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Abstract 23 

Long-term climate data and high-quality baseline climatology surface with high resolution are 24 

highly essential to multiple fields in climatological, ecological, hydrological, and environmental 25 

sciences. Here, we created a brand-new baseline climatology surface (ChinaClim_baseline) and 26 

developed a 1km monthly precipitation and temperatures dataset in China during 1952-2019 27 

(ChinaClim_timeseries). Thin plate spline (TPS) algorithm in each month with different model 28 

formulations by accounting for satellite-driven products, was used to generate ChinaClim_baseline 29 

and monthly climate anomaly surface. Meanwhile, climatologically aided interpolation (CAI) was 30 

used to superimpose monthly anomaly surface with ChinaClim_baseline to generate 31 

ChinaClim_timeseries. Our results showed that ChinaClim_baseline exhibited very high 32 

performance. For precipitation estimation, the values of all R2 were over 0.860, and the values of 33 

RMSEs and MAEs were 8.149 mm~21.959 mm and 2.787~14.125 mm, respectively. Annual average, 34 

maximum and minimum temperature had average R2 of 0.967~0.992, MAEs of 0.321~0.785 °C, and 35 

RMSEs between 0.485 °C and 1.233 °C for all months. ChinaClim_baseline performed much better 36 

than WorldClim2 and CHELSA, especially in summer months and the regions with low-density 37 

weather stations in temperate continental and high cold Tibetan Plateau climate zones. For 38 

ChinaClim_timeseries, precipitation had an average R2 of 0.699~0.923, an average RMSE between 39 

7.449 mm and 56.756 mm, and an average of MAE of 4.263~40.271 mm for all months. Temperature 40 

elements had an average R2 of 0.936~0.985, an average RMSE between 0.807 °C and 1.766 °C, and 41 

an average MAE of 0.548~1.236 °C for all months. Compared with Peng’s climate surface and 42 

CHELSAcruts, R2 increased by approximately 6 %, RMSE and MAE decreased by approximately 43 

15 % for precipitation; R2 of temperatures had no obvious changes, but RMSE and MAE decreased 44 

by 8.37~34.02 %. The results showed that the performance of ChinaClim_timeseries in interannual 45 

variations performed much better than other datasets, thanks to the help of ChinaClim_baseline and 46 

satellite-driven products. Remarkably, ChinaClim_baseline did not greatly improve precipitation 47 

estimation, but it deeply improved temperature estimation; the satellite-driven TRMM3B43 48 

anomaly can greatly improve precipitation estimation, while the LST anomaly did not substantially 49 

improve temperature estimation. ChinaClim_baseline can be used as an excellent baseline 50 
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climatology surface for obtaining high-quality and long-term climate datasets from past to future. 51 

In the meantime, ChinaClim_timeseries of 1km spatial resolution based on ChinaClim_baseline, is 52 

very suitable for investigating the spatial-temporal climate changes and their impacts on eco-53 

environmental systems in China. Now, ChinaClim_baseline is available at 54 

https://doi.org/10.5281/zenodo.4287824 (Gong, 2020a), ChinaClim_timeseries of precipitation is 55 

available at https://doi.org/10.5281/zenodo.4288388 (Gong, 2020b), ChinaClim_timeseries of 56 

maximum temperature is available at https://doi.org/10.5281/zenodo.4288390 (Gong, 2020c) and 57 

ChinaClim_timeseries of minimum temperature is available at 58 

https://doi.org/10.5281/zenodo.4288392 (Gong, 2020d). 59 
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1 Introduction 79 

Long-term information on climatic conditions is pivotal for understanding global changes including 80 

atmospheric movements, vegetation dynamics, soil moisture, and other related scientific and 81 

application fields which are conducted at a resolution of ~1 km (Chaney et al., 2014; Gao et al., 82 

2018; Hijmans et al., 2005; Karger et al., 2017; Liu et al., 2016; New et al., 2002; Pfister et al., 2020; 83 

Wagner and Wolfgang, 2003). However, global climate datasets often only represent climatic 84 

variation at spatial resolutions of 0.25~1 degree, such as Climatic Research Unit: CRU (Harris et 85 

al., 2014), The European Centre for Medium-Range Weather Forecast (ECWMF) Climatic 86 

reanalysis: ERA (Sterl et al., 1998), Global Precipitation and temperature: UDEL (Lawrimore et al., 87 

2011), The Berkeley Earth Surface Temperatures: BEST (Muller et al., 2013), Global Precipitation 88 

Climatology Centre: CPCC (Becker et al., 2013). Thus, high resolution gridded climate data is 89 

urgently needed for studying global and regional climate change and its influences (Hamann et al., 90 

2015; Hijmans et al., 2005; Karger et al., 2017). 91 

A variety body of work was motivated to obtain high resolution gridded climate data with spatial 92 

interpolation methods and statistical downscaling (Li and Shao, 2010; Wu and Li, 2013; Hartkamp 93 

et al., 1999; Boer et al., 2001). Spatial interpolation methods including Kriging, Inverse Distance 94 

Weighting and Spline were widely applied in the estimates of climate elements (temperature, 95 

precipitation, vapor pressure, solar radiation and wind speed) at arbitrary spatial resolution. Among 96 

them, thin plate spline (TPS) interpolation was considered to perform well in generating grids of 97 

climate elements (Boer et al., 2001; Hartkamp et al., 1999; Hijmans et al., 2005; Hutchinson, 1995; 98 

Fick et al., 2017). However, for the estimates of long-term monthly climate surface, recent studies 99 

have shown that climatologically aided interpolation (CAI) employing the temporal anomaly 100 

surface and an accurate baseline climatology surface with high resolution, is well suited for 101 

producing long-term climate datasets than direct interpolation using original weather stations 102 

(Abatzoglou et al., 2018; Becker et al., 2013; C. Vega et al., 2017; Karger et al., 2017; Mosier et al., 103 

2014; Peng et al., 2019; Willmott and Robeson, 2010). Remarkably, the quality of monthly climate 104 

surface, generated by CAI method, was thought to be determined by the baseline climatology 105 

surface (Gao et al., 2018; Peng et al., 2019). Baseline climatology surface, also called 30-Year 106 
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Normals, described the average monthly conditions over the most recent three full decades. Previous 107 

efforts have developed many high-quality baseline climatology surfaces with a resolution of ~1km, 108 

such as WorldClim (Hijmans et al., 2005), WorldClim2 (Fick et al., 2017) and CHELSA (Karger et 109 

al., 2017) for global land surface, PRISM (Daly et al., 2002; Daly et al., 2008) and Daymet 110 

(Thornton et al., 1997) for North America. Although these baseline climatology surfaces are widely 111 

used for basic and applied studies such as climatological, ecological, hydrological, and 112 

environmental fields (Belda et al., 2017; Ray et al., 2015), a gap between these gridded climate 113 

datasets and weather stations was still observed in many areas with complex topography and sharp 114 

gradient changes due to lacking of sufficient weather stations information (New et al., 2002; Fick et 115 

al., 2017). Data quality of WorldClim was thought to depend on local climate variability, quality 116 

and density of observations, and the degree of the fitted spline (Hijmans et al.,2005). Unfortunately, 117 

for currently available high-quality baseline climatology surface with high-resolution covering 118 

