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Abstract. Gross primary productivity (GPP) quantifies the amount of carbon dioxide (CO2) fixed by plants through 10 

photosynthesis. Although as a key quantity of terrestrial ecosystems, there is a lack of high-spatial-and-temporal-resolution, 

real-time, and observation-based GPP products. To address this critical gap, here we leverage a state-of-the-art vegetation 

index, near‐infrared reflectance of vegetation (NIRV), along with accurate photosynthetically active radiation (PAR), to 

produce a SatelLite Only Photosynthesis Estimation (SLOPE) GPP product in the Contiguous United States (CONUS). 

Compared to existing GPP products, the proposed SLOPE product is advanced in its spatial resolution (250 m versus > 500 15 

m), temporal resolution (daily versus 8-day), instantaneity (1 day latency versus > 2 weeks latency), and quantitative 

uncertainty (on a per-pixel and daily basis versus no uncertainty information available). These characteristics are achieved 

because of several technical innovations employed in this study: (1) SLOPE couples machine learning models with MODIS 

atmosphere and land products to accurately estimate PAR. (2) SLOPE couples highly efficient and pragmatic gap-filling and 

filtering algorithms with surface reflectance acquired by both Terra and Aqua MODIS satellites to derive a soil-adjusted NIRV 20 

(SANIRV) dataset. (3) SLOPE couples a temporal pattern recognition approach with a long-term Crop Data Layer (CDL) 

product to predict dynamic C4 crop fraction. Through developing a parsimonious model with only two slope parameters, the 

proposed SLOPE product explains 85% of the spatial and temporal variations in GPP acquired from 49 AmeriFlux eddy 

covariance sites (324 site-years), with a root-mean-square error (RMSE) of 1.63 gC m-2 d-1. The median R2 over C3 and C4 

crop sites reaches 0.87 and 0.94, respectively, indicating great potentials for monitoring crops, in particular bioenergy crops, 25 

at the field level. With such a satisfactory performance and its distinct characteristics in spatiotemporal resolution and 

instantaneity, the proposed SLOPE GPP product is promising for biological and environmental research, carbon cycle research 

and a broad range of real-time applications at the regional scale. The archived dataset is available at 

https://doi.org/10.3334/ORNLDAAC/1786 (Download page: 

https://daac.ornl.gov/daacdata/cms/SLOPE_GPP_CONUS/data/) (Jiang and Guan, 2020), and the real-time dataset is available 30 

upon request.  
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1 Introduction 

Gross primary productivity (GPP) quantifies the amount of carbon dioxide (CO2) fixed by plants through photosynthesis (Beer 

et al., 2010; Jung et al., 2017). Because GPP is the largest carbon flux and influences other ecosystem processes such as 

respiration and transpiration, monitoring GPP is crucial for understanding the global carbon budget and terrestrial ecosystem 35 

dynamics (Bonan, 2019; Friedlingstein et al., 2019). In addition, biomass accumulation driven by GPP is the basis for food, 

feed, wood and fiber production, and therefore monitoring GPP is crucial for human welfare and development (Guan et al., 

2016; Ryu et al., 2019).  

 

Over the past two decades, a number of GPP products with different spatial and temporal characteristics have been derived 40 

using remote sensing approaches (Xiao et al., 2019). However, since GPP cannot be directly observed at large scales, different 

models have been developed and used in generating GPP products. Process-based models use a series of nonlinear equations 

to represent the atmosphere-vegetation-soil system and associated fluxes. For example, a publicly-available global GPP 

product using process-based models is the Breathing Earth System Simulator (BESS) (Jiang and Ryu, 2016). Machine-learning 

models upscale site-observed GPP to a larger scale by establishing non-parametric relationships between ground-truth and 45 

gridded explanatory variables. The FLUXCOM GPP product is a typical example of this approach (Jung et al., 2019). Semi-

empirical approaches utilize equations with a concise physiological meaning (e.g., light use efficiency) that are parameterized 

with several empirical constraint functions. The MOD17 GPP product (Running et al., 2004), the Vegetation Photosynthesis 

Model (VPM) GPP product (Zhang et al., 2017), and the Global LAnd Surface Satellite (GLASS) GPP product (Yuan et al., 

2010) belong to this category.  50 

 

With differing principles, assumptions and complexity, existing remote sensing GPP models heavily rely upon inputs with 

large uncertainties. First, climate forcing, such as temperature, humidity, precipitation and wind speed, are commonly used in 

these GPP models. However, these meteorological data are not observed but derived from reanalysis approaches and usually 

have coarse spatial resolution (e.g., > 10 km) and large time lag (e.g., weeks). Second, plant functional types (PFTs) are used 55 

to define different parameterization schemes in those models. To date, satellite land cover products are usually characterized 

by considerably large time lag (> 1 year), relatively low accuracy (≤ 70%) (Yang et al., 2017), and more uncertainties with 

regards to year-to-year variations (Cai et al., 2014; Li et al., 2018). Third, high-level remote sensing land products such as leaf 

area index (LAI), fraction of absorbed photosynthetically active radiation (FPAR), clumping index (CI), land surface 

temperature (LST) and soil moisture (SM) are used by some models. These variables are not directly observed but retrieved 60 

by complicated algorithms, and their accuracy still needs significant improvement to meet requirements of earth system models 

(GCOS, 2011).  
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Alternative approaches which heavily rely on reliable satellite observations with low dependence on uncertain model 

structure/parameterization and model inputs are highly required. Solar-induced fluorescence (SIF) emerged in recent years 65 

may provide a new opportunity for GPP estimation (Guanter et al., 2014). Linear relationships have been found between SIF 

and GPP at various ecosystems (Liu et al., 2017; Magney et al., 2019; Yang et al., 2015). However, satellite SIF data generally 

have coarse resolution, large spatial gaps, short temporal coverage, and limited quality (Bacour et al., 2019; Zhang et al., 2018), 

and therefore not suitable for many applications.  

 70 

Near-infrared reflectance of vegetation (NIRV,Ref), defined as the product of normalized difference vegetation index (NDVI) 

and observed NIR reflectance (NIRRef) (Eq. [1]), has recently been presented as a proxy of GPP (Badgley et al., 2017). A 

global monthly 0.5° GPP dataset has been produced from satellite data using the linear relationship between NIRV,Ref and GPP 

(Badgley et al., 2019), explaining 68% GPP variations observed by the FLUXNET network. Several field studies have recently 

found that taking incoming radiation into account further improves the NIRV ~ GPP relationship (Dechant et al., 2020; Wu et 75 

al., 2020). Because MODIS provides long-term and real-time (2000 – present) observations of red (RedRef) and NIR (NIRRef) 

reflectance and atmospheric conditions with high spatial (250 m for reflectance and 1 km for atmosphere) and temporal (daily) 

resolutions, now there is an unprecedented opportunity to generate an observation-based GPP product. 

