to the number of records identified by the SISAL working group as of November 2019.484The number of identified records includes potentially superseded speleothem records. Regions485are defined as: Oceania (-60° < Lat < 0°; 90° < Lon < 180°); Asia (0° < Lat < 60°; 60° < Lon < 130°);</td>486Middle East (7.6° < Lat < 50°; 26° < Lon < 59°); Africa (-45° < Lat < 36.1°; -30° < Lon < 60°; with</td>487records in the Middle East region removed); Europe (36.7° < Lat < 75°; -30° < Lon < 30°; plus</td>

- 488 Gibraltar and Siberian sites); South America (S. Am; -60° < Lat < 8°; -150° < Lon < -30°); North and
- 489 Central America (N./C. Am; 8.1° < Lat < 60°; -150° < Lon < -50°)

Region	Version 1	-	Version 1	C	Version 2		
	Entities	Sites	Entities	Sites	Entities	Sites	
Oceania	47.7	36.7	56.8	51.0	80.2	69.4	
Asia	36.2	28.8	41.1	33.3	64.8	48.5	
Middle East	21.2	31.1	28.8	35.6	42.3	48.9	
Africa	63.2	62.5	63.2	62.5	73.7	87.5	
Europe	48.0	51.9	54.6	58.7	75.3	77.9	
S. Am	30.6	39.5	40.8	50.0	77.6	73.7	
N./C. Am	35.7	36.7	51.8	56.7	70.5	73.3	

492 **References**

493 Ait Brahim, Y., Wassenburg, J. A., Cruz, F. W., Sifeddine, A., Scholz, D., Bouchaou, L., Dassie, E. P., Jochum,

K. P., Edwards, R. L., and Cheng, H.: Multi-decadal to centennial hydro-climate variability and linkage to
solar forcing in the Western Mediterranean during the last 1000 years, Scientific Reports, 8, 174466,
<u>https://doi.org/</u>10.1038/s41598-018-35498-x, 2018.

Ait Brahim, Y., Wassenburg, J. A., Sha, L., Cruz, F. W., Deininger, M., Sifeddine, A., Bouchaou, L., Spötl, C.,
Edwards, R. L., and Cheng, H.: North Atlantic Ice-Rafting, Ocean and Atmospheric Circulation During the
Holocene: Insights From Western Mediterranean Speleothems, Geophysical Research Letters, 46,
2019GL082405-082019GL082405, GL082405, https://doi.org/10.1029/2019GL082405, 2019.

Amin Al-Manmi, D. A. M., Ismaeel, S. B., and Altaweel, M.: Reconstruction of palaeoclimate in Shalaii Cave,
SE of Sangaw, Kurdistan Province of Iraq, Palaeogeography, Palaeoclimatology, Palaeoecology, 524, 262272, https://doi.org/10.1016/J.PALAEO.2019.03.044, 2019.

504 <u>Amirnezhad-Mozhdehi, S., Comas-Bru, L. : MATLAB scripts to produce OxCal chronologies for SISAL</u> 505 <u>database (scripts V1) (Version 1.0). Zenodo. http://doi.org/10.5281/zenodo.3586280, 2019.</u>

506 Apaestegui, J., Cruz, F. W., Vuille, M., Fohlmeister, J., Espinoza, J. C., Sifeddine, A., Strikis, N., Guyot, J. L.,

507 Ventura, R., Cheng, H., and Edwards, R. L.: Precipitation changes over the eastern Bolivian Andes inferred

508 from speleothem (delta O-18) records for the last 1400 years, Earth and Planetary Science Letters, 494, 124 https://doi.org/10.1016/j.org/2018.04.048.2018

509 124-134, <u>https://doi.org/</u>10.1016/j.epsl.2018.04.048, 2018.

Asmerom, Y., Polyak, V., Burns, S., and Rassmussen, J.: Solar forcing of Holocene climate: New insights from a speleothem record, southwestern United States, Geology, 35, 1-4, https://doi.org/10.1130/G22865A.1, 2007.

Asmerom, Y., Polyak, V. J., Rasmussen, J. B. T., Burns, S. J., and Lachniet, M.: Multidecadal to multicentury

514 scale collapses of Northern Hemisphere monsoons over the past millennium, Proceedings of the National 515 America, Academy of Sciences of the United States of 110, 9651-9656, 516 10.1073/pnas.1214870110https://doi.org/10.1073/pnas.1214870110, 2013.

Atsawawaranunt, K., Comas-Bru, L., Amirnezhad Mozhdehi, S., Deininger, M., Harrison, S. P., Baker, A.,
Boyd, M., Kaushal, N., Ahmad, S. M., Ait Brahim, Y., Arienzo, M., Bajo, P., Braun, K., Burstyn, Y., Chawchai,
S., Duan, W., Hatvani, I. G., Hu, J., Kern, Z., Labuhn, I., Lachniet, M., Lechleitner, F. A., Lorrey, A., PérezMejías, C., Pickering, R., Scroxton, N., and SISAL Working Group members, S. W. G.: The SISAL database: a
global resource to document oxygen and carbon isotope records from speleothems, Earth System Science
Data, 10, 1687-1713, https://doi.org/10.5194/essd-10-1687-2018, 2018a.

523Atsawawaranunt, K., Harrison, S. and Comas-Bru, L.: SISAL (Speleothem Isotopes Synthesis and AnaLysis524WorkingGroup)databaseVersion1.0.UniversityofReading.Dataset.:525https://doi.org/10.17864/1947.1472018b.

526Atsawawaranunt, K., Harrison, S. and Comas-Bru, L.: SISAL (Speleothem Isotopes Synthesis and AnaLysis527WorkingGroup)databaseVersion1b.UniversityofReading.Dataset.:528https://doi.org/10.17864/1947.189, 2019.

Badertscher, S., Fleitmann, D., Cheng, H., Edwards, R. L., Göktürk, O. M., Zumbühl, A., Leuenberger, M.,
and Tüysüz, O.: Pleistocene water intrusions from the Mediterranean and Caspian seas into the Black Sea,
Nature Geoscience, 4, 236-239, <u>https://doi.org/</u>10.1038/ngeo1106, 2011.

Baldini, L. M., McDermott, F., Baldini, J. U. L., Arias, P., Cueto, M., Fairchild, I. J., Hoffmann, D. L., Mattey,
D. P., Muller, W., Nita, D. C., Ontanon, R., Garcia-Monco, C., and Richards, D. A.: Regional temperature,

