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Abstract. The paper reports field data provided by the automatic monitoring of the annual hydrological response of a 

shallow deposit of loose pyroclastic soils located in a mountainous area of Campania, Southern Italy. The monitoring station 

is installed along the northern slope of mount Cornito, about 2 km east of the town of Cervinara, which in December 1999 

had been involved in a rainfall-induced flowslide. The collected data concern rainfall height, soil moisture content and 10 

suction. In particular, the installation at the same depths of suction and moisture sensors allows to estimate the soil water 

retention features that seem to indicate some hysteretic nature of the wetting/drying processes induced by weather conditions 

and their influence on the local stability conditions.  

The data reported in the paper are freely available at https://doi.org/10.5281/zenodo.4281166  (Comegna et al., 2020). 

1 Introduction 15 

The hydraulic response of unsaturated soils subjected to infiltration and/or evaporation phenomena is usually modelled 

through the well-known Soil Water Retention Curve, SWRC, correlating matric suction, s, with volumetric water content,  . 

Experimental evidence and theoretical considerations (Mualem, 1976; Pham, 2002; Wheeler et al., 2003; Tami et al., 2004; 

Li, 2005; Tarantino, 2009; Yang et al., 2012; Pirone et al., 2014; Comegna et al., 2016c; Chen et al., 2017; Chen et al., 2019; 

Rianna et al., 2019) indicate that the SWRC is not univocal, but may depend on soil initial conditions and on the induced 20 

wetting or drying paths, revealing an hysteretic nature.  

Figure 1 shows the typical response of an initially saturated soil specimen subjected to drying and wetting cycles. During the 

first drying stage, the volumetric water content decreases from the initial value, s,d, following a path, known as the main 

drying curve, until attaining the minimum, corresponding to a high suction value, known as the “residual soil moisture 

content”, r. In the subsequent wetting process the volumetric water content increases along a different path, known as the 25 

main wetting curve (Fig. 1), until reaching a final maximum value, s,w, at zero suction: s,w  is usually different from s,d  

because of some air entrapment that prevents to reach a saturation degree equal to one. However, in some cases, if the 

wetting process is very slow, it may occur that s,w  s,d.  

If moving along one of these paths a reverse process is initiated, the main path is abandoned and a different scanning curve, 

located between the two main paths, is then travelled (Fig. 1). Scanning curves, which in turn may be characterised by 30 
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internal hysteretic loops, present a lower slope than the main curves: this physically means that, starting from the same 

matric suction, the variation in soil moisture corresponding to a given suction change is smaller running a scanning than a 

main curve. As shown in Figure 1, the final part of a scanning path may coincide with the nearest primary curve. Concerning 

this point, Tami et al. (2004) report the results of some tests carried out on a 30° model slope consisting of a 40 cm thick 

layer of fine sands, overlying a 20 cm thick layer of gravelly sands, subjected to artificial precipitations of different intensity. 35 

Figure 2 shows the scanning curves obtained by fitting the coupled data measured by a tensiometer and a TDR located at a 

depth of 30 cm during two consecutive drying stages (1-2, 2-3) and two consecutive wetting stages (4-5, 5-6). The main 

drying and wetting curves had been independently obtained through a Tempe cell and capillary rise tests. 

 

Figure 1: Hysteretic wetting/drying paths. 40 
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Figure 2: Scanning curves obtained from flume tests carried out by Tami et al. (2004). 

 45 

The described hydraulic soil response, known as hydraulic hysteresis, may be related to microscopic phenomena affecting 

the energy state of water at pore scale (i.e. variations of contact angle during solid particles wetting and drying, or 

bottlenecks differently affecting filling and emptying of pores), as well as macroscopic phenomena depending on the 

boundary conditions and on the rate of the specific transient wetting/drying process (e.g. air entrapment). Consequently, the 

same water content may be associated with different water potential energies, thus with different suction values within an 50 

interval defined by the highest and lowest limits respectively imposed by the main drying curve and the main wetting curve.  

