
1 
 

A daily, 250 m, and real-time gross primary productivity product 
(2000 – present) covering the Contiguous United States 
Chongya Jiang1,2*, Kaiyu Guan1,2,3*, Genghong Wu1,2, Bin Peng1,3, and Sheng Wang1,2 
1College of Agricultural, Consumer and Environmental Sciences, University of Illinois at Urbana Champaign, Urbana, IL 
61801, USA 5 
2Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana Champaign, Urbana, IL 
61801, USA 
3National Center of Supercomputing Applications, University of Illinois at Urbana Champaign, Urbana, IL 61801, USA 

Correspondence to: Chongya Jiang (chongya.jiang@email.com) Kaiyu Guan (kaiyuguan@gmail.com) 

Abstract. Gross primary productivity (GPP) quantifies the amount of carbon dioxide (CO2) fixed by plants through 10 

photosynthesis. Although as a key quantity of terrestrial ecosystems, there is a lack of high-spatial-and-temporal-resolution, 

real-time, and observation-based GPP products. To address this critical gap, here we leverage a state-of-the-art vegetation 

index, near‐infrared reflectance of vegetation (NIRV), along with accurate photosynthetically active radiation (PAR), to 

produce a SatelLite Only Photosynthesis Estimation (SLOPE) GPP product in the Contiguous United States (CONUS). 

Compared to existing GPP products, the proposed SLOPE product is advanced in its spatial resolution (250 m versus > 500 15 

m), temporal resolution (daily versus 8-day), instantaneity (1 day latency versus > 2 weeks latency), and quantitative 

uncertainty (on a per-pixel and daily basis versus no uncertainty information available). These characteristics are achieved 

because of several technical innovations employed in this study: (1) SLOPE couples machine learning models with MODIS 

atmosphere and land products to accurately estimate PAR. (2) SLOPE couples highly efficient and pragmatic gap-filling and 

filtering algorithms with surface reflectance acquired by both Terra and Aqua MODIS satellites to derive a soil-adjusted 20 

NIRV (SANIRV) dataset. (3) SLOPE couples a temporal pattern recognition approach with a long-term Crop Data Layer 

(CDL) product to predict dynamic C4 crop fraction. Through developing a parsimonious model with only two slope 

parameters, the proposed SLOPE product explains 84% of the spatial and temporal variations in GPP acquired from 50 

AmeriFlux eddy covariance sites (332 site-years), with a root-mean-square error (RMSE) of 1.65 gC m-2 d-1. With such a 

satisfactory performance and its distinct characteristics in spatiotemporal resolution and instantaneity, the proposed SLOPE 25 

GPP product is promising for regional carbon cycle research and a broad range of real-time applications. The archived 

dataset is available at https://doi.org/10.3334/ORNLDAAC/1786 (Download page: 

https://daac.ornl.gov/daacdata/cms/SLOPE_GPP_CONUS/data/) (Jiang and Guan, 2020), and the real-time dataset is 

available upon request.  
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1 Introduction 30 

Gross primary productivity (GPP) quantifies the amount of carbon dioxide (CO2) fixed by plants through photosynthesis 

(Beer et al., 2010; Jung et al., 2017). Because GPP is the largest carbon flux and influences other ecosystem processes such 

as respiration and transpiration, monitoring GPP is crucial for understanding the global carbon budget and terrestrial 

ecosystem dynamics (Bonan, 2019; Friedlingstein et al., 2019). In addition, biomass accumulation driven by GPP is the basis 

for food, feed, wood and fiber production, and therefore monitoring GPP is crucial for human welfare and development 35 

(Guan et al., 2016; Ryu et al., 2019).  

 

Over the past two decades, a number of GPP products with different spatial and temporal characteristics have been derived 

using remote sensing approaches (Xiao et al., 2019). However, since GPP cannot be directly observed at large scales, 

different models have been developed and used in generating GPP products. Process-based models use a series of nonlinear 40 

equations to represent the atmosphere-vegetation-soil system and associated fluxes. For example, a publicly-available global 

GPP product using process-based models is the Breathing Earth System Simulator (BESS) (Jiang and Ryu, 2016). Machine-

learning models upscale site-observed GPP to a larger scale by establishing non-parametric relationships between ground-

truth and gridded explanatory variables. The FLUXCOM GPP product is a typical example of this approach (Jung et al., 

2019). Semi-empirical approaches utilize equations with a concise physiological meaning (e.g., light use efficiency) that are 45 

parameterized with several empirical constraint functions. The MOD17 GPP product (Running et al., 2004), the Vegetation 

Photosynthesis Model (VPM) GPP product (Zhang et al., 2017), and the Global LAnd Surface Satellite (GLASS) GPP 

product (Yuan et al., 2010) belong to this category.  

 

With differing principles, assumptions and complexity, existing remote sensing GPP models heavily rely upon inputs with 50 

large uncertainties. First, climate forcing, such as temperature, humidity, precipitation and wind speed, are commonly used 

in these GPP models. However, these meteorological data are not observed but derived from general circulation models 

(GCMs) and usually have coarse spatial resolution (e.g., 50-km) and large time lag (e.g., weeks). Second, plant functional 

types (PFTs) are used to define different parameterization schemes in those models. To date, satellite land cover products are 

usually characterized by considerably large time lag (> 1 year), relatively low accuracy (≤ 70%) (Yang et al., 2017), and 55 

more uncertainties with regards to year-to-year variations (Cai et al., 2014; Li et al., 2018). Third, high-level remote sensing 

land products such as leaf area index (LAI), fraction of absorbed photosynthetically active radiation (FPAR), clumping index 

(CI), land surface temperature (LST) and soil moisture (SM) are used by some models. These variables are not directly 

observed but retrieved by complicated algorithms, and their accuracy still needs significant improvement to meet 

requirements of earth system models (GCOS, 2011).  60 
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Alternative approaches which heavily rely on reliable satellite observations with low dependence on uncertain model 

structure/parameterization and model inputs are highly required. Solar-induced fluorescence (SIF) emerged in recent years 

may provide a new opportunity for GPP estimation (Guanter et al., 2014). Linear relationships have been found between SIF 

and GPP at various ecosystems (Liu et al., 2017; Magney et al., 2019; Yang et al., 2015). However, satellite SIF data 65 

generally have coarse resolution, large spatial gaps, short temporal coverage, and limited quality (Bacour et al., 2019; Zhang 

et al., 2018), and therefore not suitable for many applications.  