𝑁𝐼𝑅,ோ ൌ 𝑁𝐷𝑉𝐼 ൈ 𝑁𝐼𝑅ோ ൌ
𝑁𝐼𝑅ோ െ 𝑅𝑒𝑑ோ
𝑁𝐼𝑅ோ  𝑅𝑒𝑑ோ

ൈ 𝑁𝐼𝑅ோ (1) 

 

Leveraging the concept of NIRV, here we present a new GPP model and the resultant daily, 250m, and real-time GPP product 80 

(2000 – present) covering the Contiguous United States (CONUS) (Jiang and Guan, 2020). The product is named SatelLite 

Only Photosynthesis Estimation (SLOPE) because (1) the model only uses satellite data, and (2) the model only has two slope 

parameters. Detailed model design, multi-source satellite data processing, and comprehensive evaluation procedures are 

elucidated below.  

2 Production of the SLOPE product 85 

The method we used to estimate GPP using the novel vegetation index NIRV,Ref follows the concept of light use efficiency 

(LUE) (Monteith, 1972; Monteith and Moss, 1977):  

𝐺𝑃𝑃 ൌ 𝑃𝐴𝑅 ൈ 𝐹𝑃𝐴𝑅 ൈ 𝐿𝑈𝐸 (2) 

Since NIRV,Ref has been found strongly correlated to FPAR (Badgley et al., 2017), and moderately correlated to LUE (Dechant 

et al., 2019), it is possible to simplify Eq. (2) as: 

𝐺𝑃𝑃 ൎ 𝑃𝐴𝑅 ൈ ൫𝑎 ൈ 𝑁𝐼𝑅,ோ  𝑏൯ (3) 

where a and b are slope and intercept which can be fitted from ground GPP observations. Both PAR and NIRV,Ref can be easily 90 

derived from satellite observations with high spatial and temporal resolutions in real time, avoiding complicated but uncertain 
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algorithm/parameterization to quantify FPAR and LUE in Eq. (2). This linear relationship is likely to converge within C3 

species (Badgley et al., 2019), but differs between C3 and C4 species (Wu et al., 2019). Accordingly, land cover data with 

considerably large time lags and relatively low accuracy may not be necessary for the model parameterization. Instead, an in-

season C3/C4 species dataset is needed for the accurate calibration of the linear relationship. 95 

 

Defining the ratio of GPP to PAR as the incident PAR use efficiency (iPUE) gives: 

𝑖𝑃𝑈𝐸 ൌ 𝐺𝑃𝑃/𝑃𝐴𝑅 ൌ 𝐹𝑃𝐴𝑅 ൈ 𝐿𝑈𝐸 ൎ 𝑎 ൈ 𝑁𝐼𝑅,ோ  𝑏 (4) 

Here iPUE is a confounding factor of canopy structure and leaf physiology, representing the capacity of plants to use incoming 

radiation for photosynthesis. When vegetation is absent, iPUE is zero and NIRV,Ref is expected to be zero too. However, this is 

not true in reality as >99.9% soils have positive NIRV,Ref values according to a global soil spectral library (Jiang and Fang, 100 

2019), and the correction of NIRV,Ref for soil is needed for better performance at low vegetation cover (Zeng et al., 2019). To 

address this issue, we will propose spatially-explicit correction for NIRV,Ref to derive a soil adjusted index SANIRV (see details 

in section 2.2). Since SANIRV = 0 when iPUE = 0, Eq. (4) becomes: 

𝑖𝑃𝑈𝐸 ൎ 𝑐 ൈ 𝑆𝐴𝑁𝐼𝑅 (5) 

where c is the slope coefficient.  

 105 

Considering the presence of mixed pixel of C3 and C4 species with the 250 m pixels, Eq. (5) can be rewritten as: 

𝑖𝑃𝑈𝐸 ൎ ሾ𝑐ସ ൈ 𝑓ସ  𝑐ଷ ൈ ሺ1െ 𝑓ସሻሿ ൈ 𝑆𝐴𝑁𝐼𝑅 (6) 

where cC4 and cC3 are the coefficients for C4 and C3 species, respectively, and fC4 is the fraction of C4 species in vegetation.  

Therefore, the SLOPE GPP model is: 

𝐺𝑃𝑃 ൎ ሾ𝑐ସ ൈ 𝑓ସ  𝑐ଷ ൈ ሺ1 െ 𝑓ସሻሿ ൈ 𝑃𝐴𝑅 ൈ 𝑆𝐴𝑁𝐼𝑅 (7) 

 

In the SLOPE model (Eq. [7]), PAR, SANIRV and fC4 are remote sensing inputs, whereas cC4 and cC3 are model parameters to 110 

be calibrated using ground-truth GPP data (Fig. 1). In the following sections, we will elaborate on the derivation of PAR, 

SANIRV, and fC4, along with their quantitative uncertainties, and the model calibration for parameters cC4 and cC3. With the 

uncertainty of each term (∆cC4, ∆cC3, ∆fC4, ∆PAR and ∆SANIRV), the uncertainty of GPP can be estimated in a 

spatiotemporally-explicit manner by: 

 ∆𝐺𝑃𝑃 ൌ ሺ𝑓ସ ൈ 𝑃𝐴𝑅 ൈ 𝑆𝐴𝑁𝐼𝑅ሻ ൈ ∆𝑐ସ 

(8) 

   ሾሺ1 െ 𝑓ସሻ ൈ 𝑃𝐴𝑅 ൈ 𝑆𝐴𝑁𝐼𝑅ሿ∆𝑐ଷ 

   ሾሺ𝑐ସ െ 𝑐ଷሻ ൈ 𝑃𝐴𝑅 ൈ 𝑆𝐴𝑁𝐼𝑅ሿ∆𝑓ସ 

   ሼሾ𝑐ସ ൈ 𝑓ସ  𝑐ଷ ൈ ሺ1 െ 𝑓ସሻሿ ൈ 𝑆𝐴𝑁𝐼𝑅ሽ∆𝑃𝐴𝑅 

   ሼሾ𝑐ସ ൈ 𝑓ସ  𝑐ଷ ൈ ሺ1 െ 𝑓ସሻሿ ൈ 𝑃𝐴𝑅ሽ∆𝑆𝐴𝑁𝐼𝑅 
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 115 

Figure 1. Framework to produce the SLOPE GPP product. The box with dash lines is the legend. 