Field monitoring is doubtless a helpful tool to fully understand the hydrological behaviour of soils. Well aware that such 

response could in turn affect the stability conditions of the slope, an automatic monitoring station has been installed in a 

shallow layer of loose pyroclastic soils covering a steep mountainous area in a site in Campania Region (Southern Italy), 

which in 1999 had been the seat of rainfall-induced flowslide causing the death of four people (Olivares and Picarelli, 2003). 55 

The availability of continuous data, consisting of rainfall height, soil moisture content and suction readings, allowed to 
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collect useful information. The data reported in the present paper concern the time period going from January, 2011, to 

January, 2012. Such data have been also used to estimate the slope stability conditions at the investigated depths. 

2 Monitoring site 

The site is located at an elevation of 560 m a.s.l., on the North-East facing slope of mount Cornito (Fig. 3a), 2 km far from 60 

the town of Cervinara (Campania Region, Southern Italy). The area is characterised by a humid Mediterranean climate, with 

most precipitations occurring between October and April and warm and dry summer. The mean annual rainfall height is 

around 1600 mm, and the mean annual potential evapotranspiration around 750 mm (Marino et al., 2020). Figure 4 reports 

mean monthly values of rainfall height, mean daily temperature and evapotranspiration. 

 65 

 

Figure 3: Location of the automatic monitoring station (modified after Damiano, 2004) (a), and sketch of the local stratigraphy 

and position of the sensors (b). 
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Figure 4: Mean monthly values of rainfall height, R, temperature, T, and potential evapotranspiration, PET, estimated with the 

Thornthwaite expression (1946). 

 

Geological surveys and geotechnical investigations reveal that the basal Mesozoic–Cenozoic fractured limestones are 75 

overlain  by air-fall sandy soils resulting from the explosive volcanic activity of Somma–Vesuvius and Phleagraean Fields 

(Fiorillo et al., 2001; Picarelli et al., 2006; Damiano et al., 2012). In particular, the pyroclastic deposits consist of alternating 

layers of ashes and pumices, more or less parallel to the bedrock surface, with a thickness strongly dependent on the slope 

angle, ranging from some decimetres in the steepest upslope zones (about 50°) to more than 10 m at the foot of the hill 

(Guadagno et al., 2011). Some layers locally miss, possibly as a result of past landslides or of erosive processes. Cultivated 80 

chestnut trees are widespread on the slope, except some areas where the vegetation consists of shrubs and grass. When the 

tree foliage is present, usually from May to late September, a dense underbrush grows, mainly formed by ferns and other 

seasonal shrubs. Differently, in October the leaves get dry and fall, and the underbrush disappears until the following late 

spring. During late autumn and winter the ground is mostly covered by a layer of litter, mainly originating from fallen 

chestnut leaves. The seasonal variations of vegetation affect the soil hydrologic response to meteorological forcing by: i) 85 

interception of the precipitation caused by canopy, understory and litter; ii) root water uptake, that distributes the total 

evapotranspiration flux over the root depth, according to the local value of soil water potential, which is highly variable 

throughout the year owing to the dormant leafless vegetation in winter (Comegna et al., 2013). Visual inspections in trenches 

dug during the investigations that have been carried out on site showed that roots usually extend across the entire soil depth 

up the basal limestones, with a maximum density within the uppermost 0.50 m of soil cover, becoming sparse below the 90 

depth of 1.50 m. 

https://doi.org/10.5194/essd-2020-362

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 14 January 2021
c© Author(s) 2021. CC BY 4.0 License.



6 

 

The monitored deposit is 1.9 m thick with a sloping angle of about 40°. The local stratigraphy consists of the following 

unsaturated soil layers (Fig. 3b): 1) topsoil, 10 cm thick; 2) coarse pumices, 40 cm thick; 3) ashes, 1.30 m thick; 4) altered 

ashes, 10 cm thick, located just above the bedrock. The volcanic ash is a sandy silt, the pumices are sandy gravels. The 

lowermost thin altered ash layer overlying the bedrock is a sandy silt with a plasticity index ranging in the interval 10–30%. 95 

The soil porosity ranges between 50% and 75% (Table 1). The shear strength parameters are typical of essentially 

cohesionless coarse grains soils. 

