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Abstract. High quality and long-term soil moisture products are significant for hydrologic monitoring and agricultural man-

agement. However, the acquired daily Advanced Microwave Scanning Radiometer 2 (AMSR2) soil moisture products are

incomplete in global land (just about 30%∼80% coverage ratio), due to the satellite orbit coverage and the limitations of

soil moisture retrieving algorithms. To solve this inevitable problem, we develop a novel spatio-temporal partial convolutional

neural network (CNN) for AMSR2 soil moisture products gap-filling. Through the proposed framework, we generate the seam-5

less global daily (SGD) AMSR2 soil moisture long-term products from 2013 to 2019. To further validate the effectiveness of

these products, three verification ways are used as follows: 1) In-situ validation; 2) Time-series validation; And 3) simulated

missing regions validation. Results show that the seamless global daily soil moisture products have reliable cooperativity with

the selected in-situ values. The evaluation indexes of the reconstructed (original) dataset are correlation coefficient (R): 0.685

(0.689), Root Mean Squard Error (RMSE): 0.097 (0.093), and Mean Absolute Error (MAE): 0.079 (0.077), respectively. The10

temporal consistency of the reconstructed daily soil moisture products is ensured with the original time-series distribution of

valid values. The spatial continuity of the reconstructed regions accords with the spatial information (R: 0.963∼0.974, RMSE:

0.065∼0.073, and MAE: 0.044∼0.052). This dataset can be downloaded at https://doi.org/10.5281/zenodo.4417458 (Zhang

et al., 2021).

1 Introduction15

Surface soil moisture is a crucial Earth land characteristic in describing hydrologic cycle system (Wigneron et al., 2003;

Lievens et al., 2015). It can be applied for monitoring droughts and floods in agriculture (Samaniego et al., 2018) and geologic

hazards (Long et al., 2014). To obtain the global and high-frequency soil moisture products, many active or passive satellite

sensors have been launched such as Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E),

Advanced Microwave Scanning Radiometer 2 (AMSR2), Soil Moisture Active and Passive (SMAP), Soil Moisture and Ocean20

Salinity (SMOS) and so on (McColl et al., 2017; Ma et al., 2019). Nevertheless, the acquired daily soil moisture products

are always incomplete in global land (see Fig. 1(a), about 30%∼80% missing ratio in AMSR2), because of the satellite orbit

coverage and the limitations of soil moisture retrieving algorithms (Cho et al., 2017; Long et al., 2019). The invalid land
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regions refer to the gap or information missing area. Especially in the regions close to the equator, or in the permafrost region,

the soil moisture data missing degree is more serious (Zeng et al., 2015; Santi et al., 2018). This phenomenon greatly disturbs25

subsequent soil moisture applications, especially for the consecutive daily temporal analysis and global spatial-distribution

comparisons (Colliander et al., 2017; Liu et al, 2019).

To reduce this negative effect, most existing works employed the strategy of multi-temporal soil moisture data selecting,

multi-temporal soil moisture data averaging, or multi-temporal soil moisture data synthesizing. Detailed descriptions and anal-

yses of these three strategies (Bitar et al., 2017) are presented as follows:30

1) Multi-temporal soil moisture data selecting: Criterion of this strategy denotes to selecting the highest coverage regions

in single date from multi-temporal soil moisture products (Wang and Qu, 2009). However, this assumption can only deal with

local regions, and not applicable for global regions. The main reason is that almost all the global daily soil moisture products

suffer from the defect of satellite orbit coverage missing and retrieving algorithm failure. Multi-temporal soil moisture data

selecting strategy greatly reduces the data utilization, and is not qualified for dense time-series analysis on daily temporal35

resolution (Liu et al., 2020; Purdy et al., 2018).

2) Multi-temporal soil moisture data averaging: This strategy is commonly used for most soil moisture study or appli-

cations. The incomplete soil moisture products are overall averaged as the monthly/quarterly/yearly results to generate the

complete products (Jalilvand et al., 2019). For most applications and spatial analysis, this operation can effectively improve the

spatial soil moisture coverage (Zhao et al., 2020). However, it distinctly sacrifices the high-frequency temporal resolution as40

low-frequency temporal resolution, which also severely reduces the data utilization. In addition, it ignores the unique spatial-

distribution of single day and loses the dense time-series changing information. In other word, the monthly/quarterly/yearly

soil moisture data averaging operations damage the initial information on both spatial and temporal dimension.

3) Multi-temporal soil moisture data synthesizing: Different from soil moisture data selecting and averaging, this strategy

employs the time-series daily soil moisture data and selects the valid observed value from corresponding time-series pixels.45

This strategy can produce synthesizing result through valid single-point, while it ignores the spatial local correlation and exists

incontinuous and inconsistent effects in local regions. In addition, it also sacrifices high temporal resolution just as multi-

temporal data averaging strategy (Peng et al., 2017; Sun et al., 2020).