 

Near-infrared reflectance of vegetation (NIRV,Ref), defined as the product of normalized difference vegetation index (NDVI) 

and observed NIR reflectance (NIRRef) (Eq. [1]), has recently been presented as a proxy of GPP (Badgley et al., 2017). A 70 

global monthly 0.5° GPP dataset has been produced from satellite data using the linear relationship between NIRV,Ref and 

GPP (Badgley et al., 2019), explaining 68% GPP variations observed by the FLUXNET network. Several field studies have 

recently found that taking incoming radiation into account further improves the NIRV ~ GPP relationship (Dechant et al., 

2020; Wu et al., 2020). Because MODIS provides long-term and real-time (2000 – present) observations of red and NIR 

reflectance and atmospheric conditions with high spatial (250 m for reflectance and 1 km for atmosphere) and temporal 75 

(daily) resolutions, now there is an unprecedented opportunity to generate an observation-based GPP product. 

𝑁𝑁𝑁𝑁𝑁𝑁𝑉𝑉,𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 × 𝑁𝑁𝑁𝑁𝑁𝑁𝑅𝑅𝑅𝑅𝑅𝑅 =
𝑁𝑁𝑁𝑁𝑁𝑁𝑅𝑅𝑅𝑅𝑅𝑅 − 𝑁𝑁𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑁𝑁𝑁𝑁𝑁𝑁𝑅𝑅𝑅𝑅𝑅𝑅 + 𝑁𝑁𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

× 𝑁𝑁𝑁𝑁𝑁𝑁𝑅𝑅𝑅𝑅𝑅𝑅  (1) 

 

Leveraging the concept of NIRV, here we present a new GPP model and the resultant daily, 250m, and real-time GPP 

product (2000 – present) covering the Contiguous United States (CONUS) (Jiang and Guan, 2020). The product is named 

SatelLite Only Photosynthesis Estimation (SLOPE) because (1) the model only uses satellite data, and (2) the model only 80 

has two slope parameters. Detailed model design, multi-source satellite data processing, and comprehensive evaluation 

procedures are elucidated below.  

2 Production of the SLOPE product 

The method we used to estimate GPP using the novel vegetation index NIRV,Ref follows the concept of light use efficiency 

(LUE) (Monteith, 1972; Monteith and Moss, 1977):  85 

𝐺𝐺𝑃𝑃𝑃𝑃 = 𝑃𝑃𝑃𝑃𝑁𝑁 × 𝐹𝐹𝑃𝑃𝑃𝑃𝑁𝑁 × 𝐿𝐿𝐿𝐿𝐿𝐿 (2) 

Since NIRV,Ref has been found strongly correlated to FPAR (Badgley et al., 2017), and moderately correlated to LUE 

(Dechant et al., 2019), it is possible to simplify Eq. (2) as: 

𝐺𝐺𝑃𝑃𝑃𝑃 ≈ 𝑃𝑃𝑃𝑃𝑁𝑁 × �𝑎𝑎 × 𝑁𝑁𝑁𝑁𝑁𝑁𝑉𝑉,𝑅𝑅𝑅𝑅𝑅𝑅 + 𝑏𝑏� (3) 

where a and b are slope and intercept which can be fitted from ground GPP observations. Both PAR and NIRV,Ref can be 

easily derived from satellite observations with high spatial and temporal resolutions in real time, avoiding complicated but 
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uncertain algorithm/parameterization to quantify FPAR and LUE in Eq. (2). This linear relationship is likely to converge 90 

within C3 species (Badgley et al., 2019), but differs between C3 and C4 species (Wu et al., 2019). Accordingly, land cover 

data with considerably large time lags and relatively low accuracy may not be necessary for the model parameterization. 

Instead, an in-season C3/C4 species dataset is needed for the accurate calibration of the linear relationship. 

 

Defining the ratio of GPP to PAR as the incident PAR use efficiency (iPUE) gives: 95 

𝑖𝑖𝑃𝑃𝐿𝐿𝐿𝐿 = 𝐺𝐺𝑃𝑃𝑃𝑃/𝑃𝑃𝑃𝑃𝑁𝑁 = 𝐹𝐹𝑃𝑃𝑃𝑃𝑁𝑁 × 𝐿𝐿𝐿𝐿𝐿𝐿 ≈ 𝑎𝑎 × 𝑁𝑁𝑁𝑁𝑁𝑁𝑉𝑉,𝑅𝑅𝑅𝑅𝑅𝑅 + 𝑏𝑏 (4) 

Here iPUE is a confounding factor of canopy structure and leaf physiology, representing the capacity of plants to use 

incoming radiation for photosynthesis. When vegetation is absent, iPUE is zero and NIRV,Ref should be zero too. However, 

this is not true in reality as >99.9% soils have positive NIRV,Ref values according to a global soil spectral library (Jiang and 

Fang, 2019), and the correction of NIRV,Ref for soil is needed for better performance at low vegetation cover (Zeng et al., 

2019). To address this issue, we will propose spatially-explicit correction for NIRV,Ref to derive a soil adjusted index 100 

SANIRV (see details in section 2.2). Since SANIRV = 0 when iPUE = 0, Eq. (4) becomes: 

𝑖𝑖𝑃𝑃𝐿𝐿𝐿𝐿 ≈ 𝑐𝑐 × 𝑆𝑆𝑃𝑃𝑁𝑁𝑁𝑁𝑁𝑁𝑉𝑉 (5) 

where c is the slope coefficient.  

 

Considering the presence of mixed pixel of C3 and C4 species with the 250 m pixels, Eq. (5) can be rewritten as: 

𝑖𝑖𝑃𝑃𝐿𝐿𝐿𝐿 ≈ [𝑐𝑐𝐶𝐶4 × 𝑓𝑓𝐶𝐶4 + 𝑐𝑐𝐶𝐶3 × (1 − 𝑓𝑓𝐶𝐶4)] × 𝑆𝑆𝑃𝑃𝑁𝑁𝑁𝑁𝑁𝑁𝑉𝑉 (6) 

where cC4 and cC3 are the coefficients for C4 and C3 species, respectively, and fC4 is the fraction of C4 species in vegetation.  105 

Therefore, the SLOPE GPP model is: 

𝐺𝐺𝑃𝑃𝑃𝑃 ≈ [𝑐𝑐𝐶𝐶4 × 𝑓𝑓𝐶𝐶4 + 𝑐𝑐𝐶𝐶3 × (1 − 𝑓𝑓𝐶𝐶4)] × 𝑃𝑃𝑃𝑃𝑁𝑁 × 𝑆𝑆𝑃𝑃𝑁𝑁𝑁𝑁𝑁𝑁𝑉𝑉 (7) 

 

In the SLOPE model (Eq. [7]), PAR, SANIRV and fC4 are remote sensing inputs, whereas cC4 and cC3 are model parameters to 

be calibrated using ground-truth GPP data (Fig. 1). In the following sections, we will elaborate on the derivation of PAR, 