China like WorldClim2 and CHELSA, only a small part of weather stations (323 and 228 stations 119 

for WorldClim2 and CHELSA respectively) were employed to generate baseline climatology 120 

surface. Weather stations are the most reliable source of the estimation of temperatures and 121 

precipitation, and thus more weather stations can provide more accurate point measure information. 122 

In fact, we can use a dataset of 30-year average climate (1980-2010) containing more than 2000 123 

weather stations from China Meteorological Data Service Center (CMD: http://cdc.nmic.cn) and 124 

Central Weather Bureau (www.cwb.gov.tw),which are bound to greatly improve the quality of the 125 

baseline climatology surface for China.  126 

Previous efforts have shown that the estimate of climate elements is likely to be improved by using 127 

satellite-driven products in the regions with insufficient weather station density (or quality) 128 

(Deblauwe et al., 2016; Jin and Dickinson, 2010; Mildrexler et al., 2011). With the development of 129 

remote sensing and geographic information technology, satellite-driven climate grid products 130 

become the optimum source in measuring climate elements at regional and global scales (Huffman 131 

et al., 2010; Michaelides et al., 2009; Siuki et al., 2017). The TRMM Multisatellite Precipitation 132 

Analysis (TMPA) monthly 3B43 products have been utilized extensively to provide valuable 133 

precipitation information in areas with sparse weather stations over the last two decades (Biasutti et 134 

al., 2012; Huffman et al., 2010; Simpson et al., 1996). Land surface temperature (LST) is now 135 
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available from satellite-borne instruments, which is widely incorporated in estimating air 136 

temperature (Kilibarda et al., 2014, Yao et al., 2020). Both WorldClim2 and CHELSA have not 137 

considered satellite-driven precipitation products and CHELSA have not considered satellite-driven 138 

temperature products. Despite many studies have shown these TRMM3B43 and LST products can 139 

increase the accuracy of the estimates of precipitation and temperature (Kilibarda et al., 2014; 140 

Kolios and Kalimeris, 2020; Yao et al., 2020), they are only available after 1997 and 2000 141 

respectively, which is not long enough for the long-term ecological and hydrological analyses and 142 

modeling. Therefore, there is an urgent need to combine satellite-driven TRMM3B43 and LST in 143 

climate interpolation to generate a brand-new and higher-quality baseline climatology surface 144 

(ChinaClim_baseline), and further to combine ChinaClim_baseline to create a high-quality monthly 145 

time series of precipitation and temperatures dataset with high spatial resolution for China 146 

(ChinaClim_timeseries) from 1952 to 2019 with CAI method. 147 

Specifically, the objectives of this work are: (1) to create a brand-new and higher-quality baseline 148 

climatology surface for China (ChinaClim_baseline). (2) to generate a 1 km monthly temperatures 149 

and precipitation dataset in China for the period of 1952-2019 (ChinaClim_timeseries).  150 

 151 
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2 Data  161 

2.1 Weather observation stations  162 

Dataset of 30-year average climate (1980-2010) was obtained from two sources, 2438 weather 163 

stations from CMD and 25 weather stations from Central Weather Bureau. Dataset of monthly 164 

surface observation values drawn from 613 weather stations for the period of 1952-2019 was 165 

collected from CMD. Influenced by the monsoon and Tibetan Plateau, four climate zones (Fig.1: 166 

Temperate continental, Temperate monsoonal, High cold Tibetan Plateau, and Subtropical-tropical 167 

monsoonal climate zones) have experienced various climate changes in both precipitation and 168 

temperature (He et al 2018), and so, weather stations were divided into four zones to assess the 169 

accuracy of data products in the areas with sparse and dense weather stations. 170 

 171 

Figure1. The spatial distribution of weather stations in four climate zones (i.e. Temperate continental, Temperate monsoonal, 172 

High cold Tibetan Plateau, and Subtropical-tropical monsoonal climate zones) of China. (Map created by myself) 173 

2.2 Version 7 TRMM3B43 datasets and Land Surface Temperature 174 

The Tropical Rainfall Measuring Mission (TRMM), a joint project by the National Aeronautics and 175 
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Space Administration (NASA) of the United States and the Japan Aerospace Exploration Agency 176 

(JAXA), was launched in November 1997 to monitor and investigate the tropical and subtropical 177 

rain system (Huffman et al., 2010; Simpson et al., 1996). The Version 7 monthly TRMM3B43 in 178 

NetCDF format was downloaded from https://mirador.gsfc.nasa.gov, with a spatial resolution of 179 

0.25 degree over a latitude range from 50°S to 50°N during 1998-2019. It was resampled to ~1km 180 

spatial resolution via bilinear interpolation, and was averaged to get monthly and yearly 181 

TRMM3B43. Land surface temperature (LST) was compiled from Moderate Resolution Imaging 182 

Spectroradiometer (MODIS). Mean night and day LST values were extracted from ~1 km resolution 183 

MOD11A2 images, averaged by month and year from 2001 to 2019. The MOD11A2 images can be 184 

freely available at https://ladsweb.modaps.eosdis.nasa.gov. 185 

2.3 Elevation and distance to the nearest coast 186 

Elevation data with a spatial resolution of 30 m from Shuttle Rader Topography Mission (STRM) 187 

(data available at http://srtm.csi.cgiar.org/) was aggregated to ~1km spatial resolution. Coastline 188 

dataset was downloaded from https://www.ngdc.noaa.gov/mgg/shorelines/. We calculated the 189 

distance to the nearest coast using Euclidean distance in ArcGIS 10.2 with the fine coastline datasets. 190 

2.4 Baseline climatology surfaces and monthly climate datasets used for 191 

comparison 192 

Two baseline climatology surfaces as WorldClim2 (Fick et al., 2017) and CHELSA (Karger et al., 193 

2017) with 1km spatial resolution were used to compare the accuracy of ChinaClim_baseline. 194 

WorldClim2 was interpolated with ANUSPLIN (Hutchinson, 1995), a method that fits thin plate 195 

splines through station data in three dimensions: latitude, longitude, and elevation. WorldClim2 can 196 

be accessed online at www.worldclim.org. CHELSA is essentially a quasi-mechanistical statistical 197 

downscaling of the ERA-Interim reanalysis, with the temperature downscaling based on mean lapse 198 

rates and elevation, and the precipitation algorithm using geographic predictors including wind 199 

fields, exposure, and boundary layer height (Karger et al., 2017). CHELSA can be freely available 200 

at www.chelsa-climate.org.   201 
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We also collected two long-term climate datasets with high resolution. One is the recently published 202 

Peng’s climate surfaces (Peng et al., 2019). This climate dataset was spatially downscaled from 30’ 203 

