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Abstract 

Anthropogenic emissions of CO2 to the atmosphere have modified the carbon cycle for more than two 

centuries. As the ocean stores most of the carbon on our planet, there is an important task in unraveling the 

natural and anthropogenic processes that drive the carbon cycle at different spatial and temporal scales. We 25 

contribute to this by designing a global monthly climatology of total dissolved inorganic carbon (TCO2) 

which offers a robust basis in carbon cycle modeling but also for other studies related to this cycle. A 

feedforward neural network (dubbed NNGv2LDEO) was configured to extract from the Global Ocean Data 

Analysis Project version 2.2019 (GLODAPv2.2019) and the Lamont-Doherty Earth Observatory (LDEO) 

datasets the relations between TCO2 and a set of variables related to the former’s variability. The global 30 

root-mean-squared error (RMSE) of mapping TCO2 is relatively low for the two datasets 

(GLODAPv2.2019: 7.2 µmol kg-1; LDEO: 11.4 µmol kg-1) and also for independent data, suggesting that 

the network does not overfit possible errors in data. The ability of NNGv2LDEO in capturing the monthly 
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variability of TCO2 was testified through the good reproduction of the seasonal cycle in ten time-series 

stations spread over different regions of the ocean (RMSE: 3.6 to 13.2 µmol kg-1). The climatology was 35 

obtained by passing through NNGv2LDEO the monthly climatological fields of temperature, salinity and 

oxygen from World Ocean Atlas 2013, and phosphate, nitrate and silicate computed from a neural network 

fed with the previous fields. The resolution is 1º x 1º in the horizontal, 102 depth levels (0-5500m) and 

monthly (0-1500 m) to annual (1550-5500 m), and it is centered in the year 1995. The uncertainty of the 

climatology is low when compared with climatological values derived from measured TCO2 in the largest 40 

time-series stations. Furthermore, a computed climatology of partial pressure of CO2 (pCO2) from a 

previous climatology of total alkalinity and the present one of TCO2 supports the robustness of this product 

through the good correlation with a widely used pCO2 climatology (Landschützer et al., 2017). Our TCO2 

climatology is distributed through the data repository of the Spanish National Research Council (CSIC; 

http://dx.doi.org/10.20350/digitalCSIC/10551, Broullón et al., 2020). 45 

1 Introduction 

The ocean is the major carbon reservoir of the Earth. Most of this carbon occurs as dissolved inorganic 

carbon (TCO2, also known as DIC or CT) (Ciais et al., 2013; Tanhua et al., 2013). Three species make up 

TCO2: dissolved CO2 (generally considered as the sum of the dissolved CO2 itself (𝐶𝑂2(𝑎𝑞)) and carbonic 

acid (H2CO3)), bicarbonate ion (HCO3
-) and carbonate ion (𝐶𝑂3

2−). The relative concentrations of these 50 

species with respect to each other determine the seawater pH (Zeebe and Wolf-Gladrow, 2001). The 

seawater CO2 chemistry system can be represented as a set of chemical equilibria reactions that describes 

the speciation of the various ions of TCO2 as follows: 

𝐶𝑂2(𝑔) ⇌ 𝐶𝑂2(𝑎𝑞) 

𝐶𝑂2(𝑎𝑞) + 𝐻2𝑂 ⇌ 𝐻2𝐶𝑂3 55 

𝐻2𝐶𝑂3 ⇌ 𝐻+ + 𝐻𝐶𝑂3
− 

𝐻𝐶𝑂3
− ⇌ 𝐻+ + 𝐶𝑂3

2− 

Since the Industrial Revolution, the concentration of TCO2 in the global ocean has increased, generally to 

a certain depth level (depending on the particular processes in each ocean area) due to the entry of CO2 into 

the seawater from the atmosphere (Sarmiento and Gruber, 2002; Doney et al., 2009; Vázquez-Rodríguez et 60 

al., 2009; Bates et al., 2012; Sallée et al., 2012; Khatiwala et al., 2013). The uptake is driven by the 

increasing partial pressure of CO2 (pCO2) in the atmosphere relative to the ocean, generated by the 

anthropogenic emissions of CO2 that cause an annual net flux of this gas into the ocean (Le Quéré et al., 

2018). Accompanying the change in TCO2, the pH and carbonate ion concentration have been declining 

because of the anthropogenic process previously mentioned, these changes being reflected in the 65 

proportions of the chemical species of TCO2 (Kleypas and Langdon, 2000; Orr et al., 2005). These changes 

in seawater chemistry framed in the ocean acidification process can negatively influence various processes 
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involving marine organisms such as calcification, growth and survival (Orr et al., 2005; Fabry et al., 2008; 

Hendriks et al., 2010; Hoegh-Guldberg and Bruno, 2010; Kroeker et al., 2013). 

In addition to the secular trends driven by the uptake of anthropogenic CO2, ocean TCO2 varies both 70 

temporally and spatially as a consequence of several natural processes. This variability may reach values 

of 15% of the mean TCO2 value in the ocean (Lee et al., 2000). The processes that increase TCO2 are: net 

flux of CO2 from the atmosphere to the ocean, organic matter remineralization and the dissolution of 

calcium carbonate (CaCO3). The processes that reduce TCO2 are: net flux of CO2 from the ocean to the 

atmosphere, primary production and calcification. Advection and mixing also influence the variability of 75 

TCO2 in these two ways (Sabine et al., 2002). In the surface ocean, the main variables influencing the 

variability of TCO2 are temperature and salinity (Weiss et al., 1982; Lee et al., 2000; Wu et al., 2019) 

through the modification of the solubility of CO2, affecting the seawater pCO2 (which is almost 

instantaneous) and thus the air-sea CO2 flux, which eventually drives the change in TCO2 over time.. 

Nutrients and oxygen can also reflect the processes that modify the concentration of TCO2 through their 80 

consumption and release, like during the cycling of organic matter (Körtzinger et al., 2001; Bauer et al., 

2013). From products generated with measured data (Key et al., 2004; Takahashi et al., 2014; Lauvset et 

al., 2016) and in modeling studies (e.g., Doi et al., 2015), it is known that the global surface distribution of 

TCO2 follows a zonal gradient: there is a reduction of its concentration from the poles to the equator 

reflecting the processes that control its variability. Key et al. (2004) emphasize that this distribution is 85 

associated to the distribution pattern of nutrients. Recently, Wu et al. (2019) found that the distribution of 

surface salinity-normalized TCO2 (nDIC) has two main drivers: temperature and upwelling. At depth, the 

variation shown in almost any measured profile of TCO2 mainly reflects the remineralization of organic 

matter and, to a lesser extent, the dissolution of CaCO3 (Millero, 2007), resulting in an increase in TCO2 

from the surface to the intermediate depths. 90 

Understanding the distribution and variability of TCO2 in the ocean and its secular trends driven by 

anthropogenic carbon uptake is needed to assess the magnitude and possible impacts of ocean acidification. 

