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Abstract. Rainfall erosivity quantifies the effect of rainfall and runoff on the rate of soil loss. Maps of rainfall erosivity are 

needed for erosion assessment using the Universal Soil Loss Equation (USLE) and its successors. To improve erosivity maps 10 

that are currently available, hourly and daily rainfall data from 2,381 stations for the period 1951-2018 were used to generate 

new R-factor and 1-in-10-year event EI30 maps for mainland China (available at 

https://dx.doi.org/10.12275/bnu.clicia.rainfallerosivity.CN.001; Yue et al., 2020). One-min rainfall data from 62 stations, of 

which 18 had a record length > 29 years, were used to compute the ‘true’ rainfall erosivity against which the new R-factor and 

1-in-10-year EI30 maps were assessed to quantify the improvement over the existing maps through cross-validation. The results 15 

showed that (1) existing maps underestimated erosivity for most of the south-eastern part of China and overestimated for most 

of the western region; (2) the new R-factor map generated in this study had a median absolute relative error of 16% for the 

western region, compared to 162% for the existing map, and 18% for the rest of China. The new 1-in-10-year EI30 map had a 

median absolute relative error of 14% for the central and eastern regions of China, compared to 21% for the existing map (map 

accuracy was not evaluated for the western region where the 1-min data were limited); (3) the R-factor map was improved 20 

mainly for the western region, because of an increase in the number of stations from 87 to 150 and temporal resolution from 

daily to hourly; (4) the benefit of increased station density for erosivity mapping is limited once the station density reached 

about 1 station per 10,000 km2.  

1 Introduction 

Soil erosion has been a major threat to soil health, soil and river ecosystem services in many regions of the world (FAO, 2019a). 25 

Soil erosion has on-site impacts, such as the reduction of soil and water, the loss of soil nutrients, the decrease of land quality 

and food production, as well as off-site impacts, such as excessive sedimentation and water pollution.  

Soil erosion models are tools to evaluate the rate of soil loss and can provide policymakers useful information for taking 

measures in soil and water conservation. The Universal Soil Loss Equation (USLE; Wischmeier and Smith, 1965; 1978) and 

the Revised USLE (RUSLE; Renard et al., 1997; USDA-ARS, 2013) have been widely used to estimate soil erosion in at least 30 



2 

 

109 countries over the past 40 years (Alewell et al., 2019). Rainfall erosivity is one of the factors in the USLE and RUSLE to 

represent the potential ability of rainfall and runoff to affect soil erosion.  

In the USLE, erosivity of a rainfall event is identified as the EI value, also denoted as EI30, which is the product of the total 

storm energy (E) and the maximum 30-min intensity (I30) (Wischmeier, 1959). The erosivity factor (R-factor) in the USLE is 

the mean annual total EI values of all erosive events. To recognize interannual rainfall variability, rainfall data of long periods 35 

are required (Wischmeier and Smith, 1978). In the original isoerodent maps generated by Wischmeier and Smith (1965), 

stations with rainfall data of at least 22 years were used.  

To use the USLE, two additional input parameters are required. One is the seasonal distribution of the R-factor. To compute 

the soil erodibility factor (K-factor) and cover-management factor (C-factor), seasonal distribution of EI (monthly, Wischmeier 

and Smith, 1965; or half-month percentage of EI, Wischmeier and Smith, 1978; Renard et al., 1997) is needed. In addition, 1-40 

in-10-year storm EI value (called “10-yr EI” in Renard et al. (1997)) is needed to compute the support practice factor (P-factor) 

for the contour farming (Renard et al., 1997).  

Kinetic energy generated by raindrops can be calculated based on raindrop disdrometer data and estimated based on breakpoint 

or hyetograph data via KE-I equations, while I30 is expected to be prepared using breakpoint or hyetograph data with an 

observed interval ≤ 30 min. In the original study of event rainfall erosivity, the recording-rain-gauge chart was used 45 

(Wischmeier and Smith, 1958). However, these data were usually in shortage not only in the length but also in the spatial 

coverage.  

Methods to estimate rainfall erosivity based on more readily available data have been developed widely, such as daily 

(Richardson et al., 1983; Haith and Merrill, 1987; Sheridan et al., 1989; Selker et al., 1990; Bagarello and D’asaro, 1994; Yu 

and Rosewell, 1996b, c; Zhang et al., 2002; Capolongo et al., 2008; Angulomartínez and Beguería, 2009; Xie et al., 2016), 50 

monthly (Arnoldus, 1977; Ferro et al., 1991; Renard and Freimund, 1994), and annual rainfall (Yu and Rosewell, 1996a; 

Ferrari et al., 2005; Bonilla and Vidal, 2011; Lee and Heo, 2011). Yin et al. (2015) evaluated a number of empirical models to 

estimate the R-factor using rainfall data of temporal resolutions from daily to average annual, and showed that the most 

accurate prediction was based on data at the highest temporal resolution. 

Once values of the erosivity factor is obtained with site observations, spatial interpolation methods can be used to estimate 55 

rainfall erosivity for sites without rainfall data based on surrounding sites to produce the erosivity maps or isoerodent maps. 