Climatic Research Unit (CRU) time series dataset with the baseline climatology surface of 204 

WorldClim2 using CAI. This is a 1km dataset of monthly air temperatures at 2m and precipitation 205 

for China in the period of 1901-2017. Peng’s climate surface can be freely available at 206 

www.zenodo.org. The other is CHELSAcruts, a delta changes monthly climate dataset for the years 207 

1901-2016 including mean monthly maximum temperatures, mean monthly minimum temperatures, 208 

and monthly precipitation sum. Anomalies of the CRU TS 4.01 dataset were interpolated between 209 

all CRU TS grid cells and are then added (for temperature variables) or multiplied (in case of 210 

precipitation) to high resolution climate data from CHELSA (Karger et al., 2017). CHELSAcruts 211 

can be freely available at www.chelsa-climate.org. 212 

 213 

 214 

 215 

 216 
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 220 
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 224 
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3 Method 226 

3.1 Creation of baseline climatology surface over China 227 

(ChinaClim_baseline)  228 

The monthly averaged precipitation and temperatures of multi-years (1980-2010) were interpolated 229 

with the thin plate spline (TPS) from R packages “fields”. Spline models for the N observed data 230 

values 𝑧𝑖 are fit as the following: 231 

𝑧𝑖 = 𝑓(𝑥𝑖) + 𝑎
𝑇𝑦𝑖 +  λ        (𝑖 = 1, … , 𝑁) (1) 232 

Where 𝑓  is a smooth function of the spline independent variable 𝑥𝑖  , 𝑎  is a vector of linear 233 

coefficients for the independent covariates 𝑦𝑖 . In this study, we considered longitude, latitude, 234 

elevation, distance to the nearest coast and satellite-driven variables to construct TPS model. We 235 

listed climate elements and variables used in TPS model for estimating ChinaClim_baseline in Table 236 

1. It is worth noting that longitude, latitude and elevation were set as spline independent variables 237 

and the other variables were used as either independent spline variables or linear covariates. 238 

Especially, Elevation (m) was divided by 1000 following scaling recommendations by Hutchinson 239 

(1995). Precipitation values were square root transformed prior to fitting following 240 

recommendations by Hutchinson and Xu (2013). Moreover, TRMM3B43 contained a latitude range 241 

from 50°S to 50°N, so we constructed TPS model including TRMM3B43 in the area south of 50°N 242 

and constructed TPS models without TRMM3B43 in the area north of 49°N. The 1° overlap area 243 

ensures that baseline climatology surface of the two areas can be better merged by weighting 244 

estimates inversely proportional to distance from each region’s border (Hijmans et al., 2005; New 245 

et al., 2002).  246 

Specifically, the process for generating ChinaClim_baseline can be described as follows (Fig.2): 247 

(1) After removing duplicate and invalid weather stations, the remaining were split into 10 folds in 248 

each climate zones to assure that there was enough train and test data for each climate zones to build 249 

and verify the model, and thus to avoid spatial autocorrelation. 250 

(2) We randomly extracted 9 folds weather stations in each climate zones and combined them into 251 

a new train data set. The remained were combined as test data set to valid the accuracy of model. 252 
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(3) 14 model formulations for each month were tried using different combinations of variables to 253 

generate baseline climatology surface (Model formulations about Longitude, Latitude, Elevation, 254 

Distance to the nearest coast and Satellite-driven TRMM3B43 and LST described in Table S1).  255 

(4) Each surface for each month was created by selecting only the model with the highest average 256 

R2 value.  257 

(5) Repeat steps 2 to 4 for 10 times, and final baseline climatology surface (ChinaClim_baseline) 258 

was created by averaging ten surfaces. 259 

Table 1. Climate elements and variables used in TPS model for creating baseline climatology and anomaly surface.  260 

Climate elements Unit Variables used in TPS models 

Precipitation mm Lon, Lat, Elev,Coast,Trmm_m,Trmm_y 

Minimum temperature °C Lon, Lat, Elev,Coast, Lst_nm, Lst_ny 

Maximum temperature °C Lon, Lat, Elev,Coast, Lst_dm, Lst_dy 

Average temperature °C Lon, Lat, Elev,Coast, Lst_am, Lst_ay 

Precipitation anomaly mm Lon, Lat, Elev,Coast, Trmm_a(1998-2019), Base_prep 

Minimum temperature anomaly °C Lon, Lat, Elev,Coast, Lst_na(2001-2019), Base_tmin 

Maximum temperature anomaly °C Lon, Lat, Elev,Coast, Lst_da(2001-2019), Base_tmax 

Average temperature anomaly °C Lon, Lat, Elev,Coast, Lst_aa(2001-2019), Base_tavg 

Notes: Variables include longitude (Lon), latitude (Lat), elevation (Elev), distance to the nearest coast (Coast), averaged monthly (Trmm_m) and yearly (Trmm_y) 261 

TRMM3B43 during 1998-2019, monthly TRMM anomaly (Trmm_a), MOD11A2 land surface temperature (the day LST, the night LST, and the average of the 262 

day and nght LST ) during 2001-2019 averaged by month (Lst_dm, Lst_nm, Lst_am) and year (Lst_dy Lst_ny, Lst_ay), MOD11A2 land surface temperature 263 

anomaly during 2001-2019 (Lst_da, Lst_na, Lst_aa), Baseline precipitation surface (Base_prep), Baseline temperatures surface (Base_tmin, Base_tavg, 264 

Base_tmax). Lon, Lat and Elev were set as spline independent variables and the other variables were set as either independent spline variables or linear covariates 265 

 266 
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 267 

Figure2. Workflow for creating baseline climatology surface (ChinaClim_baseline) and monthly anomaly surface of 268 

China (adapted from Fick et al., 2017) 269 

3.2 Generation of monthly precipitation and temperatures surface for China 270 

(ChinaClim_timeseries) 271 

CAI method was used to superimpose monthly anomaly surface and baseline climatology surface 272 

(ChinaClim_baseline) to produce monthly precipitation and temperatures surface during 1952.01-273 

2019.12 in China (ChinaClim_timeseries) as the following (Fig.3) ：  274 

Firstly, the anomaly time series was calculated by the difference between the original time series 275 

from weather stations and ChinaClim_baseline described in Chapter 3.1.  276 

Secondly, similar to the way to obtain ChinaClim_baseline (Fig.2), we applied TPS model to 277 

generate monthly anomaly surface from 1952.01 to 2019.12 with a segmented strategy. For monthly 278 

anomaly surface (Precipitation: 1952-1997; Temperature: 1952-2000), 7 model formulations were 279 

built by using different combinations of variables (Longitude, Latitude, Elevation, Distance to the 280 

nearest coast and ChinClim_baseline described in Table S7: Model1-7). Similarly, for monthly 281 

anomaly surface during 1998-2019 and 2001-2019 for Precipitation and Temperature, respectively, 282 