- 534atmospheric circulation, and sea-ice variability within the Younger Dryas Event constrained using a535speleothem from northern Iberia, Earth and Planetary Science Letters, 419, 101-110,\$36https://doi.org/10.1016/j.epsl.2015.03.015, 2015.
- 537 Baldini, L. M., Baldini, J. U. L., McDermott, F., Arias, P., Cueto, M., Fairchild, I. J., Hoffmann, D. L., Mattey,
- 538 D. P., Müller, W., Nita, D. C., Ontañón, R., Garciá-Moncó, C., and Richards, D. A.: North Iberian temperature
- and rainfall seasonality over the Younger Dryas and Holocene, Quaternary Science Reviews, 226, 105998,
- 540 <u>https://doi.org/</u>10.1016/j.quascirev.2019.105998, 2019.
- Band, S., Yadava, M. G., Lone, M. A., Shen, C. C., Sree, K., and Ramesh, R.: High-resolution mid-Holocene
 Indian Summer Monsoon recorded in a stalagmite from the Kotumsar Cave, Central India, Quaternary
- 543 International, 479, 19-24, <u>https://doi.org/</u>10.1016/j.quaint.2018.01.026, 2018.
- Bar-Matthews, M., Ayalon, A., Gilmour, M., Matthews, A., and Hawkesworth, C. J.: Sea–land oxygen
 isotopic relationships from planktonic foraminifera and speleothems in the Eastern Mediterranean region
 and their implication for paleorainfall during interglacial intervals, Geochimica et Cosmochimica Acta, 67,
 3181-3199, https://doi.org/10.1016/S0016-7037(02)01031-1, 2003.
- 548 Blaauw, M.: Methods and code for 'classical' age-modelling of radiocarbon sequences, Quaternary 549 Geochronology, 5, 512-518, <u>https://doi.org/</u>10.1016/j.quageo.2010.01.002, 2010.
- Blaauw, M., and Christen, J. A.: Flexible Paleoclimate Age-Depth Models Using an Autoregressive Gamma
 Process, Bayesian Analysis, 6, 457-474, <u>https://doi.org/</u>10.1214/11-ba618, 2011.
- 552Braun, K., Nehme, C., Pickering, R., Rogerson, M., and Scroxton, N.: A Window into Africa's Past553Hydroclimates:TheSISAL_v1DatabaseContribution,Quaternary,2,\$54https://doi.org/10.3390/quat2010004, 2019a.
- Braun, K., Bar-Matthews, M., Matthews, A., Ayalon, A., Cowling, R. M., Karkanas, P., Fisher, E. C., Dyez, K.,
 Zilberman, T., and Marean, C. W.: Late Pleistocene records of speleothem stable isotopic compositions
 from Pinnacle Point on the South African south coast, Quaternary Research, 91, 265-288,
 <u>https://doi.org/</u>10.1017/qua.2018.61, 2019b.
- Breitenbach, S. F. M., Rehfeld, K., Goswami, B., Baldini, J. U. L., Ridley, H. E., Kennett, D. J., Prufer, K. M.,
 Aquino, V. V., Asmerom, Y., Polyak, V. J., Cheng, H., Kurths, J., and Marwan, N.: COnstructing Proxy Records
 from Age models (COPRA), Climate of the Past, 8, 1765-1779, https://doi.org/10.5194/cp-8-1765-2012,
 2012.
- Breitenbach, S. F. M., Plessen, B., Waltgenbach, S., Tjallingii, R., Leonhardt, J., Jochum, K. P., Meyer, H.,
 Goswami, B., Marwan, N., and Scholz, D.: Holocene interaction of maritime and continental climate in
 Central Europe: New speleothem evidence from Central Germany, Global and Planetary Change, 176, 144161, <u>https://doi.org/</u>10.1016/J.GLOPLACHA.2019.03.007, 2019.
- Bronk Ramsey, C.: Deposition models for chronological records, Quaternary Science Reviews, 27, 42-60,
 2008. <u>https://doi.org/10.1016/j.quascirev.2007.01.019, 2008.</u>
- 569 Bronk Ramsey, C.: Bayesian analysis of radiocarbon dates, Radiocarbon, 51, 337-360, 2009.
 570 <u>https://doi.org/10.1017/S0033822200033865, 2009.</u>
- Bronk Ramsey, C., and Lee, S.: Recent and planned developments of the program OxCal, Radiocarbon, 55,
 720-730, 2013. https://doi.org/10.2458/azu_js_rc.55.16215, 2013.
- 573 Budsky, A., Scholz, D., Wassenburg, J. A., Mertz-Kraus, R., Spötl, C., Riechelmann, D. F. C., Gibert, L., 574 Jochum, K. P., and Andreae, M. O.: Speleothem δ13C record suggests enhanced spring/summer drought

in south-eastern Spain between 9.7 and 7.8 ka – A circum-Western Mediterranean anomaly?, The Holocene, 29, 1113-1133, <u>https://doi.org/</u>10.1177/0959683619838021, 2019.

577 Burns, S. J., Fleitmann, D., Matter, A., Kramers, J., and Al-Subbary, A. A.: Indian Ocean Climate and an 578 Absolute Chronology over Dansgaard/Oeschger Events 9 to 13, Science, 301, 1365-1367, 579 <u>https://doi.org/10.1126/science.1086227, 2003</u>.

580 Burns, S. J., Fleitmann, D., Matter, A., Kramers, J., and Al-Subbary, A. A.: Corrections and Clarifications, 581 Science, 305, 1567a-1567a, <u>https://doi.org/</u>10.1126/science.305.5690.1567a, 2004.

582 Burns, S. J., Welsh, L. K., Scroxton, N., Cheng, H., and Edwards, R. L.: Millennial and orbital scale variability 583 of the South American Monsoon during the penultimate glacial period, Scientific Reports, 9, 1234, 584 <u>https://doi.org/10.1038/s41598-018-37854-3, 2019.</u>

Burstyn, Y., Martrat, B., Lopez, F. J., Iriarte, E., Jacobson, J. M., Lone, A. M., and Deininger, M.: Speleothems
 from the Middle East: An Example of Water Limited Environments in the SISAL Database, Quaternary, 2,
 https://doi.org/10.3390/quat2020016, 2019.

Cai, Y. J., Chiang, J. C. H., Breitenbach, S. F. M., Tan, L. C., Cheng, H., Edwards, R. L., and An, Z. S.: Holocene
moisture changes in western China, Central Asia, inferred from stalagmites, Quaternary Science Reviews,
158, 15-28, <u>https://doi.org/</u>10.1016/j.quascirev.2016.12.014, 2017.

591 Carolin, S. A., Cobb, K. M., Lynch-Stieglitz, J., Moerman, J. W., Partin, J. W., Lejau, S., Malang, J., Clark, B., 592 Tuen, A. A., and Adkins, J. F.: Northern Borneo stalagmite records reveal West Pacific hydroclimate across 593 MIS 5 Earth Planetary Science and 6, and Letters, 439, 182-193, 594 https://doi.org/10.1016/j.epsl.2016.01.028, 2016.

595 Carolin, S. A., Walker, R. T., Day, C. C., Ersek, V., Sloan, R. A., Dee, M. W., Talebian, M., and Henderson, G. 596 M.: Precise timing of abrupt increase in dust activity in the Middle East coincident with 4.2 ka social 597 change, Proceedings of the National Academy of Sciences, 116, 67-72, 598 https://doi.org/10.1073/PNAS.1808103115, 2019.

599 Chen, Z., Auler, A. S., Bakalowicz, M.,-Drew, D., Griger, F., Hartmann, J., Jiang, G., Moosdorf, N., Richts, A.,

600 Stevanovic, Z., Veni, G., and Goldscheider, N.: The World Karst Aquifer Mapping project: concept, mapping

601 procedure and map of Europe, Hydrogeology Journal, 25, 771-785, 10.1007/s10040-016-1519-3, 2017.

602 Cheng, H., Edwards, R. L., Wan, Y. J., Ko, X. G., Ming, Y. F., Kelly, M. J., Wang, X. F., Gallup, C. D., and Liu,
603 W. G.: A penultimate glacial monsoon record from Hulu Cave and two-phase glacial terminations, Geology,
604 24, 217, 220, https://doi.org/10.1120/jc22200.1.2005

604 34, 217-220, <u>https://doi.org/</u>10.1130/g22289.1, 2006.