It is also necessary for the evaluation of numerical models that include the carbon cycle and their estimates 

of past, current and future ocean carbon cycle behavior (e.g., Yool et al., 2013; Aumont et al., 2015; 

Butenschön et al., 2016; Le Quéré et al., 2016; Goris et al., 2018). Seasonality of TCO2 and the horizontal 95 

and vertical variability underscore the necessity to design a climatology with both monthly and spatial 

resolutions according to the processes that influence this variable on a global scale. The existing 

climatologies of TCO2 do not include all these characteristics collected together. Key et al. (2004) and 

Lauvset et al. (2016) built an annual climatology in 33 depth levels using interpolation techniques over data 

from Global Ocean Data Analysis Project version 1 (GLODAPv1; Key et al., 2004) and GLODAPv2 (Key 100 

et al., 2015; Olsen et al., 2016), respectively. Takahashi et al. (2014) published a monthly climatology for 

the surface ocean computed from climatologies of pCO2 and total alkalinity (AT). Other studies used the 

co-variability between TCO2 and other more commonly measured variables discussed above for 

mapping/gap-filling via empirical regressions and neural networks. Lee et al. (2000) used temperature and 

nitrate to compute surface nDIC with an area-weighted error of ±7 µmol kg-1. Sauzède et al. (2017) and 105 

Bittig et al. (2018) trained neural networks with GLODAPv2 data to compute TCO2 over the depth range 
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0-8000 m with an accuracy of ±9 µmol kg-1 and ±7.1 µmol kg-1, respectively. The input variables used in 

those studies were location, pressure, temperature, salinity, dissolved oxygen and time. 

In the present study, we introduce the use of neural networks for going one step further in the design of a 

climatology. We have generated a climatology of TCO2 with a resolution consistent with that of the 110 

climatology of AT of Broullón et al. (2019): horizontal resolution of 1ºx1º, 102 depth levels between 0 and 

5500 m and a monthly (0-1500 m) and annual (1550-5500 m) temporal resolution. The availability of global 

databases containing variables of the seawater CO2 system with more and more data (e.g., 

GLODAPv2.2019, Lamont-Doherty Earth Observatory database (LDEO; Takahashi et al., 2017), Surface 

Ocean CO2 Atlas (SOCAT; Bakker et al., 2016)) and the great ability of the neural networks to interpolate 115 

as shown in other climatological studies about CO2 system variables (Landschützer et al., 2014; Broullón 

et al., 2019), show the appropriateness of this approach for generating a global monthly climatology 

covering more than the surface ocean. 

2 Methodology 

2.1 Neural network design 120 

A feed-forward neural network was configured to compute TCO2 in the global ocean and to create a global 

climatology based on the good results previously obtained with this method in similar studies (e.g., Broullón 

et al., 2019). Briefly, a neural network of this type (Fig. S1a) is used to extract relationships between a set 

of input variables and a target one through a training process. At this stage, the inputs are passed through 

different parallel layers composed by a tunable number of neurons to reach values as closest as possible to 125 

the target ones (Fig. S1a). Initially, all inputs enter in each neuron of the first layer where they are being 

multiplied by different weights depending on the neuron they go. Inside the neurons (Fig. S1b), the results 

of the previous operation are summed and a bias is added. The obtained value inside each neuron is passed 

through an activation function which yields an output. The outputs of each neuron in each layer go to the 

following layer suffering the same process described to this point. In the last layer, which is composed by 130 

one neuron, a unique value for the target variable is calculated for each pair of inputs-target. This value is 

compared to the desired one and the difference between both values is backpropagated through the entire 

network in order to adjust the weights and biases, and to start again the processes and reach an accurate 

output value after multiple iterations. A complete description of the most common algorithms used to 

backpropagate and minimize the errors can be founded in Rumelhart et al. (1986), Levenberg (1944) and 135 

Marquardt (1963). 

The method used here is equivalent to that fully described by Broullón et al. (2019) for AT. In addition to 

the target variable (TCO2 instead of AT), the main changes in the present study compared to that of Broullón 

et al (2019) are the inclusion of the input variable “year”, accounting for the anthropogenic increase of the 

TCO2 pool, and the use of the pCO2 database from LDEO (Takahashi et al., 2017) in addition to the 140 

extended GLODAPv2.2019 (Olsen et al. 2019) to enable more robust TCO2 estimates in the surface ocean. 

Similar to Broullón et al. (2019), the neural networks were trained using the Levenberg-Marquardt method 

(Levenberg, 1944; Marquardt, 1963) through the trainlm function (detailed in Beale et al., 2018) in 
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MATLAB. The splitting of the database used in the present study (see Sect. 2.2) in the sets needed for 

training and testing the network is depicted in Fig. 1. The data were randomly associated to each dataset to 145 

capture (training) and evaluate (test) all possible variability. The input variables are temperature, salinity, 

phosphate, nitrate, silicate, oxygen, sample position and year (Fig. S1a). The number of neurons tested in 

the unique hidden layer to find the best neural network was 16, 32, 64, 128 and 256. Ten networks were 

trained for each number of neurons. The criteria to select the final number of neurons are based on a trade-

off between the root-mean-squared error (RMSE — between the measured TCO2 and that estimated by the 150 

neural network) on the one hand, and the generalization of the network (to prevent overfitting, maintaining 

a similar error in the training and in the test sets) on the other hand. Furthermore, an additional criterion 

based on the influence of each input variable on the TCO2 extracted with the connection weight approach 

(Olden and Jackson, 2002) was followed to ensure that biogeochemical input variables have a larger 

influence on the TCO2 estimates than the input variables related to sample position for selecting a proper 155 

network. The influence of each input variable on the computed TCO2 was obtained from Eq. (1): 

𝐶𝑖 = ∑ 𝑤𝑖𝑘 ·  𝑤𝑘
𝐻
𝑘=1             (1) 

where 𝐶𝑖 is the relative importance of the input variable i, H the number of neurons in the hidden layer, 

𝑤𝑖𝑘 the weight of the connection between the variable i and the neuron k of the hidden layer, and 𝑤𝑘 is the 

weight of the connection between the neuron k of the hidden layer and output layer. 160 

2.2 Data 

We included the LDEO database version 2016 (Takahashi et al., 2017; 

https://www.nodc.noaa.gov/ocads/oceans/LDEO_Underway_Database, last access: 13 November 2017), 

because it contains significantly more data in the surface layer than GLODAPv2.2019. Since the higher 

variability in the surface layer may lead to high errors in modeling variables of the seawater CO2 system 165 

(e.g., Carter et al., 2018; Bittig et al., 2018; Broullón et al., 2019), including the LDEO database should 

force the network to reach a more robust fit. The idea is that these additional data probably have more 

different relationships between input variables and TCO2 to help the neural network to adequately capture 

spatiotemporal variability. The pCO2, temperature and salinity data from LDEO were monthly-averaged 

for each year in a 1ºx1º grid. The points where the standard deviation of the averaged pCO2, temperature 170 

and salinity were greater than ±20 µatm, 1.5ºC and 0.5, respectively, were discarded, since the objective is 

to capture the monthly variability and therefore an extremely high sub-monthly variability could lead to 

errors. To obtain TCO2 values from the LDEO data, an additional variable of the CO2 system is necessary, 

for which we take AT computed using the neural network NNGv2 of Broullón et al. (2019). The input 

variables required by NNGv2 were obtained from: 1) temperature and salinity from LDEO; 2) filtered 175 

oxygen from World Ocean Atlas version 2013 (WOA13; see Broullón et al., 2019); 3) phosphate, nitrate 

and silicate computed with CANYON-B (Bittig et al., 2018) using the previous variables as inputs. Finally, 

TCO2 was calculated from this AT and the averaged pCO2 using the MATLAB-version of the CO2SYS 

program (van Heuven et al., 2011); we used the dissociation constants of Mehrbach et al. (1973) (as refit 

by Dickson and Millero, 1987) and the borate dissociation constant of Dickson (1990). Note that we used 180 
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this software and set of constants for all seawater CO2 chemistry calculations in the present study. The thus 

calculated TCO2 and the associated input variables were used as a part of the training and testing data for 

the neural networks created here. The final number of data points derived from LDEO was 54572. 

