
Author’s Response for All the Comments

Dear Editors and Referees:

We are particularly grateful for your careful reading, and for giving us many constructive

comments of this work!

According to the comments and suggestions, we have tried our best to improve the previous

manuscript essd-2020-353 (SGD-SM: Generating Seamless Global Daily AMSR2 Soil Moisture

Long-term Productions (2013–2019)). The modified words or sentences are marked as blue color

in the revised manuscript. An item-by-item response follows.

Once again, we are particularly grateful for your careful reading and constructive comments.

Thanks very much for your time.

Best regards,

Qiang Zhang and all co-authors
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General comments:

In this manuscript, authors generated a seamless global daily soil moisture dataset from

2013 to 2019. The incomplete daily global AMSR-2 soil moisture productions indeed exist

the coverage problem, due to the satellite orbit coverage and the limitations of soil moisture

retrieving algorithms. Overall, the proposed 3D spatio-temporal deep learning model is novelty

for reconstructing the invalid soil moisture area, to solve the above coverage issue in AMSR-2

global daily products. In addition, three validation programs are employed in this manuscript to

ensure the reliability of the seamless global daily soil moisture dataset. Several suggestions may

be helpful to better improve this meaningful work.

Response: We are particularly grateful to the reviewer for his/her detailed suggestions! According

to the comments, we have tried our best to improve the previous manuscript. An item-by-item

response to each constructive comment follows.

Major comments:

Q1.1: How to deal with the unique mutations for the proposed reconstructing model, such as

precipitation or snowfall in single day? It seems that this work relies on the sequential time-series

redundancy for generating seamless global daily AMSR-2 soil moisture products.

Response: Thanks for this issue. As the referee stated, this work relies on the sequential time-

series redundancy for generating SGD-SM products. For unique mutations, it also influences the

latter days due to the inertial effects. Therefore, we take the T-4 to T+4 date SM as the input

data, to utilize the continuity property of time-series values. In our future work, we will introduce

multi-source information fusion into the proposed model, such as precipitation and snowfall.
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Q1.2: In the testing stage of Fig. 3, the convergence of the training spatio-temporal 3-D recon-

structing model is vital for subsequent processing. Therefore, descriptions of this convergence

condition must be illustrated in this manuscript.

Response: Thanks for this meaningful suggestion. The convergence condition denotes that the loss

of the proposed model gradually decreases, and finally maintains smooth in training procedure. We

have supplemented this description in the revised manuscript.

Q1.3: Why authors use 3D partial convolutional neural network, rather than common con-

volutional neural network, for the soil moisture gap-filling task in missing area? Besides, the

intentions for mask updating operation in the reconstructing model should be given.

Response: Thanks for this issue. it should be highlighted that the valid and invalid SM simul-

taneously exist especially around the coast regions and gap regions. The common CNN ignores

the location information of invalid or valid pixels in soil moisture data, which cannot eliminate

the invalid information. Therefore, to solve this negative effect, we develop the partial 3D-CNN

to ignore the invalid information in the proposed reconstructing model. the partial convolutional

output is only decided by the valid soil moisture pixels of input, rather than the invalid soil moisture

pixels. Through the mask, we can effectively exclude the interference information of invalid soil

moisture pixels such as marine regions and gap regions. Then the scaling divisor in Eq. (2) further

adjusts for the variational number of valid soil moisture pixels. If the partial convolution can

generate at least one valid value of the output result, then we mark this location as valid value in

the new masks. We have added these explanations into the revised version.
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Q1.4: Authors employed both local and global soil moisture information to optimize the net-

work. The distinction and connection between local and global information need to provide the

explanations and effects.

Response: Thanks for this comment. Euclidean loss function only pays attention to the holistic

information bias for network optimization. It ignores the soil moisture particularity of the local

areas, especially in local coastal, mountain, and hinterland regions. However, this particularity

is extremely significant for invalid regions gap-filling, because of the spatial heterogeneity in soil

moisture products. Therefore, to take both the global consistency and local soil moisture particu-

larity into consideration, the global land mask and current mask in date T are both employed after

the final layer. Through this way, we can simultaneously ensure the global consistency and dis-

tinguish the local particularity. We have supplemented these descriptions in the revisedmanuscript.

Q1.5: In the time-series validation, most of the soil moisture time-series scatters can obviously

reveal the annual periodic variations in Fig. 8. Authors should take advantage of these annual

periodic variations to better verify the rationality of the daily SM products.