 

Table 1: Main physical properties of the pyroclastic cover. 

layer s [kN/m3]  [kN/m3] porosity [%] c’[kPa] φ’[°] 

coarse pumices 23 13 50-55 0 45 
ashes 26 14 68-75 0 38 
altered ashes 26 16 60 2 38 

 100 

Monitoring started at the beginning of 2002 (Olivares et al., 2003; Damiano et al., 2012). Rainfall was automatically 

recorded at a hourly time step by a rain gauge having a sensitivity of 0.2 mm. Soil suction was manually measured by “Jet-

fill” tensiometers equipped with a Bourdon manometer, installed at different depths in the ash layers.  An additional 

automatic monitoring station has been installed in 2009. It consists of eight “Jet-fill” tensiometer, equipped with tension 

transducers, and of seven metallic probes for Time Domain Reflectometry (TDR) aimed at measuring volumetric water 105 

content (Comegna et al. 2016a). The ceramic tips of the tensiometers were pushed into the soil through small holes 

previously dug by a drill. The uppermost part of the hole was then filled with a bentonite–cement mixture to avoid any water 

infiltration. A careful maintenance was granted by regularly checking the complete saturation of the instruments (especially 

after long-lasting dry periods) and filling the tube with de-aired water in order to remove air bubbles; moreover, the 

instruments were carefully checked after cold periods when low temperatures could freeze. The soil moisture sensors consist 110 

of three 100-400 mm long metallic rods having a diameter of 3 mm and spacing of 15 mm. Once vertically buried in the soil, 

the probes were connected through coaxial cables and a multiplexer to a Campbell Scientific Inc. TDR-100 reflectometer. 

TDR readings provide the soil bulk dielectric permittivity, r, which can be converted to soil volumetric water content, , 

through a calibration relationship (Topp et al., 1980). A specific relationship has been purposely found by Guida et al. (2012) 

through targeted laboratory tests on undisturbed samples taken nearby the monitoring station; the average error in the 115 

estimation of the volumetric water content is ±0.02 m3/m3. All the sensors are connected to the Campbell Data Logger. The 

monitoring station is powered by a solar panel with a 12V backup battery. The automatic acquisition and storage of data is 

set with a time resolution of six hours.  

The following section describes the field data collected from January, 1st, 2011 to January, 31st, 2012 at the depths z = 0.60 

m and z = 1.00 m, where the 7 cm long tensiometer ceramic tips, L2-1 and L2-2, are located in the ash layer in vicinity  of 120 

the 40 cm long TDR probes S2-1 and S2-2 (Fig. 3b). For the sake of clarity, it has to be pointed out the sensors sample 

different soil volumes; this might lead to an imperfect matching of data.  
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Regarding the water retention properties, Figure 5 shows the results of nine laboratory wetting tests performed by Damiano 

and Olivares (2010) and by Olivares et al (2019). Such tests were carried out in the laboratory on a 40 cm thick model slope 

formed with Cervinara ash and volcanic ashes with same grain size taken from the nearby Monteforte Irpino sloping site. 125 

The model slope was reconstituted at the field porosity of 75%. During artificial infiltration tests, soil matric suction and 

moisture content were respectively measured by a miniaturised tensiometer and a TDR probe installed close to each other at 

depths from 1.5 to 8.5 cm. The initial soil moisture and suction values were respectively in the range 0.21-0.34 and 15-60 

kPa (Fig. 5). The wetting curve first ran rather a flat wetting path and then a steeper path until attaining full saturation. The 

experimental points along such a steepest curve were fitted with the van Genuchten equation (1980) 130 

𝜗 = 𝜗𝑟 +
𝜗𝑠−𝜗𝑟

[1+(αs)n]m            (1), 

assuming s = 0.75 (that corresponds to the soil porosity) and r = 0 (a value which is consistent with the coarse-grained 

nature of the soil), Table 2 shows the best fitting , n and m values. In order to help the interpretation of the in-situ 

hydrological response, the obtained curve is reported in the next section, together with the monitored field data as a possible 

reference lowest boundary. 135 

 

Figure 5: Coupled values of matric suction and water content measured during infiltration tests (Damiano and Olivares, 2010, and 

Olivares et al., 2019). 