2.1 Derivation of PAR 

SLOPE adopts several machine learning approaches to compute PAR using forcing data mainly from Terra & Aqua/MODIS 

Atmosphere and Land products (data solely from morning satellite Terra, afternoon satellite Aqua, and combined of the two 

satellites are called MOD, MYD and MCD, respectively hereinafter). The list of inputs include aerosol optical depth (AOD) 120 

at 3 km and 1 km resolutions from MOD/MYD04_3K and MCD19A2 products (Lyapustin et al., 2011; Remer et al., 2013), 

respectively, total column water vapour (TWV) at 1 km resolution from MOD/MYD05_L2 products (Chang et al., 2015), 

cloud optical thickness (COT) at 1 km resolution from MOD/MYD06_L2 products (Baum et al., 2012), total column ozone 

burden (TO3) at 5 km resolution from MOD/MYD07_L2 products (Borbas et al., 2015), white-sky land surface shortwave 

albedo (ALB) at 500 m resolution from MCD43A3 product (Román et al., 2009), and altitude (ALT) at 30 m resolution from 125 

Shuttle Radar Topography Mission Global 1 arc second (SRTMGL1) product (Kobrick and Crippen, 2017).  

 

MODIS atmosphere products are swath data and swaths vary day by day. To maintain consistency and facilitate further usage, 

all data are reprojected using the nearest neighbor resampling approach to the Conus Albers projection on a NAD83 datum 

(EPSG: 6350) with a 1 km spatial resolution. For swath data, overlap area exists between two paths. In this case, data with 130 

smaller sensor view zenith angles provided by MOD/MYD03_L2 products are chosen. MODIS land products and SRTMGL1 

are tile data with finer resolution than 1 km. They are reprojected to the EPSG 6350 spatial reference by aggregating all fine 

resolution pixels within each 1 km grid.  

 

Data gaps exist in all MODIS products and gap-filling is required. For MODIS atmosphere products, gaps in MOD/MYD are 135 

first filled by data in MYD/MOD counterpart on the same day, followed by multi-year average on that day. Since the multi-
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year average of COT is always non-zero, directly using it for gap-filling always implies a cloudy condition. Therefore, 

CLARA-2 cloud mask at 0.05° acquired from NOAA/AVHRR data is employed (Karlsson et al., 2017). Only MODIS data 

gaps for AVHRR cloudy pixels are filled by multi-year average of COT, whereas MODIS COT data gaps for AVHRR clear 

pixels are set to 0. For the MODIS land product, i.e., ALB, a temporally moving window with a 7-day radius is utilized for a 140 

specific day, and a Gaussian filter is applied to the time series data within the moving window on a per pixel basis. The filtered 

values are used to fill gaps on that specific day.  

 

Machine learning approaches are used to upscale ground-truth to satellite. Ground-truth is from the Surface Radiation Budget 

(SURFRAD) Network (Augustine et al., 2000), including seven long-term continuous sites across the CONUS. Daily mean 145 

shortwave radiation (SWR) and PAR on the surface are calculated from site observations at 1 – 3 min intervals from 2000 

through 2018. Daily mean SWR at the top of atmosphere (SWRTOA) is calculated using latitude and day of year (DOY) 

information (Allen et al., 1998). Subsequently, atmospheric transmittance (tSWR) and proportion of PAR in SW (pPAR) are 

calculated as SWR/SWRTOA and PAR/SWR. 

 150 

Models are built to estimate tSWR first, followed by pPAR. MOD data representing atmospheric conditions in the morning and 

MYD for the afternoon are used separately for the estimation, and the two estimates are averaged to account for discrepancies 

between morning and afternoon. Clear and cloudy conditions are also treated separately in modeling considering the 

absence/presence of non-zero COT data. For the estimation of tSWR, ALB, ALT and SWRTOA are used in addition to atmosphere 

data, whereas for pPAR, ALB, ALT and the estimated tSWR are used. A summary of model inputs is listed in Table 1.  155 

 

Four different machine learning approaches are employed to estimate tSWR and pPAR. They are least absolute shrinkage and 

selection operator (LASSO) (Tibshirani, 1996), multivariate adaptive regression splines (MARS) (Friedman, 1991), k-nearest 

neighbors regression (KNN) (Goldberger et al., 2005), and random forest regression (RF) (Liaw and Wiener, 2002). We used 

Scikit-learn, a free software machine learning library for the Python programming language, to build the models. All the four 160 

algorithms were automatically optimized by tuning their hyperparameters using five-fold-cross-validation on their training 

dataset. All inputs and outputs are the same for the four approaches. Four different PAR estimations are then obtained by Eq. 

(9), and their ensemble mean and standard deviation are considered as the final estimation and uncertainty, respectively. 

𝑃𝐴𝑅 ൌ 𝑆𝑊𝑅்ை ൈ 𝑡ௌௐோ ൈ 𝑝ோ (9) 

 

Table 1. Summary of machine learning model inputs for the estimation of tSWR and pPAR. Daily estimations from MOD and 165 

MYD atmosphere data are averaged.  

Inputs 
For daily tSWR estimation For daily pPAR estimation 

MOD  MYD MOD  MYD 

Clear Cloudy Clear Cloudy Clear Cloudy Clear Cloudy 
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log(COT)  √  √  √  √ 

log(AOD) √ √ √ √ √ √ √ √ 

TWV √ √ √ √ √ √ √ √ 

TO3 √ √ √ √ √ √ √ √ 

ALB √ √ √ √ √ √ √ √ 

ALT √ √ √ √ √ √ √ √ 

SWRTOA √ √ √ √     

tSWR     √ √ √ √ 

 

2.2 Derivation of SANIRv 

SLOPE derives NIRV,Ref (Eq. [1]) from MODIS band 1 (red) and band 2 (NIR) surface reflectance (SR) at 250 m resolution 

from MOD/MYD09GQ products (Vermote et al., 2002). Only pixels with quality control (QC) information of ‘corrected 170 

product produced at ideal quality all bands’ were used. Since cloud and cloud shadows substantially reduce NIRV,Ref values, 

SLOPE adopts three strategies to mitigate the cloud contamination.  

 

First, the cloud mask is applied. MOD/MYD COT data processed in Section 2.1 are resampled to the same spatial reference 

with MOD/MYD SR data and used to mask out cloudy pixels. At this point, a morphological dilation operation is used to 175 

enlarge the cloud mask to account for cloud edges. However, since COT data have a coarser resolution (1 km) than SR data 

(250 m), there are still partial clouds and cloud shadows left after this step.  