605 Cheng, H., Fleitmann, D., Edwards, R. L., Wang, X., Cruz, F. W., Auler, A. S., Mangini, A., Wang, Y., Kong, X.,

- 606 Burns, S. J., and Matter, A.: Timing and structure of the 8.2 kyr B.P. event inferred from δ180 records of
- 607 stalagmites from China, Oman, and Brazil, Geology, 37, 1007-1010, <u>https://doi.org/</u>10.1130/G30126A.1,
- 608 2009.
 - Cheng, H., Sinha, A., Cruz, F. W., Wang, X., Edwards, R. L., d'Horta, F. M., Ribas, C. C., Vuille, M., Stott, L.
 D., and Auler, A. S.: Climate change patterns in Amazonia and biodiversity, Nature Communications, 4,
 1411, <u>https://doi.org/</u>10.1038/ncomms2415, 2013.
 - 612 Cheng, H., Springer, G. S., Sinha, A., Hardt, B. F., Yi, L., Li, H., Tian, Y., Li, X., Rowe, H. D., Kathayat, G., Ning,

613 Y., and Edwards, R. L.: Eastern North American climate in phase with fall insolation throughout the last

614 three glacial-interglacial cycles, Earth and Planetary Science Letters, 522, 125-134,

615 <u>https://doi.org/</u>10.1016/j.epsl.2019.06.029, 2019.

- 616 Columbu, A., Spötl, C., De Waele, J., Yu, T.-L., Shen, C.-C., and Gázquez, F.: A long record of MIS 7 and MIS
- 617 5 climate and environment from a western Mediterranean speleothem (SW Sardinia, Italy), Quaternary
- 618 Science Reviews, 220, 230-243, <u>https://doi.org/</u>10.1016/J.QUASCIREV.2019.07.023, 2019.

Comas-Bru, L., and Harrison, S. P.: SISAL: Bringing added value to speleothem research, Quaternary, 2, 7,
 https://doi.org/10.3390/quat2010007, 2019.

621 Comas-Bru, L., Harrison, S. P., Werner, M., Rehfeld, K., Scroxton, N., Veiga-Pires, C., and SISAL Working
622 Group members: Evaluating model outputs using integrated global speleothem records of climate change
623 since the last glacial, Climate of the Past, 15, 1557-1579, https://doi.org/10.5194/cp-15-1557-2019, 2019.

624 Comas-Bru, L., Atsawawaranunt, K., Harrison, S.P. and SISAL Working Group members: SISAL (Speleothem
 625 Isotopes Synthesis and AnaLysis Working Group) database version 2.0. University of Reading. Dataset.
 626 <u>http://dx.doi.org/10.17864/1947.242, 2020https:// doi.org/10.17864/1947.256, 2020a.</u>

627 <u>Comas-Bru, L., Deininger, M., Fohlmeister, J., Baker, A., McDermott, F., and Scholz, D.: Quality control of</u>
 628 <u>the dating information table in the SISAL database. Zenodo. http://doi.org/10.5281/zenodo.3631443,</u>
 629 2020b.

- 630 Cruz, F. W., Burns, S. J., Karmann, I., Sharp, W. D., and Vuille, M.: Reconstruction of regional atmospheric 631 circulation features during the late Pleistocene in subtropical Brazil from oxygen isotope composition of 632 speleothems, Earth and Planetary Science Letters, 248, 495-507, 633 bttps://doi.org/10.1016/J.EDEL.2006.06.010.2006
- 633 <u>https://doi.org/</u>10.1016/J.EPSL.2006.06.019, 2006.

634 Czuppon, G., Demeny, A., Leel-Ossy, S., Ovari, M., Molnar, M., Stieber, J., Kiss, K., Karman, K., Suranyi, G.,
635 and Haszpra, L.: Cave monitoring in the Beke and Baradla caves (Northeastern Hungary): implications for
636 the conditions for the formation cave carbonates, International Journal of Speleology, 47, 13-28,

637 <u>https://doi.org/</u>10.5038/1827-806x.47.1.2110, 2018.

Deininger, M., Ward, M. B., Novello, F. V., and Cruz, W. F.: Late Quaternary Variations in the South
American Monsoon System as Inferred by Speleothems—New Perspectives Using the SISAL Database,
Quaternary, 2, <u>https://doi.org/</u>10.3390/quat2010006, 2019.

Demény, A., Kern, Z., Németh, A., Frisia, S., Hatvani, I. G., Czuppon, G., Leél-Őssy, S., Molnár, M., Óvári,
M., Surányi, G., Gilli, A., Wu, C.-C., and Shen, C.-C.: North Atlantic influences on climate conditions in EastCentral Europe in the late Holocene reflected by flowstone compositions, Quaternary International, 512,
99-112, <u>https://doi.org/</u>10.1016/J.QUAINT.2019.02.014, 2019.

Denniston, R. F., Asmerom, Y., Lachniet, M., Polyak, V. J., Hope, P., An, N., Rodzinyak, K., and Humphreys,
W. F.: A Last Glacial Maximum through middle Holocene stalagmite record of coastal Western Australia
climate, Quaternary Science Reviews, 77, 101-112, <u>https://doi.org/</u>10.1016/j.quascirev.2013.07.002,
2013a.

Denniston, R. F., Wyrwoll, K.-H., Polyak, V. J., Brown, J. R., Asmerom, Y., Wanamaker, A. D., LaPointe, Z.,
Ellerbroek, R., Barthelmes, M., Cleary, D., Cugley, J., Woods, D., and Humphreys, W. F.: A Stalagmite record
of Holocene Indonesian–Australian summer monsoon variability from the Australian tropics, Quaternary
Science Reviews, 78, 155-168, <u>https://doi.org/</u>10.1016/J.QUASCIREV.2013.08.004, 2013b.

653 Denniston, R. F., Asmerom, Y., Polyak, V. J., Wanamaker, A. D., Ummenhofer, C. C., Humphreys, W. F., 654 Cugley, J., Woods, D., and Lucker, S.: Decoupling of monsoon activity across the northern and southern 655 Indo-Pacific during the Late Glacial, Quaternary Science Reviews, 176, 101-105, 656 https://doi.org/10.1016/J.QUASCIREV.2017.09.014, 2017a.