 

Table 2: Van Genuchten parameters (Eq. 1), representative of the lowest water retention boundary shown in Figure 5. 140 
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3 Results of field monitoring 

The wetting and drying processes affecting the cover are of course strictly governed by the weather forcing, typical of the 

Mediterranean climate, characterized by warm and dry summer. Figure 6 shows the monthly cumulative precipitations in 

2011 provided by the rain gauge installed on the slope, and the average monthly values of minimum, Tmin, daily mean, Tmed, 

and maximum, Tmax, temperature monitored by a local weather station managed by Campania Civil Protection Agency. The 145 

total cumulative rainfall was 1360 mm, a value lower than the mean yearly rainfall in the same area. A daily precipitation 

higher than 1 mm was recorded 99 times; the daily rainfall exceeded the value of 50 mm only in five cases (February, 16th; 

April, 30th; September, 19th; November, 6th; December, 5th). March was the rainiest month, with a total precipitation of 296 

mm, i.e. 22% of the yearly rainfall. The dry season started in June continuing until the end of October. In such a season some 

significant isolated rainy events characterised by daily precipitations ranging between 17.4 mm and 19.2 mm occurred on 150 

July, 29th; September, 7th; October, 8th; October, 22nd; another more severe event totaling 53 mm took place on September, 

19th. In November and December the cumulative rainfall was about 30% of the annual precipitation: the most intense daily 

rainfall occurred on November, 6th (58 mm). 

The daily mean air temperature was close to average, with a slightly warmer summer. The potential evapotranspiration can 

hence be assumed to be close to the average estimated values shown in Figure 4. In particular, the mean daily temperature 155 

was higher than 15°C from May, 19th, to October, 7th, attaining values higher than 20°C from July, 30th, to September, 18th. 

The lowest Tmin value was measured in February (4 °C), and the highest Tmax  (31 °C) in August. 

The data obtained by coupling moisture content and matric suction at the depths of 0.60 m and 1.00 m are discussed in the 

following section by distinguishing eight time windows characterized by different weather conditions. Due to some technical 

problems, related to the emptying of the tensiometers (occurring especially during the warmest periods) or to some loss in 160 

battery power, the records present some data lacks. In particular, unfortunately no retention data are available from July, 19th 

to November, 4th, 2011 and from December, 6th, 2011 to January, 6th, 2012. 

 

 

Figure 6: Monthly cumulative rainfall and average monthly minimum (Tmin), daily mean (Tmed) and maximum (Tmax) values of air 165 
temperature monitored in 2011. 
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3.1 Time window A-B: January, 1st - May, 8th  2011 

The total precipitation in this time interval was 695 mm, which corresponds to 51% of the annual cumulative value. Until 

March, 12th, the mean daily air temperature ranges between 0.5°C and 12.8°C (Fig. 7a), then it steadily increases from 5.8°C 170 

to 16.7°C (with an increasing trend of 1.8°C/month).  

On January, 1st, the moisture content and matric suction measured by S2-1 and  L2-1 at depth of 0.60 m are respectively 0.39 

and 11 kPa (Fig. 7b). Such values are the result of the antecedent weather conditions; in particular, the total precipitation in 

the previous 30 days had been 170 mm and the mean daily air temperature 7°C (Fig. 7a). As shown in Figure 7b, the soil 

moisture content measured in the examined window is 0.34-0.41 while the matric suction ranges in the interval 3-16 kPa. 175 

During the dry days, the soil moisture decreases with a rate of -1%/month while suction tends to increase with an average 

rate of about 1.4 kPa/month. Such a drying path is periodically reversed by some rainfall-induced wetting processes. In 

particular, three sudden drops of suction are recorded on January, 23rd, February, 17th, and May, 1st, due to very similar 

rainfall events featured by a total precipitation of 48-58 mm cumulated over the antecedent 48 hours. 

At depth of 1.00 m, the volumetric water content, measured by S2-2, and suction, measured by L2-2, range respectively in 180 

the intervals 0.29-0.37 and 4-16 kPa (Fig. 7c). Soil moisture tends to decrease of -0.8%/month, while  suction is increasing 

with an average rate of about 1.0 kPa/month. Such trends are hence slower than at the shallower depth. This reflects a minor 

role of evapotranspiration during winter and early spring (when the vegetation is leafless), when the soil profile is slowly 

drained downward owing to the existing small water potential gradient, which departs from the gravitational -1 only during 

rainfall. The large amount of precipitation and the small variations of water content and soil suction at both depths suggest 185 

that the soil cover is being crossed by an intense downward flux, which causes temporary small increments of water content 

in response to rainfall events, followed by slower reductions. Indeed, at both depths the water content is steadily  higher than 

the field capacity (i.e. about 0.25 m3/m3).  