 

Second, MOD and MYD data are combined. Ideally, on a specific day, MOD and MYD NIRV,Ref should be identical if they 

are obtained under the same conditions. However, the remaining cloud contamination and sun-target-sensor geometry could 180 

cause differences between morning and afternoon observations. Considering vegetation index is more sensitive to cloud 

contamination than sensor view zenith angle, a simple criterion is applied to combine MOD and MYD observations. If the 

difference between MOD and MYD NIRV,Ref is greater than or equal to a predefined threshold (0.1 in this study), then the 

smaller one is likely cloud contaminated and the larger one is used. Otherwise, the average value of the two is used. However, 

in many cases, both MOD and MYD data are contaminated, and sensor view zenith angle may cause unexpected day-to-day 185 

variations.  

 

Third, a temporal filter is applied. The filter is based on the assumption that NIRV,Ref should change smoothly within a short 

time period. Accordingly, a temporally moving window with a 7-day radius is utilized for a specific day. Mean and standard 

deviation are calculated from the NIRV,Ref time series on a per pixel basis. Values outside the range of mean ± 1.5 standard 190 

deviations are considered as outliers and dropped. Subsequently, the mean of the first 3 days and that of the last 7 days are 
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calculated, respectively. If the NIRV,Ref value of the target day is 20% smaller or larger than both the first 3 days mean and the 

last 3 days mean, then that NIRV,Ref value is considered as an outlier and dropped.  

 

After the removal of outliers, a large amount of data gaps exist and gap-filling is required. Similar to ALB in Section 2.1, a 195 

temporally moving window with a 7-day radius is utilized for a specific day, and a Gaussian filter is applied and used to fill 

gaps on that day. The rest of data gaps are filled with multi-year average of NIRV,Ref. Considering extreme cases that no data 

is available on a specific day over all years, multi-year average of ± 3 days is used for the final gap-filling.  

 

To minimize the effects of variations in soil brightness on NIRV,Ref, soil background NIRV (NIRV,Soil) is identified from multi-200 

year average NIRV,Ref time series. For a specific pixel, soil background NIRV (NIRV,Soil) is supposed to 1) smaller than seasonal 

mean NIRV,Ref which includes vegetated period, and 2) smaller than 0.2 indicated by a global soil spectral library (Jiang and 

Fang, 2019). Therefore, NIRV,Soil is supposed to within a range of [0, min(mean(NIRV,Ref), 0.2)]. The mode of daily NIRV,Ref  

averaged over 2000 – 2019 within this value range is considered as NIRV,Soil. An example is given in Figure S5. Theoretically, 

NIRV,Soil for evergreen species cannot be obtained from time series NIRV,Ref because of the persistent vegetation cover. Pixels 205 

with NIRV,Soil value larger than 0.1 and seasonal coefficient of variation (CV) of NIRV,Ref smaller than 33% are empirically 

considered as evergreen species, and their NIRV,Soil values are set to 0.  

 

Finally, SANIRV is defined as: 

𝑆𝐴𝑁𝐼𝑅 ൌ
𝑁𝐼𝑅,ோ െ 𝑁𝐼𝑅,ௌ
𝑁𝐼𝑅, െ 𝑁𝐼𝑅,ௌ

ൈ 𝑁𝐼𝑅, (10) 

where NIRV,Peak is the maximum value of multi-year average NIRV,Ref time series on a per-pixel basis. SANIRV does not change 210 

NIRV,Peak, but changes more for low NIRV,Ref values. SANIRV,Ref is set 0 when NIRV,Ref ≤ NIRV,Soil. In general, SANIRV is 

supposed to be smooth within a short time period, therefore, the standard deviation within the ±3-day temporal window is 

calculated as uncertainty. 

 

2.3 Derivation of C4 fraction 215 

A National Land Cover Database (NLCD) along with a crop-specific land cover product Cropland Data Layer (CDL) are used 

to derive the fraction cover of C4 crop in vegetation (fC4). NLCD is a comprehensive land cover database produced by the 

United States Geological Survey (USGS). It provides several main thematic classes such as urban, agriculture, and forest with 

high accuracy (Homer et al., 2004). The 30 m nationwide NLCD data are available in 2001, 2004, 2006, 2008, 2011, 2013 and 

2016. CDL is an agriculture-oriented product produced by the United States Department of Agriculture (USDA). It provides > 220 

100 crop cover types and leverages other land cover types from NLCD (Boryan et al., 2011). Across the CONUS CDL data 
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are available at a 30m spatial resolution and in a yearly temporal frequency from 2008 through 2019, whereas in some areas 

annual data are available back to the 1990s.  

 

The fraction of C4 crop in vegetated areas is first derived using existing CDL data. NLCD land cover types are categorized 225 

into vegetated areas and non-vegetated areas with 30 m resolution. Fraction of vegetated areas in total area is subsequently 

calculated for each 250 m pixel. Similarly, CDL crop types are categorized into C4-planted areas and non-C4 areas with 30 m 

resolution. Fraction of C4 crops in total area is subsequently calculated for each 250 m pixel. The ratio of fraction of C4 crops 

in total area to fraction of vegetated areas in total area is calculated to derive fraction of C4 crop in vegetated areas at 250 m 

resolution. Since NLCD data is not available every year, an assumption is made that one year NLCD data can represent adjacent 230 

years. Specifically, NLCD 2001 is used for 2000 – 2002, NLCD 2004 is used for 2003 and 2004, NLCD 2006 is used for 2005 

and 2006, NLCD 2008 is used for 2007 – 2009, NLCD 2011 is used for 2010 and 2011, NLCD 2013 is used for 2012 – 2014. 

NLCD 2016 is used for 2015 – 2019.  

 

To predict the fraction of C4 crop in vegetation for region-years that no CDL data is available, crop rotation patterns are 235 

identified from historical data. Assuming that C4 crops are planted following three rotation strategies: C4/non-C4, C4/C4/non-

C4, and non-C4/non-C4/C4, and assigning 1 to C4 and 0 to non-C4, a total of eight possible time series during the period of 

2008 – 2019 when nationwide CDL data are available are listed in Table 2. On a per-pixel basis, the time series of the fraction 

of C4 crop in vegetation during 2008 – 2019 is compared with the eight predefined rotation patterns. PeaSLOPEn coefficient 

r is calculated between actual time series and each of the eight patterns, and the pattern yielding the largest r is the identified 240 

rotation pattern. Once the pattern is identified, fraction of C4 crop in vegetated areas in any unknown year can be inferred. If 

one year is inferred as C4, then the multi-year average of C4 fraction over C4-dominated years is used. Otherwise, the multi-

year average over C3-dominated years is used. If the largest r is smaller than 0.497, i.e., p > 0.1 for 12 years, then it is 

considered as no significant pattern and the multi-year average over all years is used. The RMSE between predicted and 

reference CDL C4 fraction is calculated as uncertainty. To account for the land cover change, the predicted C4 crop fraction 245 

is set to 0 in years when NLCD data is not classified as cropland. It is worth mentioning that C4 grassland and shrubland are 

not considered in this study as no nationwide high-resolution distribution data is available.  