To represent interior ocean conditions, the GLODAPv2.2019 database (Olsen et al., 2019) was added to 

the LDEO dataset for training and testing the neural network. Only samples which had data for all input 185 

variables and TCO2 were used. This database was included in two ways: 1) Only samples where all 

variables passed the 2nd quality control (n=287953) (Olsen et al., 2016; Olsen et al., 2019; hereafter 

abbreviated Gv2QC) and 2) all samples (n=321647) (hereafter abbreviated Gv2). Therefore, two neural 

networks options were trained and tested: NNGv2QCLDEO and NNGv2LDEO, respectively. 

2.3 Comparison of methods 190 

We compared our method with CANYON-B of Bittig et al. (2018), where also TCO2 values were computed 

from multiple input variables. Both methods are based on neural networks but with certain differences as 

summarized in Table 1. 

An error analysis was carried out in the same areas for which this was done by Broullón et al. (2019) for 

AT and in several depth ranges (0-50 m, 50-200 m, 200-500 m, 500-1000 m and 1000 m-bottom) for the 195 

two methods (our method and CANYON-B) and for the two datasets (Gv2QC and LDEO). The Gv2QC 

database was analyzed in this section instead of Gv2 because in the designing of CANYON-B only quality-

controlled data were included. The analysis of CANYON-B using the LDEO dataset is useful to evaluate 

the validity of the approach followed by converting pCO2 to TCO2 since CANYON-B has not been trained 

with this dataset. 200 

Computed pCO2 from AT and TCO2 derived from neural networks was also evaluated in the LDEO dataset 

to assess the adequacy of including this dataset in our approach and to assess the ability of NNGv2 of 

Broullón et al. (2019) and the present TCO2 neural network to compute other variables of the seawater CO2 

system. Furthermore, we compared the magnitude of the errors with the ones obtained by Landschützer et 

al. (2014), in which pCO2 is computed directly with a neural network, to evaluate the accuracy of our 205 

computed pCO2. 

2.4 Validation 

In addition to the ability of computing TCO2 using the Gv2 and LDEO test sets, the neural network has 

been tested using independent data from ten ocean time series, located in different regions of the world 

ocean (data were obtained from https://www.nodc.noaa.gov/ocads/oceans/time_series_moorings.html, last 210 

access: 4 June 2019): Hawaii Ocean Time-series (HOT ALOHA and HOT ALOHA SURFACE; Dore et 

al., 2009), Bermuda Atlantic Time-series Study (BATS; Bates et al., 2012), European Station for Time-

series in the Ocean at the Canary Islands (ESTOC; González-Dávila et al., 2010), Iceland Sea Time-series 

(ICELAND; Olafsson et al., 2010) Irminger Sea Time-series (IRMINGER; Olafsson et al., 2010), Kyodo 

North Pacific Ocean Time-series (KNOT; Wakita et al., 2010), K2 (Wakita et al., 2010), Ocean Weather 215 

Station Mike (OWS; Gislefoss et al., 1998) and Kerguelen Islands in the Indian sector of the Southern 



7 
 

Ocean (KERFIX; Jeandel et al., 1998). CANYON-B was also used to compute TCO2 in the time series to 

show the differences between that method and ours. The TCO2 values were obtained by feeding the neural 

networks with the measured values of the input variables at each time series. The data from these time 

series allow us to test the ability of the neural network to reconstruct not only the seasonal variability of 220 

TCO2 at the various locations and depths sampled, but also its long-term trends. For the trend analyses, the 

measured and estimated TCO2 values were deseasonalized following Bates et al. (2014). 

As an additional test, the measured pCO2 or the pCO2 calculated from measured TCO2 and AT at the time 

series stations were compared with pCO2 calculated from the neural network generated values of AT and 

TCO2. This provides insight in the combined performance of the NNGv2 of Broullón et al. (2019) and the 225 

neural network designed in the present study. Furthermore, we compared the magnitude of the errors to that 

obtained by Landschützer et al. (2014) for some of the time series. 

2.5 Climatology of TCO2 

We used the selected network, based on the results of the analyses described above, to construct a 

climatology of TCO2. Climatologies of the input variables were passed through the network to obtain the 230 

climatological fields of TCO2. The spatiotemporal resolution of the product is determined by that of the 

climatologies used as inputs: 1º x 1º horizontal resolution, 102 upper depth levels of the WOA13 and 

monthly (for 0-1500 m depth) to annual (for 1550-5500 m depth) temporal resolution. Temperature and 

salinity climatologies were obtained from WOA13 objectively analyzed fields (Locarnini et al., 2013; 

Zweng et al., 2013; https://www.nodc.noaa.gov/OC5/woa13/woa13data.html, last access: 6 February 235 

2017). Oxygen, phosphate, nitrate and silicate climatologies were taken from Broullón et al. (2019) 

(http://dx.doi.org/10.20350/digitalCSIC/8644, last access: 1 August 2019). These climatologies of nutrients 

were created using the objectively analyzed climatologies of temperature, salinity and oxygen (Garcia et 

al., 2014 filtered, see Broullón et al. (2019)) from WOA13 in CANYON-B (Bittig et al., 2018). As a year 

input is needed, we decided to center the TCO2 climatology in 1995 based on the time distribution of the 240 

data used to create the WOA13 climatologies: World Ocean Database 2013 (Boyer et al., 2013). 

The computed climatological values were compared with those from measured data to assess the 

uncertainty of the climatology, since WOA13 does not offer an uncertainty field with the objectively 

analyzed climatologies. Unfortunately, only two locations have enough measured data to calculate a pure 

climatological value of TCO2 for each month: HOT ALOHA and BATS. The measured values were 245 

monthly averaged at several depth levels and the anthropogenic carbon as calculated by Lauvset et al. 

(2016) was added or subtracted to correct the data to the reference year of the climatology according to: 

𝑇𝐶𝑂2
𝑦𝑒𝑎𝑟2 = 𝑇𝐶𝑂2

𝑦𝑒𝑎𝑟1 − 𝐶𝑎𝑛𝑡2002
[(1 + 0.0191)(𝑦𝑒𝑎𝑟1−2002) − (1 + 0.0191)𝑦𝑒𝑎𝑟2−2002]                 (2) 

where 𝑇𝐶𝑂2
𝑦𝑒𝑎𝑟2  is the TCO2 corrected to 𝑦𝑒𝑎𝑟2, which is the reference year of the climatology, 𝑇𝐶𝑂2

𝑦𝑒𝑎𝑟1  

is the TCO2 measured in 𝑦𝑒𝑎𝑟1, 𝐶𝑎𝑛𝑡2002
 is the anthropogenic carbon for 2002 and 0.0191 is the annual 250 

increase rate derived from the scaling factor determined by Gruber et al. (2019) for the global ocean 

between 1994 and 2007. 
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We compared our climatology with previously published climatologies of TCO2. The surface monthly 

climatology created by Takahashi et al. (2014) was used to assess the spatiotemporal differences in the 

surface layer. The annual climatology of Lauvset et al. (2016) was used to evaluate the spatial differences 255 

in the deeper parts of the ocean. For the comparisons, the climatologies of Takahashi et al. (2014) and 

Lauvset et al. (2016) were adjusted to the year 1995 subtracting the anthropogenic carbon (Cant) of Lauvset 

et al. (2016) as in the Eq. (2). 

Finally, a surface climatology of pCO2 was computed from the TCO2 climatology of the present study and 

the AT climatology of Broullón et al. (2019) to assess the potential of computing climatologies of other 260 

variables of the seawater CO2 system. For comparison, the updated monthly pCO2 climatology from 

Landschützer et al. (2016) (Landschützer et al., 2017, last access: 30 July 2019) was used. The values 

between 1981 and 2010 were averaged to obtain the climatological year 1995. The variable selected from 

Landschützer et al. (2017) was that labeled as spco2_raw (sea surface pCO2) in the netCDF file. 

