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Abstract. Rainfall erosivity represents the effect of rainfall and runoff on the average rate of soil erosion. Maps of rainfall 

erosivity are indispensable for soil erosion assessment using the Universal Soil Loss Equation (USLE) and its successors. To 10 

improve current erosivity maps based on daily rainfall data for mainland China, hourly rainfall data from 2381 stations for the 

period 1951-2018 were collected to generate the R factor and the 1-in-10-year EI30 maps (available at 

https://dx.doi.org/10.12275/bnu.clicia.rainfallerosivity.CN.001; Yue et al., 2020). Rainfall data at 1-min intervals from 62 

stations (18 stations) were collected to calculate rainfall erosivities as true values to evaluate the improvement of the new R 

factor map (1-in-10-year EI30 map) from the current maps. Both the R factor and 1-in-10-year EI30 decreased from the 15 

southeastern to the northwestern, ranging from 0 to 25300 MJ mm ha-1 h-1 a-1 for the R factor and 0 to 11246 MJ mm ha-1 h-1 

for the 1-in-10-year EI30. New maps indicated current maps existed an underestimation for most of the southeastern areas and 

an overestimation for most of the middle and western areas. Comparing with the current maps, the R factor map generated in 

this study improved the accuracy from 19.4% to 15.9% in the mid-western and eastern regions, from 45.2% to 21.6% in the 

western region, and the 1-in-10-year EI30 map in the mid-western and eastern regions improved the accuracy from 21.7% to 20 

13.0%. The improvement of the new R factor map can be mainly contributed to the increase of data resolution from daily data 

to hourly data, whereas that of new 1-in-10-year EI30 map to the increase of the number of stations from 744 to 2381. The 

effect of increasing the number of stations to improve the interpolation seems to be not very obvious when the station density 

was denser than about 10·103 km2 1 station.  

1 Introduction 25 

Soil erosion has been the major threat to soil health, soil and river ecosystem services in many regions of the world. Soil 

erosion has on-site impacts, such as the reduction of soil and water, the loss of soil nutrients, the decrease of land quality and 

food production, as well as off-site impacts, such as excessive sedimentation and water pollution. The reduction of crop 

production due to erosion has been estimated to be 0.4% per year on a global scale (FAO, 2019b). Soil erosion models are 

tools to evaluate the rate of soil loss and can provide policymakers useful information for taking measures in soil and water 30 
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conservation. The Universal Soil Loss Equation (USLE; Wischmeier and Smith, 1965, 1978) and the Revised USLE (RUSLE; 

Renard, 1997; USDA-ARS, 2013) have been widely used to estimate soil erosion in at least 109 countries over the past 40 

years (Alewell et al., 2019). Rainfall erosivity is one of the factors in the USLE and RUSLE to represent the potential ability 

of rainfall and runoff to affect soil erosion. In the USLE, erosivity of a rainfall event is identified as the EI value, also denoted 

as EI30, which is the product of the total storm energy (E) and the maximum 30-min intensity (I30) (Wischmeier, 1959). The 35 

erosivity factor (R factor) in the USLE is the average annual total EI values of all erosive events. To recognize interannual 

rainfall variability, rainfall data of long periods are required (Wischmeier and Smith, 1978). In the original isoerodent map 

generated by Wischmeier and Smith (1965), stations with rainfall data of at least 22 years were used. To use the USLE, two 

additional input parameters are required. One is the seasonal distribution of the R factor. To acquire soil erodibility factor (K 

factor) and cover-management factor (C factor), the seasonal distribution of EI (monthly, Wischmeier and Smith, 1965; or 40 

half-month percentage of EI, Renard, 1997, Wischmeier and Smith, 1978) were needed. The other is  the 1-in-10-year storm 

EI value needed to compute the support practice factor (P factor) for the contour farming (Renard et al., 1997).  

Calculation of the rainfall erosivity factor requires high-resolution rainfall data to compute E and I30 accurately. In the original 

study of event rainfall erosivity, the recording-rain-gauge chart was used (Wischmeier and Smith, 1958). Meteorological 

stations with this type of data are sparsely distributed and the record length is usually quite short. Methods to estimate rainfall 45 

erosivity based on more readily available data have been developed widely, such as daily (Angulomartínez and Beguería, 2009; 

Bagarello and D’Asaro, 1994; Capolongo et al., 2008; Haith and Merrill, 1987; Richardson et al., 1983; Selker et al., 1990; 

Sheridan et al., 1989; Xie et al., 2016; Yu et al., 1996; Yu and Rosewell, 1996a; Zhang et al., 2002), monthly (Arnoldus, 1977; 

Ferro et al., 1991; Renard and Freimund, 1994), and annual rainfall (Bonilla and Vidal, 2011; Ferrari et al., 2005; Lee and Heo, 

2011; Yu and Rosewell, 1996b). Yin et al. (2015) evaluated a number of empirical models to estimate the R factor using 50 

rainfall data of temporal resolutions from daily to average annual, and showed that the most accurate prediction was based on 

data at the highest temporal resolution. 