 

Table 2. Predefined C4-planting patterns from 2008 through 2019. If C4 crop dominates in a specific year, 1 is assigned. 

Otherwise, 0 is assigned. 250 

Year Pattern 1 Pattern 2 Pattern 3 Pattern 4 Pattern 5 Pattern 6 Pattern 7 Pattern 8 

2008 1 0 1 1 0 0 0 1 

2009 0 1 1 0 1 0 1 0 

2010 1 0 0 1 1 1 0 0 

2011 0 1 1 1 0 0 0 1 
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2012 1 0 1 0 1 0 1 0 

2013 0 1 0 1 1 1 0 0 

2014 1 0 1 1 0 0 0 1 

2015 0 1 1 0 1 0 1 0 

2016 1 0 0 1 1 1 0 0 

2017 0 1 1 1 0 0 0 1 

2018 1 0 1 0 1 0 1 0 

2019 0 1 0 1 1 1 0 0 
 

2.4 Calibration for iPUE coefficients 

SLOPE was calibrated using the GPP data derived from AmeriFlux site observations. The AmeriFlux network is a community 

of sites that use eddy-covariance technology to measure landscape-level carbon, water, and energy fluxes across the Americas 

(Baldocchi et al., 2001). A total of 48 sites (324 site years) were involved in this study (Table S3). All of the 43 sites in the 255 

FLUXNET2015 Tier 1 dataset (variable name: GPP_DT_VUT_MEAN; quality control: NEE_VUT_REF_QC) in the CONUS 

were used, because this dataset was produced by standardized data processing pipeline with strict data quality control protocols 

and is commonly considered as ground-truth. Additional 7 sites were from the AmeriFlux level 4 dataset (variable name: 

GPP_or_MDS; quality control: NEE_or_fMDSsqc). This dataset was generated more than ten years ago and only AmeriFlux 

Core Sites that are not covered by FLUXNET2015 were used for data quality consideration. For both datasets, only days with 260 

the best quality control flags were used in the SLOPE modelling and evaluation procedures. 

 

We used Eq. (5) to conduct model calibration. Although SLOPE considers iPUE ~ SANIRV relationship for C3 and C4 species, 

we also tested other configurations for comparison purposes. Configuration 1 (“all”): all data were used together to fit a 

universal iPUE coefficient c. Configuration 2 (“C3/C4”): data were separated for C3 and C4 species to fit cC3 and cC4, 265 

respectively. It is worth mentioning that only C4 crops (6 sites) were considered as C4 species, whereas C4 grass and shrubs 

(3 sites: US-SRG, US-SRM and US-Wkg) were still categorized into C3 species because of the lack of nationwide and high-

resolution C4 grass/shrubs data. Configuration 3 (“PFTs”): data were separated for different PFTs: evergreen needleleaf forest 

(ENF; 14 sites), deciduous broadleaf forest and mixed forest (DBF & MF; 8 sites), shrubland and woody savannah (SHR & 

WSA, 5 sites), grassland (GRA; 8 sites), wetland (WET; 5 sites), C3 cropland (10 sites) and C4 cropland (6 sites), to fit PFT-270 

specific iPUE coefficients. The RMSE between SANIRV-derived and AmeriFlux iPUE for C3 and C4 are calculated as 

uncertainties of cC3 and cC4, respectively. 
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3 Evaluation of the SLOPE product 

3.1 Performance of PAR 

 275 

 

Figure 2. Spatial distribution of 1 km resolution (a) PAR (MJ m-2 d-1) and (b) PAR uncertainty (MJ m-2 d-1) on Jul 10, 2020.  

 

SLOPE PAR demonstrates distinctive and detailed spatial variations in the CONUS because of the large spatial variations of 

atmospheric conditions (Fig. 2a). As an example, on Jul 10, 2020, large areas in New Jersey, Wisconsin, Oklahoma, South 280 

Dakota and Montana display significantly lower values than other areas, due to dominant impacts of cloud (Fig. S1). Aerosol 

optical depth (Fig. S2), total water vapor (Fig. S3) and total ozone burden (Fig. S4) also influences the amount of clear-sky 

PAR to some degree. For example, the southeastern part of the CONUS show more aerosol and thus lower PAR values than 

other cloud-free areas. In addition to the total amount of PAR, SLOPE PAR also reveals variations in the ratio of PAR to SWR 

(Fig. S5). Despite of a relatively small range (0.40–0.46), it is negatively correlates with cloud optical thickness and total ozone 285 

burden and positively correlates with total water vapor. PAR uncertainties caused by the difference of the four machine learning 

algorithms are generally small (< 5%; Fig. 2b). Higher uncertainties are mainly distributed in cloudy and desert areas.  

 

To evaluate the SLOPE PAR, we used two different site observation datasets which are independent of the PAR derivation 

procedure. The first dataset is SURFRAD (Table S1). While SURFRAD data from 2000 through 2018 were used for model 290 

training, we used data in 2019 for evaluation. The second dataset is FLUXNET2015 (Table S2). A total of 41 sites providing 

PAR data were used for the evaluation. For both datasets, only days with the best quality control flags were used.  

 

Evaluation results show that SLOPE PAR is in a highly aligned agreement with ground truth independent from the training 

procedure (Fig. 3). Across the seven SURFRAD sites in 2019 and the 41 AmeriFlux sites from 2000 to 2014, SLOPE PAR 295 

achieves an overall coefficient of determination (R2) of 0.91, and root-mean-square errors (RMSE) of 1.09 and 1.19 MJ m-2 d-
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1, respectively. In addition, the performance is reasonably stable under different sky conditions, indicated by similar R2 and 

RMSE values from low to high atmospheric transmittance (Figure S6).  

 

 300 

 

Figure 3. Comparison between site-observed PAR and SLOPE PAR. (a) Comparison across seven SURFRAD sites in 2019. 

(b) Comparison across 41 AmeriFlux sites from 2000 to 2014. All site data are independent of the training procedure.  

 

3.2 Performance of SANIRV 305 
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Figure 4. Spatial distribution of 250 m resolution (a) SANIRV and (b) SANIRV uncertainty across the CONUS on Jul 10, 2020.  