It should be noted that the RMSE and the bias were obtained for all the comparisons, the last statistic being 265 

computed as the difference between the measured (or computed by the method to compare) TCO2 and the 

one obtained with the neural network of the present study. 

3. Results 

3.1 Neural network analysis 

Following the established criteria to obtain the optimal number of neurons, the configuration with 128 270 

neurons in the hidden layer was selected. From the ten networks trained with this number of neurons for 

each approach (NNGv2LDEO and NNGv2QCLDEO), the ones with the lowest influence of the position 

input variables were selected. These two networks present a similar RMSE in both training and test datasets, 

showing there is no overfitting. Because in Gv2QC both NNGv2LDEO and NNGv2QCLDEO produce the 

same global RMSE (6.1 µmol kg-1), it is likely that the Gv2 dataset contains high-quality measurements 275 

and the possible errors on the non-QC data of this dataset are clearly avoided by the network; otherwise 

NNGv2LDEO should have a higher RMSE in the test dataset than NNGv2QCLDEO because of an 

overfitting of the errors in the Gv2 dataset. The same holds for the LDEO dataset. The network properly 

fitted TCO2 derived from LDEO, since it does not significatively increase the global RMSE relative to a 

network only trained with Gv2. Therefore, we decided to continue with NNGv2LDEO only since it has 280 

fitted more relationships between variables (e.g., Gv2 has more data points than Gv2QC in the 

Mediterranean Sea) providing a more robust fitting. For this network, the influence of each input variable 

on the computed TCO2 is depicted in Fig. S2. The position variables together (latitude, clongitude, 

slongitude and depth) have no more than 30% influence, allowing biogeochemical variables to be the main 

ones responsible for the variability of TCO2. Furthermore, the input variable year has an influence lower 285 

than 5%. This is probably responsible for capturing the positive interannual trend due to the TCO2 increase 

derived from anthropogenic emissions of CO2 to the atmosphere (see Sect. 3.2). 
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The global RMSE is quite low for the Gv2 dataset and for the LDEO dataset (Fig. 2). The measured and 

the computed data are highly correlated (Fig. 2) and the bias is negligible in both datasets. The higher 

RMSE in the LDEO dataset likely results from the higher variability of TCO2 in the surface layer and from 290 

uncertainties in its calculation from pCO2. 

The RMSE by area and depth for NNGv2LDEO and CANYON-B in Gv2QC is shown in Table 2. The 

highest errors for the two methods are in the 0-50 m layer for the Gv2QC dataset and the LDEO dataset. 

These errors get smaller with increasing depth for all areas and the depth-weighted RMSE of the two 

methods is not significantly different below 50 m. In the LDEO dataset, NNGv2LDEO produces a lower 295 

error than CANYON-B, except for two areas: East GIN (Greenland, Iceland and Norwegian) Seas and the 

Bengal Basin (Table 2), although there are only 9 and 13 data points, respectively, in each area. 

Interestingly, CANYON-B is able to reproduce the TCO2 data derived from the complete LDEO dataset 

with a lower error than the one it obtains for the complete Gv2QC dataset in the surface ocean (RMSE 

LDEO: 16.4 µmol kg-1; RMSE Gv2QC (0-5 m): 17.8 µmol kg-1), supporting the approach of computing 300 

reliable TCO2 values from the pCO2 of LDEO and the AT computed with NNGv2 (Broullón et al., 2019), 

since CANYON-B was not trained with the LDEO database. A similar result was obtained for 

NNGv2LDEO but with a higher difference between the two errors (RMSE LDEO: 11.4 µmol kg-1; RMSE 

Gv2QC (0-5m): 17.1 µmol kg-1). Finally, the surface RMSE towards LDEO data of NNGv2LDEO is clearly 

lower than that of CANYON-B. This shows the value of including pCO2 derived surface TCO2 among the 305 

training data, through which there are more fitted relations in our new method. 

For data from Gv2 where no QC was performed for at least one of the variables used in the present study 

(Gv2noQC), the RMSE also decreases with increasing depth: <50 m: 22.5 µmol kg-1; 50-200 m: 9.8 µmol 

kg-1; 200-500 m: 7 µmol kg-1; 500-1000 m: 5.4 µmol kg-1; >1000 m: 5.4 µmol kg-1. Thus, the error in 

Gv2noQC is similar to that in the areas with the highest error in Gv2QC (Table 2; except in Beaufort Sea, 310 

where the error is considerably higher). However, the higher error in Gv2noQC is mainly caused by the 

samples located in the Arctic Ocean, since cruises in the Atlantic and Pacific oceans are modeled with a 

very low error. Therefore, using Gv2noQC does not imply the introduction of low-quality data in our study, 

otherwise the network would not compute TCO2 with low errors in Gv2QC because of an overfitting of the 

possible low-quality data that Gv2noQC could contain. 315 

In general, the highest differences between measured and estimated TCO2 occurs in the high latitude surface 

oceans (Figs. 3 and 4). In Gv2, 40% of the samples with differences beyond ±3RMSE (3 times RMSE; 

threshold selected to refer samples with large residuals) are in latitudes greater than 70º N. In the LDEO 

dataset, 39% of the samples with differences beyond ±3RMSE are from latitudes south of 70º S. These 

samples where RMSE is high are 7.5% of the total north of 70º N in Gv2 and 42% of the total south of 70º 320 

S in LDEO. The samples with low salinities have the highest errors (Fig. 4). 41.5% of the samples in Gv2 

and 43% in LDEO with differences beyond ±3RMSE have salinities below 33. Furthermore, in the LDEO 

dataset, the number of samples with residuals beyond ±3RMSE increases with increasing standard deviation 

of both pCO2 and salinity in the monthly averaging in each pixel in the LDEO subset (Fig. S3). This result 

shows the difficulty of modeling areas with a high sub-monthly variability in pCO2 and salinity and supports 325 
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the exclusion of the averaged LDEO data with a high standard deviation since it could cause the network 

to interpret the sub-monthly variability as monthly variability – note that the purpose of this study is to 

capture the monthly variability. 

Like for modeling AT (Takahashi et al., 2014; Broullón et al., 2019), the Arctic Ocean is one of the regions 

with the highest RMSE of neural network estimated TCO2. The major Arctic rivers contribute with TCO2 330 

concentrations ranging between 400 and 3600 µmol kg-1 (estimated by Tank et al., 2012), derived mainly 

from carbonated rocks in the watersheds. Other areas like the Okhotsk Sea also show a high RMSE (Table 

2 and Fig. 3), probably because of the high riverine input of TCO2 (Watanabe et al., 2009). An input variable 

accounting for the contribution of the rivers to the TCO2 pool would improve the neural network 

performance in areas like these, but is not available. 335 

The errors of the pCO2 computed in LDEO with TCO2 from NNGv2LDEO and AT from NNGv2 (Broullón 

et al., 2019) are similar to the errors obtained by Landschützer et al. (2014) for the SOCAT database in 

some of the areas (10-16 µatm, Table 2). This result shows the potential of computing pCO2 values with 

neural networks trained for other variables of the seawater CO2 system, at least in some ocean regions. The 

global error of the pCO2 in the LDEO dataset is clearly higher than that obtained by Landschützer et al. 340 

(2014) for the SOCAT dataset (22 vs. 12 µatm, respectively), although the critical areas are mainly the 

same (Fig. S4): equatorial Pacific upwelling system, Arctic and subarctic waters around the Alaska 

Peninsula, the Southern Ocean, the Gulf Stream and the North Atlantic Current. At this point, the following 

should be considered: 1) the pCO2 computed in the present study derives from AT and TCO2 and not from 

specific modeling for pCO2, and therefore, it contains errors associated to this computation (~6 µatm; 345 

Millero, 1995) and to the neural network estimates of AT and TCO2; 2) the present study includes the Arctic 

region where the highest errors occur (Table 2; Beaufort Sea and High Arctic areas); and 3) there is a longer 

temporal range in the present study (1973-2016). The analysis of Landschützer et al. (2014) in the LDEO 

dataset for data that differs from SOCAT shows a global error higher than the one obtained in the present 

study for all LDEO data between 1998 and 2011 (25.9 vs. 21.3 µatm, respectively). The error between 40º 350 

S-40º N is similar in the two studies (Landschutzer et al. (2014): 16.5 µatm; NNGv2LDEO: 16.4 µatm). 