Once values of the erosivity factor is obtained with site observations, spatial interpolation methods can be used to estimate 

rainfall erosivity for sites without rainfall data based on surrounding sites to produce the erosivity maps or isoerodent maps. 

Local values of erosivity can be taken from these maps (Wischmeier and Smith, 1978). Erosivity maps are indispensable for 55 

regional soil erosion and erosion risk assessments based on USLE-type models (Borrelli et al., 2017; Grimm et al., 2001; Liu et 

al., 2013; Lu et al., 2001; Panagos et al., 2015). Maps based on spatial interpolation have been widely produced around the 

world (Borrelli et al., 2016; Klik et al., 2015; Liu et al., 2013; Lu and Yu, 2002; Oliveira et al., 2012; Panagos et al., 2015, 

2016, 2017; Qin et al., 2016; Sadeghi et al., 2017; Yin et al., 2019).  

Recently, Food and Agriculture Organization (FAO) proposed to produce a Global Soil Erosion Map (GSERmap) which 60 

encouraged scientists from all over the world to generate their own national level maps making the most of the country 

knowledge, locally available methods and input data (FAO, 2019a). Rainfall erosivity maps for China were reviewed and 

relevant information on how they were generated are presented in Table 1, which shows that current R factor maps for mainland 

China typically used daily rainfall data from about 500-800 stations (e.g., Zhang et al, 2003; Liu et al., 2013; Qin et al., 2016; 
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Yin et al., 2019; Liu et al., 2020), which were recorded by simple rain gauges and readily available. However, daily rainfall 65 

data are not enough to derive sub-daily intensities, which reduced the accuracy of estimated rainfall erosivity (Yin et al., 2015). 

Breakpoint data and 1-min data are the best datasets for deriving precipitation intensity and estimating rainfall erosivity. 

However, 62 stations with 1-min data collected were inadequate for the spatial interpolation of rainfall erosivity over mainland 

China. More than 2000 stations of hourly data were collected, together with the 62 stations of 1-min data: (a) to develop high-

precision maps of the R factor and 1-in-10-year EI30 over the mainland China; (b) to quantify the improvement of the new 70 

erosivity maps in higher temporal resolution and station density and better interpolation method compared to current maps. 

The study of (Yin et al., 2019) was chosen to represent the latest data had set to estimate the R factor and 1-in-10-year EI30 

and related maps. New R factor and 1-in-10-year EI30 maps were produced in this study may improve the estimation of the 

soil loss in mainland China. 

 75 

Table 1: Studies on the mapping of R factor or daily rainfall erosivity(Rd) for or involving China  

Study 
Area 

Period 
Temporal resolution of 

precipitation data 
No. of stations for 

the study area 
Interpolation method Reference 

China 

1956-1984 
Multi-year average of annual, 

maximum daily and 
maximum hourly 

125 Contour mapping Wang et al., 1996 

1971-1998 Daily 564 Kriging Zhang et al., 2003 

1960-2009 Daily 590 Kriging Liu et al., 2013 

1951-2010 Daily 756 
Universal co-kriging with 

the aid of the elevation 
Qin et al., 2016 

1961-2016 Daily 774 Ordinary Kriging Yin et al., 2019* 

Global 

1989-2010 Annual average 
Gridded 

(0.5°×0.5°) 
—— Naipal et al., 2015 

1998-2012 

(in China) 
Hourly and sub-hourly 3625 (387 in China) 

Gaussian Process 

Regression 
Panagos et al., 2017 

1980-1999 
2000-2017 

Daily 
30000+ (~800 in 

China) 
Thin-plate spline smoothing Liu et al., 2020 

*Map of event 1-in-10-year EI30 in China was also generated. 

2 Data and methods 

2.1 Data 

Rainfall data at three temporal resolutions were obtained hourly, daily and 1-min. Hourly data were used to generate maps of 80 

R factor and 1-in-10-year EI30. The evaluation of the effect of station density and interpolation methods on generated maps 

was also based on the erosivity calculated with hourly data. Daily rainfall data were used to adjust the erosivity estimated by 

hourly data where the record length was short. Data at 1-min interval were used in two ways. One was to calculate the R factor 

as true values to evaluate the effect of temporal resolution on erosivity estimation along in comparison to the hourly and the daily 

Reviewer
Inserted Text
data

Reviewer
Inserted Text
 data

Reviewer
Highlight
Who said so??

Reviewer
Inserted Text
(

Reviewer
Cross-Out

Reviewer
Cross-Out

Reviewer
Highlight
You have worked on R factor and therefore not allowed concluding soil loss or soil erosion rates!!

Reviewer
Sticky Note
How these interpolation techniques have been matched??



4 

 

rainfall data. The other is to develop an exponential model for estimating R factor with the mean annual precipitation. The 85 

coefficient of the model was used for adjusting the R factor based on hourly data of shorter periods.  