SANIRV, and fC4, along with their quantitative uncertainties, and the model calibration for parameters cC4 and cC3. With the 110 

uncertainty of each term (∆cC4, ∆cC3, ∆fC4, ∆PAR and ∆SANIRV), the uncertainty of GPP can be estimated in a 

spatiotemporally-explicit manner by: 

 ∆𝐺𝐺𝑃𝑃𝑃𝑃 = (𝑓𝑓𝐶𝐶4 × 𝑃𝑃𝑃𝑃𝑁𝑁 × 𝑆𝑆𝑃𝑃𝑁𝑁𝑁𝑁𝑁𝑁𝑉𝑉) × ∆𝑐𝑐𝐶𝐶4 

(8) 

  + [(1 − 𝑓𝑓𝐶𝐶4) × 𝑃𝑃𝑃𝑃𝑁𝑁 × 𝑆𝑆𝑃𝑃𝑁𝑁𝑁𝑁𝑁𝑁𝑉𝑉]∆𝑐𝑐𝐶𝐶3 

  + [(𝑐𝑐𝐶𝐶4 − 𝑐𝑐𝐶𝐶3) × 𝑃𝑃𝑃𝑃𝑁𝑁 × 𝑆𝑆𝑃𝑃𝑁𝑁𝑁𝑁𝑁𝑁𝑉𝑉]∆𝑓𝑓𝐶𝐶4 

  + {[𝑐𝑐𝐶𝐶4 × 𝑓𝑓𝐶𝐶4 + 𝑐𝑐𝐶𝐶3 × (1 − 𝑓𝑓𝐶𝐶4)] × 𝑆𝑆𝑃𝑃𝑁𝑁𝑁𝑁𝑁𝑁𝑉𝑉}∆𝑃𝑃𝑃𝑃𝑁𝑁 

  + {[𝑐𝑐𝐶𝐶4 × 𝑓𝑓𝐶𝐶4 + 𝑐𝑐𝐶𝐶3 × (1 − 𝑓𝑓𝐶𝐶4)] × 𝑃𝑃𝑃𝑃𝑁𝑁}∆𝑆𝑆𝑃𝑃𝑁𝑁𝑁𝑁𝑁𝑁𝑉𝑉 
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Figure 1. Framework to produce the SLOPE GPP product. The box with dash lines is the legend. 

2.1 Derivation of PAR 115 

SLOPE adopts several machine learning approaches to compute PAR using forcing data mainly from Terra & Aqua/MODIS 

Atmosphere and Land products (data solely from morning satellite Terra, afternoon satellite Aqua, and combined of the two 

satellites are called MOD, MYD and MCD, respectively hereinafter). The list of inputs include aerosol optical depth (AOD) 

at 3 km and 1 km resolutions from MOD/MYD04_3K and MCD19A2 products (Lyapustin et al., 2011; Remer et al., 2013), 

respectively, total column water vapour (TWV) at 1 km resolution from MOD/MYD05_L2 products (Chang et al., 2015), 120 

cloud optical thickness (COT) at 1 km resolution from MOD/MYD06_L2 products (Baum et al., 2012), total column ozone 

burden (TO3) at 5 km resolution from MOD/MYD07_L2 products (Borbas et al., 2015), white-sky land surface shortwave 

albedo (ALB) at 500 m resolution from MCD43A3 product (Román et al., 2009), and altitude (ALT) at 30 m resolution from 

Shuttle Radar Topography Mission Global 1 arc second (SRTMGL1) product (Kobrick and Crippen, 2017).  

 125 

MODIS atmosphere products are swath data and swaths vary day by day. To maintain consistency and facilitate further 

usage, all data are reprojected using the nearest neighbor resampling approach to the Conus Albers projection on a NAD83 

datum (EPSG: 6350) with a 1 km spatial resolution. For swath data, overlap area exists between two paths. In this case, data 

with smaller sensor view zenith angles provided by MOD/MYD03_L2 products are chosen. MODIS land products and 

SRTMGL1 are tile data with finer resolution than 1 km. They are reprojected to the EPSG 6350 spatial reference by 130 

aggregating all fine resolution pixels within each 1 km grid.  

 

Data gaps exist in all MODIS products and gap-filling is required. For MODIS atmosphere products, gaps in MOD/MYD are 

first filled by data in MYD/MOD counterpart on the same day, followed by multi-year average on that day. Since the multi-
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year average of COT is always non-zero, directly using it for gap-filling always implies a cloudy condition. Therefore, 135 

CLARA-2 cloud mask at 0.05° acquired from NOAA/AVHRR data is employed (Karlsson et al., 2017). Only MODIS data 

gaps for AVHRR cloudy pixels are filled by multi-year average of COT, whereas MODIS COT data gaps for AVHRR clear 

pixels are set to 0. For the MODIS land product, i.e., ALB, a temporally moving window with a 7-day radius is utilized for a 

specific day, and a Gaussian filter is applied to the time series data within the moving window on a per pixel basis. The 

filtered values are used to fill gaps on that specific day.  140 

 

Machine learning approaches are used to upscale ground-truth to satellite. Ground-truth is from the Surface Radiation 

Budget (SURFRAD) Network (Augustine et al., 2000), including seven long-term continuous sites across the CONUS. Daily 

mean shortwave radiation (SWR) and PAR on the surface are calculated from site observations at 1 – 3 min intervals from 

2000 through 2018. Daily mean SWR at the top of atmosphere (SWRTOA) is calculated using latitude and day of year (DOY) 145 

information (Allen et al., 1998). Subsequently, atmospheric transmittance (tSWR) and fraction of PAR to SW (fPAR) are 

calculated as SWR/SWRTOA and PAR/SWR. 

 

Models are built to estimate tSWR first, followed by fPAR. MOD data representing atmospheric conditions in the morning and 

MYD for the afternoon are used separately for the estimation, and the two estimates are averaged to account for 150 

discrepancies between morning and afternoon. Clear and cloudy conditions are also treated separately in modeling 

considering the absence/presence of non-zero COT data. For the estimation of tSWR, ALB, ALT and SWRTOA are used in 

addition to atmosphere data, whereas for fPAR, ALB, ALT and the estimated tSWR are used. A summary of model inputs is 

listed in Table 1.  

 155 

Four different machine learning approaches are employed to estimate tSWR and fPAR. They are least absolute shrinkage and 

selection operator (LASSO) (Tibshirani, 1996), multivariate adaptive regression splines (MARS) (Friedman, 1991), k-

nearest neighbors regression (KNN) (Goldberger et al., 2005), and random forest regression (RF) (Liaw and Wiener, 2002). 