Although it is not the main objective of this work, these two last results show how NNGv2LDEO and 

NNGv2 (Broullón et al., 2019) have the potential to compute pCO2 values between 40º S-40º N with similar 

errors as the method with the lower error in the pCO2 modeling to obtain a climatology and with lower 

errors in high latitudes, for the LDEO dataset; even taking into account the inclusion of the critical area of 355 

the Arctic in the computation of the error of the pCO2 from the present study (it is not included in 

Landschützer et al., 2014) and the higher amount of data from high latitudes in the present study (15479 

vs. 3799). 

3.2 Time-series validation 

The good generalization of the network in the test dataset containing data from Gv2 and LDEO by the 360 

similar RMSE that the one reached in the training set is also evidenced through independent time-series 

data (Table 3). Except for KERFIX, where the number of data points is very low and Olsen et al. (2019) 
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suggested an adjustment to the original data of -39 µmol kg-1, TCO2 computed using NNGv2LDEO and 

CANYON-B at the time-series locations are characterized by low errors and biases (Table 3). 

NNGv2LDEO computes TCO2 with a lower RMSE and bias than CANYON-B for most of the time-series 365 

stations (Table 3). CANYON-B reaches a lower RMSE in HOT ALOHA SURFACE and ESTOC than 

NNGv2LDEO, but the bias is considerably higher in these time series for CANYON-B. 

The seasonal variability is well captured by NNGv2LDEO showing its great potential to design a monthly 

climatology. In the surface layer, where the seasonal variability is the highest, the computed values are 

strongly correlated with the measured TCO2 in all the time series (Fig. 5). In addition, the high correlation 370 

holds for all depths (Table S1). The location of the time series in different oceanographic regimes allows 

to complement the good TCO2 computation by NNGv2LDEO already shown in the previous independent 

sets in almost any region of the ocean. 

Assessing the potential of neural networks to obtain values of other variables of the seawater CO2 system 

in the time series, pCO2 calculated with AT from NNGv2 (Broullón et al., 2019) and TCO2 from 375 

NNGv2LDEO compared quite well with pCO2 as measured or calculated from AT and TCO2 at the time-

series stations (Table 4). Except for BATS, the pCO2 obtained in the present study has a lower error than 

that reported by Landschützer et al. (2014) (Table 4). In contrast, the bias in the present study is higher, 

except for ESTOC. Considering the error involved in the calculation of pCO2 from AT and TCO2 (~6 µatm; 

Millero, 1995) and the error in the computed AT and TCO2 with the neural networks (Table 4), our results 380 

demonstrate again the ability of NNGv2 and NNGv2LDEO to calculate other variables of the seawater CO2 

system with a relatively low error. 

Using NNGv2LDEO, it is also possible to reproduce the secular trends in TCO2. Using seasonal detrending 

to enhance the multi-annual changes, similar trends in the longer time series are found for the measured 

TCO2 and the neural network computed TCO2 (Table 5). The same holds for pCO2 (Table 5), although at 385 

the IRMINGER site the trend obtained from the neural network generated data is significantly lower than 

that from measured data. The neural networks seem to capture the anthropogenic influence in the seawater 

CO2 system and thus the ocean acidification process (Fig. 6). Furthermore, using NNGv2LDEO increases 

the amount of TCO2 data where the various inputs were measured but not TCO2 itself. This allows for 

evaluation of high frequency changes (Fig. 6) and for calculation of interannual trends with a low error (as 390 

temporal sampling biases are reduced). 

3.3 Climatology 

Using NNGv2LDEO we have demonstrated its ability to compute TCO2 values with low errors and, 

especially, to capture the monthly variability of this variable. In addition, the climatologies of the input 

variables used to create the climatology of TCO2 have been satisfactorily evaluated previously for the 395 

construction of an AT climatology (Broullón et al., 2019). Considering these results, a monthly climatology 

of TCO2 is obtained by passing the input climatologies through NNGv2LDEO. 
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The spatial distribution of the surface annual mean climatology of TCO2 (Fig. 7a) is similar to two recent 

climatologies: those of Takahashi et al. (2014) and Lauvset et al. (2016). The largest surface TCO2 

concentrations occur in the Southern Ocean, subpolar North Atlantic, Nordic Seas and Mediterranean Sea 400 

(note that the latter is not included in these other climatologies). In general, surface TCO2 decreases from 

high to low latitudes. The Indian and the Pacific oceans are characterized by lower concentrations of TCO2 

at higher latitudes than the Atlantic, the latter being the ocean with the highest surface TCO2 by area. TCO2 

increases with depth in all oceans, in particular in the upwelling regions, where this increase is expanded 

eastwards with depth (Fig. 7b and video in http://dx.doi.org/10.20350/digitalCSIC/10551). Depending on 405 

the area, the values reach a maximum at certain intermediate depths and below it the concentration gradually 

decreases or remains almost constant (Fig. S5). 

The largest seasonal variability occurs at the surface in high latitudes, in the Pacific upwelling region, the 

equatorial African coasts and in the area under influence of the Amazon River (Fig. 8a). At depth, the 

seasonal variability decreases, except for the Pacific upwelling region where it increases and moves 410 

progressively northward between 30 and 150 m (Fig 8b). This increase is correlated with the high seasonal 

variability of the climatologies of nutrients, oxygen and temperature at these depths. Czeschel et al. (2012) 

also showed an increase in the subsurface variability of oxygen from measured profiles. Similar increases 

also occur in the Indian Ocean north of 20º S between 50 and 100 m and in the equatorial Atlantic Ocean 

in the same depth range. At 1500 m level, the seasonal variability is below 10 µmol kg-1 in most of the 415 

ocean (Fig. 8c). This last result shows that an annual climatology below 1500 m is sufficient. 