Rainfall data at 1-hour intervals from 2381 meteorological stations over mainland China (Fig. 1) were collected and quality 

controlled by the National Meteorological Information Center of China Meteorological Administration. The period of the data 

was from 1951 to 2018. The start year of the data varied because data collection commenced in different years. Observation was 

suspended in the snowy season, which resulted in some missing months in winter for station in the northern part of China. There 90 

were 932 (39%) stations with data for the whole year, 550 (23%) stations from April to October and 421 (18%) stations from May 

to September. 

 

Figure 1: Spatial distribution of stations with hourly rainfall data and the length of the data. Western, Mid-western, Northeastern 
and Southeastern regions were abbreviated as W, MW, NE and SE, respectively.  95 

The missing data were handled according to the following criteria: (a) a day with more than 4 missing hours was defined as a 

missing day; (b) a month with more than 6 missing days was defined as a missing month; (c) a year with any missing month 

in its wet-season was defined as a missing year. The wet-season for stations north of 32°N was from May to September, and 
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for those south of 32°N was from April to October. Missing years were removed and missing hours in the remaining effective 

years were input in two categories: (a) the missing period is followed by a non-zero record, which recorded the accumulated 100 

rainfall amount in the missing period based on data notes; (b) the missing period is followed by zero. In the first case, each 

missing hour and the following non-zero hour were assigned the average value of the non-zero record in these hours. For the 

second case, the missing hours were input as zero value.  

The daily data were obtained for the same 2381 stations over the period of 1951-2014 (Fig. 1), and precipitation was measured 

with simple rain gauges. The data were also collected and quality controlled by the National Meteorological Information Center 105 

of China Meteorological Administration. Daily data were collected all year round and the number of effective years ranged from 

18 to 54 years. Most of the stations (88%) have data of more than 50 years. An effective year of the daily data was defined as 

there is no more than one missing month in the year, and a missing month was defined as there are more than 6 missing days in 

the month. The missing records in the effective years were input as zero value. 

Data at 1-min intervals were collected from 62 stations in mainland China (Fig. 2; and were used in Yue et al., 2020). Data from 110 

station No. 1-18 have effective years of 29-40 and cover the period of 1961(1971)-2000. Data from stations No. 19-62 have 

effective years of 2-12 and cover the period of 2005-2016. The missing data in the effective years were assumed to be zero.  
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Figure 2: Spatial distribution of the stations with 1-min rainfall data 

 115 

The R factor map from Panagos et al. (2017) shown in the discussion part of this study was from the global rainfall erosivity 

dataset published by Joint Research Centre - European Soil Data Centre (ESDAC). 

2.2 Rainfall erosivity for stations 

Hourly rainfall data were first separated into rainfall storms. A continuous period of >= 6 hours of non-precipitation was 

regarded as the separation of two rainfall storms (Wischmeier and Smith, 1978). Storms with the amount of >= 12 mm were 120 

defined as erosive events (Xie et al., 2000), and were used to calculate the rainfall erosivity factors.  

Event rainfall erosivity EI30 (MJ mm ha-1 h-1) was the product of the total storm energy E (MJ ha-1) and the maximum 30-min 

intensity I30 (mm h-1). The maximum 1-hour intensity H60 (mm h-1) was obtained in this study: 

E𝐻60 = 𝐸 · 𝐻60,            (1) 

E = ∑ (𝑒𝑟 · 𝑃𝑟)𝑙
𝑟=1 ,           (2) 125 
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𝑒𝑟 = 0.29[1 − 0.72𝑒𝑥𝑝(−0.082𝑖𝑟)],         (3) 

where r =1,2, …, l means that a storm could be divided into l periods or a storm lasted for l hours, er the unit energy (energy 

per mm of rainfall, MJ ha-1 mm-1), Pr the amount (mm), and ir the intensity (mm h-1) of the rth hour (USDA-ARS, 2013). 

The R factor (Rhour, MJ mm ha-1 h-1 a-1) was the mean annual rainfall erosivity and was obtained by multiplying the R factor 

from hourly data (Rh) and the conversion factor 1.871 (Yue et al., 2020): 130 

𝑅ℎ =
1

𝑁
∑ ∑ (𝐸𝐻60)𝑖𝑗

𝑚
𝑗=1

𝑁
𝑖=1 ,          (4) 

𝑅ℎ𝑜𝑢𝑟 = 1.871 · 𝑅ℎ,           (5) 

where i=1, 2, …, N means there are N effective years, and j = 1, 2, …, m means there are m erosive rainfall storms in the ith 

year. 