Response: Thanks for mentioning this issue. As depicted in Fig. 8(a)-(f), most of the soil moisture

time-series scatters can obviously reveal the annual periodic variations. The reconstructed soil

moisture results generally behave fine temporal consistency with the original soil moisture results

in different areas. Related low soil moisture values mostly existed in the droughty season of winter

with the frozen lands such as in Fig. 8(d). Related high soil moisture values mainly generated in

the moist season of summer with more rainy days, especially in Fig. 8 (b), (d) and (f).

Overall, compared with the whole original variation tendency between 2013 to 2019, the

generated seamless global daily AMSR2 soil moisture long-term products can steadily reflect the
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temporal consistency and variation. It is significant for time-series applications and analysis. This

daily time-series validation also demonstrates the robustness of the presented method and the avail-

ability of the established seamless global daily products. We have emphasized these annual periodic

variations in the revised manuscript, for better verifying the rationality of the daily products.

Q1.6: In the simulated missing regions validation, the spatial continuity is also important for

the reconstructed seamless soil moisture productions. To better distinguish the spatial details

of reconstructed soil moisture, authors selected some enlarged patches in Fig. 10. More

descriptions should be introduced to investigate this key point for spatial consistency between the

reconstructing and adjacent regions.

Response: Many thanks for this suggestion! To better distinguish the spatial details of reconstructed

soil moisture, we select four enlarged patches in simulated regions in Fig. 10. It can be clearly

observed that the reconstructed patches perform the high consistency with the original patches, as

displayed in Fig. 10. The reconstructed invalid regions are consecutive between the original valid

regions. And in the simulated missing patches, the spatial texture information is also continuous

without obvious boundary reconstructing effects. These descriptions have been introduced into the

revised version.
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Original

Reconstructed

Patch 1 Patch 2 Patch 3 Patch 4

Fig. 10. Detailed original/reconstructed spatial information of four simulated patches in 2015.7.25
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General comments:

Soil moisture information from remote sensing is of great value to understand the inter-

actions between the land and the atmosphere, drought evaluation, ecosystems, hydrology, and

water resources. Data gaps of remotely sensed surface soil moisture due to orbits and other sen-

sor and environmental factors in space and time hinder our understanding of these important

phenomena, studies, and applications. To address this important issue, the authors have pro-

posed an approach that wisely utilizes 3D spatiotemporal partial convolutional neural network,

to exact both spatial and temporal information for global daily soil moisture product gap-filling.

Moreover, the experimental results and related validation have been fully examined and imple-

mented, making the results and quality of the generated data sets convincing. Overall, this work

is interesting and significant for generating seamless global daily (SGD) soil moisture products

that could be valuable in a broad range of research and applications. I recommend acceptance

of this manuscript into the prestigious journal of ESSD after addressing issues as follows.

Response: We are particularly grateful to the reviewer for his/her approval and detailed sugges-

tions! According to the comments, we have tried our best to improve the previous manuscript. An

item-by-item response to each constructive comment follows.

Major comments:

Q2.1: The authors also need to emphasize the unique aspects of daily soil moisture products,

compared with monthly/annual average soil moisture results at lower temporal resolution. The

high temporal resolution and the global scale are the most important attributes and contributions

of the generated SGD long-term soil moisture in this work. This is valuable in hydrology and

climate communities.
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Response: Thanks for this significant suggestion. For most applications and spatial analysis, the

incomplete soil moisture products are overall averaged as the monthly/quarterly/yearly results to

generate the complete products. This operation can effectively improve the spatial soil moisture

coverage. However, it distinctly sacrifices the high-frequency temporal resolution as low-frequency

temporal resolution, which also severely reduces the data utilization. Besides, it ignores the unique

spatial distribution of single day and loses the dense time-series changing information.

From these perspectives, a novel 3-D partial convolutional neural network is proposed for

AMSR2 soil moisture products gap-filling. By means of the proposed method, we can effectively

break through the above-mentioned limitations. And finally, this work generates the seamless

global daily AMSR2 soil moisture long-term products from 2013 to 2019.

Q2.2: In Fig. 3, how did the authors design the patch selecting and mask simulating operations

in the training procedure? In addition, in the testing procedure, it seems that the proposed model

just uses 8-day soil moisture products. Why not use 16-day or 30-day products for gap-filling?