- Denniston, R. F., Houts, A. N., Asmerom, Y., Wanamaker, A. D., Haws, J. A., Polyak, V. J., Thatcher, D. L.,
 Altan-Ochir, S., Borowske, A. C., Breitenbach, S. F. M., Ummenhofer, C. C., Regala, F. T., Benedetti, M. M.,
 and Bicho, N.: A Stalagmite Test of North Atlantic SST and Iberian Hydroclimate Linkages over the Last
 Two Glacial Cycles, Climate of the Past Discussions, 14, 1893-1913, https://doi.org/10.5194/cp-2017-146,
 2017b.
- Dong, J., Shen, C.-C., Kong, X., Wu, C.-C., Hu, H.-M., Ren, H., and Wang, Y.: Rapid retreat of the East Asian
 summer monsoon in the middle Holocene and a millennial weak monsoon interval at 9 ka in northern
 China, Journal of Asian Earth Sciences, 151, 31-39, https://doi.org/10.1016/J.JSEAES.2017.10.016, 2018.
- 665Dumitru, O. A., Onac, B. P., Polyak, V. J., Wynn, J. G., Asmerom, Y., and Fornos, J. J.: Climate variability in666the western Mediterranean between 121 and 67 ka derived from a Mallorcan speleothem record,667PalaeogeographyPalaeoclimatologyPalaeoecology,506,128-138,668https://doi.org/10.1016/j.palaeo.2018.06.028, 2018.
- El-Shenawy, M. I., Kim, S. T., Schwarcz, H. P., Asmerom, Y., and Polyak, V. J.: Speleothem evidence for the
 greening of the Sahara and its implications for the early human dispersal out of sub-Saharan Africa,
 Quaternary Science Reviews, 188, 67-76, https://doi.org/10.1016/j.quascirev.2018.03.016, 2018.
- 672 Fleitmann, D., Cheng, H., Badertscher, S., Edwards, R. L., Mudelsee, M., Göktürk, O. M., Fankhauser, A.,
- Pickering, R., Raible, C. C., Matter, A., Kramers, J., and Tüysüz, O.: Timing and climatic impact of Greenland
 interstadials recorded in stalagmites from northern Turkey, Geophysical Research Letters, 36, L19707L19707, https://doi.org/10.1029/2009GL040050, 2009.
- Flohr, P., Fleitmann, D., Zorita, E., Sadekov, A., Cheng, H., Bosomworth, M., Edwards, L., Matthews, W.,
- and Matthews, R.: Late Holocene droughts in the Fertile Crescent recorded in a speleothem from northern
 Iraq, Geophysical Research Letters, 44, 1528-1536, https://doi.org/10.1002/2016GL071786, 2017.
- Frappier, A., Sahagian, D., González, L. A., and Carpenter, S. J.: El Nino Events Recorded by Stalagmite
 Carbon Isotopes, Science, 298, 565-565, <u>https://doi.org/</u>10.1126/science.1076446, 2002.
- Frappier, A. B., Sahagian, D., Carpenter, S. J., Gonzalez, L. A., and Frappier, B. R.: Stalagmite stable isotope
 record of recent tropical cyclone events, Geology, 35, 111-114, https://doi.org/10.1130/g23145a.1, 2007.
- Gautam, P. K., Narayana, A. C., Band, S. T., Yadava, M. G., Ramesh, R., Wu, C.-C., and Shen, C.-C.: Highresolution reconstruction of Indian summer monsoon during the Bølling-Allerød from a central Indian
 stalagmite, Palaeogeography, Palaeoclimatology, Palaeoecology, 514, 567-576,
 <u>https://doi.org/</u>10.1016/J.PALAEO.2018.11.006, 2019.
- 687 Göktürk, O. M., Fleitmann, D., Badertscher, S., Cheng, H., Edwards, R. L., Leuenberger, M., Fankhauser, A., 688 Tüysüz, O., and Kramers, J.: Climate on the southern Black Sea coast during the Holocene: implications 689 from the Sofular Cave record, Quaternary Science Reviews, 30, 2433-2445, 690 https://doi.org/10.1016/J.QUASCIREV.2011.05.007, 2011.
- Goldscheider, N., Chen, Z., Auler, A. S., Bakalowicz, M., Broda, S., Drew, D., Hartmann, J., Jiang, G.,
 Moosdorf, N., Stevanovic, Z., and Veni, G.: Global distribution of carbonate rocks and karst water
 resources, Hydrogeology Journal, 28, 1661-1677, https://doi.org/10.1007/s10040-020-02139-5, 2020.
- Haslett, J., and Parnell, A.: A simple monotone process with application to radiocarbon-dated depth
 chronologies, Journal of the Royal Statistical Society: Series C (Applied Statistics), 57, 399-418,
 2008. https://doi.org/10.1111/j.1467-9876.2008.00623.x, 2008.

- Hu, J, Emile-Geay J., and Partin J.: Correlation-based interpretations of paleoclimate data–where statistics
 meet past climates. Earth and Planetary Science Letters 459, 362-371,
 2017. https://doi.org/10.1016/j.epsl.2016.11.048, 2017.
- Huguet, C., Routh, J., Fietz, S., Lone, M. A., Kalpana, M. S., Ghosh, P., Mangini, A., Kumar, V., and
 Rangarajan, R.: Temperature and Monsoon Tango in a Tropical Stalagmite: Last Glacial-Interglacial Climate
 Dynamics, Scientific Reports, 8, 5386, <u>https://doi.org/</u>10.1038/s41598-018-23606-w, 2018.
- Isola, I., Zanchetta, G., Drysdale, R. N., Regattieri, E., Bini, M., Bajo, P., Hellstrom, J. C., Baneschi, I., Lionello,
 P., Woodhead, J., and Greig, A.: The 4.2 ka event in the central Mediterranean: New data from a Corchia
 speleothem (Apuan Alps, central Italy), Climate of the Past, 15, 135-151, https://doi.org/10.5194/cp-15-135-2019, 2019.
- Jamieson, R. A., Baldini, J. U. L., Frappier, A. B., and Müller, W.: Volcanic ash fall events identified using
 principal component analysis of a high-resolution speleothem trace element dataset, Earth and Planetary
 Science Letters, 426, 36-45, https://doi.org/10.1016/J.EPSL.2015.06.014, 2015.
- Jex, C. N., Baker, A., Fairchild, I. J., Eastwood, W. J., Leng, M. J., Sloane, H. J., Thomas, L., and Bekaroglu,
 E.: Calibration of speleothem delta O-18 with instrumental climate records from Turkey, Global and
- 712
 Planetary Change, 71, 207-217, https://doi.org/10.1016/j.gloplacha.2009.08.004, 2010.
- Jex, C. N., Baker, A., Eden, J. M., Eastwood, W. J., Fairchild, I. J., Leng, M. J., Thomas, L., and Sloane, H. J.:
- A 500 yr speleothem-derived reconstruction of late autumn-winter precipitation, northeast Turkey,
 Quaternary Research, 75, 399-405, <u>https://doi.org/</u>10.1016/j.yqres.2011.01.005, 2011.
- Jex, C. N., Phipps, S. J., Baker, A., and Bradley, C.: Reducing uncertainty in the climatic interpretations of
 speleothem delta O-18, Geophysical Research Letters, 40, 2259-2264, https://doi.org/10.1002/grl.50467,
 2013.
- Jiang, X., He, Y., Shen, C., Kong, X., Li, Z., and Chang, Y.: Stalagmite-inferred Holocene precipitation in northern Guizhou Province, China, and asynchronous termination of the Climatic Optimum in the Asian monsoon territory, Chinese Science Bulletin, 57, 795-801, <u>https://doi.org/</u>10.1007/s11434-011-4848-6, 2012.
- Jiang, X., He, Y., Shen, C.-C., Li, Z., and Lin, K.: Replicated stalagmite-inferred centennial-to decadal-scale
 monsoon precipitation variability in southwest China since the mid Holocene, The Holocene, 23, 841-849,
 <u>https://doi.org/</u>10.1177/0959683612471986, 2013.
- Jo, K.-n., Yi, S., Lee, J.-Y., Woo, K. S., Cheng, H., Edwards, L. R., and Kim, S.-T.: 1000-Year Quasi-Periodicity
 of Weak Monsoon Events in Temperate Northeast Asia since the Mid-Holocene, Scientific Reports, 7,
 15196, <u>https://doi.org/</u>10.1038/s41598-017-15566-4, 2017.
- 729Johnson, K. R., Ingram, B. L., Sharp, W. D., and Zhang, P. Z.: East Asian summer monsoon variability during730Marine Isotope Stage 5 based on speleothem δ^{18} O records from Wanxiang Cave, central China,731Palaeogeography732Palaeoclimatology733Palaeoclimatology734Palaeogeography735Palaeoclimatology736S-19,737https://doi.org/10.1016/j.palaeo.2005.11.041, 2006.
- 733Kanner, L. C., Burns, S. J., Cheng, H., and Edwards, R. L.: High-Latitude Forcing of the South American734SummerMonsoonDuringtheLastGlacial,Science,335,570-573,735https://doi.org/10.1126/science.1213397, 2012.
- Kanner, L. C., Burns, S. J., Cheng, H., Edwards, R. L., and Vuille, M.: High-resolution variability of the South
 American summer monsoon over the last seven millennia: insights from a speleothem record from the