Local values of erosivity can be taken from these maps (Wischmeier and Smith, 1978). Rainfall erosivity maps can also be 

meaningful in various fields such as soil erosion, sediment yield, environment and ecology. In the original version of the USLE, 

181 stations with breakpoint data plus 1,700 stations with annul averaged precipitation, 1-in-2-year 1-h rainfall amount and 1-

in-2-year 24-h amount were used to generate the erosivity map for the eastern part of the US (Wischmeier and Smith, 1965). 60 

In the successor of the USLE  (Wischmeier and Smith, 1978), the erosivity map for the western part of the US were generated 

based on 1-in-2-year, 6-h rainfall amount data (P) using the equation of R=27.38P2.17. In Revised USLE (RUSLE), Renard et 

al. (1997) released the erosivity map using the same data as Wischmeier and Smith (1965) for the eastern part, and 60-min 

rainfall data at 790 stations for the western part in the US. In RUSLE2, monthly erosivity maps based on 15-min data from 



3 

 

3,700 stations were generated (USDA-ARS, 2013). Erosvity maps based on spatial interpolation have been widely produced 65 

globally (Lu and Yu, 2002; Oliveira et al., 2012; Liu et al., 2013; Klik et al., 2015; Panagos et al., 2015a; Panagos et al., 2015b; 

Borrelli et al., 2016; Qin et al., 2016; Panagos et al., 2017; Sadeghi et al., 2017; Yin et al., 2019; Riquetti et al., 2020; Silva et 

al., 2020). 

Recently, the Food and Agriculture Organization (FAO) proposed to produce a Global Soil Erosion Map (GSERmap) which 

encouraged scientists around the world to generate their own national level maps making the most of the country knowledge, 70 

locally available methods and input data (FAO, 2019b). Rainfall erosivity maps for China were reviewed and relevant 

information on how they were generated are presented in Table 1, which shows that current R-factor maps for mainland China 

typically used readily-available daily rainfall data from about 500-800 stations (e.g. Zhang et al., 2003; Liu et al., 2013; Qin 

et al., 2016; Yin et al., 2019; Liu et al., 2020), which were recorded by simple rain gauges. However, daily rainfall data are 

not enough to derive sub-daily intensities, which reduced the accuracy of estimated rainfall erosivity (Yin et al., 2015). One-75 

minute data are the finest resolution data measured by automatic tipping bucket rain gauges we can obtain up to now, therefore 

they are one of the best datasets for deriving precipitation intensity and estimating rainfall erosivity. However, 62 stations with 

1-min data collected were inadequate for the spatial interpolation of rainfall erosivity over mainland China. Hourly data was 

believed to reflect the temporal variation of precipitation intensity better than daily data, which can be used to improve the 

estimation of at-site rainfall erosivity with precipitation observations. In addition, the increase of station density for the 80 

interpolation can better describe the spatial variation of rainfall erosivity and improve the estimation of rainfall erosivity for 

areas without observations together with the improvement of interpolation models and procedures.  

Therefore hourly and daily data for more than 2,000 stations were collected, together with the 1-min data for 62 of them to: (a) 

develop high-quality maps of the R-factor and 1-in-10-year EI30 over the mainland China; (b) quantify the improvement of the 

new erosivity maps using precipitation data in a higher temporal resolution and from more weather stations, and better 85 

interpolation techniques compared to those used to generate erosivity maps that are currently available (Yin et al., 2019). New 

R-factor and 1-in-10-year EI30 maps were produced in this study may improve the estimation of the soil loss in mainland China. 

The meaning and rationale of the study is to: (1) present and share high-precision maps of the R-factor and 1-in-10-year EI30 

over the mainland China with related Earth system science communities; (2) provide some insights in the improvement of 

rainfall erosivity maps for other regions. 90 

 

Table 1: Studies on the mapping of R-factor for or involving China  

Study 

Area 
Period 

Temporal resolution of 

precipitation data 
No. of stations Interpolation method Reference 

China 

1956-1984 

Multi-year average of annual, 

maximum daily and 

maximum hourly 

125 Unknown Wang et al., 1996  

1971-1998 Daily 564 Ordinary Kriging Zhang et al., 2003  

1960-2009 Daily 590 Ordinary Kriging Liu et al., 2013  
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Study 

Area 
Period 

Temporal resolution of 

precipitation data 
No. of stations Interpolation method Reference 

1951-2010 Daily 756 
Universal co-kriging with 

the aid of the elevation 
Qin et al., 2016  

1961-2016 Daily 774 Ordinary Kriging Yin et al., 2019 * 

Global 

1989-2010 Annual average 
Gridded 

(0.5°×0.5°) 
—— Naipal et al., 2015  

1998-2012 

(in China) 
Hourly and sub-hourly 

3,625 (387 in 

China) 

Gaussian Process 

Regression 
Panagos et al., 2017  

1980-2017 Daily 
30,000+ (~800 in 

China) 
Thin-plate spline smoothing Liu et al., 2020  

*Map of 1-in-10-year EI30 in China was also generated. 

2 Data and methods 

2.1 Data 95 

2.1.1 Rainfall data 

Rainfall data were obtained at the daily, hourly and 1-min intervals. 

Daily rainfall data from 2,381 meteorological stations over mainland China (Fig.1) over the period of 1951-2014 was measured 

with simple rain gauges. The data were collected and quality controlled by the National Meteorological Information Center of 

China Meteorological Administration. Daily data were collected all year around at these stations. An effective year of the daily 100 

data was defined as a year when there was no missing data for one or more months in the year, and a missing month was defined 

as a month when there were more than 6 missing days in the month. The missing records in the effective years were input as zero. 

Based on this definition, the number of effective years ranged from 18 to 54 years. Most of the stations (88%) have data of more 

than 50 years.  

Hourly rainfall data from the same 2,381 stations with daily data (Fig. 1) were collected by siphon rain gauges or tipping 105 

bucket rain gauges and also quality controlled by the National Meteorological Information Center of China Meteorological 

Administration. The period of record for hourly data was from 1951 to 2018. The start year of the data varied because data 

collection commenced in different years. Observation was suspended in the snowy season, which resulted in some missing months 

in winter for station in the northern part of China. There were 932 (39%) stations with data for the whole year, 550 (23%) stations 

from April to October and 421 (18%) stations from May to September. 110 
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Figure 1: Spatial distribution of stations with daily and hourly rainfall data and the length of the hourly data. Western, Mid-western, 

North-eastern and South-eastern regions were abbreviated as W, MW, NE and SE, respectively.  