14 model formulations were constructed using different combinations of variables (Longitude, 283 
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Latitude, Elevation, Distance to the nearest coast, ChinaClim_baseline and Satellite-driven TRMM 284 

and LST anomaly described in Table S7: Model1-14). Monthly anomaly surface during 1952-2019 285 

was created by selecting only the model with the highest average R2 value. 286 

Finally, ChinaClim_timeseries was generated by superimposing monthly anomaly surface and 287 

ChinaClim_baseline from 1952.01 to 2019.12. 288 

 289 

Figure3. Workflow for ChinaClim_timeseries generation based on climatologically aided interpolation (CAI). 290 

3.3 Evaluation metrics 291 

Three statistic indices including the root mean square error (RMSE), mean absolute error (MAE) and 292 

coefficients of determination (R2) are examined to evaluate the performance of ChinaClim_baseline 293 

and ChinaClim_timeseries. 294 

𝑅𝑀𝑆𝐸 = √
∑ (𝑃𝑖 −𝑀𝑖)2
𝑛
𝑖=1

𝑛
(2) 295 

𝑀𝐴𝐸 =
∑ |𝑃𝑖 −𝑀𝑖|
𝑛
𝑖=1

𝑛
(3) 296 
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𝑅2 =

(

 
∑ (𝑀𝑖 −𝑀)(𝑃𝑖 − 𝑃)
𝑛
𝑖=1

√∑ (𝑀𝑖 −𝑀)
2
(𝑃𝑖 − 𝑃)

2
𝑛
𝑖=1 )

 

2

(4) 297 

Where Pi is the estimates like ChinaClim_baseline/ChinaClim_timeseries in the ith weather station; 298 

Mi is the measured value from the ith weather station; n is the number of weather stations; 𝑃 is the 299 

average of the estimates like ChinaClim_baseline/ChinaClim_timeseries from n weather stations; 300 

𝑀 is the average of the measured value from n weather stations. 301 

 302 

 303 

 304 

 305 

 306 

 307 

 308 

 309 

 310 

 311 
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4 Results 320 

4.1 A brand-new and high-quality baseline climatology surface for China 321 

(ChinaClim_baseline) 322 

4.1.1 The optimal models and its overall accuracy for ChinaClim_baseline 323 

For the estimates of precipitation (Table S2), the models with the highest R2 in each month all 324 

employed satellite-driven TRMM3B43, especially that monthly averaged TRMM (TRMM_m) 325 

improve the accuracy in all months, which indicated that TRMM3B43 improved the estimates of 326 

precipitation. For all temperature elements included average, maximum and minimum temperature 327 

(Table S3-5), models considering LST were superior in most months especially in summer months. 328 

Thus, LST could improve the interpolation of temperatures, while LST’s ability to improve 329 

temperature estimation might be restricted in winter months, especially for average and minimum 330 

temperature. Overall, satellite-driven data can improve the estimates of precipitation and 331 

temperatures. 332 

As shown from Table 3, ChinaClim_baseline exhibited very high performance over independent 333 

weather stations. Specifically, for precipitation estimation, the lowest value of R2 was 0.860 in 334 

December, and the highest value was close to 0.98 in March and April, and the values of RMSEs 335 

and MAEs were 8.149~21.959 mm and 2.787~14.125 mm, respectively. Temperature elements had 336 

an average R2 of 0.967~0.992, an average RMSEs between 0.485 and 1.233 °C, and an average 337 

MAEs of 0.321~0.785 °C for all months. Specifically, R2 of all temperature elements were very high, 338 

but the MAE and RMSE of the average temperature were the smallest, followed by the maximum 339 

and minimum temperature. Moreover, the temperature estimation performed much better in summer 340 

months than in winter months with lower RMSE and MAE. 341 

 342 

 343 

 344 

 345 

 346 
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Table 3. Tenfold cross-validation statistics for ChinaClim_baseline. Coefficients of determination (R2), root mean 347 

square error (RMSE) and mean absolute error (MAE) between observed and baseline climatology surface over 348 

independent weather stations. 349 

    Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Precipitation 

R2 0.920 0.950 0.975 0.978 0.966 0.953 0.905 0.899 0.928 0.914 0.899 0.860 

RMSE 8.149 8.205 8.547 9.542 14.229 20.378 21.959 21.858 15.543 14.293 11.503 8.801 

MAE 2.787 3.171 4.252 5.392 7.685 11.561 14.125 13.289 8.578 5.732 3.701 2.484 

Average 

temperature  

R2 0.990 0.989 0.989 0.987 0.984 0.982 0.985 0.986 0.988 0.990 0.993 0.991 

RMSE 0.902 0.822 0.676 0.576 0.539 0.520 0.498 0.485 0.519 0.580 0.654 0.809 

MAE 0.558 0.523 0.438 0.378 0.360 0.331 0.321 0.322 0.360 0.400 0.454 0.528 

Maximum  

temperature  

R2 0.990 0.986 0.982 0.974 0.968 0.967 0.974 0.979 0.981 0.986 0.992 0.992 

RMSE 0.815 0.840 0.787 0.715 0.657 0.649 0.598 0.540 0.550 0.600 0.620 0.738 

MAE 0.464 0.482 0.458 0.425 0.382 0.392 0.366 0.334 0.335 0.343 0.379 0.440 

Minimum 

temperature  

R2 0.985 0.985 0.986 0.984 0.982 0.980 0.983 0.984 0.983 0.986 0.987 0.985 

RMSE 1.233 1.106 0.884 0.771 0.719 0.659 0.609 0.618 0.716 0.797 0.934 1.149 

MAE 0.785 0.717 0.603 0.547 0.516 0.447 0.409 0.414 0.496 0.565 0.651 0.773 

 350 

4.1.2 Comparison of ChinaClim_baseline to WorldClim2 and CHELSA in four climate 351 

zones.  352 

To better assess the performance of ChinaClim_baseline, it was compared to two widely recognized 353 

baseline climatology surface with same spatial resolution: WorldClim2 (Fick et al., 2017) and 354 

CHELSA (Karger et al., 2017). The independent weather stations from a tenfold cross-validation 355 

approach were used to diagnose the performance of ChinaClim_baseline, while the independent 356 

weather stations extracted from CMD were used to calculate the accuracy of WorldClim2 and 357 

CHELSA. Considering that both worldClim2 and CHELSA used elevation to estimate temperature 358 

and precipitation, large deviations between the recorded and actual elevation (1 km DEM) in some 359 

weather stations might cause large discrepancy in the estimated and actual precipitation (Fick et al., 360 

2017). Thus, only these independent weather stations with small deviations (< 200 m) between the 361 

recorded and actual elevation (1 km DEM) were used to assess the accuracy of WorldClim2 and 362 

CHELSA. (Figs 4, 6, 8 and 10). Moreover, spatial differences between ChinaClim_baseline and 363 