- 738 central Peruvian Andes, Quaternary Science Reviews, 75, 1-10, 739 https://doi.org/10.1016/j.quascirev.2013.05.008, 2013.
- Kathayat, G., Cheng, H., Sinha, A., Yi, L., Li, X. L., Zhang, H. W., Li, H. Y., Ning, Y. F., and Edwards, R. L.: The
 Indian monsoon variability and civilization changes in the Indian subcontinent, Science Advances, 3,
- 742 e1701296, <u>https://doi.org/</u>10.1126/sciadv.1701296, 2017.
- Kathayat, G., Cheng, H., Sinha, A., Berkelhammer, M., Zhang, H., Duan, P., Li, H., Li, X., Ning, Y., and
 Edwards, R. L.: Evaluating the timing and structure of the 4.2 ka event in the Indian summer monsoon
 domain from an annually resolved speleothem record from Northeast India, Climate of the Past, 14, 18691879, https://doi.org/10.5194/cp-14-1869-2018, 2018.
- Kaushal, N., Breitenbach, F. M. S., Lechleitner, A. F., Sinha, A., Tewari, C. V., Ahmad, M. S., Berkelhammer,
 M., Band, S., Yadava, M., Ramesh, R., and Henderson, M. G.: The Indian Summer Monsoon from a
 Speleothem δ180 Perspective—A Review, Quaternary, 1, 29, <u>https://doi.org/</u>10.3390/quat1030029,
 2018.
- Kern, Z., Demény, A., Perşoiu, A., and Hatvani, G. I.: Speleothem Records from the Eastern Part of Europe
 and Turkey—Discussion on Stable Oxygen and Carbon Isotopes, Quaternary, 2,
 <u>https://doi.org/</u>10.3390/quat2030031, 2019.
- Krause, C. E., Gagan, M. K., Dunbar, G. B., Hantoro, W. S., Hellstrom, J. C., Cheng, H., Edwards, R. L.,
 Suwargadi, B. W., Abram, N. J., and Rifai, H.: Spatio-temporal evolution of Australasian monsoon
 hydroclimate over the last 40,000 years, Earth and Planetary Science Letters, 513, 103-112,
 <u>https://doi.org/</u>10.1016/J.EPSL.2019.01.045, 2019.
- Lachniet, M. S., Asmerom, Y., Burns, S. J., Patterson, W. P., Polyak, V. J., and Seltzer, G. O.: Tropical response to the 8200 yr BP cold event? Speleothem isotopes indicate a weakened early Holocene monsoon in Costa Rica, Geology, 32, 957-960, <u>https://doi.org/</u>10.1130/g20797.1, 2004.
- Lachniet, M. S., Johnson, L., Asmerom, Y., Burns, S. J., Polyak, V., Patterson, W. P., Burt, L., and Azouz, A.:
 Late Quaternary moisture export across Central America and to Greenland: evidence for tropical rainfall
 variability from Costa Rican stalagmites, Quaternary Science Reviews, 28, 3348-3360,
 <u>https://doi.org/</u>10.1016/J.QUASCIREV.2009.09.018, 2009.
- Laskar, A. H., Yadava, M. G., Ramesh, R., Polyak, V. J., and Asmerom, Y.: A 4 kyr stalagmite oxygen isotopic
 record of the past Indian Summer Monsoon in the Andaman Islands, Geochemistry, Geophysics,
 Geosystems, 14, 3555-3566, <u>https://doi.org/</u>10.1002/ggge.20203, 2013.
- Lauritzen, S.-E., and Onac, B. P.: Isotopic Stratigraphy of a Last Interglacial Stalagmite from Northwestern
 Romania: Correlation with the Deep-Sea record and Northern-Latitude Speleothem, Journal of Cave and
 Karst Studies, 61, 22-30, 1999.
- Lechleitner, F. A., Amirnezhad-Mozhdehi, S., Columbu, A., Comas-Bru, L., Labuhn, I., Pérez-Mejías, C., and
 Rehfeld, K.: The Potential of Speleothems from Western Europe as Recorders of Regional Climate: A
- 773 Critical Assessment of the SISAL Database, Quaternary, 1, https://doi.org/10.3390/quat1030030, 2018.
- Li, H., Cheng, H., Sinha, A., Kathayat, G., Spötl, C., André, A. A., Meunier, A., Biswas, J., Duan, P., Ning, Y.,
 and Edwards, R. L.: Hydro-climatic variability in the southwestern Indian Ocean between 6000 and 3000
 years ago, Climate of the Past, 14, 1881-1891, https://doi.org/10.5194/cp-14-1881-2018, 2018.
- Liu, X., Rao, Z., Shen, C. C., Liu, J., Chen, J., Chen, S., Wang, X., and Chen, F.: Holocene Solar Activity Imprint
 on Centennial- to Multidecadal-Scale Hydroclimatic Oscillations in Arid Central Asia, Journal of
 Geophysical Research: Atmospheres, 124, 2562-2573, https://doi.org/10.1029/2018JD029699, 2019.