The missing data were handled according to the following criteria: (a) a day with more than 4 missing hours was defined as a 

missing day; (b) a month with more than 6 missing days was defined as a missing month; (c) a year with any missing month 115 

in its wet-season was defined as a missing year. The wet-season for stations north of 32°N was from May to September, and 

for those south of 32°N was from April to October. Missing years were removed and missing hours in the remaining effective 

years were input in two categories: (a) the missing period is followed by a non-zero record, which recorded the accumulated 

rainfall amount in the missing period based on data notes; (b) the missing period is followed by zero. In the first case, each 

missing hour and the following non-zero hour were assigned the mean value of the non-zero record in these hours. For the 120 

second case, the missing hours were input as zero value.  

Data at 1-min intervals were collected from 62 stations in mainland China (Fig. 2; and were used in Yue et al., 2020). Data from 

station No. 1-18 have effective years of 29-40 and cover the period of 1961(1971)-2000. Data from stations No. 19-62 have 

effective years of 2-12 and cover the period of 2005-2016. The missing data in the effective years were assumed to be zero.  
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 125 

Figure 2: Spatial distribution of the stations with 1-min rainfall data 

2.1.2 Published rainfall erosivity maps for China 

The existing rainfall erosivity maps were collected and compared with the maps generated in this study. The current national 

R-factor map and 1-in-10-year EI30 map are based on daily rainfall data only over the period from 1961 to 2016 from 774 

stations in China (Yin et al., 2019). Another R-factor map shown in the discussion section of this study (Fig. 12) was based on 130 

the global rainfall erosivity dataset published by Joint Research Centre - European Soil Data Centre (ESDAC; Panagos et al., 

2017). 

2.2 Calculation of rainfall erosivity using 1-min, hourly and daily data 

One-minute and hourly data were first separated into storm events. A continuous period of >= 6 hours of no-precipitation was 

used to separate storms (Wischmeier and Smith, 1978). Storms with the amount of >= 12 mm were defined as erosive events 135 

(Xie et al., 2000), and were used to calculate the rainfall erosivity factors. 
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The R-factor was calculated using Eqs. (1-3; USDA-ARS, 2013): 

R =
1

𝑁
∑ ∑ (𝐸𝐼30)𝑖𝑗

𝑚
𝑗=1

𝑁
𝑖=1 ,            (1) 

E = ∑ (𝑒𝑟 · 𝑃𝑟)𝑙
𝑟=1 ,           (2) 

𝑒𝑟 = 0.29[1 − 0.72𝑒𝑥𝑝(−0.082𝑖𝑟)],         (3) 140 

where EI30 (event rainfall erosivity, MJ mm ha-1 h-1) was the product of the total storm energy E (MJ ha-1) and the maximum 

30-min intensity I30 (mm h-1); i=1, 2, …, N, where N is the number of effective years, and j = 1, 2, …, m means there are m 

erosive storm events in the ith year. For each storm event, rainfall was divided into l time intervals depending on the temporal 

resolution of rainfall data. The total storm energy E was the sum of the energy for each time interval r, which was the unit 

energy er (energy per mm of rainfall, MJ ha-1 mm-1) multiplied by the rainfall amount Pr (mm) for each time interval. And ir 145 

was the intensity (mm h-1) of the rth interval. I30 (mm h-1) was the maximum intensity over 30 consecutive minutes for each 

storm event. For hourly data, the I30 was assumed to be the same as the maximum 1-hour intensity. 

The 1-in-10-year EI30 with 1-min or hourly data was obtained by fitting the generalized extreme value distribution (GEV). The 

GEV distribution is a family of probability distributions of Gumbel, Fréchet and Weibull, and can be denoted as G (μ, σ, ξ) 

with parameters μ (location), σ (scale), and ξ (shape) (Coles, 2001): 150 

G(z) = 𝑒𝑥𝑝 {− [1 + 𝜉 (
𝑥−𝜇

𝜎
)]

−1/𝜉

} {𝑥: 1 + 𝜉(𝑥 − 𝜇)/𝜎 > 0},       (4) 

where x was the annual maximum storm EI30 (MJ mm ha-1 h-1), −∞ < μ < ∞, σ > 0 and −∞ < ξ < ∞. The extreme quantiles 

of the annual maximum EI30 (Xp) can be obtained by inverting Eq. (4): 

𝑋𝑝 = {
𝜇 −

𝜎

𝜉
[1 − {− log(1 − 𝑝)}−𝜉], 𝑓𝑜𝑟 𝜉 ≠ 0

𝜇 − 𝜎 log{− log(1 − 𝑝)} , 𝑓𝑜𝑟 𝜉 = 0
,        (5) 

where G(𝑋𝑝) = 1 − 𝑝. The 1-in-10-year EI30, was the value of Xp when p was 1/10. 155 

Parameter values for the GEV distribution were estimated using the L-moments method (Hosking, 1990).  

Since hourly data aggregation of 1-min data and temporal variation in rainfall intensity is reduced, erosivity factor values 

computed with hourly data would be underestimated. Therefore, the R-factor and 1-in-10-year EI30 values computed with 

hourly data need to be adjusted by multiplying conversion factors of 1.871 and 1.489 (SI units), which were fitted by 1-min 

rainfall data from 62 stations over mainland China (Yue et al., 2020). Erosivity factors from daily data were also obtained as 160 

described in Section 2.3. The R-factor using daily data was the mean annual daily erosivity. Daily rainfall erosivity was 

obtained by the following equation developed by Xie et al. (2016): 

𝑅𝑑𝑎𝑖𝑙𝑦 = 𝛼𝑃𝑑𝑎𝑖𝑙𝑦
1.7265,            (6) 

where Pdaily was the daily precipitation (≥ 10 mm), parameter α was 0.3937 in the warm season (May to September), and 0.3101 

in the cold season (October to April). 165 
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The 1-in-10-year EI30 using daily data was the 1-in-10-year daily erosivity adjusted with a conversion factor of 1.17 based on 

1-min data from 18 stations in China (Yin et al., 2019). And the 1-in-10-year daily erosivity was obtained by calibrating the 

GEV distribution parameters as Eqs. (4-5) and the x in the functions was replaced by the annual maximum daily erosivity.  