 310 

 

Figure 5. SANIRV in a 50 × 75 km2 area at Cedar Rapids, Iowa (red marker in Figure 4a) on (a) Aug 9, 2020 and (b) Aug 13, 

2020. A severe derecho took place from August 10–11, 2020. The maps are shown with the sinusoidal projection. 

 

SLOPE SANIRV demonstrates detailed and distinctive spatial variations in the CONUS (Fig. 4a). In the peak growing season, 315 

remarkably high SANIRV values (~ 0.5) from the Corn Belt in the Central US are observed. This area is one of the most 

productive areas on Earth, producing more than 30% of global corn and soybean (Green et al., 2018). Forested areas in the 

Eastern and Western US are characterized by relatively high values (0.3 – 0.4) and medium values (0.2 – 0.3), respectively. 

Low values (< 0.2) are mainly observed in grasslands and shrublands in the Western US. Uncertainty is associated with 

SANIRV data on the pixel basis (Fig. 4b). In general, areas with higher SANIRV values also have higher uncertainties. However, 320 

this pattern is altered by atmospheric conditions, where areas with higher cloud optical thickness (Fig. S1), aerosol optical 

depth (Fig. S2), and water vapour (Fig. S3) values tend to have larger uncertainties.  

 

Fig. 5 demonstrates that SLOPE SANIRV is able to capture spatial and temporal variations at small scale (e.g., within a county). 

An overall drop in SANIRV due to an extreme event damage can be observed within a short time period, thanks to the high 325 

temporal resolution (daily) of the SLOPE product. In addition, differences between plots possibly indicating different varieties, 

planting density and management, can also be observed, thanks to the high spatial resolution (250 m) of the SLOPE product.   
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Figure 6. Comparison between SANIRV and raw NIRV derived from MOD09GQ and MYD09GQ products at six AmeriFlux 330 

sites (Table S3) in 2019. (a) US-Blo (evergreen needleleaf forest, ENF). (b) US-Ha1 (deciduous broadleaf forest, DBF). (c) 

US-Whs (open shrubland, OSH). (d) US-AR1 (grassland, GRA). (e) US-Myb (wetland, WET). (f) US-Bo1 (cropland, CRO). 

Shaded areas indicate uncertainties of SANIRV. 

 

SLOPE SANIRV shows significantly different seasonality for different PFTs (Fig. 6). The evergreen needleleaf forest site US-335 

Blo is characterized by a relatively stable SANIRV seasonal cycle in 2019 (Fig. 6a), indicated by a CV = 14.9% only. The 

deciduous broadleaf forest site US-Ha1 has a large seasonal variation with a CV = 108.6% (Fig. 6b). The SANIRV value 

suddenly rises from 0 to 0.3 in May, reaches 0.4 in June and July, and gradually decreases back to 0 in October. The hot desert 

open shrubland site US-Whs has an overall low SANIRV value (Fig. 6c), with a peak value observed in early October. The 

grassland site US-AR1 shows a distinct double-peak (in June and September) seasonal pattern (Fig. 6d), which is caused by 340 

the precipitation seasonality there. The wetland site US-Myb is characterized by a long growing season and a flat peak from 

April to November (Fig. 6e). The cropland site US-Bo1 has corn planted in 2019, and it shows the highest SANIRV peak up 

to 0.5 among all the shown six sites (Fig. 6f). It is worth mentioning that compared to the two raw satellite-observed NIRV 

provided by MOD09GQ and MYD09GQ products, respectively, SLOPE SANIRV successfully removes the soil impact in the 

non-growing season as the values equal to or close to zero. In addition, SLOPE SANIRV is gap-free and much less 345 

contaminated by noises. Furthermore, spatiotemporally-explicit uncertainty is associated with each SANIRV value. 

3.3 Performance of C4 fraction 
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 350 

Figure 7. Spatial distribution of 250 m resolution (a) predicted fraction of C4 crop in vegetation in 2000 and (b) C4 crop 

fraction uncertainty across the CONUS.  

 

 

Figure 8. C4 crop fraction of (a) SLOPE predicted and (b) CDL reference data in a 50 × 75 km2 area in the Keith County, 355 

Nebraska (red marker in Figure 7a) in 2000. Only CDL data during 2008 – 2019 are used in the modelling procedure and 

therefore (b) is independent of (a). The maps are shown with the sinusoidal projection. 

 

SLOPE predicts a reasonable fraction of C4 crop in vegetation in the CONUS (Fig. 7a). Most of the C4 crops are located in 

the Corn Belt, especially in Indiana, Illinois, Iowa and Nebraska. A direct comparison between predicted C4 crop fraction (Fig. 360 

8a) and independent reference CDL data (Fig. 8b) indicates that the SLOPE prediction is able to reconstruct the spatial patterns 

of the fraction of C4 crop in vegetation at 250 m resolution. It is worth mentioning that the uncertainty metric RMSE is sensitive 

to extreme values, and it is different from misclassification rate (0.4 does not mean 40%). For a pure pixel of a corn/soybean 

rotation field, the RMSE = 0.39 if three out of 20 years is misclassified, i.e., misclassification rate = 0.15. A further 
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investigation with regard to interannual dynamics shows that the SLOPE predictions can even perform better than CDL 365 

reference data (Fig. 9), benchmarked with ground truth collected in the field. At this point, the CDL land cover could be prone 

to uncertainties in both satellite observation and classification algorithm, and classification is conducted year by year without 

an interannual consideration (Lark et al., 2017). SLOPE employs a rotation model to match decadal time series of CDL data, 

during which procedure noises in CDL data are suppressed. The features that SLOPE is able to reconstruct spatial and 

interannual patterns of CDL data enables producing GPP in years when CDL data is unavailable (e.g., 2020 and years before 370 

2008 for most regions). It is worth mentioning that uncertainty is also associated with each pixel (Fig. 7b). 

 

 

Figure 9. Comparison of fraction of C4 crop in vegetation between field collected ground truth, 250 m resolution CDL data 

and 250 m resolution SLOPE predictions at six AmeriFlux sites (Table S3) in the U.S. Corn Belt from 2000 to 2020. (a) US-375 

Ne1 (uncertainty: 0.17). (b) US-Ne2 (uncertainty: 0.40). (c) US-Ne3 (uncertainty: 0.18). (d) US-Bo1 (uncertainty: 0). (e) US-

Ro1 (uncertainty: 0.16). Uncertainty is the RMSE between the predicted and the CDL reflerence. 

  

3.4 Performance of GPP 

 380 
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Figure 10. Comparison between SANIRV and iPUE over different subsets. The slope value of the SANIRV ~ iPUE relationship 

is the model parameter c(Eq. [5]). (a) is used by the model configuration 1 (“all”). (b) and (c) are used by the model 

configuration 2 (“C3/C4”) which is actually used by SLOPE. (b) and (d) – (i) are used by the model configuration 3 (“PFTs”).  