The 1-in-10-year EI30 was obtained by calibrating the generalized extreme value (GEV) distribution, and the parameters of the 135 

model were estimated using L-moments method (Hosking, 1990). The GEV distribution is a family of probability distributions 

of Gumbel, Fréchet and Weibull. and can be denoted as G (μ, σ, ξ) with parameters μ (location), σ (scale), and ξ (shape) (Coles, 

2001): 

G(z) = 𝑒𝑥𝑝 {− [1 + 𝜉 (
𝑥−𝜇

𝜎
)]

−1/𝜉

} {𝑥: 1 + 𝜉(𝑥 − 𝜇)/𝜎 > 0},       (6) 

where x was the annual maximum storm EI30 (MJ mm ha-1 h-1), −∞ < μ < ∞, σ > 0 and −∞ < ξ < ∞. The extreme quantiles 140 

of the annual maximum EI30 (Xp) were then obtained by inverting Eq. (6): 

𝑋𝑝 = {
𝜇 −

𝜎

𝜉
[1 − {− log(1 − 𝑝)}−𝜉], 𝑓𝑜𝑟 𝜉 ≠ 0

𝜇 − 𝜎 log{− log(1 − 𝑝)} , 𝑓𝑜𝑟 𝜉 = 0
,        (7) 

where G(𝑋𝑝) = 1 − 𝑝. The 1-in-10-year EI30, was the value of Xp when p was 1/10. The computed 1-in-10-year EI30 using 

hourly rainfall data was then multiplied by the conversion factor of 1.489 (Yue et al., 2020). 

Due to the variability of rainfall erosivity, stations with less than 22 effective years should be excluded (Wischmeier and Smith, 145 

1978). However, stations in western China have limited effective years (Fig. 1). Once stations with less than 22 effective years 

are removed, the western stations would be too sparse, which would reduce the accuracy of the rainfall erosivity map. To fill 

the gap of the insufficient years, daily rainfall data observed by simple rainfall gauges (usually have longer periods) of these 

stations were used.  

The calculation of the R factor considered the following two cases: (1) The effective years of hourly data were no less than 150 

those of daily data (37% of the stations); (2) The effective years of hourly data were less than those of daily data (63% of the 

stations). In the first case, the R factor was calculated directly by hourly data with Eq. (1-5). In the second case, the R factor 

was firstly calculated by hourly data with Eq. (1-5), then adjusted by the mean annual rainfall calculated by daily data (Zhu 

and Yu, 2015): 

𝑅hadj = 𝑅ℎ𝑜𝑢𝑟 (
𝑃d

𝑃ℎ
)

1.481

,           (8) 155 
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where Rhadj was the adjusted R factor, Rhour was the estimated R factor using hourly rainfall data, Pd was the mean annual 

precipitation of longer period (period of the daily data), and Ph was the mean annual precipitation of shorter period (period of 

the hourly data).  

The exponent 1.481 was calibrated with a power function (Eq. 9) of the mean annual precipitation and rainfall erosivity using 

1-min and daily rainfall data of 35 stations in China (Fig. 2). The 1-min and daily data share periods of more than 10 years for 160 

these 35 stations.  

𝑅𝑚𝑖𝑛 = 0.156 · 𝑃𝑚
1.481,           (9) 

where Rmin was the R factor (MJ mm ha-1 h-1 a-1), and Pm was the mean annual precipitation (mm).  

R factor based on 1-min rainfall data was calculated using Eq. (10-11): 

𝑅𝑚𝑖𝑛 =
1

𝑁
∑ ∑ (𝐸𝐼30)𝑖𝑗

𝑚
𝑗=1

𝑁
𝑖=1 ,          (10) 165 

E𝐼30 = 𝐸 · 𝐼30,            (11) 

where I30 was the maximum continuous 30-min intensity. Total storm energy (E) was obtained also using methods from 

RUSLE2 as Eq. (2-3) with a time increment of 1 min. 

Calculation of the 1-in-10-year EI30 also considered two cases: (1) The effective years of the hourly data were no less than 22 

years (89% of the stations) and the 1-in-10-year EI30 was estimated by hourly data with Eqs. (6-7); (2) The effective years of 170 

the hourly data were less than 22 years, but those of the daily data were no less than 22 years (11%), the 1-in-10-year EI30 was 

estimated by daily data as follows. Firstly, daily rainfall erosivity was obtained by the following equation developed by Xie et 

al. (2016): 

𝑅𝑑𝑎𝑖𝑙𝑦 = 𝛼𝑃𝑑𝑎𝑖𝑙𝑦
1.7265,            (12) 

where Pdaily was the daily precipitation (≥10mm), parameter α was 0.3937 in the warm season (May to September), and 0.3101 175 

in the cold season (October to April). Secondly, the 1-in-10-year daily erosivity was obtained by calibrating the GEV 

distribution parameters as Eq. (6-7) and the x in the functions was replaced by the annual maximum daily erosivity. Finally, 

the 1-in-10-year daily erosivity from daily data was multiplied by a conversion factor of 1.17 to correct the 1-in-10-year daily 

erosivity to approximate the actual event 1-in-10-year EI30 from 1-min data (Yin et al., 2019). The record length was 22 to 29 

for 16 (0.7%) stations, 30 to 39 for 44 (1.8%) stations, 40 to 49 for 216 stations (9.1%) stations, more than 50 for 2105 (88.4%) 180 

stations when these adjustments were made. 

2.3 Spatial interpolation and cross validation 

Since there is a good correlation between erosivity factor and the mean annual precipitation, the erosivity maps were obtained 

using the method of Universal Kriging with the annual rainfall as a co-variable. The annual average rainfall was computed 

using daily rainfall data of the stations and was firstly interpolated using Ordinary Kriging, and the results were used to conduct 185 

Universal Kriging. Both the mean annual precipitation and the erosivity factors were interpolated first for each region 
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separately (Fig. 1; Li et al., 2014), and then combined to obtain annual precipitation and erosivity maps over China. Buffer 

areas were used to avoid the discontinuity in the boundary areas following Li et al. (2014).  