2.3 Rainfall erosivity for individual stations 

Hourly data from 2,381 stations were used to produce the R-factor and the 1-in-10-year EI30 maps. Due to the annual variability 170 

of rainfall erosivity, stations with less than 22 effective years should be excluded (Wischmeier and Smith, 1978). However, 

133 out of 150 stations in western China have less than 22 effective years (Fig. 1). Once these stations are removed, the western 

stations would be too sparse, which would reduce the interpolation accuracy of the rainfall erosivity map. To fill the gap due 

to the insufficient number of years, daily rainfall data with longer periods of record were used to adjust erosivity values based 

on hourly data at the same station.  175 

When the effective years of hourly data were not less than those of daily data for 871 out of 2,381 station, no adjustment of 

the R-factor was made. For the remaining 1,510 stations, the R-factor from hourly data was then adjusted by a relationship 

between the mean annual rainfall and the R-factor computed with hourly data as follows (Zhu and Yu, 2015): 

𝑅h_adj = 𝑅ℎ𝑜𝑢𝑟 (
𝑃d

𝑃ℎ
)

1.481

,            (7) 

where Rh_adj was the adjusted R-factor, Rhour was the estimated R-factor using hourly rainfall data, Pd was the mean annual 180 

precipitation of longer period (period of the daily data), and Ph was the mean annual precipitation of shorter period (period of 

the hourly data).  

The exponent value of 1.481 was estimated based on a power relationship between the mean annual precipitation and the R-

factor, and the latter was determined using 1-min and daily rainfall data of 35 stations in China (Fig. 2).  All the daily and 1-

min data shared common periods of record of more than 10 years.  185 

𝑅𝑚𝑖𝑛 = 0.156 · 𝑃𝑚
1.481,                                            (8) 

where Rmin was the R-factor (MJ mm ha-1 h-1 a-1), and Pm was the mean annual precipitation (mm) using 1-min data. The 

coefficient of determination (R2) was 0.776 for Eq. (8).  

The 1-in-10-year EI30 for the stations was adjusted in a similar fashion. No adjustment is needed for 89% of the stations where 

the effective years of the hourly data were not less than 22 years. For the remaining 11% of the station, the 1-in-10-year EI30 190 

was estimated with daily data.  

The record length was 22 to 29 years for 16 (0.7%) stations, 30 to 39 years for 44 (1.8%) stations, 40 to 49 years for 216 (9.1%) 

stations, more than 50 years for 2,105 (88.4%) stations when these adjustments were made. 

2.4 Spatial interpolation and cross validation 

The erosivity maps were obtained using the method of Universal Kriging with the annual rainfall as a co-variable. The mean 195 

annual rainfall was computed using daily rainfall data and was interpolated using Ordinary Kriging, and interpolated mean 
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annual rainfall was then used to interpolate the R-factor value using Universal Kriging. Both the mean annual precipitation 

and the erosivity factor were interpolated first for each of the four regions separately (Fig. 1; Li et al., 2014), and then combined 

to obtain annual precipitation and erosivity maps over China. Buffer areas were used to avoid discontinuity along region 

boundaries (Li et al., 2014).  200 

To evaluate the efficiency of interpolation models, a leave-one-out cross-validation method was applied to each region. 

Symmetric mean absolute percentage error (sMAPE) and Nash-Sutcliffe coefficient of efficiency (NSE) were used for the 

assessment: 

sMAPE =
1

𝑛
∑ |

𝐹𝑖−𝐴𝑖

(𝐹𝑖+𝐴𝑖)/2
|𝑛

𝑖=1 × 100%,         (9) 

NSE = 1 −
∑ (𝐹𝑖−𝐴𝑖)2𝑛

𝑖=1

∑ (𝐴𝑖−�̅�𝑖)2𝑛
𝑖=1

,           (10) 205 

where n was the number of stations, Fi was the estimated value through Universal Kriging for the ith station using data from 

surrounding stations, Ai was the observed value at the ith station. 

2.5 Accuracy assessment of erosivity maps 

To evaluate the accuracy of the new erosivity maps, erosivity factors using 1-min data were assumed as the “true” values to 

calculate relative errors since they are most accurate. For the R-factor, 1-min data for 62 stations were used. For 1-in-10-year 210 

EI30, 1-min data for 18 stations (No. 1-18; Fig. 2) of the 62 stations with more than 22 years were used. The cross-validation 

results for these stations from the interpolation of the two erosivity maps were compared to the values from 1-min data to 

calculate relative errors. Since the relative error tends to be high for stations with small R-factor values, the overall relative 

error for erosivity maps was represented with the median of the absolute value of the relative error for all the stations. 

2.6 Comparative evaluation of the existing and new erosivity maps 215 

Existing erosivity mapping at the national scale in mainland China usually uses daily rainfall data from about 500-800 stations. 

The R-factor and 1-in-10-year EI30 maps of Yin et al. (2019) were taken as references to evaluate the improvement in the 

accuracy of the erosivity maps generated in this study. Their relative errors were also obtained with 1-min data as described 

above. 

New erosivity maps in this study followed a procedure that is different from Yin et al. (2019) mainly in three aspects: (1) 220 

temporal resolution (hourly vs. daily); (2) number of stations (2,381 stations vs. 744 stations); (3) interpolation method 

(Universal Kriging vs. Ordinary Kriging).  