To overcome above-mentioned limitations, some missing values reconstruction methods have been developed especially

on multi-temporal images thick cloud removal and deadline gap-filling (Zhang et al., 2020a). For example, Zhu et al. (2011)50

proposed the multi-temporal neighboring homologous value padding method for thick cloud removal. Chen et al. (2011)

presented an effective interpolating algorithm for recovering the invalid regions in Landsat images. Zhang et al. (2018a) built

an integrative spatio-temporal-spectral network for missing data reconstruction in multiple tasks.

In terms of the soil moisture products gap-filling, several methods have also been proposed to address this issue. Wang et al.

(2012) presented a penalized least square regression-based approach for global satellite soil moisture gap filling observation.55

Fang et al. (2017) introduced a long short-term memory network to generate spatial complete overlay SMAP in U.S. Long et

al. (2019) fused multi-resolution soil moisture products, which can produce daily fine-resolution data in local regions. Llamas
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et al. (2020) used geostatistical techniques and multiple regression strategy to get spatial complete results of satellite-derived

products. Overall, there are few works for soil moisture productions reconstructing on global and daily scale.

In spatial dimension, the invalid land areas and adjacent valid land areas exist the spatial consistency and spatial correlation60

on daily soil moisture products (Long et al., 2020). In temporal dimension, daily time-series changing curve of the same point

natively appears with the continuous and smooth peculiarities (Chan et al., 2018). Overall, these methods can effectively fill

the gaps of soil moisture products. However, these methods cannot simultaneously take both spatial and temporal information

into consideration. In addition, the daily soil moisture products in global scale have not been exploited up to now.

Therefore, how about simultaneously extracting both spatial and temporal features for seamless global daily soil moisture65

products gap-filling? Recently, deep learning has gradually revealed the potential for remote sensing products processing

(Chen et al., 2021). In consideration of the powerful feature expression ability via deep learning, can we utilize spatio-temporal

information to generate long-term soil moisture products?

From these perspectives, a novel spatio-temporal deep learning framework is proposed for global daily AMSR2 soil moisture

products gap-filling. By means of the proposed method, we can effectively break through the above-mentioned limitations. And70

finally, this work generates the seamless global daily AMSR2 soil moisture long-term products from 2013 to 2019. The main

innovations are summarized as below:

1) We develop a deep 3D partial reconstruing model, which can take both the spatial and temporal information into consid-

eration. Aiming at the invalid or coastline region boundary, the 3D partial CNN and global-local loss function are presented

for better extracting the valid region features and ignoring the invalid regions through both soil moisture data and mask infor-75

mation.

2) A seamless global daily (SGD) AMSR2 soil moisture long-term (2013-2019) dataset is generated through the proposed

model. The dataset includes the original and reconstructing soil moisture data. And this SGD products could be directly

downloaded at https://doi.org/10.5281/zenodo.4417458 (Zhang et al., 2021).

3) Three verification strategies are employed to testify the precision of our SGD soil moisture dataset as follows: in-situ80

validation; time-series validation; and simulated missing regions validation. Evaluating indexes demonstrate that the seamless

global daily AMSR2 soil moisture dataset shows high accuracy, reliability, and robustness.

The schema of this work is listed below. Sect 2 describes the study ASMR2 soil moisture products and in-situ soil moisture

network data. Sect 3 presents the methodology for generating the seamless global daily AMSR2 soil moisture products. Sect

4 gives the experimental results and related validation results. The comparisons between time-series averaging method and85

proposed method are discussed in Sect 5. And at last, Sect 6 makes the conclusions of this study.

2 Data description

2.1 AMSR2 soil moisture products

In consideration of the global coverage, temporal-resolution, and current availability, we select AMSR2 soil moisture prod-

ucts as the focused object. This sensor was onboard on the Global Change Observation Mission 1-Water (GCOM-W1) satellite,90
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launched in May 2012 (Kim et al., 2015). The released datasets include three passive microwave band frequencies: 6.9 GHz

(C1 band), 7.3 GHz (C2 band, new frequency compared with AMSR-E), and 10.7 GHz (X band). It can observe the global

land two times within a day (Wu et al., 2016): ascending (day-time) and descending (night-time, about 0:00-1:00 AM of the

local time) orbits. The primary spatial resolution of this datasets denotes 0.25◦ global grids. And the AMSR2 soil moisture

retrieval algorithms include Land Parameter Retrieval Model (LPRM) and Japan Aerospace Exploration Agency (JAXA) (Du95

et al., 2017; Kim et al., 2018). The error of soil moisture for each frequency was also given in AMSR2 products.