All inputs and outputs are the same for the four approaches. Four different PAR estimations are then obtained by Eq. (9), and 

their ensemble mean and standard deviation are considered as the final estimation and uncertainty, respectively. 160 

𝑃𝑃𝑃𝑃𝑁𝑁 = 𝑆𝑆𝑆𝑆𝑁𝑁𝑇𝑇𝑇𝑇𝑇𝑇 × 𝑡𝑡𝑆𝑆𝑆𝑆𝑅𝑅 × 𝑓𝑓𝑃𝑃𝑇𝑇𝑅𝑅 (9) 

 

Table 1. Summary of machine learning model inputs for the estimation of tSWR and fPAR. Daily estimations from MOD and 

MYD atmosphere data are averaged.  

Inputs 
For daily tSWR estimation For daily fPAR estimation 
MOD  MYD MOD  MYD 

Clear Cloudy Clear Cloudy Clear Cloudy Clear Cloudy 
log(COT)  √  √  √  √ 
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log(AOD) √ √ √ √ √ √ √ √ 
TWV √ √ √ √ √ √ √ √ 
TO3 √ √ √ √ √ √ √ √ 
ALB √ √ √ √ √ √ √ √ 
ALT √ √ √ √ √ √ √ √ 
SWRTOA √ √ √ √     
tSWR     √ √ √ √ 

 

2.2 Derivation of SANIRv 165 

SLOPE derives NIRV,Ref (Eq. [1]) from MODIS band 1 (red) and band 2 (NIR) surface reflectance (SR) at 250 m resolution 

from MOD/MYD09GQ products (Vermote et al., 2002). Since cloud and cloud shadows substantially reduce NIRV,Ref values, 

SLOPE adopts three strategies to mitigate the cloud contamination.  

 

First, the cloud mask is applied. MOD/MYD COT data processed in Section 2.1 are resampled to the same spatial reference 170 

with MOD/MYD SR data and used to mask out cloudy pixels. At this point, a morphological dilation operation is used to 

enlarge the cloud mask to account for cloud edges. However, since COT data have a coarser resolution (1 km) than SR data 

(250 m), there are still partial clouds and cloud shadows left after this step.  

 

Second, MOD and MYD data are combined. Ideally, on a specific day, MOD and MYD NIRV,Ref should be identical if they 175 

are obtained under the same conditions. However, the remaining cloud contamination and sensor view zenith angle could 

cause differences between morning and afternoon observations. Considering vegetation index is more sensitive to cloud 

contamination than sensor view zenith angle, a simple criterion is applied to combine MOD and MYD observations. If the 

difference between MOD and MYD NIRV,Ref is greater than or equal to a predefined threshold (0.1 in this study), then the 

smaller one is likely cloud contaminated and the larger one is used. Otherwise, the average value of the two is used. 180 

However, in many cases, both MOD and MYD data are contaminated, and sensor view zenith angle may cause unexpected 

day-to-day variations.  

 

Third, a temporal filter is applied. The filter is based on the assumption that NIRV,Ref should change smoothly within a short 

time period. Accordingly, a temporally moving window with a 3-day radius is utilized for a specific day. Mean and standard 185 

deviation are calculated from the NIRV,Ref time series on a per pixel basis. Values outside the range of mean ± 1.5 standard 

deviations are considered as outliers and dropped. Subsequently, the mean of the first 3 days and that of the last 3 days are 

calculated, respectively. If the NIRV,Ref value of the target day is 20% smaller or larger than both the first 3 days mean and 

the last 3 days mean, then that NIRV,Ref value is considered as an outlier and dropped.  

 190 
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After the removal of outliers, a large amount of data gaps exist and gap-filling is required. Similar to ALB in Section 2.1, a 

temporally moving window with a 3-day radius is utilized for a specific day, and a Gaussian filter is applied and used to fill 

gaps on that day. The rest of data gaps are filled with multi-year average of NIRV,Ref. Considering extreme cases that no data 

is available on a specific day over all years, multi-year average of ± 3 days is used for the final gap-filling.  

 195 

To minimize the effects of variations in soil brightness on NIRV,Ref, soil background NIRV (NIRV,Soil) is identified from 

multi-year average NIRV,Ref time series. Three features of soil NIRV,Ref are utilized. First, for each pixel, soil background can 

be considered as an approximate constant over time. Soil moisture could remarkably influence soil brightness but marginally 

influence the relative difference between NIR and red reflectance. Second, soil background should have smaller NIRV,Ref 

value than vegetation, and therefore NIRV,Soil should be smaller than the seasonal mean NIRV. Third, according to a global 200 

soil spectral library (Jiang and Fang, 2019), more than 99.99% soils have NIRV,Ref values smaller than 0.2. Accordingly, the 

NIRV,Ref range of [0, 0.2] is segmented into 20 bins with 0.01 for each interval. Each day in the multi-year average NIRV,Ref 

time series falls into one bin. Bins larger than the seasonal mean NIRV are excluded. The central value of the bin with the 

most days is set as NIRV,Soil. Evergreen species could be exceptions that the NIRV,Soil value obtained from the prevailing bin 

is actually NIRV,Ref from vegetation. To address this issue, pixels with NIRV,Soil value larger than 0.1 and seasonal coefficient 205 

of variation (CV) of NIRV,Ref smaller than 33% are empirically considered as evergreen species and their NIRv,Soil values are 

set to 0.  

 

Finally, SANIRV is defined as: 

𝑆𝑆𝑃𝑃𝑁𝑁𝑁𝑁𝑁𝑁𝑉𝑉 =
𝑁𝑁𝑁𝑁𝑁𝑁𝑉𝑉,𝑅𝑅𝑅𝑅𝑅𝑅 − 𝑁𝑁𝑁𝑁𝑁𝑁𝑉𝑉,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

𝑁𝑁𝑁𝑁𝑁𝑁𝑉𝑉,𝑃𝑃𝑅𝑅𝑃𝑃𝑃𝑃 − 𝑁𝑁𝑁𝑁𝑁𝑁𝑉𝑉,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
× 𝑁𝑁𝑁𝑁𝑁𝑁𝑉𝑉,𝑃𝑃𝑅𝑅𝑃𝑃𝑃𝑃  (10) 

where NIRV,Peak is the maximum value of multi-year average NIRV,Ref time series on a per-pixel basis. SANIRV does not 210 

change NIRV,Peak, but changes more for low NIRV,Ref values. SANIRV,Ref is set 0 when NIRV,Ref ≤ NIRV,Soil. In general, 

SANIRV is supposed to be smooth within a short time period, therefore, the standard deviation within the ±3-day temporal 

window is calculated as uncertainty. 

