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Abstract. Rainfall erosivity represents the effect of rainfall and runoff on the average rate of soil loss. Maps of rainfall erosivity 

are necessary for soil erosion assessment based on the Universal Soil Loss Equation (USLE) and its successors. To improve 10 

currently available erosivity maps based on daily rainfall data from 774 stations for mainland China, hourly and daily rainfall 

data from 2,381 stations for the period 1951-2018 were collected to generate the R-factor and the 1-in-10-year EI30 maps 

(available at https://dx.doi.org/10.12275/bnu.clicia.rainfallerosivity.CN.001; Yue et al., 2020). Rainfall data at 1-min intervals 

from 62 stations, of which 18 with more 29 years of data, were used to calculate rainfall erosivities as true values to evaluate 

the accuracy of the new R-factor and 1-in-10-year EI30 maps as well as the improvement from the current maps based through 15 

cross-validation. The results showed that: (1) current maps underestimated erosivity for most of the south-eastern part of China 

and overestimated for most of the western region; (2) the R-factor map generated in this study had a median absolute relative 

error of 16% for the western region, and 18% for the rest of China, and the 1-in-10-year EI30 map had median absolute relative 

error of 14%, except for the western region for which no evaluation was made because of data limitation; (3) comparing with 

the current maps, the improvement in the R-factor map occurred mainly in the western region, and the median absolute relative 20 

error was reduced 162% to 16%, because of an increase in the number of stations from 87 to 150 and an increased temporal 

resolution from daily to hourly data. The map of 1-in-10-year EI30 in this study improved the accuracy from 20.6% to 13.5% 

for the middle and east of China; (4) the benefit of increased station density for erosivity mapping is limited when the station 

density reached about 1 station per 10,000 km2.  

1 Introduction 25 

Soil erosion has been the major threat to soil health, soil and river ecosystem services in many regions of the world (FAO, 

2019b). Soil erosion has on-site impacts, such as the reduction of soil and water, the loss of soil nutrients, the decrease of land 

quality and food production, as well as off-site impacts, such as excessive sedimentation and water pollution.  

Soil erosion models are tools to evaluate the rate of soil loss and can provide policymakers useful information for taking 

measures in soil and water conservation. The Universal Soil Loss Equation (USLE; Wischmeier and Smith, 1965, 1978) and 30 
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the Revised USLE (RUSLE; Renard, 1997; USDA-ARS, 2013) have been widely used to estimate soil erosion in at least 109 

countries over the past 40 years (Alewell et al., 2019). Rainfall erosivity is one of the factors in the USLE and RUSLE to 

represent the potential ability of rainfall and runoff to affect soil erosion.  

In the USLE, erosivity of a rainfall event is identified as the EI value, also denoted as EI30, which is the product of the total 

storm energy (E) and the maximum 30-min intensity (I30) (Wischmeier, 1959). The erosivity factor (R-factor) in the USLE is 35 

the average annual total EI values of all erosive events. To recognize interannual rainfall variability, rainfall data of long 

periods are required (Wischmeier and Smith, 1978). In the original isoerodent map generated by Wischmeier and Smith (1965), 

stations with rainfall data of at least 22 years were used.  

To use the USLE, two additional input parameters are required. One is the seasonal distribution of the R-factor. To acquire 

soil erodibility factor (K factor) and cover-management factor (C factor), the seasonal distribution of EI (monthly, Wischmeier 40 

and Smith, 1965; or half-month percentage of EI, Renard, 1997, Wischmeier and Smith, 1978) were needed. The other is  the 

1-in-10-year storm EI value needed to compute the support practice factor (P factor) for the contour farming (Renard, 1997).  

Kinetic energy generated by raindrops can be calculated based on raindrop disdrometer data and estimated based on breakpoint 

or hyetograph data via KE-I equations, while I30 is expected to be prepared using breakpoint or hyetograph data with an 

observed interval ≤ 30 min. In the original study of event rainfall erosivity, the recording-rain-gauge chart was used 45 

(Wischmeier and Smith, 1958). However, these data were usually in shortage not only in the length but also in the spatial 

coverage.  

Methods to estimate rainfall erosivity based on more readily available data have been developed widely, such as daily 

(Angulomartínez and Beguería, 2009; Bagarello and D’Asaro, 1994; Capolongo et al., 2008; Haith and Merrill, 1987; 

Richardson et al., 1983; Selker et al., 1990; Sheridan et al., 1989; Xie et al., 2016; Yu et al., 1996; Yu and Rosewell, 1996a; 50 

Zhang et al., 2002), monthly (Arnoldus, 1977; Ferro et al., 1991; Renard and Freimund, 1994), and annual rainfall (Bonilla 

and Vidal, 2011; Ferrari et al., 2005; Lee and Heo, 2011; Yu and Rosewell, 1996b). Yin et al. (2015) evaluated a number of 

empirical models to estimate the R-factor using rainfall data of temporal resolutions from daily to average annual, and showed 

that the most accurate prediction was based on data at the highest temporal resolution. 

Once values of the erosivity factor is obtained with site observations, spatial interpolation methods can be used to estimate 55 

rainfall erosivity for sites without rainfall data based on surrounding sites to produce the erosivity maps or isoerodent maps. 