In our study, we choose LPRM AMSR2 descending level 3 (L3) global daily 0.25◦ soil moisture products as the study

data. To avoid introducing additional error and uncertainty, we didn’t carry out the downscaling operation of the generated

SGD-SM products. This dataset was obtained from https://hydro1.gesdisc.eosdis.nasa.gov/. For instance, the original AMSR2

0.25◦ soil moisture data in April 2, 2019 is displayed in Fig. 1(a). Due to the satellite orbit coverage and limitations of soil100

moisture retrieving algorithms in tundra areas (Muzalevskiy et al., 2020), the acquired AMSR2 daily soil moisture products

are always incomplete in global land (about 30%∼80% invalid ratio, excluding Antarctica and most of Greenland), as shown

in Fig. 1(a). The daily global land coverage ratio of AMSR2 soil moisture data in 2019 is listed in Fig. 2. Distinctly, the global

land coverage ratio is low in wintertime, and high in summertime. The mean global land coverage ratio in 2019 is just about

56.5% in AMSR2 soil moisture daily products. Apparently, these incomplete soil moisture data cannot be directly applied for105

subsequent spatial and time-series analysis, as mentioned in previous Sect 1.

(a) Original global AMSR2 0.25◦ soil moisture data in April 2, 2019 (b) The spatial distribution of the used in-situ sites.

Figure 1. AMSR2 soil moisture product and selected in-situ soil moisture sites

2.2 International Soil Moisture Network in-situ data

The International Soil Moisture Network (ISMN) was established from 2009 to now (Dorigo et al., 2011) providing the

correction/validation schemes for remote sensing satellite-based soil moisture retrieval. ISMN includes the globally distributed

in-situ soil moisture sites supported by the earth observation of the European Space Agency (ESA) and many voluntary con-110

tributions of researchers and organizations from all over the world (Dorigo et al., 2012; Dorigo et al., 2013).
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Figure 2. The daily global land coverage ratio of AMSR2 soil moisture products in 2019

The ISMN in-situ surface soil moisture values could be acquired through https://ismn.geo.tuwien.ac.at. In our experiments,

we selected a portion of in-situ soil moisture sites of ISMN as ground truth values (Zhang et al., 2017), to testify the precision

and credibility of the reconstructing datasets in Sect 4.2. The spatial distribution of the used in-situ sites is depicted in Fig.

1(b). It should be noted that the time range is restrained from 2013.1.1 to 2019.12.31. Then the daily soil moisture values are115

matched with the in-situ sites in the same location. Two neighboring in-situ hourly values are averaged as the ultimate result of

current date (Dong et al., 2020).

3 Methodology

The flowchart of the presented framework is depicted in Fig. 3. The overall structure could be divided as two stages: the

training procedure and testing procedure. Firstly, we designate the processing daily soil moisture data in date T, and simultane-120

ously select its adjacent time-series data before and after four days (date T-4 to T+4). The corresponding land masks of these

daily soil moisture data are generated through the invalid pixel marking.

In the training procedure, these spatio-temporal soil moisture data and land mask patch groups are imported as the training

data of the presented spatio-temporal 3-D reconstructing model through patch selecting and mask simulating. The convergence

condition denotes that the loss of the proposed model gradually decreases, and finally maintains smooth in training procedure125

through back-propagation (BP) in Fig. 3. Then in the testing procedure, seamless global daily reconstructing soil moisture

data is outputted through the convergent model. Subsequently, the next processing daily soil moisture data is designated and

repeat above-mentioned steps, until all the daily data are serially reconstructed in order. Details of the reconstructing model

and network are described below.
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Figure 3. Flowchart of the presented framework

3.1 Spatio-temporal 3-D reconstructing model130

The spatio-temporal soil moisture reconstructing model is displayed in Fig. 4. After assigning the original soil moisture

data in date T, time-series soil moisture data and corresponding masks in date T-4 to T+4 are simultaneously imported as the

3D-tensor inputs of the presented deep reconstructing model in Fig. 4. In spatial dimension, missing and non-missing areas

exist the spatial consistency in daily soil moisture data. In temporal dimension, the daily time-series changing curve of the

same point natively appears with the continuous and smooth peculiarities. Therefore, the 3D CNN is employed to process the135

spatio-temporal soil moisture data in this model. Through this way, we can jointly utilize both spatial and temporal information

of these time-series soil moisture products. Further, it can better richly exploit the deep spatio- temporal feature for data

reconstructing and model optimization. The structure and details are depicted in Fig. 4.