All data have been reported in the water retention plane s-  shown in Figure 8a and 8b, together with the corresponding 

fitting curves, named AB. At both investigated depths, the fitting curve AB is quite flat with an overall slope of about -0.4 190 

%/kPa.  

3.2 Time window B-C: May, 8th - June, 22nd 2011 

This window is featured by a cumulative rainfall of 85 mm and a daily air temperature ranging in the interval 10-24°C, with 

an increasing trend of 4.3°C/month (Fig. 7a). During this season, vegetation starts growing further and further thus 

accommodating the increasing evapotranspiration demand and influencing the hydrological soil response through root water 195 

uptake.   

At depth z = 0.60 m, suction ranges between 10 kPa and 24 kPa, growing with a rate of about 9 kPa/month. This matches a 

reduction in soil moisture, that reaches the value of 0.25 with a decreasing trend of -9 %/month (Fig. 7b), which is more 

pronounced than during the previous time window due to an intense root water uptake from the uppermost soil layer. 
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Collected data can be well fitted by the curve BC in Figure 8a provided by Eq. (1) through the parameters shown in Table 3 200 

(using again s = 0.75 and r = 0). The path BC is clearly steeper than the curve AB. 

 

Table 3: Van Genuchten parameters (Eq. 1) representative of the curve BCD curve shown by Figure 8a. 

qs qr  [kPa-1] n m 

0.75 0.00 0.11 2.17 0.54 

 

At depth z = 1.00 m (Fig. 7c), until June, 6th, water content and suction display little variations, moving respectively from 205 

0.33 to 0.31 and from 15 kPa to 17 kPa. Measured values are again well fitted by the curve AB (Fig. 8b). After such a 

period, which is probably still characterized by some gravitational downward drainage, the soil starts drying quickly at this 

depth too being forced by root water uptake. The water content decreases with a rate of about -4%/month attaining a value of 

0.27 at the end of this time window, while the increasing suction rate is similar to the one observed at 0.60 m. Such data are 

well interpolated by the path CD (Fig. 8b), which is steeper than the path AB, but gentler than the CD curve detected at 0.60 210 

m because of a lower evapotranspiration effect. The fitting parameters, reported in Table 4, are different from those obtained 

for z = 0.60 m (Table 3). Besides to evapotranspiration effects, such differences might be justified also by small differences 

in grain size and/or void ratio of the soil (Comegna et al., 2016a). 

 

 215 

Table 4: Van Genuchten parameters (Eq. 1) representative of the curve CD shown by Figure 8b. 

qs qr  [kPa-1] n m 

0.75 0.00 0.76 1.33 0.25 
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Figure 7: Hourly weather data (a), matric suction and volumetric water content monitored from January to July, 2011 at depth z 

= 0.60 m (b) and z = 1.00 (c). 
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 220 

Figure 8: Volumetric water content and matric suction recorded from January to July, 2011 at depths z = 0.60 m (a) and z = 1.00 

m (b) and iso-Safety Factor curves. 
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3.3 Time window C-D: June, 22nd - July, 18th  2011 

In such a dry time interval the average daily temperature is 23.7°C with an increasing trend of 3.3°C/month and the 225 

cumulative rainfall is 14 mm (Fig. 7a). The flourishing vegetation and the high temperature suggest that evapotranspiration 

is largely exceeding infiltration by rainwater causing drainage of the soil cover owing to the action of plant roots. 

At z = 0.60 m, the soil moisture reaches a value of 0.17, while suction grows by about 22 kPa/month until a value of 35 kPa 

(Fig. 7b). It is worth noting that in the retention plane the path BC can properly fit recorded field data (Fig. 8a). 

At z = 1.0 m, soil moisture reaches the value of 0.24, while suction increases with a rate of about 13 kPa/month attaining a 230 

value of 34 kPa (Fig. 7c). In the retention plane, the field data are well interpolated by the curve CD (Fig. 8b). 