Local values of erosivity can be taken from these maps (Wischmeier and Smith, 1978). Rainfall erosivity maps can also be 

meaningful in various fields such as soil erosion, sediment yield, environment and ecology. In the original version of the USLE, 

181 stations with breakpoint data plus 1,700 stations with annul averaged precipitation, 1-in-2-year 1-h rainfall amount and 1-

in-2-year 24-h amount were used to generate the erosivity map for the eastern part of the US (Wischmeier and Smith, 1965). 60 

In the successor of the USLE  (Wischmeier and Smith, 1978), the erosivity map for the western part of the US were generated 

based on 1-in-2-year, 6-h rainfall amount data (P) using the equation of R=27.38P2.17. In Revised USLE (RUSLE), (Renard, 

1997) released the erosivity map using the same data as Wischmeier and Smith (1965) for the eastern part, and 60-min rainfall 

data at 790 stations for the western part in the US. In RUSLE2, monthly erosivity maps based on 15-min data from 3,700 
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stations were generated (USDA-ARS, 2013). Erosvity maps based on spatial interpolation have been widely produced around 65 

the world (Borrelli et al., 2016; Klik et al., 2015; Liu et al., 2013; Lu and Yu, 2002; Oliveira et al., 2012; Panagos et al., 2015, 

2016, 2017; Qin et al., 2016; Sadeghi et al., 2017; Yin et al., 2019; Riquetti et al., 2020; Silva et al., 2020). 

Recently, Food and Agriculture Organization (FAO) proposed to produce a Global Soil Erosion Map (GSERmap) which 

encouraged scientists from all over the world to generate their own national level maps making the most of the country 

knowledge, locally available methods and input data (FAO, 2019a). Rainfall erosivity maps for China were reviewed and 70 

relevant information on how they were generated are presented in Table 1, which shows that current R-factor maps for 

mainland China typically used readily-available daily rainfall data from about 500-800 stations (e.g., Zhang et al, 2003; Liu et 

al., 2013; Qin et al., 2016; Yin et al., 2019; Liu et al., 2020), which were recorded by simple rain gauges. However, daily 

rainfall data are not enough to derive sub-daily intensities, which reduced the accuracy of estimated rainfall erosivity (Yin et 

al., 2015). One-minute data are the finest resolution data measured by automatic tipping bucket rain gauges we can obtain up 75 

to now, therefore they are one of the best datasets for deriving precipitation intensity and estimating rainfall erosivity. However, 

62 stations with 1-min data collected were inadequate for the spatial interpolation of rainfall erosivity over mainland China. 

Hourly data was believed to reflect the variation of precipitation intensity better than daily data, which can be used to improve 

the estimation of at-site rainfall erosivity with precipitation observations. In addition, the increase of station density for the 

interpolation can better describe the spatial variation of rainfall erosivity and improve the estimation of rainfall erosivity for 80 

areas without observations together with the improvement of interpolation models and procedures.  

Therefore more than 2,000 stations of hourly and daily data were collected, together with the 62 stations of 1-min data: (a) to 

develop high-precision maps of the R-factor and 1-in-10-year EI30 over the mainland China; (b) to quantify the improvement 

of the new erosivity maps in higher temporal resolution and station density and better interpolation method compared to current 

maps. The study of (Yin et al., 2019) was chosen to represent the latest data had set to estimate the R-factor and 1-in-10-year 85 

EI30 and related maps. New R-factor and 1-in-10-year EI30 maps were produced in this study may improve the estimation of 

the soil loss in mainland China. The meaning and rationale of the study is to: (1) present and share high-precision maps of the 

R-factor and 1-in-10-year EI30 over the mainland China with related earth system science communities; (2) provide some 

insights in the improvement of rainfall erosivity maps for other regions over the world. 

 90 

Table 1: Studies on the mapping of R-factor for or involving China  

Study 

Area 
Period 

Temporal resolution of 

precipitation data 

No. of stations for 

the study area 
Interpolation method Reference 

China 

1956-1984 

Multi-year average of annual, 

maximum daily and 

maximum hourly 

125 Unknown Wang et al., 1996 

1971-1998 Daily 564 Ordinary Kriging Zhang et al., 2003 

1960-2009 Daily 590 Ordinary Kriging Liu et al., 2013 

1951-2010 Daily 756 
Universal co-kriging with 

the aid of the elevation 
Qin et al., 2016 

1961-2016 Daily 774 Ordinary Kriging Yin et al., 2019* 
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Study 

Area 
Period 

Temporal resolution of 

precipitation data 

No. of stations for 

the study area 
Interpolation method Reference 

Global 

1989-2010 Annual average 
Gridded 

(0.5°×0.5°) 
—— Naipal et al., 2015 

1998-2012 

(in China) 
Hourly and sub-hourly 

3,625 (387 in 

China) 

Gaussian Process 

Regression 
Panagos et al., 2017 

1980-2017 Daily 
30,000+ (~800 in 

China) 
Thin-plate spline smoothing Liu et al., 2020 

*Map of event 1-in-10-year EI30 in China was also generated. 

2 Data and methods 

2.1 Data 

Rainfall data at three temporal resolutions were obtained hourly, daily and 1-min. Hourly data were used to generate maps of 95 

R-factor and 1-in-10-year EI30. The evaluation of the effect of station density and interpolation methods on generated maps 

was based on the erosivity calculated with hourly data. Daily rainfall data were used to adjust the erosivity estimated by hourly 

data when its record length was short. Data at 1-min interval were used in two ways. One was to calculate the R-factor as true 

values to evaluate the effect of temporal resolution on erosivity estimation along in comparison to the hourly and the daily rainfall 

data. The other is to develop an exponential model for estimating R-factor with the mean annual precipitation. The coefficient of 100 

the exponential model was used for adjusting the R-factor values based on hourly data with short lengths.  