This network includes 11 layers (3D partial CNN unit and ReLU (Rectified Linear Unit)) in Fig. 4. The size of 3D filters is

all set as 3×3×3. Number of feature maps before ten layers is fixed as 90, and the channel of feature map in the final layer is140
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exported as 1. It should be noted that after finishing each partial 3D-CNN layer, we must update all the new masks for next

layer. The mask updating operation is defined in Sect 3.2. In terms of the model training and optimization, three steps: patch

selecting, mask simulating, and back propagation are performed in Sect 3.3. Detailed technique descriptions of the network

implementation are provided in the supplementary material. For network optimization, we take the global loss and local loss

into consideration. As described in Fig. 3, this deep reconstructing model need to be learned with large training label samples,145

before the testing procedure for outputting global seamless daily soil moisture products. The global land mask and the mask

in current date T are also employed for the global loss and local loss in Fig. 4. Descriptions of partial 3D-CNN and model

optimization are demonstrated in Sect 3.2 and Sect 3.3, respectively.

…
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Figure 4. Spatio-temporal soil moisture 3D reconstructing model

3.2 Partial convolutional neural network

Deep convolution neural network has been widely applied for nature image reconstructing (Liu et al., 2018a; Yeh et al., 2017;150

Liu et al., 2019) and satellite imagery recovering (Yuan et al., 2019; Zhang et al., 2019; Zhang et al., 2020b). Nevertheless, it

should be highlighted that the valid and invalid pixels simultaneously exist especially around the coast regions and gap regions

(Pathak et al., 2016). The common CNN ignores the location information of invalid or valid pixels in soil moisture data, which

cannot eliminate the invalid information (Liu et al., 2018b). Therefore, to solve this negative effect, we develop the partial

3D-CNN to ignore the invalid information in the proposed reconstructing model.155

Before introducing the partial convolution, the operation of common convolution can be defined as below:

x= WTX+ b (1)
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where X denotes the inputted tensor data. W and b are the weight and bias parameters, respectively. Different from the common

convolution, the mask information M of the corresponding soil moisture data is introduced into the partial convolution:

x′ =

WT (X(w,h,t)�M(w,h,t))
‖1(w,h,t)‖1
‖M(w,h,t)‖1

+ b,
∥∥M(w,h,t)

∥∥
1
6= 0

0, otherwise
(2)160

where � stands for the pixel-wise multiplication. w, h, and t refer to the width, height, and temporal number of the input data,

respectively. 1 denotes the identical dimension tensor with mask M, whose elements are all value 1. Obviously, the partial

convolutional output x′ is only decided by the valid soil moisture pixels of input X, rather than the invalid soil moisture pixels.

Through the mask M, we can effectively exclude the interference information of invalid soil moisture pixels such as marine

regions and gap regions. Then the scaling divisor in Eq. (2) further adjusts for the variational number of valid soil moisture165

pixels.

After finishing each partial convolution layer, all the masks need to updated through the following rule: If the partial con-

volution can generate at least one valid value of the output result, then we mark this location as valid value in the new masks.

This updating operation is demonstrated as below:

m′(w,h,t) =

Land(w,h) · 1,
∥∥M(w,h,t)

∥∥
1
6= 0

0, otherwise
(3)170

where Land(w,h) is the global land mask in location (w,h) of the global soil moisture product. This global land mask covers

six continents and excludes Antarctica and most of Greenland.

3.3 Model training and optimization

As shown in Fig. 3, the training procedure needs to generate large numbers of training samples for learning the proposed

spatio-temporal 3-D reconstructing model in Fig. 4. Different from the testing procedure, the training procedure additionally175

contains the patch selecting, mask simulating, and back propagation (BP) steps. These three steps are significant for model

training and optimization. The purpose of patch selecting and mask simulating step in Fig. 3 is to establish the label (complete)-

data (incomplete) training samples in the deep learning framework. The significance of BP step in Fig. 3 is to optimize the

reconstructing network in Fig. 4 and acquire the loss convergence model for testing use.

In the patch selecting step, we traverse the global regions in date T to select the complete soil moisture patch label, whose180

local land regions are undamaged. It should be noted the rest incomplete patches in date T are excluded because they cannot

participate in the supervised learning. The corresponding time-series soil moisture patches of this selected patch between date

T-4 to T+4, is set as the spatio-temporal 3D data patch groups. And their corresponding masks between date T-4 to T+4 is set

as the spatio-temporal 3D mask patch groups. After traversing the original global daily AMSR2 soil moisture products from

2013 to 2019, we finally establish the spatio-temporal data and mask patch groups with the number of 276488 patches. The185

soil moisture patch size is fixed as 40×40 for patch selecting.
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In the mask simulating step, 10000 patch masks of the size 40×40 are chosen from the global AMSR2 soil moisture masks

from 2013 to 2019. The missing ratio range of these masks is set as [0.3, 0.7]. Then these patch masks are randomly selected

for label patches use within the spatio-temporal data and mask patch groups. The complete patch in date T (label) is simulated

as the incomplete patch (data) through the above mask. And the original corresponding mask of this patch needs also to be190

replaced. After traversing and building the label-data 3D spatio-temporal patch groups, this dataset is set as the training samples

for the usage of reconstructing network in Fig. 3.