3.4 Time window E-F: November, 5th - November, 6th 2011 

In the time interval from July, 19th to November, 4th, during which, as already stated, monitoring of water content and 

suction stops, the air temperature goes from the mean value of 24.6°C, reached in August, to 14.4°C, in October. Regarding 

precipitations, from September to October the rain gauge records a cumulative precipitation of 168 mm fallen in only 9 235 

isolated rainy days (Fig. 9a). Such a few concentrated precipitations seem to have been recorded by the shallowest sensors 

only. In fact, if the data acquired on November, 5th, are compared to those monitored on July, 18th, we can notice a moisture 

increase (from 0.17 to 0.24) and a suction decrease (from 35 to 22 kPa) at 0.60 m (Fig. 9b), while the sensors at z = 1.00 m 

(Fig. 9c) record a small water content decrease (from 0.24 to 0.23) and an increase of suction, from 34 to 47 kPa.  

The most intense daily rainfall in 2011 takes place on November, 6th. The total precipitation is 58 mm (Fig. 9a) and causes a 240 

volumetric water content increase from 0.24 to 0.43 (Fig. 9b) at 0.6 m, and from 0.23 to 0.27 at 1.0 m (Fig. 9c). At both 

depths the highest drop in suction is recorded; in fact, the decrease measured by L2-1 is from 22 kPa to 1.9 kPa (Fig. 9b) and 

the one recorded by L2-2 is from 47 kPa to 13 kPa (Fig. 9c). These data are represented in the water retention plane by the 

paths EF (Figs. 10a and 10b) well different from those ran in May and June. It’s worth noting that at the shallowest depth, 

the final point F reaches the curve obtained by interpolating the flume tests described in Section 2 (Fig. 5), which might be 245 

considered to be a reliable lowest boundary (the main wetting curve). 
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Figure 9: Monitored hourly weather data (a), matric suction and volumetric water content from November, 2011 to January, 2012 

at the depth z = 0.60 m (b) and z = 1.00 (c). 
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 250 

Figure 10: Volumetric water content and matric suction, monitored from November, 2011 to January, 2012 at depths z = 0.60 m 

(a) and z = 1.00 m (b), and iso-Safety Factor curves. 

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0 5 10 15 20 25 30 35 40 45 50

v
o

lu
m

e
tr

ic
 w

a
te

r 
c
o

n
te

n
t

matric suction [kPa]

hypothesized upper boundary

hypothesized lowest boundary

FS=1.1

FS=1.3

FS=1.5

FS=2.0

E

H
G

M

F L

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0 5 10 15 20 25 30 35 40 45 50

v
o

lu
m

e
tr

ic
 w

a
te

r 
c
o

n
e
tn

t

matric suction [kPa]

hypothesized upper boundary

hypothesized lowest boundary

FS=1.1

FS=1.3

FS=1.5

FS=2.0

E
F

G

H I
L

M

a)

b)

https://doi.org/10.5194/essd-2020-362

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 14 January 2021
c© Author(s) 2021. CC BY 4.0 License.



16 

 

3.5 Time window F-G: November, 7th – December, 3rd 2011 

Such a time interval is characterized by dry weather. In fact, one single rainfall event only of 12 mm occurs on November, 

22n. The mean temperature is about 10°C. Moreover, leafless vegetation probably did not accommodate the small 255 

evapotranspiration demand favouring an essentially downward flow, initially driven by a high potential gradient due to a 

wetter uppermost soil profile, then progressively approaching a slow gravity driven drainage. In fact, at z = 0.60 m, the water 

content decreases from 0.43 to 0.28 while soil suction increases from 1.9 kPa to 20 kPa (Fig. 9b). In the water retention 

plane, the corresponding drying path FG is located above previous wetting path EF, about parallel to it (Fig. 10a). It is worth 

to note that at point G it reaches the BCD curve travelled from May to July, confirming that drying develops according to 260 

smoother paths and gently approaches the field capacity, when soil drainage is not forced by root water uptake.  

At z = 1.00 m, the water content decreases from 0.27 to 0.25 and soil suction increases from 13 kPa to 19 kPa (Fig. 9c). The 

corresponding drying path FG pursues backwards previous path EF (Fig. 10b). 