Rainfall data at 1-hour intervals from 2,381 meteorological stations over mainland China (Fig. 1) were collected by siphon rain 

gauges or tipping bucket rain gauges and quality controlled by the National Meteorological Information Center of China 

Meteorological Administration. The period of the data was from 1951 to 2018. The start year of the data varied because data 

collection commenced in different years. Observation was suspended in the snowy season, which resulted in some missing months 105 

in winter for station in the northern part of China. There were 932 (39%) stations with data for the whole year, 550 (23%) stations 

from April to October and 421 (18%) stations from May to September. 
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Figure 1: Spatial distribution of stations with hourly rainfall data and the length of the data. Western, Mid-western, Northeastern 

and Southeastern regions were abbreviated as W, MW, NE and SE, respectively.  110 

The missing data were handled according to the following criteria: (a) a day with more than 4 missing hours was defined as a 

missing day; (b) a month with more than 6 missing days was defined as a missing month; (c) a year with any missing month 

in its wet-season was defined as a missing year. The wet-season for stations north of 32°N was from May to September, and 

for those south of 32°N was from April to October. Missing years were removed and missing hours in the remaining effective 

years were input in two categories: (a) the missing period is followed by a non-zero record, which recorded the accumulated 115 

rainfall amount in the missing period based on data notes; (b) the missing period is followed by zero. In the first case, each 

missing hour and the following non-zero hour were assigned the average value of the non-zero record in these hours. For the 

second case, the missing hours were input as zero value.  

The daily data were obtained for the same 2,381 stations over the period of 1951-2014 (Fig. 1), and precipitation was measured 

with simple rain gauges. The data were also collected and quality controlled by the National Meteorological Information Center 120 

of China Meteorological Administration. Daily data were collected all year around and the number of effective years ranged from 
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18 to 54 years. Most of the stations (88%) have data of more than 50 years. An effective year of the daily data was defined as 

there is no missing month in the year, and a missing month was defined as there are more than 6 missing days in the month. The 

missing records in the effective years were input as zero value. 

Data at 1-min intervals were collected from 62 stations in mainland China (Fig. 2; and were used in Yue et al., 2020). Data from 125 

station No. 1-18 have effective years of 29-40 and cover the period of 1961(1971)-2000. Data from stations No. 19-62 have 

effective years of 2-12 and cover the period of 2005-2016. The missing data in the effective years were assumed to be zero.  

 

Figure 2: Spatial distribution of the stations with 1-min rainfall data 

 130 

The R-factor map from Panagos et al. (2017) shown in the discussion part of this study was from the global rainfall erosivity 

dataset published by Joint Research Centre - European Soil Data Centre (ESDAC). 
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2.2 Rainfall erosivity for stations 

Hourly rainfall data were first separated into rainfall storms. A continuous period of >= 6 hours of non-precipitation was 

regarded as the separation of two rainfall storms (Wischmeier and Smith, 1978). Storms with the amount of >= 12 mm were 135 

defined as erosive events (Xie et al., 2000), and were used to calculate the rainfall erosivity factors.  

Event rainfall erosivity EI30 (MJ mm ha-1 h-1) was the product of the total storm energy E (MJ ha-1) and the maximum 30-min 

intensity I30 (mm h-1). The maximum 1-hour intensity H60 (mm h-1) was obtained in this study: 

E𝐻60 = 𝐸 · 𝐻60,            (1) 

E = ∑ (𝑒𝑟 · 𝑃𝑟)𝑙
𝑟=1 ,           (2) 140 

𝑒𝑟 = 0.29[1 − 0.72𝑒𝑥𝑝(−0.082𝑖𝑟)],         (3) 

where r =1,2, …, l means that a storm could be divided into l periods or a storm lasted for l hours, er the unit energy (energy 

per mm of rainfall, MJ ha-1 mm-1), Pr the amount (mm), and ir the intensity (mm h-1) of the rth hour (USDA-ARS, 2013). 

The R-factor (Rhour, MJ mm ha-1 h-1 a-1) was the mean annual rainfall erosivity and was obtained by multiplying the R-factor 

from hourly data (Rh) and the conversion factor of 1.871 (Yue et al., 2020): 145 

𝑅ℎ =
1

𝑁
∑ ∑ (𝐸𝐻60)𝑖𝑗

𝑚
𝑗=1

𝑁
𝑖=1 ,          (4) 

𝑅ℎ𝑜𝑢𝑟 = 1.871 · 𝑅ℎ,           (5) 

where i=1, 2, …, N means there are N effective years, and j = 1, 2, …, m means there are m erosive rainfall storms in the ith 

year.  

The 1-in-10-year EI30 was obtained by calibrating the generalized extreme value (GEV) distribution, and the parameters of the 150 

model were estimated using L-moments method (Hosking, 1990). The GEV distribution is a family of probability distributions 

of Gumbel, Fréchet and Weibull. and can be denoted as G (μ, σ, ξ) with parameters μ (location), σ (scale), and ξ (shape) (Coles, 

2001): 

G(z) = 𝑒𝑥𝑝 {− [1 + 𝜉 (
𝑥−𝜇

𝜎
)]

−1/𝜉

} {𝑥: 1 + 𝜉(𝑥 − 𝜇)/𝜎 > 0},       (6) 

where x was the annual maximum storm EI30 (MJ mm ha-1 h-1), −∞ < μ < ∞, σ > 0 and −∞ < ξ < ∞. The extreme quantiles 155 

of the annual maximum EI30 (Xp) were then obtained by inverting Eq. (6): 

𝑋𝑝 = {
𝜇 −

𝜎

𝜉
[1 − {− log(1 − 𝑝)}−𝜉], 𝑓𝑜𝑟 𝜉 ≠ 0

𝜇 − 𝜎 log{− log(1 − 𝑝)} , 𝑓𝑜𝑟 𝜉 = 0
,        (7) 

where G(𝑋𝑝) = 1 − 𝑝. The 1-in-10-year EI30, was the value of Xp when p was 1/10. The computed 1-in-10-year EI30 using 

hourly rainfall data was then multiplied by the conversion factor of 1.489 (Yue et al., 2020).  