In the back propagation step, we need a loss function to iteratively optimal the learning parameters of the deep reconstructing

network. This operation follows the chain rule in model optimizing. The Euclidean loss function is employed in most data

reconstruction or regression issues based on deep learning, such as satellite products downscaling (Fang et al., 2020) and195

retrieving (Lee et al., 2019). Nevertheless, Euclidean loss function only pays attention to the holistic information bias for

network optimization. It ignores the soil moisture particularity of the local areas, especially in local coastal, mountain, and

hinterland regions. However, this particularity is extremely significant for invalid regions gap-filling, because of the spatial

heterogeneity in soil moisture products. Therefore, to take both the global consistency and local soil moisture particularity into

consideration, the global land mask and current mask in date T are both employed after the final layer as shown in Fig. 3.200

Further, the reconstructing network presents the local and global 2-norm loss as below:

ζlocal = ‖(1−MT )� (SMrec−SMori)‖22 (4)

ζglobal = ‖MG� (SMrec−SMori)‖22 (5)

where MT stands for current mask patch in date T. MG represents the corresponding global land mask patch. SMrec and205

SMori denote the reconstructed soil moisture patch and original seamless soil moisture patch, respectively. The unified loss

function of the reconstructing network combines ζlocal and ζglobal as below:

ζ(Θ) = ζlocal + η · ζglobal (6)

where Θ refers to the learnable arguments for each layer of the deep reconstructing model. η denotes the balancing factor to

adjust the ζlocal and ζglobal. In this work, we fixed this factor as 0.1 during the training procedure.210

After building up this unified loss function, the presented reconstructing model employs Adam algorithm as the gradient

descent strategy. The number of batch size in this model is fixed as 128 for network training (Shi et al., 2020). The total epochs

and initial learning rate are determined as 300 and 0.001, respectively. Starting every 30 epochs, the learning rate is degraded

through decay coefficient 0.5 (Zhang et al., 2018b). The training and testing procedure of the proposed model are implemented

by Pytorch platform. The software environment is listed as follows: Python 3.7.4 language, Windows 10 operating system, and215
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PyCharm 2019 integrated development environment (IDE). The final soil moisture products are exported as hierarchical data

format, which both contains the original and reconstructed soil moisture data.

4 Experimental results and validation

In this section, we provide the experimental results and related validation results to testify the availability of the pre-

sented framework. Through this framework, we finally generate the seamless global daily AMSR2 soil moisture long-term220

products from 2013.1.1 to 2019.12.31. The daily soil mositure products are saved as NetCDF4 format. This dataset can

be directly downloaded at https://doi.org/10.5281/zenodo.4417458 (Zhang et al., 2021) for free-use. Codes are released at

https://github.com/qzhang95/SGD-SM.

We firstly give two sample seamless reconstructing results of global time-series soil moisture products. The original and

reconstructed results are both given for comparisons. Later, to further validate the effectiveness of these products, three verifi-225

cation ways are respectively employed as follows:

1) In-situ validation.

2) Time-series validation.

3) Simulated missing regions validation.

In-situ validation is utilized to compare the reconstructed soil moisture with original AMSR2 soil moisture through the230

selected in situ sites from the spatial prospect. In-situ shallow-depth soil moisture sites can be employed as the ground-truth

to validate the reconstructing satellite soil moisture products. Time-series validation is employed for evaluating the time-series

continuity from the temporal prospect. Soil moisture time-series scatters can obviously reveal the annual periodic variations

for time-series validation. Simulated missing regions validation is used to testify the soil moisture consistency from the spatial

prospect. It can verify the spatial consistency between the valid and invalid soil moisture regions.235

4.1 Experimental results

As displayed in Fig. 5 (a)-(h) and Fig. 6 (a)-(h), original and reconstructing global daily time-series AMSR2 soil moisture

products between 2019.6.1 to 6.4 and 2016.10.1 to 10.4 are given as the sample results, respectively. The left column lists

the original incomplete soil moisture results, and the right column lists the corresponding complete soil moisture results after

reconstructed by the proposed method in 2019.6.1 to 6.4 and 2016.10.1 to 10.4. We ignore the coverage of Antarctica and most240

of Greenland, because the satellite soil moisture data within these regions behaves perennially missing.