 

2.3 Derivation of C4 fraction 215 

A National Land Cover Database (NLCD) along with a crop-specific land cover product Cropland Data Layer (CDL) are 

used to derive the fraction cover of C4 crop in vegetation (fC4). NLCD is a comprehensive land cover database produced by 

the United States Geological Survey (USGS). It provides several main thematic classes such as urban, agriculture, and forest 

with high accuracy (Homer et al., 2004). The 30 m nationwide NLCD data are available in 2001, 2004, 2006, 2008, 2011, 

2013 and 2016. CDL is an agriculture-oriented product produced by the United States Department of Agriculture (USDA). It 220 

provides > 100 crop cover types and leverages other land cover types from NLCD (Boryan et al., 2011). Across the CONUS 
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CDL data are available at a 30m spatial resolution and in a yearly temporal frequency from 2008 through 2019, whereas in 

some areas annual data are available back to the 1990s.  

 

The fraction of C4 crop in vegetated areas is first derived using existing CDL data. NLCD land cover types are categorized 225 

into vegetated areas and non-vegetated areas with 30 m resolution. Fraction of vegetated areas in total area is subsequently 

calculated for each 250 m pixel. Similarly, CDL crop types are categorized into C4-planted areas and non-C4 areas with 30 

m resolution. Fraction of C4 crops in total area is subsequently calculated for each 250 m pixel. The ratio of fraction of C4 

crops in total area to fraction of vegetated areas in total area is calculated to derive fraction of C4 crop in vegetated areas at 

250 m resolution. Since NLCD data is not available every year, an assumption is made that one year NLCD data can 230 

represent adjacent years. Specifically, NLCD 2001 is used for 2000 – 2002, NLCD 2004 is used for 2003 and 2004, NLCD 

2006 is used for 2005 and 2006, NLCD 2008 is used for 2007 – 2009, NLCD 2011 is used for 2010 and 2011, NLCD 2013 

is used for 2012 – 2014. NLCD 2016 is used for 2015 – 2019.  

 

To predict the fraction of C4 crop in vegetation for region-years that no CDL data is available, crop rotation patterns are 235 

identified from historical data. Assuming that C4 crops are planted following three rotation strategies: C4/non-C4, 

C4/C4/non-C4, and non-C4/non-C4/C4, and assigning 1 to C4 and 0 to non-C4, a total of eight possible time series during 

the period of 2008 – 2019 when nationwide CDL data are available are listed in Table 2. On a per-pixel basis, the time series 

of the fraction of C4 crop in vegetation during 2008 – 2019 is compared with the eight predefined rotation patterns. 

PeaSLOPEn coefficient r is calculated between actual time series and each of the eight patterns, and the pattern yielding the 240 

largest r is the identified rotation pattern. Once the pattern is identified, fraction of C4 crop in vegetated areas in any 

unknown year can be inferred. If one year is inferred as C4, then the multi-year average of C4 fraction over C4-dominated 

years is used. Otherwise, the multi-year average over C3-dominated years is used. If the largest r is smaller than 0.497, i.e., 

p > 0.1 for 12 years, then it is considered as no significant pattern and the multi-year average over all years is used. The 

RMSE between predicted and reference CDL C4 fraction is calculated as uncertainty. To account for the land cover change, 245 

the predicted C4 crop fraction is set to 0 in years when NLCD data is not classified as cropland. It is worth mentioning that 

C4 grassland and shrubland are not considered in this study as no nationwide high-resolution distribution data is available.  

 

Table 2. Predefined C4-planting patterns from 2008 through 2019. If C4 crop dominates in a specific year, 1 is assigned. 

Otherwise, 0 is assigned. 250 

Year Pattern 1 Pattern 2 Pattern 3 Pattern 4 Pattern 5 Pattern 6 Pattern 7 Pattern 8 
2008 1 0 1 1 0 0 0 1 
2009 0 1 1 0 1 0 1 0 
2010 1 0 0 1 1 1 0 0 
2011 0 1 1 1 0 0 0 1 
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2012 1 0 1 0 1 0 1 0 
2013 0 1 0 1 1 1 0 0 
2014 1 0 1 1 0 0 0 1 
2015 0 1 1 0 1 0 1 0 
2016 1 0 0 1 1 1 0 0 
2017 0 1 1 1 0 0 0 1 
2018 1 0 1 0 1 0 1 0 
2019 0 1 0 1 1 1 0 0 

 

2.4 Calibration for iPUE coefficients 

SLOPE was calibrated using the GPP data derived from AmeriFlux site observations. The AmeriFlux network is a 

community of sites that use eddy-covariance technology to measure landscape-level carbon, water, and energy fluxes across 

the Americas (Baldocchi et al., 2001). A total of 50 sites (332 site years) were involved in this study (Table S3). All of the 43 255 

sites in the FLUXNET2015 Tier 1 dataset (variable name: GPP_DT_VUT_MEAN; quality control: NEE_VUT_REF_QC) 

in the CONUS were used, because this dataset was produced by standardized data processing pipeline with strict data quality 

control protocols and is commonly considered as ground-truth. Additional 7 sites were from the AmeriFlux level 4 dataset 

(variable name: GPP_or_MDS; quality control: NEE_or_fMDSsqc). This dataset was generated more than ten years ago and 

only AmeriFlux Core Sites that are not covered by FLUXNET2015 were used for data quality consideration. For both 260 

datasets, only days with the best quality control flags were used in the SLOPE modelling and evaluation procedures. 

 

We used Eq. (5) to conduct model calibration. Although SLOPE considers iPUE ~ SANIRV relationship for C3 and C4 

species, we also tested other configurations for comparison purposes. Configuration 1 (“all”): all data were used together to 

fit a universal iPUE coefficient c. Configuration 2 (“C3/C4”): data were separated for C3 and C4 species to fit cC3 and cC4, 265 

respectively. It is worth mentioning that only C4 crops (6 sites) were considered as C4 species, whereas C4 grass and shrubs 

(3 sites: US-SRG, US-SRM and US-Wkg) were still categorized into C3 species because of the lack of nationwide and high-

resolution C4 grass/shrubs data. Configuration 3 (“PFTs”): data were separated for different PFTs: evergreen needleleaf 

forest (ENF; 14 sites), deciduous broadleaf forest and mixed forest (DBF & MF; 8 sites), shrubland and woody savannah 

(SHR & WSA, 5 sites), grassland (GRA; 8 sites), wetland (WET; 5 sites), C3 cropland (10 sites) and C4 cropland (6 sites), 270 

to fit PFT-specific iPUE coefficients. The RMSE between SANIRV-derived and AmeriFlux iPUE for C3 and C4 are 

calculated as uncertainties of cC3 and cC4, respectively. 
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3 Evaluation of the SLOPE product 

3.1 Performance of PAR 

 275 
Figure 2. Spatial distribution of 1 km resolution (a) PAR (W m-2) and (b) PAR uncertainty (W m-2) on Aug 1, 2019. The 

background image is a © NASA Blue Marble image. 