Due to the annual variability of rainfall erosivity, stations with less than 22 effective years should be excluded (Wischmeier 160 

and Smith, 1978). However, stations in western China have limited effective years, with 133 out of 150 stations having less 

than 22 effective years (Fig. 1). Once stations with less than 22 effective years are removed, the western stations would be too 
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sparse, which would reduce the interpolation accuracy of the rainfall erosivity map. To fill the gap of the insufficient years, 

daily rainfall data observed by simple rainfall gauges (usually have longer periods) of the same stations were used.  

The calculation of the R-factor considered the following two cases: (1) The effective years of hourly data were no less than 165 

those of daily data (871 out of 2,381 stations); (2) The effective years of hourly data were less than those of daily data (1,510 

out of 2,381 stations). In the first case, the R-factor was calculated directly by hourly data with Eq. (1-5). In the second case, 

the R-factor was firstly calculated by hourly data with Eq. (1-5), then adjusted by the mean annual rainfall calculated by hourly 

and daily data following (Zhu and Yu, 2015): 

𝑅h_adj = 𝑅ℎ𝑜𝑢𝑟 (
𝑃d

𝑃ℎ
)

1.481

,           (8) 170 

where Rh_adj was the adjusted R-factor, Rhour was the estimated R-factor using hourly rainfall data with Eq. (1-5), Pd was the 

mean annual precipitation of longer period (period of the daily data), and Ph was the mean annual precipitation of shorter 

period (period of the hourly data).  

The exponent value of 1.481 was estimated based on a power relationship between the mean annual precipitation and the R-

factor, and the latter was determined using 1-min and daily rainfall data of 35 stations in China (Fig. 2).  All the daily and 1-175 

min data shared  common periods of record of more than 10 years.  

𝑅𝑚𝑖𝑛 = 0.156 · 𝑃𝑚
1.481,                                            (9) 

where Rmin was the R-factor (MJ mm ha-1 h-1 a-1), and Pm was the mean annual precipitation (mm) using 1-min data. The 

coefficient of determination (R2) was 0.776 for Eq. 9.  

R-factor based on 1-min rainfall data was calculated using Eq. (10-11): 180 

𝑅𝑚𝑖𝑛 =
1

𝑁
∑ ∑ (𝐸𝐼30)𝑖𝑗

𝑚
𝑗=1

𝑁
𝑖=1 ,          (10) 

E𝐼30 = 𝐸 · 𝐼30,            (11) 

where I30 was the maximum continuous 30-min intensity. Total storm energy (E) was obtained using methods from RUSLE2 

as Eq. (2-3) with a time increment of 1 min.  

Calculation of the 1-in-10-year EI30 also considered two cases: (1) The effective years of the hourly data were no less than 22 185 

years (89% of the stations) and the 1-in-10-year EI30 was estimated by hourly data with Eqs. (6-7); (2) The effective years of 

the hourly data were less than 22 years, but those of the daily data were no less than 22 years (11%), the 1-in-10-year EI30 was 

estimated by daily data as follows. Firstly, daily rainfall erosivity was obtained by the following equation developed by Xie et 

al. (2016): 

𝑅𝑑𝑎𝑖𝑙𝑦 = 𝛼𝑃𝑑𝑎𝑖𝑙𝑦
1.7265,            (12) 190 

where Pdaily was the daily precipitation (≥10mm), parameter α was 0.3937 in the warm season (May to September), and 0.3101 

in the cold season (October to April). Secondly, the 1-in-10-year daily erosivity was obtained by calibrating the GEV 

distribution parameters as Eq. (6-7) and the x in the functions was replaced by the annual maximum daily erosivity. Finally, 

the 1-in-10-year daily erosivity from daily data was multiplied by a conversion factor of 1.17 to correct the 1-in-10-year daily 

erosivity to approximate the actual event 1-in-10-year EI30 from 1-min data (Yin et al., 2019). The record length was 22 to 29 195 
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for 16 (0.7%) stations, 30 to 39 for 44 (1.8%) stations, 40 to 49 for 216 stations (9.1%) stations, more than 50 for 2,105 (88.4%) 

stations when these adjustments were made. 

2.3 Spatial interpolation and cross validation 

Since there is a good correlation between erosivity factor and the mean annual precipitation, the erosivity maps were obtained 

using the method of Universal Kriging with the annual rainfall as a co-variable. The annual average rainfall was computed 200 

using daily rainfall data of the stations and was firstly interpolated using Ordinary Kriging, and the results were used to conduct 

Universal Kriging. Both the mean annual precipitation and the erosivity factors were interpolated first for each region 

separately (Fig. 1; Li et al., 2014), and then combined to obtain annual precipitation and erosivity maps over China. Buffer 

areas were used to avoid the discontinuity in the boundary areas following Li et al. (2014).  

To evaluate the efficiency of interpolation models, a leave-one-out cross-validation method was applied in each region. 205 

Symmetric mean absolute percentage error (sMAPE) and Nash-Sutcliffe model efficiency coefficient (NSE) were used for the 

assessment: 

sMAPE =
1

𝑛
∑ |

𝐹𝑖−𝐴𝑖

(𝐹𝑖+𝐴𝑖)/2
|𝑛

𝑖=1 × 100%,         (13) 

NSE = 1 −
∑ (𝐹𝑖−𝐴𝑖)2𝑛

𝑖=1

∑ (𝐴𝑖−A𝑖̅̅ ̅)2𝑛
𝑖=1

,           (14) 

where n was the number of stations, Fi was the predicted value at the position of the ith station using data from surrounding 210 

stations, Ai was the observed value at the ith station. 

2.4 The evaluation of the improvement on the accuracy of the erosivity maps 

Current erosivity mapping at the national scale in mainland China usually uses daily rainfall data from about 500-800 stations. 