 385 

SLOPE SANIRV shows a strong linear correlation with iPUE (Fig. 10). When data from all 49 sites (324 site years) are used 

together, the SANIRV ~ iPUE relationship has an overall R2 value of 0.73 (Fig. 10a). This is composed of R2 of 0.92 from C4 

species (Fig. 10b) and 0.70 from C3 species (Fig. 10c). C3 species can be further decomposed into six PFTs (Fig. 10d – 10i), 

among which cropland has the highest R2 value up to 0.80 (Fig. 10i), whereas evergreen needleleaf forest has the lowest value 

of 0.46 (Fig. 10d). This relatively weak iPUE ~ SANIRv relationship is expected because evergreen needleleaf forest tends to 390 

allocate resources for leaf construction and maintenance at large time scales and does not have much flexibility to change 

canopy structure and leaf color as a response to varying environment at small time scales (Badgley et al., 2019; Chabot and 

Hicks, 1982). Previous studies found that changes in xanthophyll cycle instead of chlorophyll concentration or absorbed PAR 

explained the seasonal variation of photosynthetic capacity in evergreen needleleaf forest (Gamon et al., 2016; Magney et al., 

2019). Therefore, SIF was suggested by some studies as a better proxy of photosynthetic capacity in this ecosystem (Smith et 395 

al., 2018; Turner et al., 2020), though satellite SIF has coarser spatial resolution, shorter temporal coverage, and larger temporal 

latency, and lower signal-to-noise ratio than SANIRv. In addition, the relatively weak iPUE ~ SANIRv relationship is also 

partly because of the small value ranges in both SANIRV and iPUE. 

 

The overall slope is 3.82 gC MJ-1 for all data (Fig. 10a). Distinct difference is found between C4 (5.18; Fig. 10b) and C3 (3.54; 400 

Fig. 10c) species, suggesting the importance of separating C4 from C3 species in modelling. The slope values vary to a limited 

degree within C3 species (Fig. 10d – 10i), ranging from 3.26 gC MJ-1 (cropland; Fig. 10i) to 3.80 gC MJ-1 (evergreen needleleaf 

forest; Fig. 10d), indicating the insignificance of separating different PFTs. It is worth mentioning that the SANIRV ~ iPUE 

relationship has a zero intercept because of the successful removal of the soil impact.  

 405 
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Figure 11. Statistics of the SANIRV ~ iPUE relationship from cross validation. (a) Slopes of the SANIRV ~ iPUE relationship 

over different subsets. (b) R2 between AmeriFlux GPP and estimated GPP using different model configurations for the training 

and testing datasets, respectively. Error bars in both subplots indicate 95% confidential intervals over 500 experiments.  410 

 

A 100-time repeated 5-fold cross-validation reveals the robustness of the SANIRV ~ iPUE relationships (Fig. 11). Here the 

repeated cross-validation means the whole GPP dataset from all 49 sites (324 site years) is randomly split into 5 folds, 4 folds 

for training and 1 fold for testing, and the process is repeated 100 times yielding 500 training-testing splits in total. In all 

subsets, the uncertainties of the iPUE coefficient c (the slope of the SANIRV ~ iPUE relationship) are less than 1% (Fig. 11a). 415 

When using the three different model configurations, the model performances in simulating the whole training/testing datasets 

also show little variation (Fig. 11b), in general < 0.5% and < 1.5% for the training and testing datasets, respectively. Moreover, 

the R2 values between training and testing datasets, and between C3/C4 and PFT-based configurations are almost identical (~ 

0.76). These results suggest using cC4 = 5.18 (Fig. 10b) and cC3 = 3.54 (Fig. 10c) in SLOPE is reasonable. The 95% confidential 

intervals of c for C4 and C3 species (Fig. 11a) are used as their uncertainties in SLOPE.  420 

 

 

 

 

Figure 12. Spatial distribution of 250 m resolution (a) GPP (gC m-2 d-1) and (b) GPP uncertainty (gC m-2 d-1) across the CONUS 425 

on Jul 10, 2020.  
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Figure 13. GPP (gC m-2 d-1) in a 50 × 75 km2 area in Champaign County, Illinois (red marker in Figure 12a) on (a) Jul 10, 

2020 and (b) Aug 20, 2020. The maps are shown with the sinusoidal projection. 430 

 

SLOPE GPP demonstrates detailed and distinctive spatial variations in the CONUS (Fig. 12a). The Corn Belt is the most 

productive area, largely contributed by the C4 crop corn whose GPP could reach up to 30 gC m-2 d-1 (Fig. 13a). Forested areas 

in the Eastern US show medium GPP values, followed by forests and croplands in the Western US. Grasslands and shrublands 

in the Central and Western US generally show low productivity. On this example day, the R2 of spatial patterns between GPP 435 

and SANIRV, GPP and C4 fraction, and GPP and PAR across the CONUS are 0.89, 0.34, and 0.01, respectively. SANIRV, an 

integrated vegetation index containing information of both FPAR and LUE (Eq. [4]), explains the majority of GPP spatial 

variation. C4 fraction mainly contributes to the distribution and magnitude of the peak in GPP spatial variation. Although PAR 

does not influence the nationwide GPP spatial variation, it regulates GPP values at local scale. For example, Northeastern 

Nebraska shows smaller GPP values than Southeastern Nebrask in spite of similar SANIRV (Fig. 4a) and C4 fraction (Fig. 7a) 440 

because of smaller PAR values (Fig. 2a). At small scale (e.g., within a county), the 250 m resolution (~0.06 km2 per pixel) 

SLOPE GPP is close to revealing field-level heterogeneity, considering that the mean and median crop field sizes in the 

CONUS are 0.19 km2 and 0.28 km2, respectively (Yan and Roy, 2016). For example, Fig. 13a shows large contrast in GPP but 

Fig. 13b is more homogeneous. This is because corn reaches peak growing season in early July when soybean canopy is still 

open and sparse. SLOPE GPP with its pixel size much smaller than field area is therefore able to show GPP difference between 445 

corn and soybean. In late August, corn turns yellow while soybean is still green and active, and therefore they have similar 

GPP values considering corn is C4 while soybean is C3. We suggest that the 250 m resolution makes a big difference from 

existing global GPP products whose spatial resolutions are at least 500 m (~0.25 km2 per pixel). Quantitative uncertainty is 

provided for each SLOPE GPP estimate (Eq. [8]). The spatial pattern shows that the Corn Belt has the largest uncertainty (Fig. 