- Logan, A. J.: A new paleoclimate record for North Westland, New Zealand, with implications for the interpretation of speleothem based paleoclimate proxies, Master of Science, Geology, University of Canterbury, 109 pp., 2011. <u>http://hdl.handle.net/10092/5762</u>
- Lončar, N., Bar-Matthews, M., Ayalon, A., Faivre, S., and Surić, M.: Holocene climatic conditions in the
 eastern Adriatic recorded in stalagmites from Strašna peć Cave (Croatia), Quaternary International, 508,
 98-106, <u>https://doi.org/</u>10.1016/j.quaint.2018.11.006, 2019.
- Lorrey, A., Williams, P., Salinger, J., Martin, T., Palmer, J., Fowler, A., Zhao, J.-x., and Neil, H.: Speleothem
 stable isotope records interpreted within a multi-proxy framework and implications for New Zealand
 palaeoclimate reconstruction, Quaternary International, 187, 52-75,
 <u>https://doi.org/</u>10.1016/j.quaint.2007.09.039, 2008.
- Marsh, A., Fleitmann, D., Al-Manmi, D. A. M., Altaweel, M., Wengrow, D., and Carter, R.: Mid- to lateHolocene archaeology, environment and climate in the northeast Kurdistan region of Iraq, The Holocene,
 28, 955-967, https://doi.org/10.1177/0959683617752843, 2018.
- McCabe-Glynn, S., Johnson, K. R., Strong, C., Berkelhammer, M., Sinha, A., Cheng, H., and Edwards, R. L.:
 Variable North Pacific influence on drought in southwestern North America since AD 854, Nature
 Geoscience, 6, 617-621, <u>https://doi.org/</u>10.1038/ngeo1862, 2013.
- 796 Medina-Elizalde, M., Burns, S. J., Polanco-Martinez, J. M., Beach, T., Lases-Hernandez, F., Shen, C. C., and 797 Wang, H. C.: High-resolution speleothem record of precipitation from the Yucatan Peninsula spanning the 798 Maya Preclassic Period, Global and Planetary 138, 93-102, Change, 799 https://doi.org/10.1016/j.gloplacha.2015.10.003, 2016.
- Medina-Elizalde, M., Burns, S. J., Polanco-Martinez, J., Lases-Hernandez, F., Bradley, R., Wang, H. C., and
 Shen, C. C.: Synchronous precipitation reduction in the American Tropics associated with Heinrich 2,
 Scientific Reports, 7, <u>https://doi.org/10.1038/s41598-017-11742-8, 2017.</u>
- Moseley, G. E., Spötl, C., Brandstätter, S., Erhardt, T., Luetscher, M., and Edwards, R. L.: NALPS19: Suborbital scale climate variability recorded in Northern Alpine speleothems during the last glacial period,
 Climate of the Past, 16, 29-50, <u>https://doi.org/</u>10.5194/cp-16-19-2020, 2020.
- Mudelsee, M., Fohlmeister, J. and Scholz, D.: Effects of dating errors on nonparametric trend analyses of
 speleothem time series, Climate of the Past, 8, 1637-1648, <u>https://doi.org/</u>10.5194/cp-8-1637-2012,
 2012.
- Niggemann, S., Mangini, A., Mudelsee, M., Richter, D. K., and Wurth, G.: Sub-Milankovitch climatic cycles
 in Holocene stalagmites from Sauerland, Germany, Earth and Planetary Science Letters, 216, 539-547,
 https://doi.org/10.1016/S0012-821X(03)00513-2, 2003a.
- Niggemann, S., Mangini, A., Richter, D. K., and Wurth, G.: A paleoclimate record of the last 17,600 years
 in stalagmites from the B7 cave, Sauerland, Germany, Quaternary Science Reviews, 22, 555-567,
 <u>https://doi.org/</u>10.1016/s0277-3791(02)00143-9, 2003b.
- Osete, M. L., Martin-Chivelet, J., Rossi, C., Edwards, R. L., Egli, R., Munoz-Garcia, M. B., Wang, X. F., PavonCarrasco, F. J., and Heller, F.: The Blake geomagnetic excursion recorded in a radiometrically dated
 speleothem, Earth and Planetary Science Letters, 353, 173-181,
 https://doi.org/10.1016/j.epsl.2012.07.041, 2012.
- Oster, J. L., Warken, S. F., Sekhon, N., Arienzo, M., and Lachniet, M.: Speleothem Paleoclimatology for the
 Caribbean, Central America, and North America, Quaternary, 2, <u>https://doi.org/</u>10.3390/quat2010005,
 2019.

- Parnell, A.: Bchron: Radiocarbon dating, age-depth modelling, relative sea level rate estimation, and non parametric phase modelling, R package version 4.3.0., 2018.
- Partin, J. W., Quinn, T. M., Shen, C. C., Okumura, Y., Cardenas, M. B., Siringan, F. P., Banner, J. L., Lin, K.,
- Hu, H. M., and Taylor, F. W.: Gradual onset and recovery of the Younger Dryas abrupt climate event in the
 tropics, Nature Communications, 6, 8061-8061, <u>https://doi.org/</u>10.1038/ncomms9061, 2015.

Pawlak, J., Błaszczyk, M., Hercman, H., and Matoušková, Š.: A continuous stable isotope record of last
interglacial age from the Bulgarian Cave Orlova Chuka, Geochronometria, 46, 87-101,
<u>https://doi.org/</u>10.1515/geochr-2015-0107, 2019.

- Peckover, E. N., Andrews, J. E., Leeder, M. R., Rowe, P. J., Marca, A., Sahy, D., Noble, S., and Gawthorpe,
 R.: Coupled stalagmite Alluvial fan response to the 8.2 ka event and early Holocene palaeoclimate
 change in Greece, Palaeogeography, Palaeoclimatology, Palaeoecology, 532, 109252-109252,
 <u>https://doi.org/</u>10.1016/j.palaeo.2019.109252, 2019.
- Polyak, V. J., Asmerom, Y., and Lachniet, M. S.: Rapid speleothem δ13C change in southwestern North
 America coincident with Greenland stadial 20 and the Toba (Indonesia) supereruption, Geology, 45, 843846, <u>https://doi.org/</u>10.1130/g39149.1, 2017.
- R Core Team: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, http://www.r-project.org/index.html, 2019.
- Rehfeld, K., and Kurths, J.: Similarity estimators for irregular and age-uncertain time series, Climate of the
 Past, 10, 107-122, 2014. <u>https://doi.org/10.5194/cp-10-107-2014, 2014.</u>
- <u>Rehfeld, K., Goswami B., Juncu, D. Marwan N. and Breitenbach, S.: COPRA Constructing Proxy Records</u>
 <u>From Age Models. https://tocsy.pik-potsdam.de/copra.php Version 1.15, last mod. 02-Nov-2017, 2017.</u>
- <u>Rehfeld, K., Roesch, C., Comas-Bru, L., and Amirnezhad-Mozhdehi, S.: Age-depth model ensembles for</u>
 <u>SISAL v2 speleothem records (Version 1.0) [Data set]. Zenodo. http://doi.org/10.5281/zenodo.3816804,</u>
 <u>2020.</u>
- Rivera-Collazo, I., Winter, A., Scholz, D., Mangini, A., Miller, T., Kushnir, Y., and Black, D.: Human
 adaptation strategies to abrupt climate change in Puerto Rico ca. 3.5 ka, Holocene, 25, 627-640,
 https://doi.org/10.1177/0959683614565951, 2015.
- Roesch, C., and Rehfeld, K.: Automatising construction and evaluation of age-depth models for hundreds of speleothems, 9th International Workshop on Climate Informatics, 2019.
- Rossi, C., Mertz-Kraus, R., and Osete, M. L.: Paleoclimate variability during the Blake geomagnetic
 excursion (MIS 5d) deduced from a speleothem record, Quaternary Science Reviews, 102, 166-180,
 <u>https://doi.org/</u>10.1016/j.quascirev.2014.08.007, 2014.
- Rossi, C., Bajo, P., Lozano, R. P., and Hellstrom, J.: Younger Dryas to Early Holocene paleoclimate in
 Cantabria (N Spain): Constraints from speleothem Mg, annual fluorescence banding and stable isotope
 records, Quaternary Science Reviews, 192, 71-85, <u>https://doi.org/</u>10.1016/j.quascirev.2018.05.025, 2018.
- Rudzka-Phillips, D., McDermott, F., Jackson, A., and Fleitmann, D.: Inverse modelling of the C-14 bomb
 pulse in stalagmites to constrain the dynamics of soil carbon cycling at selected European cave sites,
 Geochimica et Cosmochimica Acta, 112, 32-51, <u>https://doi.org/</u>10.1016/j.gca.2013.02.032, 2013.

- Rudzka, D., McDermott, F., and Suric, M.: A late Holocene climate record in stalagmites from Modric Cave
 (Croatia), Journal of Quaternary Science, 27, 585-596, <u>https://doi.org/</u>10.1002/jqs.2550, 2012.
- Scholz, D., and Hoffmann, D. L.: StalAge An algorithm designed for construction of speleothem age models, Quaternary Geochronology, 6, 369-382, <u>https://doi.org/</u>10.1016/j.quageo.2011.02.002, 2011.