WorldClim2 as well as CHELSA for annual total precipitation, annual average temperature, January 364 

minimum temperature, and July maximum temperature were shown in Figs 5, 7, 9, and 11, 365 

respectively.  366 
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As shown in Fig.4, despite relatively small differences in precipitation accuracy of three baseline 367 

climatology surfaces in Oct-Jun, ChinaClim_baseline greatly improved the accuracy of 368 

precipitation in Jul-Sep with lower RMSE and MAE along with higher R2 in the all four climate 369 

zones. Specifically, in the temperate monsoonal and subtropical-tropical monsoonal zones with 370 

high-density weather stations, compared with precipitation accuracy of WorldClim2 and CHELSA, 371 

the accuracy of ChinaClim_baseline was much higher in most months. In high cold Tibetan Plateau, 372 

the accuracy of CHELSA was the worst with the highest RMSE and MAE in summer months. 373 

Although the RMSE and MAE of WorldClim2 were slightly lower than ChinaClim_baseline, its R2 374 

was by far lower than ChinaClim_baseline with huge seasonal variations. There are some spatial 375 

differences between ChinaClim_baseline and WorldClim2 and CHELSA for annual total 376 

precipitation (Fig.5). WorldClim2 tended to be drier than ChinaClim_baseline in many locations, 377 

especially at higher elevations. CHELSA was pretty wetter in high cold Tibetan Plateau and much 378 

drier in temperate continental than ChinaClim_baseline.  379 

 380 

Figure 4. The accuracy of ChinaClim_baseline and WorldClim2 and CHELSA for precipitation in the temperate continental, high 381 

cold Tibetan Plateau, temperate monsoonal, and subtropical-tropical monsoonal climate zones. 382 
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 383 

Figure 5. WorldClim2/ ChinaClim_baseline and CHELSA/ ChinaClim_baseline ratio maps (expressed as percentage) of annual 384 

precipitation for China. 385 

For temperature elements included average, maximum and minimum temperature, the performance 386 

of ChinaClim_baseline was the most excellent, followed by WorldClim2 and CHELSA (Figs 6, 8, 387 

and 10). Although there is no obvious discrepancy in the accuracy of temperature estimation in Oct-388 

Mar among ChinaClim_baseline, WorldClim2, and CHELSA, ChinaClim_baseline improved R2 389 

and greatly reduced RMSE and MAE in Apr-Sep which were during the growing season of most 390 

plants. The temperature estimation of ChinaClim_baseline, WorldClim2 and CHELSA in temperate 391 

continental and high cold Tibetan Plateau climate zones performed worse (higher RMSE and MAE 392 

and lower R2) relative to subtropical-tropical monsoonal and temperate monsoonal climate zones. 393 

However, due to more weather stations and powerful algorithms, ChinaClim_baseline tangibly 394 

improved the temperature estimation of WorldClim2 and CHELSA in the above two regions. 395 

Moreover, the spatial discrepancy between ChinaClim_baseline and WorldClim2 and CHELSA for 396 

temperatures were smaller than precipitation as temperature generally follows relatively simple 397 

gradients of latitude and elevation (Fig.5). For annual average temperature, most areas showed small 398 

differences within -1~1 °C, and worldClim2 and CHELSA were slightly hotter than 399 

ChinaClim_baseline. However, for July maximum temperature (Fig.7), they were colder than 400 

https://doi.org/10.5194/essd-2020-361

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 8 January 2021
c© Author(s) 2021. CC BY 4.0 License.



19 

 

ChinaClim_baseline except for temperate continental climate zone. In particular, CHELSA was 401 

colder than ChinaClim_baseline in vast high-altitude areas. For January minimum temperature 402 

(Fig.9), WorldClim2 was generally cooler than ChinaClim_baseline and CHELSA was seriously 403 

warmer than ChinaClim_baseline in most high-altitude areas. Overall, there were some spatial 404 

discrepancies between ChinaClim_baseline and WorldClim2 and CHELSA in many areas of China, 405 

especially in low-density weather station regions such as high cold Tibetan Plateau and temperate 406 

continental. 407 

 408 

Figure 6. The accuracy of ChinaClim_baseline and WorldClim2 and CHELSA for average temperature in the temperate 409 

continental, high cold Tibetan Plateau, temperate monsoonal, and subtropical-tropical monsoonal climate zones. 410 
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 411 

Figure 7. WorldClim2 - ChinaClim_baseline and CHELSA - ChinaClim_baseline difference maps of annual average temperature 412 

for China. 413 

 414 

Figure 8. The accuracy of ChinaClim_baseline and WorldClim2 and CHELSA for maximum temperature in the temperate 415 

continental, high cold Tibetan Plateau, temperate monsoonal, and subtropical-tropical monsoonal climate zones. 416 
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 417 

Figure 9. WorldClim2 - ChinaClim_baseline and CHELSA - ChinaClim_baseline difference maps of July maximum temperature 418 

for China. 419 

 420 

Figure 10. The accuracy of ChinaClim_baseline and WorldClim2 and CHELSA for minimum temperature in the temperate 421 

continental, high cold Tibetan Plateau, temperate monsoonal, and subtropical-tropical monsoonal climate zones. 422 
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 423 

Figure 11. WorldClim2 - ChinaClim_baseline and CHELSA - ChinaClim_baseline difference maps of January minimum 424 

temperature for China. 425 

4.2 1km monthly precipitation and temperatures surfaces during1952-2019 426 

(ChinaClim_timeseries) 427 

4.2.1 The optimal models and accuracy of ChinaClim_timeseries with seasonal 428 

variation  429 

Models (Model4, Model5, and Model7) considering baseline climatology surface, showed better 430 

performance in all months for precipitation anomaly and temperatures anomaly during 1952-1997 431 

and 1952-2000, respectively (Table S12). For precipitation anomaly during 1998-2019, models 432 

(Model 14) with the highest average R2 value for each month all include TRMM3B43 anomaly 433 

(Table S17). However, for temperature anomaly during 2000-2019 (Table S17), those models 434 

(Model4, Model5 and Model7) that did not consider LST anomaly also exhibited excellent 435 

performance.  436 

Our results demonstrated that ChinaClim_timeseries showed excellent performance during 1952-437 

2019 (Table 4). Precipitation had an average R2 of 0.699~0.923, an average RMSE between 7.449 438 
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mm and 56.756 mm, and an average of MAE of 4.263~40.271 mm for all months. Similarly, in terms 439 

of seasonal changes, compared with other months, the accuracy of precipitation was slightly worse 440 

from Jun to Sep. Average temperature had an average R2 of 0.966~0.985, an average RMSE between 441 

0.807 °C and 1.394 °C, and an average MAE of 0.548~0.930 °C for all months. Maximum 442 

temperature had an average R2 of 0.939~0.981, an average RMSE between 0.935 °C and 1.391 °C, 443 

and an average MAE of 0.608°C ~0.877 °C for all months. Minimum temperature had an average 444 

R2 of 0.968~0.977, an average RMSE between 0.924 °C and 1.766 °C, and an average MAE of 445 

0.641~1.236 °C for all months. The performance of the average temperature was the best, followed 446 

by the maximum temperature and the minimum temperature.  447 

Table 4. Tenfold cross-validation statistics for ChinaClim_timeseries during 1952-2019.  448 

    Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Precipitation 

R2 0.898  0.917  0.921  0.887  0.855  0.799  0.710  0.699  0.746  0.809  0.838  0.845  

RMSE 7.512  9.714  15.326  24.374  36.983  49.620  56.806  54.126  37.955  22.966  13.751  7.592  

MAE 4.370  5.643  9.134  15.111  23.608  33.319  40.403  37.727  24.938  13.857  7.955  4.320  

Average 

temperature 

R2 0.981  0.980  0.978  0.974  0.967  0.966  0.972  0.974  0.976  0.980  0.985  0.983  

RMSE 1.394  1.286  1.091  0.953  0.933  0.888  0.820  0.807  0.846  0.909  1.027  1.268  

MAE 0.930  0.859  0.736  0.653  0.627  0.584  0.554  0.548  0.589  0.636  0.722  0.866  

Maximum 

temperature 

R2 0.977  0.973  0.966  0.953  0.939  0.941  0.951  0.958  0.961  0.967  0.980  0.981  

RMSE 1.391  1.350  1.242  1.144  1.116  1.065  0.987  0.940  0.935  1.010  1.075  1.249  

MAE 0.877  0.870  0.825  0.769  0.743  0.704  0.685  0.647  0.608  0.647  0.697  0.801  

Minimum 

temperature 

R2 0.975  0.977  0.976  0.975  0.971  0.968  0.972  0.973  0.973  0.976  0.979  0.976  

RMSE 1.766  1.600  1.332  1.110  1.067  1.008  0.924  0.949  1.045  1.167  1.357  1.637  

MAE 1.236  1.125  0.902  0.803  0.770  0.703  0.641  0.666  0.753  0.852  0.979  1.160  

4.2.2 Comparison of ChinaClim_timeseries to other datasets 449 

Here, we compared the accuracy of ChinaClim_timeseries with Peng’s climate surface (Peng et al., 450 

2019) and CHELSAcruts (Karger et al., 2017) by R2, RMSE and MAE in China and four climate 451 

zones (temperate continental, high cold Tibetan Plateau, temperate monsoonal and subtropical-452 

tropical monsoonal climate zones). The independent weather stations extracted from a tenfold cross-453 
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validation approach were used to diagnose the performance of ChinaClim_timeseries, while only 454 

these independent weather stations from CMD with small deviations (< 200 m) between the 455 

recorded and actual elevation (1 km DEM) were used to assess the accuracy of CHELSAcruts and 456 

Peng’s climate surface. 457 

The accuracy of ChinaClim_timeseries for precipitation estimation showed better performance than 458 

Peng’s climate surface and CHELSAcruts in China with R2 increased by 6.15 % and 5.68 %, RMSE 459 

decreased by 14.71 % and 15.36 % and MAE decreased by 15.15 % and 16.22 %, respectively (Table 460 

5). Specifically, ChinaClim_timeseries and CHELSAcruts showed similar accuracy in Temperate 461 

continental; although ChinaClim_timeseries had a slightly lower R2 than CHELSAcruts, 462 

CHELSAcruts had higher RMSE and MAE. Moreover, ChinaClim_timeseries in high cold Tibetan 463 

Plateau, R2 increased by 13.08 % and 15.87 %, RMSE decreased by 27.46 % and 32.97 % and MAE 464 

decreased by 23.13 % and 30.81 %, respectively. Compared with CHELSA_cruts, except the R2 of 465 

our product was slightly lower in the temperate continental, all indicators were obviously better in 466 

different zones, especially in high cold Tibetan Plateau and subtropical-tropical monsoonal. 467 

Remarkably, in terms of interannual variations (Fig.12), ChinaClim_timeseries performed slightly 468 

better than other datasets before 1998, while its accuracy was greatly improved during 1998-2019. 469 

Table 5. The overall accuracy of precipitation for ChinaClim_timeseries, Peng’s climate surface and CHELSAcruts in China and four 470 

climate zones 471 

   Precipitation R2 RMSE MAE 

China 

ChinaClim_timeseries 0.855  33.868  18.063  

Peng’s climate surface 0.805  39.707  21.290  

CHELSAcruts 0.809  40.015  21.560  

temperate continental climate  

ChinaClim_timeseries 0.822  14.805  7.729  

Peng’s climate surface 0.791  16.575  8.881  

CHELSAcruts 0.832  15.043  7.892  

high cold Tibetan Plateau 

ChinaClim_timeseries 0.807  22.942  12.454  

Peng’s climate surface 0.714  31.625  16.201  

CHELSAcruts 0.696  34.228  18.000  

temperate monsoonal 

ChinaClim_timeseries 0.851  26.222  13.588  

Peng’s climate surface 0.817  29.151  15.496  

CHELSAcruts 0.831  28.819  15.375  

subtropical-tropical monsoonal 

ChinaClim_timeseries 0.820  45.501  27.502  

Peng’s climate surface 0.758  52.426  31.612  

CHELSAcruts 0.760  52.950  32.364  

 472 

https://doi.org/10.5194/essd-2020-361

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 8 January 2021
c© Author(s) 2021. CC BY 4.0 License.



25 

 

 473 

Figure 12. The accuracy of interannual variations in ChinaClim_timeseries, Peng’s climate surface and CHELSAcruts for precipitation. 474 

The accuracy of ChinaClim_timeseries for temperatures estimation also showed better performance 475 

than Peng’s climate surface and CHELSAcruts in China and different climate zones (Tables 6-7). 476 

In China, the R2, RMSE and MAE of maximum temperature were 0.989, 1.167 °C and 0.724 °C, 477 

respectively, and those of minimum temperature were 0.989, 1.303 °C and 0.892°C, respectively. 478 

Our results showed that all R2 were very high among three datasets, but compared to Peng’s and 479 

CHELSAcruts, our RMSE decreased by 10.17 % and 19.14 % for maximum temperature, and by 480 

8.37 % and 14.42 % for minimum temperature; MAE decreased by 25.73 % and 34.02 % for 481 

maximum temperature and by 16.92 % and 20.74 % for minimum temperature. In different climate 482 

zones, the accuracy of ChinaClim_timeseries was much better than Peng’s climate surface and 483 

CHELSAcruts. Especially in the High cold Tibetan Plateau, our RMSE decreased by 23.31 % and 484 

36.52 % for maximum temperature and by 21.61 % and 9.65 % for minimum temperature, 485 

respectively; our MAE decreased by 39.61 % and 50.00 % for maximum temperature and by 29.35 % 486 

and 16.81 % for minimum temperature, respectively. Moreover, in terms of interannual variation 487 

(Figs 13-14), our results demonstrated that despite the accuracy of Peng’s climate surface and 488 