Although the surface patterns of the annual mean of the TCO2 climatology are very similar to those of the 

other recent climatologies (Takahashi et al., 2014; Lauvset et al., 2016), differences do occur. The annual 

mean climatology of the present study is closest to that of Takahashi et al. (2014) (Table 6). The largest 

differences between these two climatologies are located in the Arctic, North Pacific, Peru upwelling area, 420 

western South Pacific and the area of influence of the Antarctic Circumpolar Current (Fig. S6a). The 

Atlantic and the Indian oceans do not show significant differences. Our climatology shows more deviations 

to that of Lauvset et al. (2016), compared in the grid of Takahashi et al. (2014) (Table 6). The highest 

differences are found in the North Pacific, around Antarctica, Nordic Seas, South and North Atlantic and 

in several less localized areas around the oceans (Fig. S6b). When the climatology of Takahashi et al. (2014) 425 

is compared to that of Lauvset et al. (2016), the differences are even higher (Table 6) and the critical areas 

are the same of those of the previous comparison. Although it is clear that discrepancies between the three 

climatologies derive from the different methods used, the higher similarity between ours and the one of 

Takahashi et al. (2014) is probably due to the influence of the same source used to create them, the World 

Ocean Atlas. 430 

The comparison of our climatology with that of Lauvset et al. (2016) at the 33 depth levels of Lauvset et 

al. (2016) shows a reduction of the RMSE with depth. Between 0 and 1000 m, the RMSE is reduced from 

~32 to 7 µmol kg-1 (Table S2) (note the higher RMSE at surface compared to one obtained for the grid of 

Takahashi et al. (2014) because of the inclusion of areas which are not included in the latter’s grid, and the 

difficulty of modeling TCO2 in some areas, like the Arctic and the Mediterranean Sea). This reduction with 435 
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depth is probably due to the reduction of the variability in most of the ocean below the surface. The surface 

values in Lauvset et al. (2016) are likely characteristic from months in which most of the sampling was 

carried out. Because of the lower variability of TCO2 at depth, the values are closer to the annual mean and 

therefore the two compared climatologies are more similar at depth than in surface depth levels. Below 

1000 m, the differences between the two climatologies are not significant, with a RMSE around 5 µmol kg-440 
1 and a bias around 0.5 µmol kg-1 at each depth level (Table S2). 

Our monthly climatology shows a high correspondence with that of Takahashi et al. (2014), although the 

RMSE values show that there are also large differences in certain areas (Table 7). These areas are mainly 

the same of those in the comparison of the annual mean climatologies, but some other small regions with 

high differences appear for each month all through the ocean (Fig. S7). 445 

Unfortunately, the uncertainty of the TCO2 climatology cannot be assessed globally and robustly. As 

Broullón et al. (2019) stated, the unavailability of an uncertainty field associated to the WOA13 objectively 

analyzed climatologies does not allow to perform a proper global uncertainty assessment. Therefore, the 

analysis is relegated to the areas where repeated sampling of TCO2 has been carried out monthly over a 

long period, that is, the HOT ALOHA and BATS time-series stations. The climatology of TCO2 from 450 

NNGv2LDEO is consistent with the monthly climatological values at these two places (Fig. 9). In general, 

the profiles from the TCO2 climatology are within the variability range (shadow area in Fig. 9) of the 

monthly averaged measured data for each depth level. In the upper 30 m of the water column, the 

climatology of TCO2 differs from the measured BATS data from May to August. This difference is mainly 

explained by the surface error of the network showed for this time series in Fig. 5a, where the computed 455 

TCO2 decreases from maximum to minimum sooner than the measured TCO2. For HOT ALOHA, the 

RMSE of the profiles of the TCO2 climatology oscillates between 3.6 and 9.2 µmol kg-1 with a mean value 

of 6.3 µmol kg-1 (bias range: -3.8 to 1.2 µmol kg-1; mean bias: -1.4 µmol kg-1). At BATS, the RMSE is 

lower than for HOT ALOHA: 1.1 to 8.5 µmol kg-1 with a mean value of 4.4 µmol kg-1 (bias range: -1.4 to 

7.6 µmol kg-1; mean bias: -2.5 µmol kg-1). Furthermore, the seasonal variability of the TCO2 climatology is 460 

quite similar to that of the measured data at BATS and HOT ALOHA (Fig. S8). Although in other time 

series there are not enough measured data to obtain climatological values, these pseudo climatological 

values also correlate very well with the TCO2 climatology (data not shown). These results suggest that the 

climatology is robust in different oceanographic regimes and adequately captures the seasonal cycle of 

TCO2. 465 

It has been demonstrated in this study that pCO2 and possibly other variables of the seawater CO2 system 

can be computed from AT and TCO2 derived from neural networks with a relatively low error in different 

datasets (LDEO in Sect. 3.1 and time series in Sect. 3.2). The pCO2 climatology (Fig. S9) computed from 

the TCO2 climatology of the present study and the AT climatology of Broullón et al. (2019) is very similar 

to that of Landschützer et al. (2017). The differences between the annual mean climatology of the two 470 

studies are below 15 µatm in most of the ocean (RMSE: 8.3 µatm; bias: 2.9 µatm; r2: 0.82). The differences 

above this threshold are mainly located in the Pacific equatorial upwelling system, the east part of the South 

Pacific Gyre, Nordic Seas, Labrador Sea, Atlantic section of the Southern Ocean, Bay of Bengal and the 
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waters surrounding the east margin of Asia (Fig. S10). In most of these areas, both methods have the greatest 

errors (Figs. 2 and 4 in Landschützer et al., 2014 and Fig. S4 of the present study). 475 

On a monthly basis, the RMSE between the two pCO2 climatologies is between 13.6 and 15.6 µatm and 

the correlation is lower than for the annual mean comparison (r2: 0.55-0.72 vs 0.82). The areas with the 

higher differences are the same as in the annual comparison but other small regions appear along the ocean 

month by month (Fig. S11). Furthermore, the seasonal variability in the two climatologies matches in a 

great extension of the ocean, although there are areas with notable differences (Fig. S12). In general, the 480 

pCO2 climatology is quite similar to that of Landschützer et al. (2017) and this result contributes to show 

that both the TCO2 climatology of the present study and the AT climatology of Broullón et al. (2019) are 

mostly robust and suggest that climatologies of other seawater CO2 system variables can be confidently 

computed. 

4 Data availability 485 

The climatologies of TCO2 and pCO2 and NNGv2LDEO designed in this study are available at the data 

repository of the Spanish National Research Council (CSIC; http://dx.doi.org/10.20350/digitalCSIC/10551, 

Broullón et al., 2020). 

5 Conclusions 

We presented a tool for computing TCO2 in the global ocean. Compared to previous methods, the 490 

uncertainties in such computations have been reduced. Including two updated datasets containing thousands 

of measurements of inorganic carbon variables across the ocean in the training of the neural network, we 

were able to capture a wide range of variability of TCO2. The low errors obtained in independent subsets 

as in time-series stations, are further evidence of the potential of the network in computing TCO2. 

Our global monthly climatology created with a neural network is the first that covers the oceans from the 495 

surface to the abyss at such temporal resolution. In addition to the accuracy of the network, the low 

uncertainty of the climatology in different regions and its usefulness in creating climatologies of other 

seawater CO2 chemistry variables (i.e. pCO2) show its robustness. Therefore, we present the global 

climatology of TCO2 to the scientific community to complement the recently designed climatology of AT 

by Broullón et al. (2019) for its use in the initialization and evaluation of models or any other analysis 500 

related to the carbon cycle. 
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Table 1. Differences between the methods used in the present study and in CANYON-B (Bittig et al., 2018). 