 

3.6 Time window G-H: December, 5th 2011 265 

On December, 5th, a single precipitation of 98 mm over 48 hours causes an increase of the water content at both depths. As a 

consequence, at z = 0.60 m the water content grows from 0.28 to 0.40 and suction drops to 2.5 kPa  (Fig. 9b). The wetting 

curve GH overlaps previous FG drying path (Fig. 10a). Again, the final point H reaches the assumed lowest boundary. 

At z = 1.00 m the water content increases from 0.25 to 0.36, less than above, while suction decreases to 4.5 kPa. The final 

point H does not reach the assumed main wetting curve (Fig. 10b). 270 

 

3.7 Time window H-I: December, 6th – December, 11th 2011 

No precipitations occur during this short time window.  

Available data concern only depth z = 1.00 m. The moisture content decrease from 0.36 to 0.31 and soil suction increases to 

10 kPa (Fig. 9c). The drying path HI is located above and parallel to the wetting path GH (Fig. 10b). 275 

 

3.8 Time window L-M: January, 7th, 2011 – January, 31st, 2012 

Such a period is characterized by negligible evapotranspiration owing to cold temperatures and leafless vegetation. Hence, 

the observed trend of water content and suction can be ascribed to gravitational downward drainage, which in the long run 

would lead the soil cover to approach field capacity.  280 

Until January, 21st, 2012 suction increases from 6 kPa to 13 kPa at z = 0.60 m and from 10 kPa to 14 kPa at z = 1.00 m. On 

that date, a 12-hours cumulative 16 mm rainfall causes a drop in suction of  6 kPa and 3 kPa respectively at the shallowest 
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and deepest tensiometers. Then suction increases again until the final values of 12 kPa (z = 0.60 m) and 13 kPa (z = 1.00 m) 

associated with water contents of 0.32 and 0.31.  

All field data are quite well interpolated by the paths GH at z = 0.60 m (Fig. 10a) and HI at z = 1.00 m (Fig. 10b). 285 

4 Discussion 

The hydraulic paths plotted in Figs. 8 and 10 show that, at different times, different values of matric suction have been 

observed at both instrumented depths for the same the soil moisture content. The relationship between these two variables is 

then not univocal. In particular, the difference depends on the initial conditions (i.e. on the starting point). This reveals the 

hysteretic nature of the hydrological soil response.  290 

Therefore, all obtained paths should be considered as scanning curves located between the main drying and the main wetting 

curve. In more detail, the steepest drying paths obtained during the warmest days as a result of intense evapotranspiration 

owing to flourishing vegetation (curve BCD at z = 0.60 m; curve CD at z = 1.00 m) tend to the assumed main drying curve. 

It’s also interesting to notice that, at 1.0 m depth, such final steeper path is reached on June, 6 th, i.e. with a delay of about one 

month with respect to the shallowest depth (where it has been attained on May, 8th). Such a result could be related to the 295 

delayed and mitigated effect of evapotranspiration due to the water uptake by roots, which are denser at depths less than 0.50 

m, but are present down to a depth of 1.50 m more or less. During the periods of leafless vegetation and low temperatures, 

when the amount of evapotranspiration is modest, the drying paths are less steep and well below the assumed upper 

boundary.  

All wetting paths move along gentler curves than the drying paths suggesting that vegetation does not affect soil wetting. 300 

In order to estimate to what extent the slope stability conditions are affected by such a hysteretic response, some simple 

analyses have been carried out by the infinite slope model that is a suitable for Cervinara slope (Greco et al., 2013; Comegna 

et al., 2016b). In particular, assuming a homogeneous deposit with slope angle α = 40°, unit weight  = 14 kN/m3, cohesion 

c’ = 0, friction angle φ’ = 38°, saturated volumetric water content s = 0.75, residual water content r = 0, the factor of safety 

FS at depth z is provided by the formula: 305 

 

𝐹𝑆 =
tanφ′

tanα
+

capp

γ∙z∙senα∙cosα
           (2) 

 

where 𝑐𝑎𝑝𝑝 =  s ∙
𝜗−𝜗𝑟

𝜗𝑠−𝜗𝑟
∙ tanφ′  is the expression provided by Vanapalli et al. (1996) to define the apparent cohesion, a 

strength component which accounts for the role of suction. Assuming,  constant for the sake of simplicity, the variation of 310 