Scroxton, N., Burns, S. J., McGee, D., Hardt, B., Godfrey, L. R., Ranivoharimanana, L., and Faina, P.:
Competing Temperature and Atmospheric Circulation Effects on Southwest Madagascan Rainfall During
the Last Deglaciation, Paleoceanography and Paleoclimatology, 34, 275-286,
<u>https://doi.org/</u>10.1029/2018PA003466, 2019.

Sinha, N., Gandhi, N., Chakraborty, S., Krishnan, R., Yadava, M. G., and Ramesh, R.: Abrupt climate change
at ~2800 yr BP evidenced by a stalagmite record from peninsular India, The Holocene, 28, 1720-1730,
<u>https://doi.org/</u>10.1177/0959683618788647, 2018.

Staubwasser, M., Drăgușin, V., Onac, B. P., Assonov, S., Ersek, V., Hoffmann, D. L., and Veres, D.: Impact
of climate change on the transition of Neanderthals to modern humans in Europe, Proceedings of the
National Academy of Sciences of the United States of America, 115, 9116-9121,
<u>https://doi.org/</u>10.1073/pnas.1808647115, 2018.

Steponaitis, E., Andrews, A., McGee, D., Quade, J., Hsieh, Y. T., Broecker, W. S., Shuman, B. N., Burns, S. J.,
and Cheng, H.: Mid-Holocene drying of the US Great Basin recorded in Nevada speleothems, Quaternary
Science Reviews, 127, 174-185, <u>https://doi.org/</u>10.1016/j.quascirev.2015.04.011, 2015.

878 Strikis, N. M., Chiessi, C. M., Cruz, F. W., Vuille, M., Cheng, H., Barreto, E. A. D., Mollenhauer, G., Kasten, 879 S., Karmann, I., Edwards, R. L., Bernal, J. P., and Sales, H. D.: Timing and structure of Mega-SACZ events 880 during Heinrich Stadial Geophysical Research Letters, 42, 5477-5484, 1, 881 https://doi.org/10.1002/2015gl064048, 2015.

Stríkis, N. M., Cruz, F. W., Barreto, E. A. S., Naughton, F., Vuille, M., Cheng, H., Voelker, A. H. L., Zhang, H.,
Karmann, I., Edwards, R. L., Auler, A. S., Santos, R. V., and Sales, H. R.: South American monsoon response
to iceberg discharge in the North Atlantic, Proceedings of the National Academy of Sciences of the United
States of America, 115, 3788-3793, https://doi.org/10.1073/pnas.1717784115, 2018.

- Talma, A. S. and Vogel, J. C.: Late Quaternary Paleotemperatures Derived from a Speleothem from Cango
 Caves, Cape Province, South Africa, Quaternary Research, 37(2), 203–213, https://doi.org/10.1016/0033-5894(92)90082-t, 1992.
- Tan, L., An, Z., Huh, C.-A., Cai, Y., Shen, C.-C., Shiau, L.-J., Yan, L., Cheng, H., and Edwards, R. L.: Cyclic
 precipitation variation on the western Loess Plateau of China during the past four centuries, Scientific
 Reports, 4, 6381-6381, <u>https://doi.org/</u>10.1038/srep06381, 2015.
- Tan, L., Cai, Y., Cheng, H., Edwards, L. R., Gao, Y., Xu, H., Zhang, H., and An, Z.: Centennial- to decadal-scale
 monsoon precipitation variations in the upper Hanjiang River region, China over the past 6650 years, Earth
 and Planetary Science Letters, 482, 580-590, https://doi.org/10.1016/j.epsl.2017.11.044, 2018a.

Tan, L., Cai, Y., Cheng, H., Edwards, L. R., Lan, J., Zhang, H., Li, D., Ma, L., Zhao, P., and Gao, Y.: High
resolution monsoon precipitation changes on southeastern Tibetan Plateau over the past 2300 years,
Quaternary Science Reviews, 195, 122-132, https://doi.org/10.1016/J.QUASCIREV.2018.07.021, 2018b.

Tzedakis, P. C., Drysdale, R. N., Margari, V., Skinner, L. C., Menviel, L., Rhodes, R. H., Taschetto, A. S., Hodell, D. A., Crowhurst, S. J., Hellstrom, J. C., Fallick, A. E., Grimalt, J. O., McManus, J. F., Martrat, B., 900 Mokeddem, Z., Parrenin, F., Regattieri, E., Roe, K., and Zanchetta, G.: Enhanced climate instability in the 901 North Atlantic and southern Europe during the Last Interglacial, Nature Communications, 9, 4235-4235, 902 https://doi.org/10.1038/s41467-018-06683-3, 2018.

903 van Breukelen, M. R., Vonhof, H. B., Hellstrom, J. C., Wester, W. C. G., and Kroon, D.: Fossil dripwater in 904 stalagmites reveals Holocene temperature and rainfall variation in Amazonia, Earth and Planetary Science 905 Letters, 275, 54-60, https://doi.org/10.1016/J.EPSL.2008.07.060, 2008.

906 Van Rampelbergh, M., Fleitmann, D., Verheyden, S., Cheng, H., Edwards, L., De Geest, P., De 907 Vleeschouwer, D., Burns, S. J., Matter, A., Claeys, P., and Keppens, E.: Mid- to late Holocene Indian Ocean 908 Monsoon variability recorded in four speleothems from Socotra Island, Yemen, Quaternary Science 909 Reviews, 65, 129-142, https://doi.org/10.1016/j.quascirev.2013.01.016, 2013.

910 Verheyden, S., Keppens, E., Fairchild, I. J., McDermott, F., and Weis, D.: Mg, Sr and Sr isotope geochemistry 911 of a Belgian Holocene speleothem: implications for paleoclimate reconstructions, Chemical Geology, 169, 912 131-144, <u>https://doi.org/</u>10.1016/s0009-2541(00)00299-0, 2000.

913 Verheyden, S., Keppens, E., Quinif, Y., Cheng, H. J., and Edwards, L. R.: Late-glacial and Holocene climate 914 reconstruction as inferred from a stalagmite-Grotte du Père Noël, Han-sur-Lesse, Belgium, Geologica 915 Belgica, 17, 83-89, https://popups.uliege.be:<u>443</u>/1374-8505/index.php?id=4421&file=1&pid=4412, 2014.

916 Wang, J. K., Johnson, K. R., Borsato, A., Amaya, D. J., Griffiths, M. L., Henderson, G. M., Frisia, S., and 917 Mason, A.: Hydroclimatic variability in Southeast Asia over the past two millennia, Earth and Planetary 918 Science Letters, 525, 115737-115737, https://doi.org/10.1016/j.epsl.2019.115737, 2019.

919 Wang, Y. J., Cheng, H., Edwards, R. L., Kong, X. G., Shao, X. H., Chen, S. T., Wu, J. Y., Jiang, X. Y., Wang, X. 920 F., and An, Z. S.: Millennial- and orbital-scale changes in the East Asian monsoon over the past 224,000 921 years, Nature, 451, 1090-1093, https://doi.org/10.1038/nature06692, 2008.

922 Ward, B. M., Wong, C. I., Novello, V. F., McGee, D., Santos, R. V., Silva, L. C. R., Cruz, F. W., Wang, X., 923 Edwards, R. L., and Cheng, H.: Reconstruction of Holocene coupling between the South American

Monsoon System and local moisture variability from speleothem δ^{18} O and 87 Sr/ 86 Sr records, Quaternary 924 925 Science Reviews, 210, 51-63, https://doi.org/10.1016/J.QUASCIREV.2019.02.019, 2019.