From the spatial dimension, the reconstructing global soil moisture products are consistent between invalid regions and their

adjacent valid regions in Fig. 5 and Fig. 6. Especially around the high-value areas and low-value areas, the spatial information

consecutive without obvious reconstructing boundary effects such as in Africa, Australia, and Europe in Fig. 5 and Fig. 6.

From the temporal dimension, although the incomplete time-series daily results are highly similar and correlative, there245

are still some variations and differences between each other. The proposed method performs well on consistent temporal

information preserving and specific temporal information predicting in Fig. 5 and Fig. 6.
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(a) Original SM in 2019.6.1 (b) Reconstructing SM in 2019.6.1

(c) Original SM in 2019.6.2 (d) Reconstructing SM in 2019.6.2

(e) Original SM in 2019.6.3 (f) Reconstructing SM in 2019.6.3

(g) Original SM in 2019.6.4 (h) Reconstructing SM in 2019.6.4

Figure 5. Original/reconstructing global daily SM results between 2019.6.1 to 6.4
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(a) Original SM in 2016.10.1 (b) Reconstructing SM in 2016.10.1

(c) Original SM in 2016.10.2 (d) Reconstructing SM in 2016.10.2

(e) Original SM in 2016.10.3 (f) Reconstructing SM in 2016.10.3

(g) Original SM in 2016.10.4 (h) Reconstructing SM in 2016.10.4

Figure 6. Original/reconstructing global daily SM results between 2016.10.1 to 10.4
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4.2 In-situ validation
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(a) C-026 (40.0062◦N, 88.2904◦W)
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(b) C-055 (0.2825◦N, 36.8669◦E)
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Figure 7. Scatters of the in-situ/reconstructed soil moisture values within selected COsmic-ray Soil Moisture Observing System (COSMOS)
stations

In-situ shallow-depth soil moisture sites can be employed as the ground-truth to validate the reconstructing satellite soil

moisture products. We select 113 soil moisture stations (0-5cm) through ISMN between 2013.1.1 to 2019.12.31. Nine soil250

moisture in-situ sites and the corresponding reconstructing data within invalid regions are then contrast as the scatter plots in

Fig. 7 (a)-(i), respectively. The horizontal axis stands for in-situ soil moisture value. Meanwhile the vertical axis represents

reconstructing soil moisture value. It should be highlighted that due to the lacks of part recorded data between 2013 to 2019,

most in-situ values are incompleteness with different point numbers. As shown in Fig. 7 (a)-(i), the correlation coefficients (R)
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indexes are distributed between 0.679 to 0.754. The root-mean-square error (RMSE) and mean absolute error (MAE) indexes255

are distributed from 0.026 to 0.134 and from 0.021 to 0.107, respectively.

In additions, we compare the reconstructed with original AMSR2 soil moisture products through the selected 113 in-situ

sites, as listed in Table 1. The averaged R, RMSE, and MAE of the original and reconstructed soil moisture products are

0.685 (0.689), 0.097 (0.093), and 0.079 (0.077), respectively. Overall, the accuracy of reconstructed soil moisture products

is generally accorded with the original products. The differences of these indexes R, RMSE and MAE are minor between the260

original and reconstructed soil moisture results in Table 1. To some degree, this validation ensures the reliability and availability

of the proposed seamless global daily AMSR2 soil moisture products. Besides, the in-situ validation results at Tibetan Plateau

region (Qiu et al., 2020; Zhang et al., 2020) are listed in the supplementary material.

Table 1. Comparisons between original and reconstructed soil moisture products

Soil Moisture products
Evaluation index

R RMSE MAE

Original 0.689 0.093 0.077

Reconstructed 0.685 0.097 0.079

4.3 Time-series validation

To further validate the reconstructed soil moisture results, time-series variations of both original and reconstructed re-265

sults are stacked in six points around the six continents: Africa (0.375◦N, 36.875◦E), Europe (49.375◦N, 35.125◦E), Asia

(38.125◦N, 117.375◦E), North America (39.875◦N, 106.125◦W), South America (15.125◦S, 52.625◦W), Australia (30.125◦S,

150.375◦E), respectively. As described in Fig. 8(a)-(f), the horizontal axis stands for daily time-series date between Jan 1 2013

to Dec 31 2019. The vertical axis represents the soil moisture value. The blue points refer to the original valid soil moisture

daily results, and the red forks stands for the reconstructed invalid soil moisture daily results in Fig. 8.270

As depicted in Fig. 8(a)-(f), most of the soil moisture time-series scatters can obviously reveal the annual periodic variations.