To evaluate the efficiency of interpolation models, a leave-one-out cross-validation method was applied in each region. 

Symmetric mean absolute percentage error (sMAPE) and Nash-Sutcliffe model efficiency coefficient (NSE) were used for the 190 

assessment: 

sMAPE =
1

𝑛
∑ |

𝐹𝑖−𝐴𝑖

(𝐹𝑖+𝐴𝑖)/2
|𝑛

𝑖=1 ×100%,         (13) 

NSE = 1 −
∑ (𝐹𝑖−𝐴𝑖)2𝑛

𝑖=1

∑ (𝐴𝑖−A𝑖̅̅ ̅)2𝑛
𝑖=1

,           (14) 

where n was the number of stations, Fi was the predicted value at the position of the ith station using data from surrounding 

stations, Ai was the true value at the ith station. 195 

2.4 The evaluation of the improvement on the accuracy of the erosivity maps 

Current erosivity mapping at national scale in mainland China usually uses daily rainfall data from more than 700 stations. 

The R factor and 1-in-10-year EI30 maps of Yin et al. (2019) were taken as references to evaluate the improvement in the 

accuracy of the erosivity maps generated in this study. To compare the accuracy of the erosivity maps of this study and those 

of Yin et al. (2019), true values from 1-min data using Eq. (10-11) for 62 stations were used to evaluate the improvement of R 200 

factor and those from 1-min data for 18 stations (No.1-18; Fig. 2Figure 2) with more than 22 years were used to evaluate the 

1-in-10-year EI30. The values extracted from the two erosivity maps for these stations were compared with the true values 

calculated with 1-min data. Relative error (%) for each station was calculated as follows: 

𝑅𝐸𝑖𝑗 =
𝑅𝑖𝑗−(𝑅𝑚𝑖𝑛)𝑖

(𝑅𝑚𝑖𝑛)𝑖
×100%,          (15) 

where (𝑅𝑚𝑖𝑛)𝑖 is the true value calculated from 1-min data, i = 1,2, …, 62 (18); 𝑅𝑖𝑗 was the value extracted from the erosivity 205 

map of this study and that of Yin et al. (2019); j = 1,2,3,4 represents R factor and 1-in-10-year EI30 maps for the two studies; 

REij was the relative error (%) of the R factor or 1-in-10-year EI30 of the ith station on the jth map. Considering that the absolute 

values of RE would be high for stations with smaller R factor values, the relative error of the entire map was expressed as the 

median absolute value of the RE for all the stations. 

The erosivity maps in this study used a different procedure as in Yin et al. (2019) mainly in three areas: (1) temporal resolution 210 

(hourly vs. daily); (2) number of stations (2381 stations vs. 744 stations); (3) interpolation method (Universal Kriging vs. 

Ordinary Kriging).  

To evaluate the effect of the temporal resolution on the calculated R factor and 1-in-10-year EI30, hourly and daily rainfall data 

with the same period as the 1-min data at the 62 stations were used. R factors from hourly data were based on Eq. (1-5), those 

from daily rainfall data were based on Eq. (12), and those from 1-min data were based on Eq. (10-11). The 1-in-10-year EI30 215 

were all calculated by calibrating GEV distribution using Eq. (6-7). Erosivity factors from 1-min data can be regarded as the 

true value. The relative error was computed for evaluating accuracy. 
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To evaluate the effect of station density, hourly data from 774 stations (used in Yin et al. (2019)) and from 2381 stations (used 

in this study) were used to generate two separate erosivity maps. R factor and 1-in-10-year EI30 values were compared using 

leave-one-out cross validation method region by region. The sMAPE was calculated for accuracy assessment. 220 

To evaluate the effect of interpolation methods, Ordinary Kriging and Universal Kriging with the mean annual rainfall as the 

co-variable was applied for the R factor and 1-in-10-year EI30 computed using hourly data from 2381 stations. Both 

interpolation methods were applied to each of four different regions as shown in Fig. 1 and leave-one-out cross validation 

results were compared. The sMAPE was also calculated to evaluate the accuracy of interpolated values. 

3 Results 225 

3.1 Accuracy evaluation on erosivity maps 

Taking erosivity maps (R factor and 1-in-10-year EI30) generated by Yin et al. (2019) as references, this study shows a certain 

improvement in accuracy (Fig. 3; Table 2). For the R factor, the values in the map of Yin et al. (2019) were underestimated 

where the R factor was relatively high, and overestimated where the R factor was relatively low. The improvement was 

particularly noticeable for western China (R < 1000 MJ mm ha-1 h-1 a-1) and the southeastern coastal region (R > 10000 MJ 230 

mm ha-1 h-1 a-1). 