Response: Thanks for these comments. Detailed descriptions are listed below:

1) In the patch selecting step, we traverse the global regions in date T to select the complete

soil moisture patch label, whose local land regions are undamaged. It should be noted the rest

incomplete patches in dateT are excluded because they cannot participate in the supervised learning.

The corresponding time-series soil moisture patches of this selected patch between date T-4 to T+4,

is set as the spatio-temporal data patch groups. And their corresponding masks between date T-4

to T+4 is set as the spatio-temporal mask patch groups. After traversing the original products from

2013 to 2019, we finally establish the spatio-temporal data and mask patch groups with the number

of 276488 patches. The soil moisture patch size is fixed as 40×40 for patch selecting.

2) In the mask simulating step, 10000 patch masks of the size 40×40 are chosen from the
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global AMSR2 soil moisture masks from 2013 to 2019. The missing ratio range of these masks

is set as [0.3, 0.7]. Then these patch masks are randomly selected for label patches use within the

spatio-temporal data and mask patch groups. The complete patch in date T (label) is simulated as

the incomplete patch (data) through the above mask. And the original corresponding mask of this

patch needs also to be replaced. After traversing and building the label-data spatio-temporal patch

groups, this dataset is set as the training samples for the usage of reconstructing network.

3) In terms of using 8-day soil moisture products not 16-day or 30-day for gap-filling, we

mainly consider the adjacent rule. Generally, 8-day products have the most highly correlated rela-

tion, compared with 16-day or 30-day products. Therefore, we choose the 8-day products from the

reliability and accuracy prospects.

Q2.3: In the validation section, the authors employed three validation approaches to test out the

effectiveness of the SGD soil moisture production between 2013 to 2019: 1) In-situ validation; 2)

Time-series validation; 3) Simulated missing regions validation. More explanations may need

to be supplemented for these validations from both the spatial and temporal prospects.

Response: Thanks for this issue. In-situ validation is utilized to compare the reconstructed soil

moisture with original AMSR2 soil moisture through the selected in situ sites from the spatial

prospect. In-situ shallow-depth soil moisture sites can be employed as the ground-truth to validate

the reconstructing satellite soil moisture products. Time-series validation is employed for evaluating

the time-series continuity from the temporal prospect. Soil moisture time-series scatters can

obviously reveal the annual periodic variations for time-series validation. Simulated missing

regions validation is used to testify the soil moisture consistency from the spatial prospect. It can

verify the spatial consistency between the valid and invalid soil moisture regions. We have added

these explanations into the revised manuscript.
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Q2.4: In the discussion section, the authors claimed that time-series averaging strategy has the

obvious "boundary difference effect". And the contrast experiments are performed in Fig. 12

(b) and (c). What is the fundamental reason if better describing this common phenomenon,

especially for monthly/annual average soil moisture products?

Response: Thanks for this meaningful query. The time-series averaging strategy ignores the

unique spatial distribution of single day and loses the dense time-series changing information. In

other word, the monthly/quarterly/yearly soil moisture data averaging operations damage the initial

information on both spatial and temporal dimension. The time-series averaging strategy cannot

use the 2D-spatial information and neglects these temporal differences. Therefore, it reflects the

obvious "boundary difference effect", as shown in Fig. 12(a). This also reveals the limitations

and shortages of the time-series averaging method. On the contrary, the proposed method jointly

utilizes both spatial and temporal information of these time-series soil moisture products. Further,

the proposed method can better richly exploit the deep spatio-temporal feature for soil moisture

data reconstructing, as shown in Fig. 12(b). We have supplemented these reasons in the revised

version.

(a) Time-series averaging (b) Proposed

Figure 12. Original/time-series averaging/proposed global soil moisture results in 2016.9.10
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Minor comments:

Q2.5: Line 70: "for AMSR2 soil moisture productions gap-filling" may be better presented as

"for global daily AMSR2 soil moisture productions gap-filling".

Response: We have revised this sentence as the referee’s suggestion.

Q2.6: Line 114: "part" may be better written as "a portion of".

Response: We have revised this sentence as the referee’s suggestion.

Q2.7: Line 232: "ignore the regions of" may be written as "ignore the coverage of".

Response: We have revised this sentence as the referee’s suggestion.

Q2.8: Line 243: "soil moisture stations (0 10cm)" lacks "-" in this sentence.

Response: We have added "-" into this sentence.