 

SLOPE PAR demonstrates distinctive and detailed spatial variations in the CONUS because of the large spatial variations of 

atmospheric conditions (Fig. 2a). As an example, on Aug 1, 2019, large areas in the central and southeastern parts of the 280 

CONUS display significantly lower values than other areas, due to dominant impacts of cloud (Fig. S1) and considerable 

influences of water vapor in nearby cloud-free regions (Fig. S2). Aerosol optical depth also influences clear-sky PAR to 

some degree. For example, West Illinois and South California show little aerosol and thus higher PAR values than 

surrounding areas. PAR uncertainties caused by the difference of the four machine learning algorithms are generally small (< 

5%; Fig. 2b). Higher uncertainties are mainly distributed in cloudy areas. The background image is a © NASA Blue Marble 285 

image. 

 

To evaluate the SLOPE PAR, we used two different site observation datasets which are independent of the PAR derivation 

procedure. The first dataset is SURFRAD (Table S1). While SURFRAD data from 2000 through 2018 were used for model 

training, we used data in 2019 for evaluation. The second dataset is FLUXNET2015 (Table S2). A total of 41 sites providing 290 

PAR data were used for the evaluation. For both datasets, only days with the best quality control flags were used.  

 

Evaluation results show that SLOPE PAR is in a highly aligned agreement with ground truth independent from the training 

procedure (Fig. 3). Across the seven SURFRAD sites in 2019 and the 41 AmeriFlux sites from 2000 to 2014, SLOPE PAR 

achieves an overall coefficient of determination (R2) of 0.91, and root-mean-square errors (RMSE) of 1.09 and 1.19 MJ m-2 295 

d-1, respectively.  
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Figure 3. Comparison between site-observed PAR and SLOPE PAR. (a) Comparison across seven SURFRAD sites in 2019. 300 

(b) Comparison across 41 AmeriFlux sites from 2000 to 2014. All site data are independent of the training procedure.  

 

3.2 Performance of SANIRV 
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 305 
Figure 4. Spatial distribution of 250 m resolution (a and c) SANIRV, (b) SANIRV uncertainty and (d) land cover on Aug 1, 

2019. (c) shows a 50 × 75 km2 area in the Keith County, Nebraska (red marker in [a]). (d) is aggregated from 30 m CDL data 

by selecting the dominant land cover type within each 250 m pixel. The background image is a © NASA Blue Marble image. 

 

SLOPE SANIRV demonstrates detailed and distinctive spatial variations in the CONUS (Fig. 4a). In the peak growing season, 310 

remarkably high SANIRV values (~ 0.5) from the Corn Belt in the Central US are observed. This area is one of the most 

productive areas on Earth, producing more than 30% of global corn and soybean (Green et al., 2018). Forested areas in the 

Eastern and Western US are characterized by relatively high values (0.3 – 0.4) and medium values (0.2 – 0.3), respectively. 

Low values (< 0.2) are mainly observed in grasslands and shrublands in the Western US. Uncertainty is associated with 

SANIRV data on the pixel basis (Fig. 4b). In general, areas with higher SANIRV values also have higher uncertainties. 315 

However, this pattern is altered by atmospheric conditions, where areas with higher cloud optical thickness (Fig. S1), water 

vapour (Fig. S2) and aerosol optical depth (Fig. S3) values tend to have larger uncertainties. At small scale (e.g., within a 

county), SLOPE SANIRV also demonstrates clear spatial variations (Fig. 4c). The SANIRV values generally follow the order 

that soybean > corn > forest/grass > non-veg. On Aug 1, 2019, soybean was in peak growing season, whereas corn had 

passed, so the difference between the two crops can be observed. In addition, differences between plots can be observed, 320 

possibly indicating different varieties, planting density, and management.  
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Figure 5. Comparison between SANIRV and raw NIRV derived from MOD09GQ and MYD09GQ products at six AmeriFlux 

sites (Table S3) in 2019. (a) US-Blo (evergreen needleleaf forest, ENF). (b) US-Ha1 (deciduous broadleaf forest, DBF). (c) 

US-Whs (open shrubland, OSH). (d) US-AR1 (grassland, GRA). (e) US-Myb (wetland, WET). (f) US-Bo1 (cropland, CRO). 325 

Shaded areas indicate uncertainties of SANIRV. 

 

SLOPE SANIRV shows significantly different seasonality for different PFTs (Fig. 5). The evergreen needleleaf forest site 

US-Blo is characterized by a relatively stable SANIRV seasonal cycle in 2019 (Fig. 5a), indicated by a CV = 14.9% only. 

The deciduous broadleaf forest site US-Ha1 has a large seasonal variation with a CV = 108.6% (Fig. 5b). The SANIRV value 330 

suddenly rises from 0 to 0.3 in May, reaches 0.4 in June and July, and gradually decreases back to 0 in October. The hot 

desert open shrubland site US-Whs has an overall low SANIRV value (Fig. 5c), with a peak value observed in early October. 

The grassland site US-AR1 shows a distinct double-peak (in June and September) seasonal pattern (Fig. 5d), which is caused 

by the precipitation seasonality there. The wetland site US-Myb is characterized by a long growing season and a flat peak 

from April to November (Fig. 5e). The cropland site US-Bo1 has corn planted in 2019, and it shows the highest SANIRV 335 

peak up to 0.5 among all the shown six sites (Fig. 5f). It is worth mentioning that compared to the two raw satellite-observed 

NIRV provided by MOD09GQ and MYD09GQ products, respectively, SLOPE SANIRV successfully removes the soil 

impact in the non-growing season as the values equal to or close to zero. In addition, SLOPE SANIRV is gap-free and much 

less contaminated by noises. Furthermore, spatiotemporally-explicit uncertainty is associated with each SANIRV value. 
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3.3 Performance of C4 fraction 340 

 

 
Figure 6. Spatial distribution of 250 m resolution (a and c) predicted fraction of C4 crop in vegetation in 2002, (b) C4 crop 

fraction uncertainty and (d) reference fraction of C4 crop in vegetation in 2000 derived from CDL. (c and d) show a 50 × 75 

km2 area in the Keith County, Nebraska (red marker in [a]). Only CDL data during 2008 – 2019 are used in the modelling 345 

procedure and therefore (d) is independent of (c). The background image is a © NASA Blue Marble image. 