Relative errors of the two maps at the 62 stations are shown in Fig. 4 (a) and (b). Those with the relative error of more than 

100% were all in the western region. The median values of the absolute RE in Mid-western (MW), Northeastern (NE) and 

Southeastern (SE) regions were 15.9% and 19.4% for maps in this study and Yin et al. (2019), indicating an improvement of 

3.4%. Those in Western (W) region were 21.6% and 45.2%, respectively, and indicating an improvement of 23.6%. For 1-in-235 

10-year EI30, the median values of the absolute RE were 13.0% for maps from this study and 21.7% for Yin et al. (2019), 

indicating an improvement of 8.7% in the mid-western and eastern regions. The evaluation on the 1-in-10-year EI30 map didn’t 

cover the western region where there were no 1-min data with enough effective years to estimate return level.  
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Figure 3: Comparison of the R factors and 1-in-10-year EI30 extracted from the maps and the true value. The graphs on the left were 240 
the evaluation of the maps generated in this study, and those on the right were the evaluation of the maps generated by Yin et al. 
(2019) 
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Figure 4: The relative errors of the R factors (a for region MW, NE, SE; b for region W) and 1-in-10-year EI30 (c for region ME, 
NE, SE) extracted from the maps 245 

 

Table 2: The statistical characteristics of the relative errors of the erosivity factors from the maps 

 R factor 1-in-10-year EI30 

 MW, NE, SE W MW, NE, SE 

 This study Yin et al. (2019) This study 
Yin et al. 
(2019) 

This study Yin et al. (2019) 

25th percentile 6.2% 10.5% 9.3% 29.9% 7.5% 11.1% 

Median 15.9% 19.4% 21.6% 45.2% 13.0% 21.7% 

75th percentile 27.8% 32.8% 39.1% 250.2% 26.6% 30.2% 

Mean 19.5% 27.2% 23.4% 150.6% 16.2% 21.2% 
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3.2 Erosivity maps and changes comparing with the previous study 

The R factor generally decreased from the southeastern part to the northwestern part of China (Fig. 5a), ranging from 0 to 250 

25300 MJ mm ha-1 h-1 a-1. The map of 1-in-10-year EI30 shows a similar spatial pattern with that of the R factor (Fig. 5b), 

ranging from 0 to 11246 MJ mm ha-1 h-1. Zero R factor value is found at Turpan, Xinjiang Province, where the mean annual 

rainfall is only 7.8 mm. The maximum of the R factor (more than 20000 MJ mm ha-1 h-1 a-1) is located in the southern part of 

the Guangxi and Guangdong provinces, along the South China Sea, where the mean annual rainfall is more than 2500 mm. 

In addition to the overall trend, some local scale characteristics could be identified in the maps. Taking the R factor map as an 255 

example, in the western region, the wetter region in northwestern China was located in the west of Dzungaria Basin and along 

the Tianshan Mountain, which could be captured on the map. 
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Figure 5: R factor(a) and 1-in-10-year EI30(b) over mainland China based on hourly data from 2381 stations 260 
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Figure 6: Changes of the R factor(a) and the 1-in-10-year EI30(b) comparing with the previous study 

Comparing with the maps from Yin et al. (2019), the new maps can be quite different at some local areas (Fig. 6a and 6b). The 

R factor in the new map was higher for most of the southeastern area, and lower for most of the middle and western areas, 265 

especially for the southwestern area (Fig. 6a). The change map of 1-in-10-year event EI30 demonstrated similar pattern with 

that of R factor, whereas with more negative values in some eastern mountainous areas. 

3.3 Contribution analysis on the improvement of erosivity maps 

3.3.1 Contribution of data temporal resolution 

Figure 7 shows that the R factor estimated from daily data (Eq. 12) is underestimated when the R value is higher than 10000 270 

MJ mm ha-1 h-1 a-1, and slightly overestimated when the value is lower than 2000 MJ mm ha-1 h-1 a-1. The model using hourly 

data improved the accuracy by about 11.1% (median value of relative error) compared to that from daily data (Fig. 7). 

Estimated 1-in-10-year EI30 would be underestimated using hourly and daily data, and the underestimation is greater if daily 
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data were used (Fig. 7). Unlike the R factor, 1-in-10-year EI30 was not noticeably improved with an increase in the temporal 

resolution from daily to hourly data, probably due to the fact that the 1-in-10-year EI30 values estimated using daily data in 275 

Yin et al. (2019) had already been multiplied by a conversion factor of 1.17 to correct the 1-in-10-year daily erosivity to 

approximate the true 1-in-10-year EI30 from 1-min data. 