The reconstructed soil moisture results generally behave fine temporal consistency with the original soil moisture results in

different areas. Related low soil moisture values mostly existed in the droughty season of winter with the frozen lands such as

in Fig. 8(d). Related high soil moisture values mainly generated in the moist season of summer with more rainy days, especially

in Fig. 8 (b), (d) and (f).275

Overall, compared with the whole original variation tendency between 2013 to 2019, the generated seamless global daily

AMSR2 soil moisture long-term products can steadily reflect the temporal consistency and variation. It is significant for time-

series applications and analysis. This daily time-series validation also demonstrates the robustness of the presented method and

the availability of the established seamless global daily products.
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(a) Time-series results in Africa (0.375◦N, 36.875◦E)

2013 2014 2015 2016 2017 2018 2019
0

30

60

90

SM
 (p

er
ce

nt
)

Original
Reconstructed

(b) Time-series results in Europe (49.375◦N, 35.125◦E)

2013 2014 2015 2016 2017 2018 2019
0

30

60

90

SM
 (p

er
ce

nt
)

Original
Reconstructed

(c) Time-series results in Asia (38.125◦N, 117.375◦E)
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(d) Time-series results in North America (39.875◦N, 106.125◦W)
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(e) Time-series results in South America (15.125◦S, 52.625◦W)
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(f) Time-series results in Australia (30.125◦S, 150.375◦E)

Figure 8. Original/reconstructed time-series results in selected regions
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4.4 Simulated missing regions validation280

In addition to the time-series consistency in Sect 4.3, the spatial continuity is also important for the reconstructed seamless

soil moisture products. Therefore, to further testify this key point, we carry out the simulated missing regions validation in this

subsection. Based on the original soil moisture products, six simulated square missing regions are performed in six continents,

respectively. Through thisway,we can easily compare the reconstructed SM regions with original SM regions, to validate

the 2D spatial continuity of the proposed SGD-SM products. We select four dates of the long-term soil moisture products:285

2013.7.25, 2015.7.25, 2017.7.25, and 2019.7.25 as the simulated objects. For example, original and reconstructed results with

simulated missing regions in 2019.7.25 are depicted in Fig. 9(a) and (b), respectively. The simulated missing regions can be

clearly observed in Fig. 9(a) around the six continents. Detailed original and reconstructed spatial information of four simulated

patches in 2015.7.25 are displayed in Fig. 10. Table 2 gives the evaluation index (R, RMSE, MAE) of the simulated patches

between 2013 to 2019. Then the original-reconstructed scatters of simulated regions in 2013, 2015, 2017, and 2019.7.25 are290

listed in Fig. 11(a)-(b), respectively.

As shown in Fig. 9 (a) and (b), the reconstructed invalid regions are consecutive between the original valid regions. And

in the simulated missing regions, the spatial texture information is also continuous without obvious boundary reconstructing

effects in Fig. 9(b). To better distinguish the spatial details of reconstructed soil moisture, we select four enlarged patches in

simulated regions in Fig. 10. It can be clearly observed that the reconstructed patches perform the high consistency with the295

original patches, as displayed in Fig. 10.

In addition, the reconstructed soil moisture patches in simulated missing regions behave high reconstructing accuracy, whose

R values are distributed between 0.963 to 0.974 in Table 2 and Fig. 11(a)-(d). RMSE and MAE values also perform well on

0.065 to 0.073 m3/m3 and 0.044 to 0.052 m3/m3 in Table 2 and Fig. 11(a)-(d), respectively. Overall, this simulated missing

regions validation manifests the reconstructing ability of spatial information continuity.300

Table 2. Evaluation indexes of the simulated patches between 2013 to 2019

Year
Evaluation index

R RMSE MAE

2013 0.974 0.065 0.044

2014 0.963 0.073 0.052

2015 0.968 0.069 0.050

2016 0.972 0.067 0.046

2017 0.966 0.070 0.049

2018 0.970 0.065 0.046

2019 0.969 0.069 0.048

Average 0.968 0.068 0.471
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(a) Original soil moisture result with simulated missing regions (square regions)

(b) Reconstructed soil moisture result

Figure 9. Original and reconstructed results with simulated missing regions in 2019.7.25

17



Original

Reconstructed

Patch 1 Patch 2 Patch 3 Patch 4

Figure 10. Detailed original/reconstructed spatial information of four simulated patches in 2015.7.25
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(a) Scatter of simulated regions in 2013.7.25
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(b) Scatter of simulated regions in 2015.7.25
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(c) Scatter of simulated regions in 2017.7.25
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(d) Scatter of simulated regions in 2019.7.25

Figure 11. Original-reconstructed scatter of simulated regions in 2013, 2015, 2017, and 2019.7.25
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5 Discussion

5.1 Comparisons with time-series averaging

As mentioned in Sect 1, some simple strategies such as time-series averaging can be also employed for synthesizing the

complete soil moisture products. Therefore, we perform the comparisons between the time-series averaging approach and the

presented method, to further validate the effectiveness and rationality of our dataset and framework. In terms of the time-series305

averaging method, it averages the time-series daily soil moisture data to reconstruct gap regions. The original soil moisture

result, time-series averaging result, and the proposed reconstructing result in 2016.9.10 are shown in Fig. 12(a)-(c), respectively.