The R-factor and 1-in-10-year EI30 maps of Yin et al. (2019) were taken as references to evaluate the improvement in the 

accuracy of the erosivity maps generated in this study. To compare the accuracy of the erosivity maps of this study and those 215 

of Yin et al. (2019), true R-factor values using 1-min data and Eq. (10-11) for 62 stations were used to evaluate the 

improvement of R-factor.  For 1-in-10-year EI30, 1-min data for 18 stations (No.1-18; Fig. 2) with more than 22 years were 

used. The cross-validation values from the interpolation of the two erosivity maps were compared with the true values 

calculated with 1-min data to calculate relative error for these stations. Considering that the absolute values of relative error 

would be high for stations with smaller R-factor values, the relative error of the entire map was expressed as the median 220 

absolute value of the relative error for all the stations. 

The erosivity maps in this study used a different procedure as in Yin et al. (2019) mainly in three areas: (1) temporal resolution 

(hourly vs. daily); (2) number of stations (2,381 stations vs. 744 stations); (3) interpolation method (Universal Kriging vs. 

Ordinary Kriging).  

To evaluate the effect of the temporal resolution on the calculated R-factor and 1-in-10-year EI30, hourly and daily rainfall data 225 

with the same period as the 1-min data at the 62 stations were used. R-factors from hourly data were based on Eq. (1-5), those 
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from daily rainfall data were based on Eq. (12), and those from 1-min data were based on Eq. (10-11). The 1-in-10-year EI30 

were all calculated by calibrating GEV distribution using Eq. (6-7). Erosivity factors from 1-min data can be regarded as the 

true values. The relative error was computed for evaluating accuracy. 

To evaluate the effect of station density, hourly data from 774 stations (used in Yin et al. (2019)) and from 2,381 stations (used 230 

in this study) were used to generate two separate erosivity maps. R-factor and 1-in-10-year EI30 values were compared using 

leave-one-out cross validation method region by region. The sMAPE was calculated for accuracy assessment. 

To evaluate the effect of interpolation methods, Ordinary Kriging and Universal Kriging with the mean annual rainfall as the 

co-variable were applied for the R-factor and 1-in-10-year EI30 computed using hourly data from 2,381 stations. Both 

interpolation methods were applied to each of four different regions as shown in Fig. 1 and leave-one-out cross validation 235 

results were compared. The sMAPE was calculated to evaluate the accuracy of interpolated values. 

The framework of this study is shown in Fig. 3. 

 

Figure 3: Framework of this study 

 240 
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3 Results 

3.1 Accuracy evaluation on erosivity maps 

Taking erosivity maps (R-factor and 1-in-10-year EI30) generated by Yin et al. (2019) as references, this study shows a certain 

improvement in accuracy (Fig. 4; Table 2). For the R-factor, the values in the map of Yin et al. (2019) were underestimated 

where the R-factor was relatively high, and overestimated where the R-factor was relatively low. The improvement was 245 

particularly noticeable for western China (R < 1,000 MJ mm ha-1 h-1 a-1) and the southeastern coastal region (R > 10,000 MJ 

mm ha-1 h-1 a-1). 

Relative errors of the two maps at the 62 stations are shown in Fig. 5 (a) and (b). Those with the relative error of more than 

100% were all in the Western (W) or Mid-western (MW) region. There was no obvious difference between the median values 

(also the average values) of the absolute relative error  for the R-factor in this study and Yin et al. (2019) in Mid-western (MW), 250 

Northeastern (NE) and Southeastern (SE) regions (Table 2), however, there are some extremely high relative error values in 

Yin’s map which were found to be located in the MW region (Fig. 5(a)). The median values of the absolute relative error in 

Western (W) region were 16.2% and 161.6%, respectively for this study and Yin et al. (2019), which indicated an improvement 

of 145.4%. For 1-in-10-year EI30, the median values of the absolute relative error were 13.5% for this study and 20.6% for Yin 

et al. (2019), indicating an improvement of 7.1% in the mid-western and eastern regions (Table 2, (Fig. 5(b)). The relative 255 

errors of the 1-in-10-year EI30 in this study concentrated in the range of -10% ~ +10%, whereas those in Yin et al. (2019) 

concentrated in the range of -25% ~ -15% and +15% ~ +25% (Fig. 5(c)). The evaluation on the 1-in-10-year EI30 map didn’t 

cover the western region where there were no 1-min data with enough effective years to estimate the return level. The spatial 

distribution of the absolute relative errors of the maps from this study is shown in Fig. 6. 
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 260 

Figure 4: Comparison of the R-factors and 1-in-10-year EI30 extracted from the maps and the true values. The graphs on the left 

were the evaluation of the maps generated in this study, and those on the right were the evaluation of the maps generated by Yin et 

al. (2019) 
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Figure 5: The relative errors of the R-factor (a for region MW, NE, SE; b for region W) and 1-in-10-year EI30 (c for region ME, NE, 265 
SE) maps 

 

Table 2: The statistical characteristics of the absolute relative errors of the erosivity factors from the maps 

 R-factor 1-in-10-year EI30 

 MW, NE, SE W MW, NE, SE 

 This study Yin et al. (2019) This study 
Yin et al. 

(2019) 
This study Yin et al. (2019) 

25th percentile 9.3% 8.8% 11.4% 23.1% 5.1% 13.0% 

Median 17.8% 18.1% 16.2% 161.6% 13.5% 20.6% 

75th percentile 32.8% 34.4% 45.9% 292.3% 31.6% 31.3% 

Mean 21.0% 24.7% 28.7% 184.8% 18.6% 22.3% 
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 270 

(a) R-factor                            (b) 1-in-10-year EI30 

Figure 6: Spatial distribution of the absolute relative errors in the map of R-factor for 62 stations (a) and in the map of 1-in-10-year 

EI30 for 18 stations (b) with 1-min observation data.  