To evaluate the effect of the temporal resolution on R-factor and 1-in-10-year EI30, data from the same set of stations were 

used, and the only difference was that in temporal resolution. Hourly and daily rainfall data with the same period as the 1-min 

data at the 62 stations were used to calculate R-factors and 1-in-10-year EI30 respectively. Erosivity factors from 1-min data 225 

are regarded as the most accurate values. The relative errors of erosivity factors from daily and hourly data were computed for 

evaluating accuracy.  
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To evaluate the effect of station density, maps were compared with the only difference in the number of stations. Hourly data 

from 774 stations (the same set of stations in Yin et al., 2019) and from 2,381 stations (used in this study) were used to generate 

two separate erosivity maps. R-factor and 1-in-10-year EI30 values were compared using a leave-one-out cross validation 230 

method region by region. The sMAPE was calculated for  accuracy assessment. 

To evaluate the effect of interpolation methods, maps were compared with the only difference in interpolation methods. 

Ordinary Kriging and Universal Kriging with the mean annual rainfall as the co-variable were applied for the R-factor and 1-

in-10-year EI30 computed using hourly data from 2,381 stations. Both interpolation methods were applied to each of four 

different regions as shown in Fig. 1 and leave-one-out cross validation results were compared. The sMAPE was calculated to 235 

evaluate the accuracy of interpolated values. 

The framework of this study is shown in Fig. 3. 

 

Figure 3: Framework of this study 
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3 Results 240 

3.1 Accuracy evaluation on erosivity maps 

With erosivity maps from Yin et al. (2019) as references, this study shows improvement in the accuracy of estimated R-factor 

and 1-in-10-year EI30 (Fig. 4 and Fig.5; Table 2). The spatial distribution of the absolute relative errors of the maps from this 

study is shown in Fig. 6. 

The R-factor values in the map of Yin et al. (2019) were underestimated where the R-factor was relatively high, and 245 

overestimated where the R-factor was relatively low. The improvement was particularly noticeable for western China (R < 

1,000 MJ mm ha-1 h-1 a-1) and the south-eastern coastal region (R > 10,000 MJ mm ha-1 h-1 a-1). 

Relative errors of erosivity factors at the stations from the two maps are shown in Fig. 5 (a) and (b). Those with the relative 

error of more than 100% were all in the Western (W) or Mid-western (MW) region. The absolute relative error for the R-factor 

in this study and Yin et al. (2019) was no more than 19% for Mid-western (MW), North-eastern (NE) and South-eastern (SE) 250 

regions (Table 2). However, there are some extremely high relative error values in Yin’s map which were found to be located 

in the MW region (Fig. 5a). The median values of the absolute relative error in the R-factor in Western (W) region were 16.2% 

and 161.6%, respectively for this study and Yin et al. (2019). For 1-in-10-year EI30, the median values of the absolute relative 

error were 13.5% for this study and 20.6% for Yin et al. (2019), indicating a smaller improvement in the mid-western and 

eastern regions compared to the improvement for the R-factor map (Table 2, (Fig. 5b). The relative errors of the 1-in-10-year 255 

EI30 in this study concentrated in the range of -10% ~ +10%, whereas those in Yin et al. (2019) concentrated in the range of -

25% ~ -15% and +15% ~ +25% (Fig. 5c). The western region was excluded in the evaluation of the 1-in-10-year EI30 map 

because the record length of the 1-min data was too short to estimate 1-in-10-year event erosivity. 
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Figure 4: Comparison of the R-factors and 1-in-10-year EI30 of the cross-validation values at the station of the maps and the values 260 
from 1-min data. The graphs on the left were the evaluation of the maps generated in this study, and those on the right were the 

evaluation of the maps generated by Yin et al. (2019)  
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Figure 5: The relative errors of the R-factor (a for region MW, NE, SE; b for region W) and 1-in-10-year EI30 (c for region ME, NE, 

SE) maps 265 

 

Table 2: The statistical characteristics of the absolute relative errors of the erosivity factors from the maps 

 R-factor  1-in-10-year EI30 

 MW, NE, SE  W  MW, NE, SE 

 This 

study 

Yin et al. 

(2019) 

 This 

study 

Yin et al. 

(2019) 

 
This study Yin et al. (2019) 

25th 

percentile 
9.3% 8.8% 

 
11.4% 23.1% 

 
5.1% 13.0% 

Median 17.8% 18.1%  16.2% 161.6%  13.5% 20.6% 

75th 

percentile 
32.8% 34.4% 

 
45.9% 292.3% 

 
31.6% 31.3% 

Mean 21.0% 24.7%  28.7% 184.8%  18.6% 22.3% 
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(a) R-factor                            (b) 1-in-10-year EI30 270 

Figure 6: Spatial distribution of the absolute relative errors in the map of R-factor for 62 stations (a) and in the map of 1-in-10-year 

EI30 for 18 stations (b) with 1-min observation data.  

3.2 Erosivity maps and improvements over previous studies 

The R-factor in China generally decreased from the south-eastern to the north-western (Fig. 7a), ranging from 0 to 25,300 MJ 

mm ha-1 h-1 a-1. The map of 1-in-10-year EI30 shows a similar spatial pattern as that of the R-factor (Fig. 7b), ranging from 0 275 

to 11,246 MJ mm ha-1 h-1. Zero R-factor value is found at Turpan, Xinjiang Uygur Autonomous Region, where the mean 

annual rainfall is only 7.8 mm. The maximum of the R-factor (more than 20,000 MJ mm ha-1 h-1 a-1) is found in the southern 

part of the Guangxi and Guangdong provinces, along the South China Sea, where the mean annual rainfall is more than 2,500 

mm. 