Three reconstructed regions are marked with black circle in Fig. 12(b) and (c). The evaluation index comparisons between the

time-series averaging method and proposed method are listed in Table 3 through the corresponding in-situ data validations.
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Figure 12. Original/time-series averaging/proposed global soil moisture results in 2016.9.10

As displayed in the balck circled regions of Fig. 12(b) and (c), we can clearly distinguish the spatial discontinuity in the310

time-series averaging result. Reversely, the proposed method performs better on spatial continuity between the valid and invalid

regions. The evaluation indexes R, RMSE, and MAE also manifest the superiority of the presented approach, compared with the
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Table 3. Evaluation index (R, RMSE, MAE) comparisons between the time-series averaging and proposed method

Method
Evaluation index

R RMSE MAE

Time-series averaging 0.635 0.124 0.093

Proposed 0.708 0.085 0.066

time-series averaging method in Table 3. The main reason is that daily soil moisture products exist temporal differences. While

the time-series averaging strategy cannot use the 2D-spatial information and ignores these temporal differences. Therefore, it

reflects the obvious “boundary difference effect” especially in the circled regions of Fig. 12(b). This also reveals the limitations315

and shortages of the time-series averaging method. On the contrary, the proposed method jointly utilizes both spatial and

temporal information of these time-series soil moisture products. Further, it can better richly exploit the deep spatio-temporal

feature for soil moisture data reconstructing. Overall, this discussion demonstrates the superiority of the proposed framework

on time-series products daily reconstructing, especially compared with the time-series averaging strategy.

5.2 Uncertainty analyse of the SGD-SM products320

Uncertainty analyse is important for remote sensing quantitative products. The uncertainties in this generated SGD-SM

product can be classified as three types: 1) The errors of original AMSR2 SM product; 2) The meteorological factors such

as precipitation and snowfall; 3) The generalization of proposed reconstructing model. Detailed descriptions of these three

uncertainties are listed as follows:

1) The errors of original AMSR2 SM product: The proposed SGD-SM product is generated based on original AMSR2325

SM product. While this original AMSR2 SM product also exists errors, due to the satellite sensor imaging and SM retrieval

algorithm. As shown in Table 1, the R, RMSE, and MAE evaluation indexes of the original AMSR2 SM product are 0.687,

0.095, and 0.078, respectively. These errors are also inevitably transmitted into the generated SGD-SM product.

2) The meteorological factors: SGD-SM relies on the temporal continuity and spatial consistency for daily SM gap-filling.

Nevertheless, if the unusual meteorologic occurs in single day such as precipitation and snowfall, it may destroy above as-330

sumption and influence the reconstructing effects. This uncertainty can be noticed in time-series validation, especially for rainy

season.

3) The generalization of proposed reconstructing model: In this work, we train the proposed network through selecting com-

plete soil moisture patches. In addition, the simulated masks are also chosen from the daily soil moisture products. However,

it still exists the differences between the training data and testing data, such as land covering type, mask size, and so on. This335

uncertainty may disturb the generalization of proposed reconstructing model, to some degree.
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6 Conclusions

In this work, aiming at the spatial incompleteness and temporal incontinuity, we generate a seamless global daily (SGD)

AMSR2 soil moisture long-term products from 2013 to 2019. To jointly utilize spatial and temporal information, a novel

spatio-temporal partial CNN is proposed for AMSR2 soil moisture products gap-filling. The partial 3D-CNN and global-local340

loss function are developed for better extracting valid region features and ignoring invalid regions through data and mask

information. Three validation strategies are employed to testify the precision of our seamless global daily products as follows:

1) In-situ validation; 2) Time-series validation; And 3) simulated missing regions validation. Evaluating results demonstrate

that the seamless global daily AMSR2 soil moisture dataset shows high accuracy, reliability, and robustness.

Although the proposed framework performs well on generating this seamless global daily soil moisture dataset, some draw-345

backs and limitations still need to be overcome especially on multi-source data fusion, spatio-temporal information extracting

and deep learning model optimization. In our future work, we will introduce multi-source information fusion into the proposed

model, such as precipitation and snowfall. The proposed reconstructing model will be increasingly improved by means of more

powerful units and structures. In addition, we will consider more soil moisture products in our future work such as AMSR-E,

SMOS-IC, SMAP and so on.350

7 Data availability

This dataset can be downloaded at https://doi.org/10.5281/zenodo.4417458 (Zhang et al., 2021).
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