 

Figure 7: Comparison of the R factor (upper) and 1-in-10-year EI30 (lower) estimated from hourly (left) and daily (right) rainfall 
data 280 

3.3.2 Contribution of the station density 

Interpolation for the Western (W) region had the least NSE compared to others, which may be induced by the sparsity of 

stations (Fig. 1) and the lower spatial correlation of rainfall. The fitted semivariogram for the R factor in W region had a range 

of 35 km, whereas the ranges for Mid-western (MW), Northeastern (NE) and Southeastern (SE) regions were 288, 261 and 

1235 km, respectively. 285 

A comparison of cross-validation between the two maps with different station densities shows that the interpolation with denser 

stations can improve the accuracy by 2.6% ~ 15.4% for the R factor based on the sMAPE index, and by 1.4% ~ 31.8% for 1-
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in-10-year EI30 (Table 3) when the station density increased. The NSE can increase by 0.016 to 0.109 for R factor. For 10-year 

EI30, the NSE decreased in region W, MW and SE, and increased by 0.038 in region NE.  

For the R factor, in region W, the station density doubled (increased from 36.6 to 21.2 103 km2 1 station), and the accuracy 290 

improved by 15.4%, whereas the sMAPE of 53.3% was still high with this increase in station density. In region MW, the 

station density tripled (from 13.9 to 4.8 103 km2 1 station) and the accuracy was improved by 11.1% based on the sMAPE 

index from 30.7% to 19.6%. In region NE and SE, the station density tripled and quadrupled, respectively, and the accuracy 

increased about 2.5%. For 1-in-10-year EI30, the improvement for the 1-in-10-year EI30 was even more (by 31.8% in region W 

and 19.6% in region MW). The improvement was mainly in western regions, and the station density in the eastern China before 295 

the increase is enough to describe the spatial variation of the R factor and the 1-in-10-year EI30. It can be inferred that when 

there were less than about 10·103 km2 1 station, the increasing of the site density has little impact on the improvement of the 

interpolation (Fig. 8). 

Table 3: Comparison of cross-validation results for erosivity maps interpolated based on data from 774 and 2381 stations 

Region No. of the stations 
Density of the stations (103 km2 

1 station) 

R factor 1-in-10-year EI30 

sMAPE NSE sMAPE NSE 

W 87 36.6 68.7% 0.489 63.7% 0.389 

 150 21.2 53.3% 0.599 31.8% 0.293 

MW 161 13.9 30.7% 0.938 44.0% 0.887 

 471 4.8 19.6% 0.951 24.5% 0.886 

NE 214 11.0 12.4% 0.946 17.0% 0.857 

 690 3.4 9.7% 0.962 14.9% 0.895 

SE 389 6.6 10.9% 0.942 15.5% 0.844 

 1362 1.9 8.3% 0.959 14.0% 0.824 
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 300 

Figure 8: Improvement of the interpolation with the increase of station density. Data were from the 774 and 2381 stations in the 4 
different regions 

3.3.3 Contribution of the interpolation method 

For the R factor, cross-validation of Ordinary Kriging and Universal Kriging with the mean annual rainfall as the co-variable 

(Table 4) shows that UK improved the interpolation accuracy by 2.3%-9.0% (sMAPE) compared to OK. In the western region, 305 

the NSE increased from 0.285(OK) to 0.599(UK). Therefore, it is better to use UK instead of OK when generating the R factor 

map, especially in western China where station density was low. For 1-in-10-year EI30, UK improved the accuracy by 0.4%-

9.7% (sMAPE). In region W, the accuracy improved by 9.7% and the NSE increased from 0.094(OK) to 0.293(UK).  

Table 4: Cross-validation results of interpolation of R factor and 10-year EI30 using OK and UK 

Region Interpolation method 
R factor 1-in-10-year EI30 

sMAPE NSE sMAPE NSE 

W OK 62.3% 0.285 41.5% 0.094 

 UK 53.3% 0.599 31.8% 0.293 

MW OK 24.8% 0.861 24.9% 0.838 

 UK 19.6% 0.951 24.5% 0.886 

NE OK 12.0% 0.926 16.5% 0.865 

 UK 9.7% 0.962 14.9% 0.895 
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Region Interpolation method 
R factor 1-in-10-year EI30 

sMAPE NSE sMAPE NSE 

SE OK 11.2% 0.911 14.8% 0.844 

 UK 8.3% 0.959 14.0% 0.824 

4 Discussion 310 

This study produced quality R factor and 1-in-10-year EI30 maps with hourly data from 2381 stations over mainland China. 

The improvement of the R factor map over previously published R factor map can be contributed to the increase in the temporal 

resolution from daily to hourly data, whereas that of 1-in-10-year EI30 map to the increase of the station density in comparison 

with those of Yin et al. (2019). There are mainly two reasons for this. First, 1-in-10-year event EI30 values estimated from the 

daily data had already been adjusted to those from the 1-min data by multiplying a conversion factor of 1.17 (Yin et al., 2019) , 315 

which resulted in no obvious improvement from the daily data to hourly data. Second, the 1-in-10-year event EI30 associated 

with extreme rainfall event intrinsically has a high spatial variability in comparison to the annual average rainfall erosivity as 

shown in Table 3. The accuracy of spatially interpolated rainfall erosivity was more sensitive to the station density when the 

station density is low. Hence the improvement of the map of the 1-in-10-year EI30 was mainly contributed to the increase of 

the station density, especially for the western and the mid-western regions with sparse station density.    320 