 

3.2 Erosivity maps and the differences comparing with the previous study 275 

The R-factor generally decreased from the southeastern part to the northwestern part of China (Fig. 7a), ranging from 0 to 

25,300 MJ mm ha-1 h-1 a-1. The map of 1-in-10-year EI30 shows a similar spatial pattern with that of the R-factor (Fig. 7b), 

ranging from 0 to 11,246 MJ mm ha-1 h-1. Zero R-factor value is found at Turpan, Xinjiang Province, where the mean annual 

rainfall is only 7.8 mm. The maximum of the R-factor (more than 20,000 MJ mm ha-1 h-1 a-1) is located in the southern part of 

the Guangxi and Guangdong provinces, along the South China Sea, where the mean annual rainfall is more than 2,500 mm. 280 

In addition to the overall trend, some local scale characteristics could be identified in the maps. Taking the R-factor map as an 

example, in the western region, the wetter region in northwestern China was located in the west of Dzungaria Basin and along 

the Tianshan Mountain, which could be captured on the map. Some statistical characteristics of the new maps of the erosivity 

factors are shown in Table 3 based on soil erosion and hydrological zoning schemes (Fig. 8). 
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Figure 7: R-factor(a) and 1-in-10-year EI30(b) over mainland China based on hourly data from 2381 stations 

 

(a) Soil erosion zoning                         (b) Hydrological zoning 
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Figure 8: Zoning schemes 290 

Table 3: Statistical characteristics of R-factor and 1-in-10-year EI30 in soil erosion and hydrological zonings  

Factors Zones Mean Std. 5th-percentile 25th-percentile 50th-percentile 75th-percentile 95th-percentile 

R-factor Mainland China 2200 3147 47 147 645 3503 8208 

(MJ mm ha-1 

h-1 a-1) 

NWE 208 192 30 70 144 276 614 

NWL 896 431 263 549 875 1239 1562 

NR 3637 1443 935 2780 3747 4577 5946 

 NEB 1483 766 671 1041 1311 1611 3284 

 SWR 4226 2079 841 2610 4324 5503 8060 

 SR 8294 3370 4918 6140 7311 9141 16544 

 Continental 138 130 25 62 92 174 424 

 Haihe 2437 1169 719 1218 2717 3489 4042 

 Huaihe 4744 948 3197 4062 4653 5466 6310 

 SongLiao 1405 765 623 952 1235 1553 3220 

 Yellow 920 754 214 402 749 1205 2199 

 Yangtze 3933 2535 215 1355 4508 6052 7666 

 Southwest 1318 2043 132 265 316 940 5998 

 Southeast 7069 1292 4964 6014 7192 7916 9110 

  Pearl 10280 3967 4450 7697 9354 12731 17591 

1-in-10-year 

EI30 

(MJ mm ha-1 

h-1) 

Mainland China 1040 1259 99 166 435 1766 3206 

NWE 189 101 84 125 165 220 415 

NWL 635 254 226 438 635 825 1031 

NR 2199 770 556 1860 2422 2717 3123 

NEB 948 449 444 669 867 1044 2055 

 SWR 1706 766 439 1098 1689 2308 2952 

 SR 3273 1418 1953 2375 2846 3512 6814 

 Continental 164 84 80 114 140 193 363 

 Haihe 1595 794 459 718 1773 2350 2626 

 Huaihe 2706 394 1999 2465 2723 2957 3337 

 SongLiao 902 453 422 604 823 1026 1974 

 Yellow 627 472 182 293 525 813 1430 

 Yangtze 1706 1039 167 711 1959 2551 3194 

 Southwest 496 533 184 212 232 389 1701 

 Southeast 2814 881 1781 2160 2550 3262 4570 

  Pearl 3846 1822 1564 2604 3320 4698 7512 
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Figure 9: Differences of the R-factor(a) and the 1-in-10-year EI30(b) comparing with the previous study 

Comparing with the maps from Yin et al. (2019), the new maps can be quite different at some local areas (Fig. 9a and 9b). The 

R-factor in the new map was higher for most of the southeastern area, and lower for most of the middle and western areas, 

especially for the southwestern area (Fig. 9a). The map of 1-in-10-year event EI30 demonstrated similar pattern with that of R-300 

factor, whereas with more negative values in some eastern mountainous areas (Fig. 9b). 

3.3 Evaluation on the improvement of the erosivity maps 

3.3.1 Effect of data temporal resolution 

Figure 10 shows that the R-factor estimated from daily data (Eq. 12) is underestimated when the R value is higher than 10,000 

MJ mm ha-1 h-1 a-1, and slightly overestimated when the value is lower than 2,000 MJ mm ha-1 h-1 a-1. The model using hourly 305 

data improved the accuracy by about 11.1% (median value of the relative error) compared to that from daily data (Fig. 10). 

Estimated 1-in-10-year EI30 would be underestimated using hourly and daily data, and the underestimation is greater if daily 
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data were used (Fig. 10). Unlike the R-factor, 1-in-10-year EI30 was not noticeably improved with an increase in the temporal 

resolution from daily to hourly data, probably due to the fact that the 1-in-10-year EI30 values estimated using daily data in 

Yin et al. (2019) had already been multiplied by a conversion factor of 1.17 to correct the 1-in-10-year daily erosivity to 310 

approximate the true 1-in-10-year EI30 from 1-min data. 

 

Figure 10: Comparison of the R-factor (upper) and 1-in-10-year EI30 (lower) estimated from hourly (left) and daily (right) rainfall 

data 

3.3.2 Effect of the station density 315 

Interpolation for the Western (W) region had the least NSE compared to others, which may be induced by the sparsity of 

stations (Fig. 1) and the lower spatial correlation of rainfall. The fitted semivariogram for the R-factor in W region had a range 

of 35 km, whereas the ranges for Mid-western (MW), Northeastern (NE) and Southeastern (SE) regions were 288, 261 and 

1,235 km, respectively. 