12b; e.g., 5 gC m-2 d-1) due to the considerable contribution from the uncertainty of C4 fraction (Fig. 7b).   450 
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Figure 14. Performance of the SLOPE GPP. (a) Comparison between AmeriFlux GPP and SLOPE GPP across all sites. (b) R2 

and RMSE of individual sites. Sites with a C3/C4 rotation are separated into C3 CRO and C4 CRO.  455 

 

SLOPE GPP agrees fairly well with ground-truth from the AmeriFlux (Fig. 14). Across all of the 49 sites (328 site years; Fig. 

14a), SLOPE GPP achieves an overall R2 of 0.85, RMSE of 1.63 gC m-2 d-1, and relative error of 37.8%. For individual sites 

(Fig. 14b), the median R2 and RMSE are 0.80 and 1.69 gC m-2 d-1, respectively. C4 cropland generally shows the highest 

median R2 value (0.94), followed by deciduous broadleaf forest and mixed forest (0.88) and C3 cropland (0.87). The lowest 460 

median R2 value (0.69) is observed for evergreen needleleaf forest. With regard to RMSE, smaller median values are found in 

grassland (1.09 gC m-2 d-1), shrubland and woody savannah (1.48 gC m-2 d-1), and deciduous broadleaf forest and mixed forest 

(1.48 gC m-2 d-1), whereas C3 (2.15 gC m-2 d-1) and C4 (2.01 gC m-2 d-1) cropland tend to have larger RMSE values.   
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 465 

Figure 15. Comparison between AmeriFlux (black dots) and SLOPE (red curves) daily GPP at six AmeriFlux sites (Table S3) 

from 2000 to 2019. (a) US-Blo (evergreen needleleaf forest, ENF). (b) US-Ha1 (deciduous broadleaf forest, DBF). (c) US-

Whs (open shrubland, OSH). (d) US-AR1 (grassland, GRA). (e) US-Myb (wetland, WET). (f) US-Bo1 (cropland, CRO). 

Shaded areas indicate uncertainties of SLOPE GPP. 

 470 
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SLOPE GPP generally captures seasonal and interannual variations of AmeriFlux GPP for different PFTs (Fig. 15). At the 

evergreen needleleaf forest site US-Blo (Fig. 15a), the GPP seasonal cycle is mainly driven by PAR as the iPUE indicated by 

SANIRV is fairly stable (Fig. 6a). At the deciduous broadleaf forest site US-Ha1 (Fig. 15b), the start of season and the end of 

season agree well between AmeriFlux GPP and SLOPE GPP. At the open shrubland site US-Whs (Fig. 15c), the quick rise 

and drop of GPP in response to the start and end of the wet season are clearly observed in SLOPE GPP. Even the double-peak 475 

pattern in 2011 can be observed in SLOPE GPP. At the grassland site US-AR1 (Fig. 15d), the impact of a severe drought in 

the Southern Great Plains in 2011 is distinct in SLOPE GPP, as the GPP values in 2011 are only about half of those in 2010 

and 2012. At the cropland site US-Bo1 (Fig. 15f), the rotation-caused year-to-year variation is distinct, indicated by higher 

values in odd number years with C4 crop corn planted and lower values in even years with C3 crop soybean planted (Fig. 9d). 

It is also observed the lowest GPP peak in 2012 when a severe drought attacked the Central US.  480 

4 Data availability and data format 

The archived daily 250 m resolution SLOPE GPP data product from 2000 to 2019 is distributed under a Creative Commons 

Attribution 4.0 License. It is publicly available at the NASA’s Oak Ridge National Laboratory Distributed Active Archive 

Center (ORNL DAAC) with a DOI https://doi.org/10.3334/ORNLDAAC/1786 (Download page: 

https://daac.ornl.gov/daacdata/cms/SLOPE_GPP_CONUS/data/) (Jiang and Guan, 2020). Data from 2020 are available from 485 

the authors upon request. All data are projected in the standard MODIS Land Integerized Sinusoidal tile map projection and 

are stored in GeoTIFF format files with a data type of signed 16-bit integer. Each processing tile is in size of 4800 pixels by 

4800 pixels, representing approximately 1200 km by 1200 km land region. In addition to the GPP product, SLOPE PAR, 

SANIRV, and C4 fraction, along with their uncertainties, are also released. These datasets are also stored in the same spatial 

projection and file format with the GPP dataset. PAR (resampled from 1 km to 250 m to be consistent with GPP) and SANIRV 490 

are provided on a daily basis, whereas C4 fraction is provided on an annual basis. A README file is provided along with the 

SLOPE product, which instructs the usage of the data. 

5 Conclusions 

This study produces a long-term and real-time (2000 – present) GPP product with daily and 250 m spatial and temporal 

resolutions. The product is based on remote sensing only (SLOPE) model, which uses accurate PAR, soil-adjusted NIRv, and 495 

dynamic C4 fraction as inputs. Evaluation against AmeriFlux ground-truth GPP shows that the SLOPE GPP product has a 

reasonable accuracy, with an overall R2 of 0.85 and RMSE of 1.63 gC m-2 d-1. To demonstrate the real-time capacity of the 

SLOPE GPP product, the latest GPP data on Nov 2, 2020, two days prior to the revision of this manuscript, is shown in Fig. 

S7. The spatiotemporal resolution and instantaneity of the SLOPE GPP product are higher than existing global GPP products, 

such as MOD17, VPM, GLASS, FLUXCOM and BESS. We expect this novel GPP product can significantly contribute to 500 
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various researchers and stakeholders in fields related to the regional carbon cycle, land surface processes, ecosystem 

monitoring and management, and agriculture. The approaches used in this study, in particular, the derivation of SANIRV, can 

also be applied to any other satellite platforms with the two most classical bands: red and NIR. For example, SaTallite dAta 

IntegRation (STAIR) Landsat-MODIS fusion data which has daily, 30 m spatiotemporal resolution and can be applied at large 

scale (Jiang et al., 2019; Luo et al., 2018), commercial Planet Labs data with a daily interval and spatial resolution up to 3m 505 

(Houborg and McCabe, 2016; Kimm et al., 2020), and the Advanced Very High Resolution Radiometer (AVHRR)  with a 

temporal coverage as far back as 1982 (Franch et al., 2017; Jiang et al., 2017). However, caution should be used in the 

interpretation of GPP seasonal trajectory in evergreen needleleaf forests because of relatively poor relationship between 

SANIRv and iPUE, and GPP magnitude in southwestern US grasslands because of the ignorance of fraction of C4 grasslands. 

Finally, although the SLOPE product has been generated from 2000 to present, caution should also be used in the interpretation 510 

of long-term trend because the SLOPE model, as many other LUE models, does not explicitly consider the CO2 fertilization 

effects on vegetation productivity. 
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