In addition to the overall trend, some local scale characteristics could be identified. For the R-factor map, in the western region, 280 

the wetter region in north-western China was located in the west of Dzungaria Basin and along the Tianshan Mountain, which 

has been captured on the map. Some statistical characteristics of the new maps of the erosivity factors are shown in Table 3 

based for soil erosion and hydrological zones in China (Fig. 8). 
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 285 

Figure 7: R-factor(a) and 1-in-10-year EI30(b) over mainland China based on hourly data from 2381 stations 

 

(a) Soil erosion zoning                         (b) Hydrological zoning 
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Figure 8: Zoning schemes 

Table 3: Statistical characteristics of R-factor and 1-in-10-year EI30 in soil erosion and hydrological zonings  290 

Parameters Zones Mean Std. 5th-percentile 25th-percentile 50th-percentile 75th-percentile 95th-percentile 

R-factor Mainland China 2200 3147 47 147 645 3503 8208 

(MJ mm ha-1 

h-1 a-1) 

NWE 208 192 30 70 144 276 614 

NWL 896 431 263 549 875 1239 1562 

NR 3637 1443 935 2780 3747 4577 5946 

 NEB 1483 766 671 1041 1311 1611 3284 

 SWR 4226 2079 841 2610 4324 5503 8060 

 SR 8294 3370 4918 6140 7311 9141 16544 

 Continental 138 130 25 62 92 174 424 

 Haihe 2437 1169 719 1218 2717 3489 4042 

 Huaihe 4744 948 3197 4062 4653 5466 6310 

 SongLiao 1405 765 623 952 1235 1553 3220 

 Yellow 920 754 214 402 749 1205 2199 

 Yangtze 3933 2535 215 1355 4508 6052 7666 

 Southwest 1318 2043 132 265 316 940 5998 

 Southeast 7069 1292 4964 6014 7192 7916 9110 

  Pearl 10280 3967 4450 7697 9354 12731 

1-in-10-year 

EI30 

(MJ mm ha-1 

h-1) 

Mainland China 1040 1259 99 166 435 1766 3206 

NWE 189 101 84 125 165 220 415 

NWL 635 254 226 438 635 825 1031 

NR 2199 770 556 1860 2422 2717 3123 

NEB 948 449 444 669 867 1044 2055 

 SWR 1706 766 439 1098 1689 2308 2952 

 SR 3273 1418 1953 2375 2846 3512 6814 

 Continental 164 84 80 114 140 193 363 

 Haihe 1595 794 459 718 1773 2350 2626 

 Huaihe 2706 394 1999 2465 2723 2957 3337 

 SongLiao 902 453 422 604 823 1026 1974 

 Yellow 627 472 182 293 525 813 1430 

 Yangtze 1706 1039 167 711 1959 2551 3194 

 Southwest 496 533 184 212 232 389 1701 

 Southeast 2814 881 1781 2160 2550 3262 4570 

  Pearl 3846 1822 1564 2604 3320 4698 7512 
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 295 

Figure 9: Differences of the R-factor(a) and the 1-in-10-year EI30(b) comparing with the previous study 

Comparing with the maps in Yin et al. (2019), the new maps can be quite different at some local areas (Fig. 9a and 9b). The 

R-factor in the new map was higher for most of the south-eastern region, and lower for most of the middle and western regions, 

especially for the south-western area (Fig. 9a). While the 1-in-10-year EI30 map shows a similar pattern as that of R-factor, 

and the overestimation in Yin et al. (2019) seems to be more pronounced for some hilly regions in southeastern China (Fig. 300 

9b). 

3.3 Evaluation on the improvement of the erosivity maps 

3.3.1 Effect of data temporal resolution 

Figure 10 shows that the R-factor estimated from daily data (Eq. 6) is underestimated when the R value is higher than 10,000 

MJ mm ha-1 h-1 a-1, and slightly overestimated when the value is lower than 2,000 MJ mm ha-1 h-1 a-1. The model using hourly 305 

data improved the accuracy by about 11.1% (median value of the relative error) compared to that from daily data (Fig. 10). 
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Estimated 1-in-10-year EI30 would be underestimated using hourly and daily data, and the underestimation is greater if daily 

data were used (Fig. 10). Unlike the R-factor, the 1-in-10-year EI30 was not noticeably improved with an increase in the 

temporal resolution from daily to hourly data, probably due to the fact that the 1-in-10-year EI30 values estimated using daily 

data in Yin et al. (2019) had already been multiplied by a conversion factor of 1.17 to correct the 1-in-10-year daily erosivity 310 

to approximate the 1-in-10-year event EI30 from 1-min data. 

 

Figure 10: Comparison of the R-factor (upper) and 1-in-10-year EI30 (lower) estimated from hourly (left) and daily (right) rainfall 

data at the stations 

3.3.2 Effect of the station density 315 

Interpolation for the Western (W) region had the lowest NSE value compared to other regions, which may be caused by the 

low station density (Fig. 1) and the lower spatial correlation of rainfall. The fitted semivariogram for the R-factor in the Western 

region had a range of 35 km, whereas the ranges for Mid-western (MW), North-eastern (NE) and South-eastern (SE) regions 

were 288, 261 and 1,235 km, respectively. 
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A comparison of cross-validation between the two maps with different station densities shows that the interpolation with denser 320 

stations can improve the accuracy by 2.6% ~ 15.4% for the R-factor based on the sMAPE index, and by 1.4% ~ 31.8% for 1-

in-10-year EI30 (Table 4) when the station density increased. The NSE can increase by 0.013 to 0.110 for the R-factor. For the 

1-in-10-year EI30, the NSE decreased by 0.001 to 0.096 for Western (W), Mid-western (MW) and South-eastern (SE) regions, 

and increased by 0.038 for the North-eastern (NE) region.  