CHELSAcruts also very well with high R2, ChinaClim_timeseries undoubtedly showed more 489 

powerful performance in almost all years with lower RMSE and MAE. 490 

 491 

 492 

 493 
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Table 6. The overall accuracy of maximum temperature for ChinaClim_timeseries, Peng’s climate surface and CHELSAcruts in China 494 

and four climate zones. 495 

  Maximum temperature R2 RMSE MAE 

China 

ChinaClim_timeseries 0.989  1.167  0.724  

Peng’s climate surface 0.988  1.299  0.974  

CHELSAcruts 0.987  1.443  1.097  

temperate continental 

ChinaClim_timeseries 0.989  1.346  0.799  

Peng’s climate surface 0.985  1.591  1.202  

CHELSAcruts 0.981  1.835  1.358  

high cold Tibetan Plateau 

ChinaClim_timeseries 0.958  1.705  1.115  

Peng’s climate surface 0.951  2.224  1.847  

CHELSAcruts 0.947  2.686  2.231  

temperate monsoonal 

ChinaClim_timeseries 0.996  0.766  0.519  

Peng’s climate surface 0.993  1.090  0.847  

CHELSAcruts 0.993  1.225  0.962  

subtropical-tropical monsoonal 

ChinaClim_timeseries 0.980  1.107  0.712  

Peng’s climate surface 0.978  1.252  0.935  

CHELSAcruts 0.980  1.314  1.035  

 496 

Table 7. The overall accuracy of minimum temperature for ChinaClim_timeseries, Peng’s climate surface and CHELSAcruts in China and 497 

four climate zones. 498 

  Minimum temperature R2 RMSE MAE 

China 

ChinaClim_timeseries 0.989  1.303  0.892  

Peng’s climate surface 0.988  1.422  1.074  

CHELSAcruts 0.987  1.523  1.125  

temperate continental 

ChinaClim_timeseries 0.979  1.770  1.270  

Peng’s climate surface 0.982  1.765  1.351  

CHELSAcruts 0.976  2.004  1.461  

high cold Tibetan Plateau 

ChinaClim_timeseries 0.966  1.784  1.271  

Peng’s climate surface 0.944  2.276  1.800  

CHELSAcruts 0.958  1.975  1.528  

temperate monsoonal 

ChinaClim_timeseries 0.992  1.202  0.871  

Peng’s climate surface 0.991  1.324  1.032  

CHELSAcruts 0.989  1.585  1.196  

subtropical-tropical monsoonal 

ChinaClim_timeseries 0.987  0.885  0.621  

Peng’s climate surface 0.977  1.254  0.938  

CHELSAcruts 0.984  1.119  0.878  

 499 
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 500 

Figure 13. The accuracy of interannual variations in ChinaClim_timeseries, Peng’s climate surfaces and CHELSAcruts for maximum 501 

temperature. 502 

 503 

Figure 14. The accuracy of interannual variations in ChinaClim_timeseries, Peng’s climate surface and CHELSAcruts for minimum 504 

temperature. 505 

 506 

 507 

 508 

 509 
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5 Data availability 510 

ChinaClim_baseline is a brand-new and high-quality baseline climatology surface for China at 511 

spatial resolution of 1km. The data now is freely available through Zenodo at 512 

https://doi.org/10.5281/zenodo.4287824 (Gong, 2020a), which can be downloaded in TIFF 513 

format. The scale factor of the data is 0.01. 514 

ChinaClim_timeseries is a monthly temperatures and precipitation dataset in China for the period 515 

of 1952-2019 of 1km spatial resolution. The data now are freely available through Zenodo at 516 

https://doi.org/10.5281/zenodo.4288388 (Gong, 2020b) , https://doi.org/10.5281/zenodo.4288390 517 

(Gong, 2020c) and https://doi.org/10.5281/zenodo.4288392 (Gong, 2020d), which can be 518 

downloaded in TIFF format. The scale factor of the data is 0.1. 519 

 520 

 521 

 522 
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6 Discussion 538 

There are a number of baseline climatology surface products for global land surface (Hijmans et al., 539 

2005; Karger et al., 2017; New et al., 1999; New et al., 2002; Fick et al., 2017), while few weather 540 

stations are employed to generate these surfaces in China, which might result in insufficient 541 

accuracy of these surfaces, and further affect the availability of long-term climate datasets with these 542 

surfaces as input. Application TPS algorithm, we considered much more weather stations and 543 

satellite-driven variables in climate interpolation to create baseline climatology surface.  544 

The precipitation estimation of ChinaClim_baseline performed well in all months with R2 greater 545 

than 0.86. The RMSEs and MAEs in summer (Jun-Aug) were much higher than other months, which 546 

is also reported by the previous studies that the estimation of summer precipitation is pretty difficult 547 

than that of winter precipitation, especially in the monsoon zones (Chen et al., 2018; Fick et al., 548 

2017). It is because summer precipitation is deeply affected by summer monsoon. However, 549 

compared to WorldClim2 and CHELSA, ChinaClim_baseline deeply improved the accuracy of 550 

precipitation with higher R2, lower RMSE, and MAE, especially in temperate continental and high 551 

cold Tibetan Plateau zones and summer months. Because ChinaClim_baseline used much more 552 

weather stations, and the spatially continuous satellite-driven TRMM3B43 which can distinguish 553 

the rain shadow effect of mountains and provide enough information in sparse areas of weather 554 

station, while WorldClim2 and CHELSA cannot (Deblauwe et al., 2016). Moreover, our models 555 

constructed by each month could well reveal the seasonal variation of precipitation. So, our work 556 

could provide a good reference for accurately estimating precipitation (especially for precipitation 557 

in rainy season), which allows us to better understand the hydrological processes and execute more 558 

meaningful ecological modeling based on ChinaClim_baseline.  559 

The accuracy of the average temperature was the best, followed by the maximum temperature, and 560 

the minimum temperature. In the meantime, the accuracy of summer temperatures was better than 561 

winter temperatures. It is not difficult to understand that summer temperature and maximum 562 

temperature often simply changes with elevation, while winter temperature, and minimum 563 

temperature, have a more complex relationship with elevation (Daly et al., 2008; Gustavsson et al., 564 

1998). CHELSA simply used temperature lapse rates to estimate temperatures, which might make 565 
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mistakes in temperature estimations without sufficient weather stations for corrections in high-566 

altitude regions. Although WorldClim2 considered LST, it did not consider the effects of LST on 567 

the model accuracy for each month (Hijmans et al., 2005; Fick et al., 2017), which ignored the 568 

improvements helped by LST during key months such as vegetation growth season; In comparison 569 

with WorldClim2 and CHELSA, our model deeply improved the accuracy of temperature element 570 

during growing season facilitated by select optimal multiple model formulations for each month, 571 

which is very important for revealing the vegetation-climate relationship. Previous findings claimed 572 

that models only using latitude, longitude, elevation can be consistently superior for temperatures 573 

estimation (Parmentier et al., 2014), while our results showed that LST can greatly improve the 574 

accuracy of temperatures estimation, especially in summer months. Some studies showed that LST 575 

just improved the estimates for maximum temperature (Kilibarda et al., 2014), while our results 576 

found that LST improved not only the estimate of maximum temperature, but also the estimates of 577 

average and minimum temperature was greatly improved. 578 

There was a large amount of evidence to suggested that the CAI method can better generate long-579 

term monthly climate surface (Abatzoglou et al., 2018; Becker et al., 2013; C. Vega et al., 2017; 580 