 Bittig et al. (2018) This study 

Training technique Bayesian regularization Levenberg-Marquardt 

Input variables 
Temperature, salinity, oxygen, 
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phosphate, nitrate, silicate, position and 

time 

Datasets GLODAPv2 (Olsen et al., 2016) 

GLODAPv2.2019 (Olsen et al., 2019) 

LDEOv2016 (Takahashi et al., 2017) 

 

Table 2. RMSE (bias) by area and depth for TCO2 and pCO2 computed with CANYON-B and NNGv2LDEO 750 
in Gv2QC and LDEO datasets. For each depth range, the RMSE (bias) in each area was weighted by the 

contribution of its data to the total. Units are micromoles per kilogram (μmol kg-1) for TCO2 and 

microatmospheres (μatm) for pCO2. 
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(1.6) 

12.3 

(1.5) 

8.5 

(-0.9) 

12.2 

(2.4) 

6.4 

(0.9) 

8.1 

(0.3) 

5 

(0.3) 

5.2 

(1.1) 

4.5 

(0.6) 

4.3 

(0.3) 

3.7 

(0.4) 

3.9 

(0.3) 

20.7 

(3.7) 

23.7 

(3.4) 

North Central Pacific 26.3 

(-3.6) 

34.5 

(-9.6) 

9.6 

(0.2) 

15 

(3.4) 

6.8 

(0.5) 

8.3 

(0.4) 

4.2 

(0.3) 

4.7 

(0.5) 

4 

(-0.3) 

4.1 

(0.3) 

3.4 

(0.3) 

3.8 

(0) 

46.7 

(-0.4) 

56.6 

(-7) 

Okhotsk Sea - 

- 

- 

- 

23.1 

(0.9) 

16.4 

(1.6) 

11.3 

(-1.2) 

6.8 

(-0.7) 

6.3 

(-2.3) 

5.1 

(-1.6) 

5.2 

(-4) 

3.4 

(-1.3) 

4.1 

(1.2) 

3.5 

(1.9) 

- 

- 

- 

- 

Central Tropical North Pacific 8 

(-1.3) 

9.7 

(-3.2) 

7.9 

(-0.9) 

8.8 

(0.5) 

7.2 

(0.5) 

7.2 

(1.2) 

4.9 

(-0.6) 

5 

(0.2) 

4.3 

(-0.4) 

4.5 

(0.5) 

3.6 

(-0.2) 

3.8 

(0.2) 

14.2 

(-2.1) 

17.2 

(-5.6) 

Tropical East North Pacific 11.1 

(-0.1) 

14.5 

(-4.5) 

10.9 

(0.9) 

13.8 

(-1.4) 

5.9 

(0.3) 

8.5 

(2.5) 

2.6 

(0.3) 

3.4 

(1.7) 

2.1 

(0) 

2.1 

(0.6) 

2.4 

(-0.2) 

2.1 

(-0.3) 

20.8 

(0.2) 

28.2 

(-8.8) 

Panama Basin 12.5 

(-0.7) 

17.4 

(0.7) 

10.2 

(-3.4) 

9.5 

(1.5) 

6.5 

(-2.7) 

3.9 

(-6.7) 

4 

(2.3) 

5.8 

(-1.2) 

3.8 

(0.8) 

3.2 

(1.4) 

4.2 

(0) 

4.3 

(2.8) 

25.8 

(-0.3) 

38.8 

(1.3) 

Central South Pacific 10.1 

(-2.1) 

12.9 

(-3.4) 

10.3 

(1.2) 

10.9 

(-0.7) 

8.9 

(0) 

9.4 

(0.2) 

4.4 

(-0.1) 

4.5 

(0.8) 

3.8 

(-0.1) 

3.8 

(-0.4) 

3.3 

(0) 

3.5 

(-0.1) 

18.6 

(-3) 

24.3 

(-5) 

East Central South Pacific 10.7 

(-1) 

15.4 

(-0.1) 

10.6 

(0.6) 

15.2 

(1.4) 

6.9 

(1.2) 

7.5 

(1.3) 

4.1 

(0.4) 

2.8 

(0.1) 

3.8 

(-0.5) 

3.5 

(-0.2) 

3.3 

(-0.6) 

3 

(0.3) 

24.1 

(-1.2) 

34.2 

(0.5) 

Subpolar South Pacific 6.9 

(1.2) 

7.9 

(-0.9) 

5.8 

(-0.7) 

7.7 

(2.4) 

5 

(0.4) 

5.4 

(0.6) 

2.9 

(0.9) 

2.8 

(1.7) 

4.7 

(-1) 

4.8 

(1.2) 

4.1 

(0.7) 

4.4 

(1) 

13.7 

(2.4) 

16 

(-2.2) 

Antarctic Pacific 19.5 

(1.9) 

29.3 

(4.9) 

8.3 

(-1.4) 

7 

(0.5) 

3.6 

(-0.5) 

4.1 

(0.5) 

2.7 

(-0.1) 

3.3 

(0.7) 

2.6 

(0.3) 

2.9 

(0.3) 

2.6 

(0.5) 

2.1 

(-0.1) 

34.1 

(7.7) 

53.8 

(14.9) 

Main North Indian 10.8 

(-1.8) 

13 

(-7.7) 

10.5 

(2.8) 

12.9 

(1.7) 

8.1 

(-0.1) 

7.8 

(0.5) 

3.2 

(0.7) 

3.3 

(0.9) 

2.4 

(-0.4) 

2.6 

(-0.4) 

3.1 

(-0.2) 

3.7 

(0.2) 

19.8 

(-2.8) 

23.5 

(-12.7) 

Red Sea 18.3 

(-13.9) 

20.9 

(-16.7) 

12 

(-4.3) 

16.8 

(-3.5) 

9.4 

(0.2) 

8.7 

(-3.7) 

7.6 

(-4.3) 

7.9 

(-5.1) 

7.4 

(1) 

5.7 

(-4.4) 

3.3 

(-1.3) 

7.2 

(-1.1) 

28 

(-21) 

32.3 

(-25.5) 

Bengal Basin 6 

(1.1) 

3.7 

(-5.5) 

9.8 

(-0.2) 

7.4 

(2) 

7.4 

(0.3) 

6.4 

(1.3) 

2 

(0.4) 

2.1 

(1.1) 

1.9 

(0.4) 

2.1 

(-0.2) 

2 

(-0.6) 

2.2 

(-0.4) 

10.7 

(1.4) 

6.7 

(-10.2) 

Main South Indian 8.1 10.4 9.1 10 7.1 6.9 3.8 3.8 4.2 4.5 3.4 3.8 14 17.7 
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(-0.2) (0.4) (-0.1) (1) (0.3) (0.6) (-0.1) (0.9) (0.1) (1.1) (0.1) (0.1) (-0.1) (0.9) 

South Indian Transition 8 

(-0.4) 

9.4 

(0.7) 

5.3 

(-1.7) 

5.3 

(-0.4) 

4.1 

(0.8) 

4.4 

(0.8) 

4 

(0) 

3.7 

(0.5) 

3.9 

(-0.2) 

3.4 

(0.3) 

3.4 

(-0.6) 

3.7 

(-0.9) 

16 

(-0.7) 

18.8 

(1.9) 

Antarctic Indian 9.7 

(1.1) 

11.8 

(5.9) 

6 

(-1.4) 

6.8 

(0.2) 

4.1 

(0.4) 

4.7 

(0.6) 

3 

(0.1) 

3.3 

(0.3) 

2.5 

(-0.3) 

2.6 

(0.3) 

2.7 

(0.3) 

2.6 

(0.5) 

23.2 

(3.9) 

28.7 

(15.3) 

Cicumpolar Southern Ocean 15.9 

(0.9) 

24.5 

(9.8) 

7.6 

(-1.6) 

8.2 

(0.4) 

4.4 

(-0.2) 

4.9 

(0.3) 

3.1 

(-0.1) 

3.4 

(0.2) 

2.9 

(0) 

2.9 

(0.2) 

2.9 

(0.1) 

2.7 

(0.2) 

30.7 

(4.7) 

48.9 

(25.7) 

Weighted 11.1 

(0) 

15 

(2.8) 

11 

(-0.5) 

12.1 

(0.8) 

6.6 

(0.2) 

7 

(0.8) 

4.3 

(-0.1) 

4.5 

(0.5) 

4 

(-0.1) 

4.1 

(0.3) 

3.5 

(0.1) 

3.7 

(0.2) 

21.1 

(1.3) 

29.6 

(7.5) 
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Table 3. RMSE and bias between measured and computed TCO2 concentrations in several time series. The 

comparison was done using only water samples where all the input variables for NNGv2LDEO and the TCO2 

were measured in the same water sample. 