Panagos et al. (2017) developed a Global Rainfall Erosivity Database with hourly and sub-hourly rainfall data from 3625 

stations over 63 countries, for water erosion assessment for many regions of the world especially where observational data 

were limited. In their study, rainfall data at 60-min interval from 387 stations across China were used. Figure 9 shows that the 

R factor for China extracted from Panagos et al. (2017) is systematically underestimated by about 30% for most areas in China, 

whereas overestimated in the Tibetan Plateau (cf. Fig. 5a). The reason for the underestimation may be that the R factor 325 

calculated from 60-min interval data applied a conversion factor (CF30) that was developed from the values estimated by 60-

min data to those by 30-min data in Panagos et al. (2015), rather than a factor to those by breakpoint data (CFbp) or 1-min data 

(CF1), which were used in USLE (Wischmeier and Smith, 1965, 1978), RUSLE (Renard, 1997) and this study. Previous 

research have showed the difference between CF30 and CFbp (CF1) can result in an underestimation of R factor by about 20% 

(Auerswald et al., 2015; Yue et al., 2020). Table 5 shows that the relative error of the map from Panagos et al. (2017) could 330 

reduce by about 6.2% after multiplying by a conversion factor of 1.253, which was calibrated by (Yue et al., 2020) for 

converting the R factor from 30-min data to 1-min data. The adjusted map still generally underestimated. The reason may be 

that the equation for estimating the storm energy (E) used in Panagos et al. (2017) was from RUSLE (Renard, 1997), which 

have been reported an underestimation of the storm energy up to 10% in previous studies (McGregor et al., 1995; Yin et al., 

2017). Because of this, the equation for estimating the storm energy (E) in RUSLE (Renard, 1997) was then modified in 335 

RUSLE2 (USDA-ARS, 2013), which was adopted in this study.  

The R factor in the Tibetan Plateau varies from 0 to 12326 MJ mm ha-1 h-1 a-1 in Panagos et al. (2017), and from 4.6 to 4441.9 

MJ mm ha-1 h-1 a-1 in this study. The former was derived from a Gaussian Process Regression (GPR) model and a number of 
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monthly climate variables from the WorldClim database, such as the mean monthly precipitation, mean minimum, average 

and maximum monthly temperature. The GPR model was calibrated using the site-specific R factor values and these climate 340 

variables, which may not applicable for sites at high altitude, as none of the sites was located in the Tibetan Plateau region. 

The GPR model might be the main reason for the overestimation of the R factor in the Tibetan Plateau where the R factor was 

expected to be underestimated just like any other regions. 

 

Figure 9: R factor map for China extracted from Panagos et al. (2017) and the evaluation of the map based on 62 stations with 1-345 
min data.    

 

Table 5: Comparison of the statistical characteristics of the relative errors of the R factor from maps generated in this study and 

extracted from Panagos et al. (2017) (original and adjusted). The adjusted map of Panagos et al. (2017) was the original map 

multiplying by a conversion factors of 1.253, which was calibrated by Yue et al. (2020) for converting the R factor from 30-min data 350 
to 1-min data. 

 This study Panagos et al. (2017) Panagos et al. (2017) adjusted 

25th percentile 7.1% 14.8% 10.4% 

Median 16.1% 28.3% 22.1% 

75th percentile 28.0% 40.5% 43.2% 

Mean 20.1% 33.8% 33.1% 

 

5 Conclusions 

This study generated the R factor and 1-in-10-year EI30 maps using hourly rainfall data for the period from 1951 to 2018 from 

2381 stations over mainland China. The improvement in the accuracy of these erosivity maps was evaluated against the current 355 
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maps (maps from Yin et al. (2019) were taken as references) in terms of temporal resolution of the rainfall data, the station 

density, and the interpolation method. The conclusions were drawn as follows:  

(1) Comparing with the current maps for the 62 reference sites, the R factor map generated in this study improved the accuracy 

from 19.4% to 15.9% in the mid-western and eastern regions, 45.2% to 21.6% in the western region, and the 1-in-10-year EI30 

map improved the accuracy from 21.7% to 13.0% in the mid-western and eastern regions.  360 

(2) The R factor and the 1-in-10-year EI30 increased from the northwestern to the southeastern China. The R factor was from 

0 to 25300 MJ mm ha-1 h-1 a-1, and the 1-in-10-year EI30 was from 0 to 11246 MJ mm ha-1 h-1. Comparing with the current 

maps, the R factor and 1-in-10-year event EI30 in the new maps were higher for most of the southeastern area, and lower for 

most of the middle and western areas. 

(3) The improvement of the R factor map can be mainly contributed to the increase of the temporal resolution from daily to 365 

hourly, whereas that of 1-in-10-year EI30 map to the increase of station density. The increased station density mainly improved 

the accuracy in the western regions for both the R factor and 1-in-10-year EI30. The contribution of increasing the station 

density to improve the interpolation was limited when the station density was denser than about 10·103 km2 1 station. As for 

the interpolation method, Universal Kriging with the mean annual rainfall as the co-variable performed better than Ordinary 

Kriging for all regions, especially for the western regions. 370 
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