A comparison of cross-validation between the two maps with different station densities shows that the interpolation with denser 320 

stations can improve the accuracy by 2.6% ~ 15.4% for the R-factor based on the sMAPE index, and by 1.4% ~ 31.8% for 1-



21 

 

in-10-year EI30 (Table 4) when the station density increased. The NSE can increase by 0.016 to 0.109 for R-factor. For 10-year 

EI30, the NSE decreased in region W, MW and SE, and increased by 0.038 in region NE.  

For the R-factor, in region W, the station density doubled (increased from 36,600 to 21,200 km2 1 station), and the accuracy 

improved by 15.4%, whereas the sMAPE of 53.3% was still high with this increase in station density. In region MW, the 325 

station density tripled (from 13,900 to 4,800 km2 1 station) and the accuracy was improved by 11.1% based on the sMAPE 

index from 30.7% to 19.6%. In region NE and SE, the station density tripled and quadrupled, respectively, and the accuracy 

increased about 2.5%. For 1-in-10-year EI30, the improvement for the 1-in-10-year EI30 was even more (by 31.8% in region W 

and 19.6% in region MW). The improvement was mainly in western regions, and the station density in the eastern China before 

the increase is enough to describe the spatial variation of the R-factor and the 1-in-10-year EI30. It can be inferred that when 330 

there were less than about 10,000 km2 1 station, the increasing of the site density has little impact on the improvement of the 

interpolation (Fig. 11). 

Table 4: Comparison of cross-validation results for erosivity maps interpolated based on data from 774 and 2381 stations 

Region No. of the stations 
Density of the stations (103 km2 

1 station) 

R-factor 1-in-10-year EI30 

sMAPE NSE sMAPE NSE 

W 87 36.6 68.7% 0.489 63.7% 0.389 

 150 21.2 53.3% 0.599 31.8% 0.293 

MW 161 13.9 30.7% 0.938 44.0% 0.887 

 471 4.8 19.6% 0.951 24.5% 0.886 

NE 214 11.0 12.4% 0.946 17.0% 0.857 

 690 3.4 9.7% 0.962 14.9% 0.895 

SE 389 6.6 10.9% 0.942 15.5% 0.844 

 1362 1.9 8.3% 0.959 14.0% 0.824 
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Figure 11: Improvement of the interpolation with the increase of station density. Data were from the 774 and 2381 stations in the 4 335 
different regions 

3.3.3 Effect of the interpolation method 

For the R-factor, cross-validation of Ordinary Kriging and Universal Kriging with the mean annual rainfall as the co-variable 

(Table 5) shows that UK improved the interpolation accuracy by 2.3%-9.0% (sMAPE) compared to OK. In the western region, 

the NSE increased from 0.285(OK) to 0.599(UK). Therefore, it is better to use UK instead of OK when generating the R-factor 340 

map, especially in western China where station density was low. For 1-in-10-year EI30, UK improved the accuracy by 0.4%-

9.7% (sMAPE). In region W, the accuracy improved by 9.7% and the NSE increased from 0.094(OK) to 0.293(UK).  

Table 5: Cross-validation results of interpolation of R-factor and 10-year EI30 using OK and UK 

Region Interpolation method 
R-factor 1-in-10-year EI30 

sMAPE NSE sMAPE NSE 

W OK 62.3% 0.285 41.5% 0.094 

 UK 53.3% 0.599 31.8% 0.293 

MW OK 24.8% 0.861 24.9% 0.838 

 UK 19.6% 0.951 24.5% 0.886 

NE OK 12.0% 0.926 16.5% 0.865 

 UK 9.7% 0.962 14.9% 0.895 
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Region Interpolation method 
R-factor 1-in-10-year EI30 

sMAPE NSE sMAPE NSE 

SE OK 11.2% 0.911 14.8% 0.844 

 UK 8.3% 0.959 14.0% 0.824 

4 Discussion 

This study produced quality R-factor and 1-in-10-year EI30 maps with hourly data from 2,381 stations over mainland China. 345 

The improvement of the R-factor map over previously published R-factor map can be contributed to the increase in the 

temporal resolution from daily to hourly data, whereas that of 1-in-10-year EI30 map to the increase of the station density in 

comparison with those of Yin et al. (2019). There are mainly two reasons for this. First, 1-in-10-year event EI30 values estimated 

from the daily data had already been adjusted to those from the 1-min data by multiplying a conversion factor of 1.17 (Yin et 

al., 2019) , which resulted in no obvious improvement from the daily data to hourly data. Second, the 1-in-10-year event EI30 350 

associated with extreme rainfall event intrinsically has a high spatial variability in comparison to the annual average rainfall 

erosivity as shown in Table 4. The accuracy of spatially interpolated rainfall erosivity was more sensitive to the station density 

when the station density is low. Hence the improvement of the map of the 1-in-10-year EI30 was mainly contributed to the 

increase of the station density, especially for the western and the mid-western regions with sparse station density.    

The uncertainty of the results from this study mainly comes from the following aspects: (a) KE-I model for estimating Kinetic 355 

Energy (KE) from the instant precipitation Intensity (I). KE-I model used in this study is from RUSLE2 (USDA-ARS, 2013)  

and raindrop disdrometer observation data need to be collected to calibrate the KE-I model in future. (b) The estimation of the 

erosivity factors from hourly data (Eq. (5)). The conversion factors were developed based on 1-min rainfall data from 62 

stations (Fig. 2). Hourly data brings information loss in the estimation of instant precipitation intensity comparing with 

breakpoint data. (c) The adjustment of the R-factor from the stations with less effective years (Eq. (8)). This is based on a 360 

power function (Eq. (9)) of the mean annual precipitation and rainfall erosivity using 1-min and daily rainfall data of 35 stations; 