FS with time is only due to capp fluctuations. In particular, Eq. (2) shows that, at depth z = 0.60 m, slope stability is 

guaranteed by an apparent cohesion equal to or higher than 0.3 kPa, and by capp = 0.5 kPa or more at  z = 1.00 m. 
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Figures 11 and 12 show the fluctuations of the safety factor FS during the period of monitoring . At z = 0.60 m, FS ranges 

between a minimum value of 1.13, attained on November, 6th (Fig. 12a), and a maximum of 2.22, on July, 5th (Fig. 11a), 

which respectively correspond to capp values of 0.8 and 6.6 kPa. At z = 1.00 m, FS ranges between 1.18 and 2.60, on 315 

December, 5th, and on November, 5th (Fig. 12b), corresponding to a capp interval 1.5-11.6 kPa. The higher fluctuation of FS at 

the shallowest depth, z = 0.60 m is obviously due to a higher suction variation.  

In Figures 8 and 10 the iso-Safety Factor curves, i.e. featured by constant FS values, have been plotted. At a given suction, s, 

FS increases with the soil moisture; this means that the lower scanning curves correspond to worse safety conditions. For 

instance, looking at Figure 10, the FS values calculated along the wetting path EF, that originates after the dry season, are 320 

lower than those corresponding to the drying curve LM that starts after the rainfall events occurred in November and in 

December; also, the changing rate of the safety factor FS is always remarkable along the scanning paths where little changes 

of the soil moisture content can induce high suction changes.   

It is interesting to notice that the lowest FS value is attained at z = 0.60 m on November, 6th, i.e. after the most intense 

rainfall event recorded in 2011, when the wetting path reaches the assumed lower boundary at point F (Fig. 10a), featured by 325 

s = 1.9 kPa and  = 0.43. Starting from this condition, a further, just hypothetical, persistent and intense rainfall event could 

have forced the point to follow the final steeper branch of the main wetting curve, which has been obtained the flume tests 

(Fig. 5). In particular, the failure condition (FS = 1) would have been reached for a soil moisture  = 0.69 (s = 0.40 kPa), i.e. 

for a water content increase  = 0.26 (or a suction decrease s = -1.5 kPa). Such a large increase in the water content 

indicates that landsliding in the area at hand is not so obvious, being the consequence of exceptional weather conditions as 330 

chronicles and statistical analyses suggest (Comegna et al., 2017). 
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Figure 11: Factor of Safety, FS, calculated from January to July, 2011 at the depth z = 0.60 m (a) and z = 1.00 m (b). 
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 335 

 

Figure 12: Factor of Safety, FS, calculated from November, 2011 to January, 2012 at the depth z = 0.60 m (a) and z = 1.00 m (b). 
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5 Conclusions 

The setup of an automatic field station allowed monitoring the annual cyclic hydrological response of a sloping deposit in 

pyroclastic air-fall soils. Even though the relationship between measured water contents and suction values has to be 340 

carefully considered accounting for all the factors which can adversely affect the validity of such a relationship (small 

differences in grain size or porosity, which is dependent also on the installation procedures of the soil around the sensors, 

different soil volumes affecting the response of sensors, different reliability in data interpretation), monitoring provide useful 

information about the hydrological soil response. 

In particular, collected data highlight the influence of the initial conditions, which depend on the antecedent wetting/drying 345 

history, on the weather-induced hydraulic paths. In fact, different soil moisture values can be associated with the same matric 

suction due to the hysteretic soil response. Moreover, soil drying may be affected by evapotranspiration due to water 

exctraction by roots, and this in a different way in the different seasons.  

As indicated by simple stability analyses, in the examined period the slope has been always quite far from failure conditions. 

In particular, the hydraulic path leading to slope failure is generally featured by quite a high soil moisture change. This is 350 

well detectable by TDR sensors, but is characterized by so low suction changes (less than 2 kPa) to be hardly measurable by 

ordinary tensiometers. Such results unavoidably raise some questions on the best way to set up reliable early warning 

systems in areas threatened by rapid landslides in shallow unsaturated granular soil covers. 

The research is continuing in order to check the validity and repetitiveness of collected data and to deepen the soil response 

to weather forcing.  355 
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