For the R-factor, in the Western (W) region, the station density doubled (increased from 36,600 to 21,200 km2 per station), 325 

and the accuracy improved by 15.4%, whereas the sMAPE of 53.3% was still high with this increase in station density. In the 

Mid-western (MW) region, the station density tripled (from 13,900 to 4,800 km2 1 station) and the accuracy was improved by 

11.1% based on the sMAPE index from 30.7% to 19.6%. In North-eastern (NE) and South-eastern (SE) regions, the station 

density tripled and quadrupled, respectively, and the accuracy increased about 2.5%. For 1-in-10-year EI30, the improvement 

was 31.8% in the Western (W) region and 19.6% in the Mid-western (MW) region. The improvement was mainly in western 330 

regions, and the station density in the eastern China before the increase is enough to describe the spatial variation of the R-

factor and the 1-in-10-year EI30. It can be inferred that when there were less than about 10,000 km2 per station, the increasing 

of the site density has little impact on the improvement of the interpolation (Fig. 11). 

Table 4: Comparison of cross-validation results for erosivity maps interpolated based on data from 774 and 2381 stations 

Region No. of the stations 
Density of the stations (103 km2 

1 station) 

R-factor 1-in-10-year EI30 

sMAPE NSE sMAPE NSE 

W 87 36.6 68.7% 0.489 63.7% 0.389 

 150 21.2 53.3% 0.599 31.8% 0.293 

MW 161 13.9 30.7% 0.938 44.0% 0.887 

 471 4.8 19.6% 0.951 24.5% 0.886 

NE 214 11.0 12.4% 0.946 17.0% 0.857 

 690 3.4 9.7% 0.962 14.9% 0.895 

SE 389 6.6 10.9% 0.942 15.5% 0.844 

 1362 1.9 8.3% 0.959 14.0% 0.824 
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 335 

Figure 11: Improvement of the interpolation with the increase of station density. Data were from the 774 and 2381 stations in the 4 

different regions 

3.3.3 Effect of the interpolation method 

For the R-factor, cross-validation of Ordinary Kriging and Universal Kriging with the mean annual rainfall as the co-variable 

(Table 5) shows that UK improved the interpolation accuracy by 2.3%-9.0% (sMAPE) compared to OK. In the Western (W) 340 

region, the NSE increased from 0.285 (OK) to 0.599 (UK). Therefore, it is better to use UK instead of OK when generating 

the R-factor map, especially in the western China where the station density is low. For the 1-in-10-year EI30, UK improved the 

accuracy by 0.4%-9.7% (sMAPE). In the Western (W) region, the accuracy improved by 9.7% and the NSE increased from 

0.094 (OK) to 0.293 (UK).  

Table 5: Cross-validation of the interpolated R-factor and 1-in-10-year event EI30 using OK and UK 345 

Region Interpolation method 
R-factor  1-in-10-year EI30 

sMAPE NSE  sMAPE NSE 

W OK 62.3% 0.285  41.5% 0.094 

 UK 53.3% 0.599  31.8% 0.293 

MW OK 24.8% 0.861  24.9% 0.838 

 UK 19.6% 0.951  24.5% 0.886 

NE OK 12.0% 0.926  16.5% 0.865 
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Region Interpolation method 
R-factor  1-in-10-year EI30 

sMAPE NSE  sMAPE NSE 

 UK 9.7% 0.962  14.9% 0.895 

SE OK 11.2% 0.911  14.8% 0.844 

 UK 8.3% 0.959  14.0% 0.824 

4 Discussion 

This study has produced quality R-factor and 1-in-10-year EI30 maps with hourly data from 2,381 stations over mainland China, 

which are shown to be a noticeable improvement over the maps that are currently available for China (Yin et al., 2019; Table 

1). The improvement of the R-factor map over previously published R-factor maps can be attributed to the increase in the 

temporal resolution from daily to hourly data, whereas that of 1-in-10-year EI30 map to the increase of the station density in 350 

comparison with those of Yin et al. (2019). There are mainly two reasons for this. First, 1-in-10-year event EI30 values estimated 

from the daily data had already been adjusted to those from the 1-min data by multiplying a conversion factor of 1.17 (Yin et 

al., 2019), which resulted in no obvious improvement from the daily data to the hourly data. Second, the 1-in-10-year event 

EI30 associated with extreme rainfall event intrinsically has a high spatial variability in comparison to the R-factor as shown 

in Table 4. The accuracy of spatially interpolated rainfall erosivity was more sensitive to the station density when the station 355 

density is low. Hence the improvement of the map of the 1-in-10-year EI30 was mainly a result of the increase of the station 

density, especially for the Western (W) and the Mid-western (MW) regions with a low station density.    

Comparison with a world map of rainfall erosivity was also undertaken for mainland China. Panagos et al. (2017) produced a 

Global Rainfall Erosivity Database with hourly and sub-hourly rainfall data from 3,625 stations from 63 countries. This data 

base could be used for comparison of rainfall erosivity among different regions in the world. In their study, hourly data from 360 

387 stations in China were used. Figure 12 shows that the R-factor for China extracted from Panagos et al. (2017) is 

systematically underestimated by about 30% for most areas in China, whereas overestimated in the Tibetan Plateau (cf. Fig. 