 

SLOPE predicts a reasonable fraction of C4 crop in vegetation in the CONUS (Fig. 6a). Most of the C4 crops are located in 

the Corn Belt, especially in Indiana, Illinois, Iowa and Nebraska. A direct comparison between predicted C4 crop fraction 

(Fig. 6c) and independent reference CDL data (Fig. 6d) indicates that the SLOPE prediction is able to reconstruct the spatial 350 

patterns of the fraction of C4 crop in vegetation at 250 m resolution. A further investigation with regard to interannual 

dynamics shows that the SLOPE predictions can even perform better than CDL reference data (Fig. 7), benchmarked with 

ground truth collected in the field. At this point, the CDL land cover could be prone to uncertainties in both satellite 

observation and classification algorithm, and classification is conducted year by year without an interannual consideration 

(Lark et al., 2017). SLOPE employs a rotation model to match decadal time series of CDL data, during which procedure 355 
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noises in CDL data are suppressed. The features that SLOPE is able to reconstruct spatial and interannual patterns of CDL 

data enables producing GPP in years when CDL data is unavailable (e.g., 2020 and years before 2008 for most regions). It is 

worth mentioning that uncertainty is also associated with each pixel (Fig. 6b). 

 
Figure 7. Comparison of fraction of C4 crop in vegetation between field collected ground truth, 250 m resolution CDL data 360 

and 250 m resolution SLOPE predictions at six AmeriFlux sites (Table S3) in the U.S. Corn Belt from 2000 to 2020. (a) US-

Ne1. (b) US-Ne2. (c) US-Ne3. (d) US-Bo1. (e) US-Ro1.  
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3.4 Performance of GPP 

 365 
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Figure 8. Comparison between SANIRV and iPUE over different subsets. The slope value of the SANIRV ~ iPUE 

relationship is the model parameter c(Eq. [5]). (a) is used by the model configuration 1 (“all”). (b) and (c) are used by the 

model configuration 2 (“C3/C4”) which is actually used by SLOPE. (b) and (d) – (i) are used by the model configuration 3 

(“PFTs”).  

 370 

SLOPE SANIRV shows a strong linear correlation with iPUE (Fig. 8). When data from all 50 sites (332 site years) are used 

together, the SANIRV ~ iPUE relationship has an overall R2 value of 0.70 (Fig. 8a). This is composed of R2 of 0.91 from C4 

species (Fig. 8b) and 0.66 from C3 species (Fig. 8c). C3 species can be further decomposed into six PFTs (Fig. 8d – 8i), 

among which cropland has the highest R2 value up to 0.80 (Fig. 8i), whereas evergreen needleleaf forest has the lowest value 

of 0.36 partly because of the small value ranges in both SANIRV and iPUE (Fig. 8d). The overall slope is 3.75 gC MJ-1 for 375 

all data (Fig. 8a). Distinct difference is found between C4 (5.22; Fig.8b) and C3 (3.46; Fig.8c) species, suggesting the 

importance of separating C4 from C3 species in modelling. The slope values vary to a limited degree within C3 species (Fig. 

8d – 8i), ranging from 3.24 gC MJ-1 (cropland; Fig. 8i) to 3.65 gC MJ-1 (deciduous broadleaf forest and mixed forest; Fig. 

8d), indicating the insignificance of separating different PFTs. It is worth mentioning that the SANIRV ~ iPUE relationship 

has a zero intercept because of the successful removal of the soil impact.  380 

 

 
Figure 9. Statistics of the SANIRV ~ iPUE relationship from cross validation. (a) Slopes of the SANIRV ~ iPUE relationship 

over different subsets. (b) R2 between AmeriFlux GPP and estimated GPP using different model configurations for the 

training and testing datasets, respectively. Error bars in both subplots indicate 95% confidential intervals over 500 385 

experiments.  

 

A 100-time repeated 5-fold cross-validation reveals the robustness of the SANIRV ~ iPUE relationships (Fig. 9). Here the 

repeated cross-validation means the whole GPP dataset from all 50 sites (332 site years) is randomly split into 5 folds, 4 

folds for training and 1 fold for testing, and the process is repeated 100 times yielding 500 training-testing splits in total. In 390 

all subsets, the uncertainties of the iPUE coefficient c (the slope of the SANIRV ~ iPUE relationship) are less than 1% (Fig. 
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9a). When using the three different model configurations, the model performances in simulating the whole training/testing 

datasets also show little variation (Fig. 9b), in general < 0.5% and < 1.5% for the training and testing datasets, respectively. 

Moreover, the R2 values between training and testing datasets, and between C3/C4 and PFT-based configurations are almost 

identical (~ 0.74). These results suggest using cC4 = 5.22 (Fig. 8b) and cC3 = 3.46 (Fig. 8c) in SLOPE is reasonable. The 95% 395 

confidential intervals of c for C4 and C3 species (Fig. 9a) are used as their uncertainties in SLOPE.  

 

 

 
Figure 10. Spatial distribution of 250 m resolution (a and c) GPP (gC m-2 d-1) and (b and d) GPP uncertainty (gC m-2 d-1) on 400 

Aug 1, 2019. (c and d) show a 50 × 75 km2 area in the Keith County, Nebraska (red marker in [a] and [b]). The background 

image is a © NASA Blue Marble image. 

 

SLOPE GPP demonstrates detailed and distinctive spatial variations in the CONUS (Fig. 10a). The Corn Belt is the most 

productive area, largely contributed by the C4 crop corn whose GPP could reach up to 30 gC m-2 d-1 (Fig. 10c and Fig. 4d). 405 

Forested areas in the Eastern US show medium GPP values, followed by forests and croplands in the Western US. 

Grasslands and shrublands in the Central and Western US generally show low productivity. On this example day, the R2 of 

spatial patterns between GPP and SANIRV, GPP and C4 fraction, and GPP and PAR across the CONUS are 0.89, 0.34, and 
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0.01, respectively. SANIRV, an integrated vegetation index containing information of both FPAR and LUE (Eq. [4]), 

explains the majority of GPP spatial variation. C4 fraction mainly contributes to the distribution and magnitude of the peak 410 

in GPP spatial variation. Although PAR does not influence the nationwide GPP spatial variation, it regulates GPP values at 

local scale. For example, Eastern Nebraska shows smaller GPP values than Western Iowa in spite of similar SANIRV (Fig. 

4a) and C4 fraction (Fig. 6a) because of smaller PAR values (Fig. 2a). At small scale (e.g., within a county), the 250 m 

resolution (~0.06 km2 per pixel) SLOPE GPP is close to revealing field-level heterogeneity (Fig. 10c), considering that the 

mean and median crop field sizes in the CONUS are 0.19 km2 and 0.28 km2, respectively (Yan and Roy, 2016). This makes a 415 

big difference from existing global GPP products whose spatial resolutions are at least 500 m (~0.25 km2 per pixel). 