The degree of uncertainty mainly depends on the variation of annual rainfall erosivity. (d) Station distribution and density. In 

western China, the stations were sparse and unevenly distributed, which affect the interpolation accuracy. (e) Spatial 

interpolation model (Universal Kriging in this study) and the interpolation procedures (the division of regions before the 

interpolation and the mergence of regions after the interpolation).  365 

Panagos et al. (2017) developed a Global Rainfall Erosivity Database with hourly and sub-hourly rainfall data from 3,625 

stations over 63 countries, which has provided a good basis for the comparison of rainfall erosivity among different regions in 

the world. In their study, rainfall data at 60-min interval from 387 stations across China were used. Figure 12 shows that the 

R-factor for China extracted from Panagos et al. (2017) is systematically underestimated by about 30% for most areas in China, 

whereas overestimated in the Tibetan Plateau (cf. Fig. 7a). The reason for the underestimation may be that the R-factor 370 

calculated from 60-min interval data applied a conversion factor (CF30) that was developed from the values estimated by 60-

min data to those by 30-min data in Panagos et al. (2015), rather than a factor to those by breakpoint data (CFbp) or 1-min data 
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(CF1), which were used in USLE (Wischmeier and Smith, 1965, 1978), RUSLE (Renard, 1997) and this study. Previous 

research have showed the difference between CF30 and CFbp (CF1) can result in an underestimation of R-factor by about 20% 

(Auerswald et al., 2015; Yue et al., 2020). Table 6 shows that the relative error of the map from Panagos et al. (2017) could 375 

reduce by about 6.2% after multiplying by a conversion factor of 1.253, which was calibrated by Yue et al. (2020) for 

converting the R-factor from 30-min data to 1-min data (Because the cross-validation values from the map of Panagos et al. 

(2017) were not available, the values extracted from the maps were instead to compare with the true values from 1-min data 

at the 62 stations). The adjusted map still generally underestimated. The reason may be that the equation for estimating the 

storm energy (E) used in Panagos et al. (2017) was from RUSLE (Renard, 1997), which have been reported an underestimation 380 

of the storm energy up to 10% in previous studies (McGregor et al., 1995; Yin et al., 2017). Because of this, the equation for 

estimating the storm energy (E) in RUSLE (Renard, 1997) was then modified in RUSLE2 (USDA-ARS, 2013), which was 

adopted in this study.  

The R-factor in the Tibetan Plateau varies from 0 to 12,326 MJ mm ha-1 h-1 a-1 in Panagos et al. (2017), and from 5 to 4,442 

MJ mm ha-1 h-1 a-1 in this study. The former was derived from a Gaussian Process Regression (GPR) model and a number of 385 

monthly climate variables from the WorldClim database, such as the mean monthly precipitation, mean minimum, average 

and maximum monthly temperature. The GPR model was calibrated using the site-specific R-factor values and these climate 

variables, which may not applicable for sites at high altitude, as none of the observation sites was located in the Tibetan Plateau 

region. The GPR model might be the main reason for the overestimation of the R-factor in the Tibetan Plateau where the R-

factor was expected to be underestimated just like any other regions. 390 

 

Figure 12: R-factor map for China extracted from Panagos et al. (2017) and the evaluation of the map based on 62 stations with 1-

min data.    
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Table 6: Comparison of the statistical characteristics of the relative errors of the R-factor extracted from the map generated in this 395 
study and extracted from Panagos et al. (2017) (original and adjusted). The adjusted map of Panagos et al. (2017) was the original 

map multiplying by a conversion factors of 1.253, which was calibrated by Yue et al. (2020) for converting the R-factor from 30-min 

data to 1-min data. 

 This study Panagos et al. (2017) Panagos et al. (2017) adjusted 

25th percentile 7.1% 14.8% 10.4% 

Median 16.1% 28.3% 22.1% 

75th percentile 28.0% 40.5% 43.2% 

Mean 20.1% 33.8% 33.1% 

 

5 Conclusions 400 

This study generated the R-factor and 1-in-10-year EI30 maps using hourly and daily rainfall data for the period from 1951 to 

2018 from 2,381 stations over mainland China. The improvement in the accuracy of these erosivity maps was evaluated against 

the current maps (maps from Yin et al. (2019) were taken as references) in terms of temporal resolution of the rainfall data, 

the station density, and the interpolation method. The conclusions were drawn as follows:  

(1) Comparing with the current maps for the 62 reference sites, the R-factor map generated in this study improved the accuracy 405 

from 18.1% to 17.8% in the mid-western and eastern regions, 161.6% to 16.2% in the western region, and the 1-in-10-year 

EI30 map improved the accuracy from 20.6% to 13.5% in the mid-western and eastern regions.  

(2) The R-factor and the 1-in-10-year EI30 increased from the northwestern to the southeastern China. The R-factor was from 

0 to 25,300 MJ mm ha-1 h-1 a-1, and the 1-in-10-year EI30 was from 0 to 11,246 MJ mm ha-1 h-1. Comparing with the current 

maps, the R-factor and 1-in-10-year event EI30 in the new maps were higher for most of the southeastern area, and lower for 410 

most of the middle and western areas. 

(3) The improvement of the R-factor map can be mainly contributed to the increase of the temporal resolution from daily to 

hourly, whereas that of 1-in-10-year EI30 map to the increase of station density. The increased station density mainly improved 

the accuracy in the western regions for both the R-factor and 1-in-10-year EI30. The benefit of an increased station density is 

limited once the station density reached 1 station per 10,000 km2. As for the interpolation method, Universal Kriging with the 415 

mean annual rainfall as the co-variable performed better than Ordinary Kriging for all regions, especially for the western 

regions. 

Data availability 

The Rainfall erosivity maps (R-factor and 1-in-10-year EI30) are available at: 

https://dx.doi.org/10.12275/bnu.clicia.rainfallerosivity.CN.001 (Yue et al., 2020) 420 

https://dx.doi.org/10.12275/bnu.clicia.rainfallerosivity.CN.001
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