7a). The reason for the underestimation may be that the R-factor calculated from hourly data applied a conversion factor (CF30) 

that was developed from the R-factor values computed with 60-min data to those with 30-min data in Panagos et al. (2015b), 

rather than using an adjustment factor based on breakpoint data (CFbp) or 1-min data (CF1).  Breakpoint data were used for the 365 

USLE (Wischmeier and Smith, 1965; 1978), and RUSLE (Renard et al., 1997) and 1-min data for this study. Previous research 

has shown the difference between CF30 and CFbp (CF1) can result in an underestimation of R-factor by about 20% (Auerswald 

et al., 2015; Yue et al., 2020). Table 6 shows that the relative error of the map from Panagos et al. (2017) could reduce by 

about 6.2% after multiplying by a conversion factor of 1.253, which was calibrated by Yue et al. (2020) for converting the R-

factor from 30-min data to 1-min data. Because the cross-validation values from the map of Panagos et al. (2017) were not 370 

available, values extracted from the maps were used instead to compare with the values from 1-min data at the 62 stations. 

Erosivity values based on the adjusted maps are still generally underestimated. The reason could be that the equation for 

estimating the storm energy (E) from rainfall intensity used in Panagos et al. (2017) was from the RUSLE (Renard et al., 1997), 
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and the equation is known to cause underestimation of the storm energy up to 10% in previous studies (Mcgregor et al., 1995; 

Yin et al., 2017). Because of this, the equation for estimating the storm energy (E) in RUSLE (Renard et al., 1997) was then 375 

modified in RUSLE2 (USDA-ARS, 2013), which was adopted in this study.  

The R-factor in the Tibetan Plateau varies from 0 to 12,326 MJ mm ha-1 h-1 a-1 in Panagos et al. (2017), and from 5 to 4,442 

MJ mm ha-1 h-1 a-1 in this study. The former was derived from a Gaussian Process Regression (GPR) model and a number of 

monthly climate variables from the WorldClim database, such as the mean monthly precipitation, mean minimum, average 

and maximum monthly temperature. The GPR model was calibrated using the site-specific R-factor values and these climate 380 

variables, which may not applicable for sites at high altitude, as none of the observation sites was located in the Tibetan Plateau 

region. The GPR model might be the main reason for the overestimation of the R-factor in the Tibetan Plateau where the R-

factor was expected to be underestimated just like any other regions. 

 

Figure 12: R-factor map for China extracted from Panagos et al. (2017) and the evaluation of the map based on 62 stations with 1-385 
min data.    

 

Table 6: Comparison of the statistical characteristics of the relative errors of the R-factor extracted from the map generated in this 

study and extracted from Panagos et al. (2017) (original and adjusted). The adjusted map of Panagos et al. (2017) was the original 

map multiplying by a conversion factors of 1.253, which was calibrated by Yue et al. (2020) for converting the R-factor from 30-min 390 
data to 1-min data. 

 This study Panagos et al. (2017)  Panagos et al. (2017) adjusted 

25th percentile 7.1% 14.8% 10.4% 

Median 16.1% 28.3% 22.1% 

75th percentile 28.0% 40.5% 43.2% 

Mean 20.1% 33.8% 33.1% 
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Although this study provides improved erosvity maps in comparison with previous studies, errors remain inevitably. The 

uncertainty of the estimated R-factor and 1-in-10-year erosivity values from this study mainly comes from the following 

sources: First, KE-I model for estimating Kinetic Energy (KE) from the precipitation Intensity (I). KE-I model used in this 395 

study is from RUSLE2 (USDA-ARS, 2013) and raindrop disdrometer observation data need to be collected to calibrate the 

KE-I relationship. Second, estimation of the erosivity factors was based on hourly data, and conversion factors were developed 

based on 1-min rainfall data from 62 stations (Fig. 2). Hourly data brings information loss in the estimation of instant 

precipitation intensity comparing with breakpoint data. Third, the adjustment of the R-factor for the stations with a small 

number of effective years (Eq. 7). This was based on a power function relationship (Eq. 8) between the mean annual 400 

precipitation and rainfall erosivity using 1-min and daily rainfall data of 35 stations. The magnitude of uncertainty mainly 

depends on the variation of annual rainfall erosivity. Forth, station distribution and density. In western China, the stations were 

sparsely and unevenly distributed, which affect the interpolation accuracy. Finally, spatial interpolation technique (Universal 

Kriging in this study) and the interpolation procedures, i.e. the division of regions before the interpolation and the mergence 

of regions after the interpolation. These five sources of uncertainty need to be addressed for any further improvement in 405 

erosivity estimation in China. 

5 Conclusions 

This study has generated new R-factor and 1-in-10-year EI30 maps using hourly and daily rainfall data for the period from 

1951 to 2018 from 2,381 stations over mainland China. The improvement in the accuracy of these erosivity maps over what 

are currently available was evaluated in terms of the median absolute relative error, and was explained in terms of temporal 410 

resolution of data used, station density, and interpolation methods. The following conclusions can be drawn from this study:  

(1) Comparing with the existing maps for the 62 reference sites, the median absolute relative error in the R-factor map 

generated in this study was reduced from 18.1% to 17.8% for the mid-western and eastern regions, from 161.6% to 16.2% for 

the western region, and for the 1-in-10-year EI30, from 20.6% to 13.5% in the mid-western and eastern regions.  

(2) The R-factor value varied from 0 to 25,300 MJ mm ha-1 h-1 a-1, and the 1-in-10-year EI30 value was from 0 to 11,246 MJ 415 

mm ha-1 h-1. In comparison with the existing maps, new maps of the R-factor and 1-in-10-year event EI30 show a clear 

decreasing trend from south-eastern to north-eastern China. 

(3) Improvement in the R-factor map can be mainly attributed to an increase in the temporal resolution from daily to hourly, 

whereas that in the 1-in-10-year EI30 map to an increase of the station density. The increased station density has led to an 

improved R-factor and 1-in-10-year EI30 maps for the western regions primarily. The benefit from an increased station density 420 

is limited once the station density reached about 1 station per 10,000 km2. As for the interpolation method, Universal Kriging 

with the mean annual rainfall as the co-variable performed better than Ordinary Kriging for all regions, especially for the 

western regions with sparse weather stations. 
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