Quantitative uncertainty is provided for each SLOPE GPP estimate (Eq. [8]). The spatial pattern shows that the Corn Belt 

has the largest uncertainty (Fig. 10b; e.g., 5 gC m-2 d-1) due to the considerable contribution from the uncertainty of C4 

fraction (Fig. 6b).   

 420 

 
Figure 11. Performance of the SLOPE GPP. (a) Comparison between AmeriFlux GPP and SLOPE GPP across all sites. (b) 

R2 and RMSE of individual sites. Sites with a C3/C4 rotation are separated into C3 CRO and C4 CRO.  

 

SLOPE GPP agrees fairly well with ground-truth from the AmeriFlux (Fig. 11). Across all of the 50 sites (332 site years; Fig. 425 

11a), SLOPE GPP achieves an overall R2 of 0.84, RMSE of 1.65 gC m-2 d-1, and relative error of 39.6%. For individual sites 

(Fig. 11b), the median R2 and RMSE are 0.75 and 1.65 gC m-2 d-1, respectively. C4 cropland generally shows the highest 

median R2 value (0.91), followed by deciduous broadleaf forest and mixed forest (0.87) and C3 cropland (0.85). The lowest 

median R2 value (0.64) is observed for evergreen needleleaf forest. With regard to RMSE, smaller median values are found 
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in grassland (1.13 gC m-2 d-1), wetland (1.52 gC m-2 d-1), shrubland and woody savannah (1.53 gC m-2 d-1), and deciduous 430 

broadleaf forest and mixed forest (1.53 gC m-2 d-1), whereas C3 (2.28 gC m-2 d-1) and C4 (2.18 gC m-2 d-1) cropland tend to 

have larger RMSE values.   

 
Figure 12. Comparison between AmeriFlux (black dots) and SLOPE (red curves) daily GPP at six AmeriFlux sites (Table S3) 

from 2000 to 2019. (a) US-Blo (evergreen needleleaf forest, ENF). (b) US-Ha1 (deciduous broadleaf forest, DBF). (c) US-435 
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Whs (open shrubland, OSH). (d) US-AR1 (grassland, GRA). (e) US-Myb (wetland, WET). (f) US-Bo1 (cropland, CRO). 

Shaded areas indicate uncertainties of SLOPE GPP. 

 

SLOPE GPP generally captures seasonal and interannual variations of AmeriFlux GPP for different PFTs (Fig. 12). At the 

evergreen needleleaf forest site US-Blo (Fig. 12a), the GPP seasonal cycle is mainly driven by PAR as the iPUE indicated by 440 

SANIRV is fairly stable (Fig. 5a). At the deciduous broadleaf forest site US-Ha1 (Fig. 12b), the start of season and the end of 

season agree well between AmeriFlux GPP and SLOPE GPP. At the open shrubland site US-Whs (Fig. 12c), the quick rise 

and drop of GPP in response to the start and end of the wet season are clearly observed in SLOPE GPP. Even the double-

peak pattern in 2011 can be observed in SLOPE GPP. At the grassland site US-AR1 (Fig. 12d), the impact of a severe 

drought in the Southern Great Plains in 2011 is distinct in SLOPE GPP, as the GPP values in 2011 are only about half of 445 

those in 2010 and 2012. At the cropland site US-Bo1 (Fig. 12f), the rotation-caused year-to-year variation is distinct, 

indicated by higher values in odd number years with C4 crop corn planted and lower values in even years with C3 crop 

soybean planted (Fig. 7d). It is also observed the lowest GPP peak in 2012 when a severe drought attacked the Central US.  

4 Data availability and data format 

The archived daily 250 m resolution SLOPE GPP data product from 2000 to 2019 is distributed under a Creative Commons 450 

Attribution 4.0 License. It is publicly available at the NASA’s Oak Ridge National Laboratory Distributed Active Archive 

Center (ORNL DAAC) with a DOI https://doi.org/10.3334/ORNLDAAC/1786 (Download page: 

https://daac.ornl.gov/daacdata/cms/SLOPE_GPP_CONUS/data/) (Jiang and Guan, 2020). Data from 2020 are available from 

the authors upon request. All data are projected in the standard MODIS Land Integerized Sinusoidal tile map projection and 

are stored in GeoTIFF format files with a data type of signed 16-bit integer. Each processing tile is in size of 4800 pixels by 455 

4800 pixels, representing approximately 1200 km by 1200 km land region. In addition to the GPP product, SLOPE PAR, 

SANIRV, and C4 fraction, along with their uncertainties, are also released. These datasets are also stored in the same spatial 

projection and file format with the GPP dataset. PAR (resampled from 1 km to 250 m to be consistent with GPP) and 

SANIRV are provided on a daily basis, whereas C4 fraction is provided on an annual basis. A README file is provided 

along with the SLOPE product, which instructs the usage of the data. 460 

5 Conclusions 

This study produces a long-term and real-time (2000 – present) GPP product with daily and 250 m spatial and temporal 

resolutions. The product is based on remote sensing only (SLOPE) model, which uses accurate PAR, soil-adjusted NIRv, and 

dynamic C4 fraction as inputs. Evaluation against AmeriFlux ground-truth GPP shows that the SLOPE GPP product has a 

reasonable accuracy, with an overall R2 of 0.84 and RMSE of 1.65 gC m-2 d-1. To demonstrate the real-time capacity of the 465 
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SLOPE GPP product, the latest GPP data on Mar 29, 2020, one day prior to the submission of this manuscript, is shown in 

Fig. S4. The spatiotemporal resolution and instantaneity of the SLOPE GPP product are higher than existing global GPP 

products, such as MOD17, VPM, GLASS, FLUXCOM and BESS. We expect this novel GPP product can significantly 

contribute to various researchers and stakeholders in fields related to the regional carbon cycle, land surface processes, 

ecosystem monitoring and management, and agriculture. The approaches used in this study, in particular, the derivation of 470 

SANIRV, can also be applied to any other satellite platforms with the two most classical bands: red and NIR. For example, 

SaTallite dAta IntegRation (STAIR) Landsat-MODIS fusion data which has daily, 30 m spatiotemporal resolution and can 

be applied at large scale (Jiang et al., 2019; Luo et al., 2018), commercial Planet Labs data with a daily interval and spatial 

resolution up to 3m (Houborg and McCabe, 2016; Kimm et al., 2020), and the Advanced Very High Resolution Radiometer 

(AVHRR)  with a temporal coverage as far back as 1982 (Franch et al., 2017; Jiang et al., 2017).  475 
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