Karger et al., 2017; Mosier et al., 2014; Peng et al., 2019; Willmott and Robeson, 2010). Our results 581 

proved Peng’s climate surface and CHELSAcruts datasets, relying on coarse CRU anomaly and 582 

high-quality baseline climatology surfaces with CAI method, had relatively high accuracy (high R2) 583 

with a few weather stations in China at 1km spatial resolution. (Karger et al., 2017; Peng et al., 584 

2019). However, those studies rarely incorporated satellites-driven products into climate 585 

interpolation, and the performance of baseline climatology surface covering China (WorldClim2 586 

and CHELSA) using the CAI method was also troubling, especially in high cold Tibetan Plateau. 587 

ChinaClim_timeseries used a higher precision baseline climatology surface (ChinaClim_baseline) 588 

as input in CAI method. We also implemented TPS interpolation by selecting optimal multiple 589 

model formulations for each month. Not only can we make full use of the time-series weather 590 

stations, but also consider the satellites-driven anomaly as either independent spline variables or 591 

linear covariates to further improve the accuracy of the final monthly climate surface. Our results 592 

showed that ChinaClim_timeseries was indeed a better climate dataset than Peng’s climate surface 593 

and CHELSAcruts in China with higher R2, and lower RMSE and MAE, especially in high cold 594 
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Tibetan Plateau for precipitation estimation, R2 increased by 13.08 % and 15.87 %, RMSE decreased 595 

by 27.46 % and 32.97 % and MAE decreased by 23.13 % and 30.81 %, respectively. 596 

Previous studies indicated that baseline climatology surface, considering detailed topographic 597 

information, the effects of distance to the nearest coast and satellite-driven variables, is physically 598 

representative and has a fine-scale distribution of meteorological variables (Marchi et al., 2019; 599 

Mosier et al., 2014; Peng et al., 2017; Platts et al., 2015). Thus, a superior baseline climatology 600 

surface is helpful to improve the accuracy of the long-term monthly climate surface. In this study, 601 

the baseline climatology surface was not only used as one of the inputs of CAI method, but also as 602 

one of the variables of TPS models to calculate the monthly anomaly surface. Our results showed 603 

that TPS models considering baseline climatology surface, showed better performance for 604 

precipitation and temperatures anomaly in all months during 1952-2019 (Table S12 and S17), which 605 

was helpful to improve the estimates of ChinaClim_timeseries. However, in terms of interannual 606 

variation, compared with other datasets, the estimates of ChinaClim_timeseries for precipitation 607 

performed slightly better during 1952-1997, while the performance was much better during 1998-608 

2019 (Fig.12). Owing to the utilization of satellite-driven TRMM3B43 anomaly in climate 609 

interpolation after 1997, we believed that satellite-driven anomaly can greatly improve the estimates 610 

of precipitation and baseline climatology surface only slightly improve the estimates of precipitation. 611 

Remarkably, we only considered satellites-driven TRMM3B43 anomaly as either independent 612 

spline variables or linear covariates to generate the final monthly precipitation surface and this 613 

process was not implemented in the temperature estimation because the optimal TPS model did not 614 

reveal that LST anomaly can effectively improve the temperature estimation (Table S17). The 615 

temperatures estimation of ChinaClim_timeseries still performed well during 1952-2019 (Figs 13-616 

14), which might be attributed to a better baseline climatology surface as input in CAI method. 617 

Although previous studies illustrated that satellites-driven products can greatly improve the 618 

accuracy of climate elements estimation (Kilibarda et al., 2014; Kolios and Kalimeris, 2020; Yao et 619 

al., 2020), our results showed that satellite-driven anomaly cannot substantially improve the 620 

estimates of temperatures and baseline climatology surface can play a key role in long-term 621 

temperature estimation.  622 

As shown above, ChinaClim_baseline is a brand-new and high-quality baseline climatology surface 623 
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in China currently released. Baseline climatology surface, not only could be applied in history and 624 

paleo climate models, but also can be combined with GCM products to generate future climate 625 

change scenarios with high resolution (Peng et al., 2019; Platts et al., 2015). Besides, the quality of 626 

baseline climatology surface has a fundamental role in predictions of the potential impact of climate 627 

change on organisms and natural ecosystems (Marchi et al., 2019, Vega et al 2017). 628 

ChinaClim_timeseries is a very high-quality monthly climate surface and can successfully reveal 629 

the spatial-temporal change patterns of precipitation and temperatures for China. At the same time, 630 

it can be used as a good data source for long-term modeling of hydrology, ecology, and other related 631 

fields. In particular, ChinaClim_timeseries also could help to reduce the uncertainty of the input of 632 

climate parameters in high cold Tibetan Plateau zones, and better quantify the region’s ecosystem 633 

variation in the context of global changes. 634 

The TRMM3B43 improves the estimate of precipitation, while the 0.25 degree resolution of TRMM 635 

might be fail to represent many important finer-scale climatic features due to the uncertainties 636 

caused by the simply resampling process from 0.25 degree to 1km (Deblauwe et al., 2016). In the 637 

meantime, MODIS-LST was effective to improve the algorithms for estimating air temperatures 638 

(Jin and Dickinson, 2010; Mildrexler et al., 2011; Parmentier et al., 2014; Yao et al., 2020). However, 639 

land surface temperature is tightly related to land cover, which is itself highly affected by human 640 

activities. Therefore, incorporating TRMM3B43 and LST into the generation of 641 

ChinaClim_baseline and ChinaClim_timeseries maybe present challenges (Deblauwe et al., 2016). 642 

Besides, it should also be noted that there is a temporal mismatch between the datasets from weather 643 

stations (1980–2010) and from average TRMM3B43 (1998-2019) and LST (2001–2019) in 644 

estimating ChinaClim_baseline. With the emergence of high-resolution and long-term climate 645 

remote sensing products in the future, and the improvement of multiple remote sensing data fusion 646 

technology, we could greatly reduce the uncertainty of climate interpolation and improve the 647 

accuracy of product estimation, particularly in places with very few weather stations or strong 648 

gradients change or complex terrain (Immerzeel et al., 2009; Li and Shao, 2010; Fick et al., 2017; 649 

Vega et al 2017). Although our research showed that TPS method could be used well in climate 650 

interpolation, many studies have pointed out that this method accounted for direct elevation effects 651 

only, and had difficulty in considering the sharp changes in the relationship between climate and 652 
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elevation (Daly et al., 2008; Daly et al., 2007; Marchi et al., 2019). Therefore, it is essential to 653 

comprehensively quantify the non-linear relationship between environmental variables and climate 654 

elements. Thus, future work ought to couple these nonlinear relationships with TPS or new 655 

algorithm for the better estimates of climate elements. 656 
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