Q2.9: Line 266: "daily time-series date between 2013 to 2019" may be written as "daily time-

series date between Jan 1 2013 to Dec 31 2019."

Response: We have revised this sentence as the referee’s suggestion.
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Q2.10: Line 305: In Table 3, the best statistical metrics such as R, RMSE, and MAE could

be highlighted, to better demonstrate the superiority compared with the time-series averaging

method.

Response: We have highlighted the best statistical metrics in Table 3 as follow:

Table 3. Evaluation index comparisons between the time-series averaging and proposed method

Method
Evaluation index

R RMSE MAE

Time-series averaging 0.635 0.124 0.093

Proposed 0.708 0.085 0.066
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General comments:

The complete satellite-based soil moisture products in space and in long time series can be

assimilated to land surface models to generate spatiotemporal soil moisture at the global scale

for climate/weather predictions and surface physical property retrieval. In this paper, the author

generated the seamless Global Daily AdvancedMicrowave Scanning Radiometer 2 (AMSR2) Soil

Moisture (SGD-SM) products by using the developed 3D spatiotemporal partial convolutional

neural network (CNN), which filled the gap of AMSR2 soil moisture products due to limitations of

satellite orbit coverage and soil moisture retrieval algorithms. Assessing the quality of SGD-SM

products was carried out by means of in-situ validation, time-series validation and the validation

in selected missing regions. Furthermore, it showed that the SGD-SM products had improved R

and RMSE by comparisons to those based on the time-series averaging. Although it is enough

to understand what ‘went on’, the scientific and English expressions are poor. Authors need to

first go through the whole manuscript and make it readable. Meanwhile, the literature review is

not very related to the deep learning method that the authors mentioned and used in this paper.

The methodology part is not clear enough to follow. Considering the important applications of

the complete products at the global scale, this review suggests to reconsider the paper after major

revisions.

Major andminor comments are listed in blow and others please find them in the attachment.

Response: We are particularly grateful to the referee for his/her careful reading and detailed sug-

gestions! For the language clarity, we have revised the whole manuscript sentence by sentence in

the updated version. The literature review of this work has been rewritten in Q3.6. According to the

comments, we have tried our best to improve the previous manuscript. An item-by-item response

to each constructive comment follows.
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Major comments:

Q3.1: Please revise the title. See the attachment.

Response: Thanks for this significant suggestion. We have revised the title as: ‘Generating Seam-

less Global Daily AMSR2 Soil Moisture (SGD-SM) Long-term Products 2013-2019’.

Q3.2: Please give the definition of ‘context information’ and ‘context consistency’ used in this

paper.

Response: Thanks for this comment. For avoiding understanding in this work, we have revised

these two expressions ‘context information’ and ‘context consistency’, as ‘original information’ and

‘spatial consistency’, respectively.

Q3.3: In lines 44-45, please explain who is “the best observed value”. Please confirm “a best

single-point” or “best single-points”.

Response: Thanks for this issue. We have corrected these problematic descriptions in multi-

temporal soil moisture data synthesizing. ‘the best observed value’ has been replaced with ‘the

valid value’. ‘best single-point’ has been revised as ‘valid single-point’.

Q3.4: In line 51, please give the definition of ‘invalid land regions’.

Response: Thanks for this suggestion. The ‘invalid land regions’ refers to the gap or information

missing area. We have supplemented this definition in current manuscript.
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Q3.5: In lines 55-58, please briefly introduce the advantage/weakness of the mentioned methods

in the reference for fillings gaps of soil moisture products. The current literature review is just

like a list and not informative to induce the developed method that you used in your study.

Response: Thanks for this beneficial comment. We have introduced the advantage/weakness of

the mentioned methods in the reference for fillings gaps of soil moisture products as follow:

‘Overall, these methods can effectively fill the gaps of soil moisture products. However,

these methods cannot simultaneously take both spatial and temporal information into considera-

tion. In addition, the daily soil moisture products in global scale have not been exploited up to now.’

Q3.6: In lines 64-69, information like ‘a new strategy to solve incomplete. . . obtain the global

gap-filling’ express the same meaning. The content in a), b) and c) sounds casual and is not

concise in the scientific meaning. Most importantly, please state the reason why do you use the

current deep learning method, although we know it is a hot topic. Since you mentioned deep

learning, can authors give a literature review of soil moisture product gap-filling? I suggest to

rewrite lines 48-65 to present a better literature review and the motivation of your work.