926 Warken, S. F., Fohlmeister, J., Schröder-Ritzrau, A., Constantin, S., Spötl, C., Gerdes, A., Esper, J., Frank, N., 927 Arps, J., Terente, M., Riechelmann, D. F. C., Mangini, A. and Scholz, D.: Reconstruction of late Holocene 928 autumn/winter precipitation variability in SW Romania from a high-resolution speleothem trace element 929 record, Earth Planet. Sci. Lett., 499, 122–133, <u>https://doi.org/</u>10.1016/j.epsl.2018.07.027, 2018.

930 Warken, S. F., Scholz, D., Spötl, C., Jochum, K. P., Pajón, J. M., Bahr, A., and Mangini, A.: Caribbean 931 hydroclimate and vegetation history across the last glacial period, Quaternary Science Reviews, 218, 75-932 90, <u>https://doi.org/</u>10.1016/J.QUASCIREV.2019.06.019, 2019.

933 Webb, M., Dredge, J., Barker, P. A., Muller, W., Jex, C., Desmarchelier, J., Hellstrom, J., and Wynn, P. M.: 934 Quaternary climatic instability in south-east Australia from a multi-proxy speleothem record, Journal of 935

Quaternary Science, 29, 589-596, <u>https://doi.org/</u>10.1002/jqs.2734, 2014.

936 Weber, M., Scholz, D., Schröder-Ritzrau, A., Deininger, M., Spötl, C., Lugli, F., Mertz-Kraus, R., Jochum, K. 937

P., Fohlmeister, J., Stumpf, C. F., and Riechelmann, D. F. C.: Evidence of warm and humid interstadials in 938 central Europe during early MIS 3 revealed by a multi-proxy speleothem record, Quaternary Science

939 Reviews, 200, 276-286, https://doi.org/10.1016/J.QUASCIREV.2018.09.045, 2018.

- 940 Wendt, K. A., Häuselmann, A. D., Fleitmann, D., Berry, A. E., Wang, X., Auler, A. S., Cheng, H., and Edwards,
- 941 R. L.: Three-phased Heinrich Stadial 4 recorded in NE Brazil stalagmites, Earth and Planetary Science 942 Letters, 510, 94-102, https://doi.org/10.1016/J.EPSL.2018.12.025, 2019.
- 943 Whittaker, T. E.: High-resolution speleothem-based palaeoclimate records from New Zealand reveal 944 robust teleconnection to North Atlantic during MIS 1-4, Unpubl. PhD Thesis, The University of Waikato, 945 2008.
- Wilcox, P. S., Dorale, J. A., Baichtal, J. F., Spötl, C., Fowell, S. J., Edwards, R. L., and Kovarik, J. L.: Millennialscale glacial climate variability in Southeastern Alaska follows Dansgaard-Oeschger cyclicity, Scientific
 Reports, 9, 7880-7880, <u>https://doi.org/</u>10.1038/s41598-019-44231-1, 2019.
- Williams, P. W., King, D. N. T., Zhao, J. X., and Collerson, K. D.: Late pleistocene to holocene composite
 speleothem O-18 and C-13 chronologies from south island, new Zealand-did a global younger dryas really
 exist?, Earth and Planetary Science Letters, 230, 301-317, <u>https://doi.org/</u>10.1016/j.epsl.2004.10.024,
 2005.
- Williams, P. W., Neil, H. L., and Zhao, J. X.: Age frequency distribution and revised stable isotope curves
 for New Zealand speleothems: palaeoclimatic implications, International Journal of Speleology, 39, 99https://doi.org/10.5038/1827-806x.39.2.5, 2010.
- Wu, J. Y., Wang, Y. J., Cheng, H., Kong, X. G., and Liu, D. B.: Stable isotope and trace element investigation
 of two contemporaneous annually-laminated stalagmites from northeastern China surrounding the 8.2 ka
 event, Climate of the Past, 8, 1497-1507, https://doi.org/10.5194/cp-8-1497-2012, 2012.
- Yadava, M. G., Ramesh, R., and Pant, G. B.: Past monsoon rainfall variations in peninsular India recorded
 in a 331-year-old speleothem, Holocene, 14, 517-524, https://doi.org/10.1191/0959683604hl728rp, 2004.
- Yin, J. J., Li, H. C., Rao, Z. G., Shen, C. C., Mii, H. S., Pillutla, R. K., Hu, H. M., Li, Y. X., and Feng, X. H.:
 Variations of monsoonal rain and vegetation during the past millennium in Tiangui Mountain, North China
 reflected by stalagmite delta O-18 and delta C-13 records from Zhenzhu Cave, Quaternary International,
 447, 89-101, <u>https://doi.org/</u>10.1016/j.quaint.2017.06.039, 2017.
- Zhang, H., Cheng, H., Cai, Y., Spötl, C., Kathayat, G., Sinha, A., Edwards, R. L., and Tan, L.: Hydroclimatic
 variations in southeastern China during the 4.2 ka event reflected by stalagmite records, Climate of the
 Past, 14, 1805-1817, <u>https://doi.org/</u>10.5194/cp-14-1805-2018, 2018a.
- Zhang, H., Cheng, H., Spötl, C., Cai, Y., Sinha, A., Tan, L., Yi, L., Yan, H., Kathayat, G., Ning, Y., Li, X., Zhang,
 F., Zhao, J., and Edwards, R. L.: A 200-year annually laminated stalagmite record of precipitation
 seasonality in southeastern China and its linkages to ENSO and PDO, Scientific Reports, 8, 12344-12344,
 <u>https://doi.org/</u>10.1038/s41598-018-30112-6, 2018b.
- Zhang, H., Ait Brahim, Y., Li, H., Zhao, J., Kathayat, G., Tian, Y., Baker, J., Wang, J., Zhang, F., Ning, Y.,
 Edwards, L. R., and Cheng, H.: The Asian Summer Monsoon: Teleconnections and Forcing Mechanisms—
- A Review from Chinese Speleothem δ^{18} O Records, Quaternary, 2, <u>https://doi.org/</u>10.3390/quat2030026, 2019.
- 977 Zhang, H. B., Griffiths, M. L., Huang, J. H., Cai, Y. J., Wang, C. F., Zhang, F., Cheng, H., Ning, Y. F., Hu, C. Y., 978 and Xie, S. C.: Antarctic link with East Asian summer monsoon variability during the Heinrich Stadial-Bølling 979 interstadial transition, Earth and Planetary Science Letters, 453, 243-251, 980 https://doi.org/10.1016/j.epsl.2016.08.008, 2016.

981 Zhang, H. L., Yu, K. F., Zhao, J. X., Feng, Y. X., Lin, Y. S., Zhou, W., and Liu, G. H.: East Asian Summer Monsoon 982 variations in the past 12.5 ka: High-resolution delta O-18 record from a precisely dated aragonite 983 stalagmite central China, Journal of Asian Earth Sciences, 73, 162-175, in 984 https://doi.org/10.1016/j.jseaes.2013.04.015, 2013.

285 Zhang, P., Cheng, H., Edwards, R. L., Chen, F., Wang, Y., Yang, X., Liu, J., Tan, M., Wang, X., Liu, J., An, C.,

- Dai, Z., Zhou, J., Zhang, D., Jia, J., Jin, L., and Johnson, K. R.: A Test of Climate, Sun, and Culture Relationships
- 987 from an 1810-Year Chinese Cave Record, Science, 322, 940-942,
- 988 <u>https://doi.org/</u>10.1126/science.1163965, 2008.