    NNGv2LDEO CANYON-B 

Time series Location Time period n 
RMSE 

(µmol kg-1) 

Bias 

(µmol kg-1) 

RMSE 

(µmol kg-1) 

Bias 

(µmol kg-1) 

BATS 31.7ºN, 64.2ºW 1988-2014 4121 7.7 0.1 7.7 -0.6 

HOT ALOHA 22.8ºN, 158ºW 1988-2017 4054 5.4 -0.5 5.1 -2 

HOT ALOHA SURF 22.8ºN, 158ºW 1988-2016 281 6.3 -1.6 5.8 -5.1 

ESTOC 29.3ºN, 15.5ºW 1995-2008 1697 7.1 0.8 6.6 4.7 

ICELAND 68ºN, 12.7ºW 1985-2013 1322 5.4 5.6 6.9 5.3 

IRMINGER 64.3ºN, 28ºW 1991-2013 1086 4.8 3.3 7.5 6.6 

K2 47ºN, 160ºE 1999-2008 615 3.6 1.3 6.3 2.4 

KNOT 44ºN, 155ºE 1997-2008 1321 5.8 -0.8 7.2 -1.9 

OWS 66ºN, 2ºE 2001-2007 803 6.8 -1 10.5 -4.7 

KERFIX 50.4ºS, 68.2ºE 1992-1994 38 13.2 26.4 13.1 28.9 

 

Table 4. RMSE and bias between measured pCO2 (and in some cases, computed from measured AT and TCO2 760 
in time series where pCO2 was not measured) and computed pCO2 with AT from NNGv2 (Broullón et al., 2019) 

and TCO2 from NNGv2LDEO in several time series. The time period for pCO2 from this study is the same as 

in Table 3. Consult Table 2 in Landschützer et al. (2014) for its time period. The depth range is 0-15 m. Only 

time series with more than 30 data points are included. RMSE and bias for computed AT with NNGv2 

(Broullón et al., 2019) and TCO2 with NNGv2LDEO are included to show the errors in the variables used to 765 
compute TCO2. 

 pCO2 AT TCO2 

 NNGv2LDEO 
Landschützer et al., 

2014 

NNGv2 

(Broullón et al. 

2019) 

NNGv2LDEO 

Time series 
RMSE 

(µatm) 

Bias 

(µatm) 

RMSE 

(µatm) 

Bias 

(µatm) 

RMSE 

(µatm) 

Bias 

(µatm) 

RMSE 

(µatm) 

Bias 

(µatm) 

BATS 17.2 9.7 15.6 0.4 5.6 -1.7 10.1 4.4 

HOT ALOHA SURF 10.3 -3.6 11.6 0.1 5.0 0.9 6.5 -1.6 

ESTOC 10.6 2.7 14.5 -7.1 2.6 -2.7 5.3 -0.6 

ICELAND 16 14.8 - - 5.4 0.7 5.4 5.4 

IRMINGER 13.1 -1.8 22.6 -1.1 7.0 -0.4 6.6 -1.1 
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K2 18.1 -3.2 27.8 -0.2 5.1 -0.5 5.7 -2.4 

KNOT 20.8 8.6 - - 6.6 -7.3 8.2 -2.5 

 

Table 5. Long-term trends (seasonally detrended) of the measured and computed TCO2 and pCO2 from neural 

networks at time-series locations in the depth range 0-15 m.  

 TCO2 (µmol kg-1 year-1) pCO2 (µatm year-1) 

Time series Measured Computed Measured* Computed 

BATS 1.2 1.1 1.8 1.7 

HOT ALOHA SURF 1.7 1.3 1.8 1.4 

ICELAND 0.9 0.9 1.5 1.6 

IRMINGER 0.6 0.5 2.5 1.7 

*Computed from measured AT and TCO2 in time series where pCO2 was not measured. 770 

 

Table 6: Comparison of four annual mean surface climatologies of TCO2. Numbers in the lower-left corner 

represent RMSE. Numbers in the upper-right corner represent r2. 

RMSE (µmol kg-1) - r2 NNGv2LDEO Lauvset et al. 2016* Takahashi et al. 2014 

NNGv2LDEO - 0.93 0.97 

Lauvset et al. 2016* 19.8 - 0.90 

Takahashi et al. 2014 13.2 23.7 - 

*The domain analyzed is the same as in Takahashi et al. (2014) for coherency reasons. 

 775 

Table 7. Comparison of the monthly TCO2 climatology of Takahashi et al. (2014) and the one of the present 

study. 

Month RMSE (µmol kg-1) Bias (µmol kg-1) r2 

January 16 3.0 0.95 

February 16.7 1.5 0.94 

March 15.8 2.5 0.95 

April 17 2.6 0.95 

May 16.8 2.5 0.95 

June 17.2 3.2 0.95 

July 22.6 4.0 0.92 

August 17.8 3.4 0.95 

September 15.5 2.5 0.97 

October 15.6 2.3 0.96 

November 15.7 2.7 0.96 

December 17.6 4.3 0.95 
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 780 

Figure 1. Division of the complete database in the datasets needed to train the neural network. The 

percentages in each level are relative to the number of data in the previous one. Data in the datasets of the first 

level are always the same for each network. Data in the sets of the second level are randomly associated to each 

set for each network to find the best network weights, because of the different starting points in the error-

weight space of the training process (see also Broullón et al., 2019). 785 

 

Figure 2. Regression of TCO2 computed using NNGv2LDEO and TCO2 in Gv2 and LDEO. The graph is 

divided in pixels. The color of each pixel is determined by the number of points inside it. Note the logarithmic 

scale of the pixels accounting for the large amount of data. 

 790 

 

Figure 3. Differences between (a) Gv2 TCO2 and NNGv2LDEO TCO2 (0-30 m) and (b) LDEO TCO2 and 

NNGv2LDEO TCO2 (0 m). This figure was made with Ocean Data View (Schlitzer, 2016). 
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 795 

Figure 4. Histograms and box plots of differences between measured and neural network computed TCO2 in 

(a) Gv2 and (b) LDEO. *TCO2 computed from measured pCO2 and neural network derived AT. 
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Figure 5. Measured (blue line) and computed (orange line) TCO2 with NNGv2LDEO for the depth range 0-15 

m (0-30 m in (b)) for several time series. (a) BATS, (b) HOT ALOHA SURFACE, (c) ESTOC, (d) ICELAND, 800 
(e) IRMINGER, (f) KNOT, (g) K2 and (h) OWS. 

 

Figure 6. Time series of TCO2 using NNGv2LDEO at (a) BATS and (b) HOT ALOHA locations. The water 

column shows a higher concentration of TCO2 year by year. This figure was made with Ocean Data View 

(Schlitzer, 2016). 805 

 

Figure 7. Annual mean climatology of TCO2 at (a) 0 m, (b) 100 m and (c) 1000 m. This figure was made with 

Ocean Data View (Schlitzer, 2016). 
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Figure 8. Seasonal amplitude of TCO2 at (a) 0 m, (b) 100 m and (c) 1500 m. The contour lines of 25, 50, 75 and 810 
100 µmol kg-1 are shown. This figure was made with Ocean Data View (Schlitzer, 2016). 

 

Figure 9. Comparison of the monthly climatological profiles of TCO2 computed from measured data (red 

profile; shadow area is the standard deviation of the averaged values at each depth level) and those from the 
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TCO2 climatology at (a) BATS and (b) HOT ALOHA locations. Units on the x axis are micromoles per 815 
kilogram (µmol kg-1). 

 