Response: We are very grateful for these significant suggestions on literature review! To better

demonstrate the motivation of this work, we have rewritten the literature review for oil moisture

products gap-filling as follow:

‘To overcome above-mentioned limitations, some missing values reconstruction methods have

been developed especially on multi-temporal images thick cloud removal and deadline gap-filling

(Zhang et al., 2020a). For example, Zhu et al. (2011) proposed the multi-temporal neighboring

homologous value padding method for thick cloud removal. Chen et al. (2011) presented an

effective interpolating algorithm for recovering the invalid regions in Landsat images. Zhang et

15



al. (2018a) built an integrative spatio-temporal-spectral network for missing data reconstruction in

multiple tasks.

In terms of the soil moisture products gap-filling, several methods have also been proposed

to address this issue. Wang et al. (2012) presented a penalized least square regression-based

approach for global satellite soil moisture gap filling observation. Fang et al. (2017) introduced

a long short-term memory network to generate spatial complete overlay SMAP in U.S. Long et

al. (2019) fused multi-resolution soil moisture products, which can produce daily fine-resolution

data in local regions. Llamas et al. (2020) used geostatistical techniques and multiple regression

strategy to get spatial complete results of satellite-derived products. Overall, there are few works

for soil moisture productions reconstructing on global and daily scale.

In spatial dimension, the invalid land areas and adjacent valid land areas exist the spatial

consistency and spatial correlation on daily soil moisture products (Long et al., 2020). In temporal

dimension, daily time-series changing curve of the same point natively appears with the continuous

and smooth peculiarities (Chan et al., 2018). Overall, these methods can effectively fill the gaps

of soil moisture products. However, these methods cannot simultaneously take both spatial and

temporal information into consideration. In addition, the daily soil moisture products in global

scale have not been exploited up to now.

Therefore, how about simultaneously extracting both spatial and temporal features for seam-

less global daily soil moisture products gap-filling? Recently, deep learning has gradually revealed

the potential for remote sensing products processing (Chen et al., 2021). In consideration of the

powerful feature expression ability via deep learning, can we utilize spatio-temporal information

to generate long-term soil moisture products?’

Q3.7: In line 70, please explain why the AMSR2 soil moisture products are focused, such as its

availability in long time series compared to other satellite soil moisture products.
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Response: Thanks for this comment. The reason why the AMSR2 soil moisture products are

focused in this work is discribed as follow:

‘In consideration of the global coverage, temporal-resolution, and current availability, we

select AMSR2 soil moisture products as the focused object.’ In our future work, we will consider

more soil moisture products such as AMSR-E, SMOS-IC, SMAP and so on.This explanation has

been supplemented in the revised manuscript.

Q3.8: In lines 70-83, it seems that ‘a novel 3-D spatiotemporal partial convolutional neural

network, global-local loss function’ appears suddenly. I suggest to briefly explain them a

bit when they are first mentioned. Meanwhile, the objective part presents the content in the

Conclusions. They are different, please revise.

Response: Thanks for this helpful suggestion! We have revised these sentences as ‘a novel

3-D spatio-temporal deep learning framework is proposed for AMSR2 soil moisture products

gap-filling.’ and ‘To optimize the proposed network, we develop a global-local loss function for

excluding the invalid information.’

In addition, we have also rewritten the conclusions part to keep consistent with the objective

part as follow:

‘In this work, aiming at the spatial incompleteness and temporal incontinuity, we generate a

seamless global daily (SGD) AMSR2 soil moisture long-term products from 2013 to 2019. To

jointly utilize spatial and temporal information, a novel spatio-temporal partial CNN is proposed for

AMSR2 soil moisture products gap-filling. The partial 3D-CNN and global-local loss function are

developed for better extracting valid region features and ignoring invalid regions through data and

mask information. Three validation strategies are employed to testify the precision of our seamless

global daily products as follows: 1) In-situ validation; 2) Time-series validation; And 3) simulated
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missing regions validation. Evaluating results demonstrate that the seamless global daily AMSR2

soil moisture dataset shows high accuracy, reliability, and robustness.’

Q3.9: In line 97, please specify the uncertainty of soil moisture. What do you really refer to? Is

it the uncertainty from the soil moisture retrieval algorithm or others?

Response: Thanks for this query. The uncertainty of soil moisture refers to the LPRM-AMSR2

data variable “soil_moisture_c1_error”. This uncertainty is generated by LPRM retrieval algorithm

in daily soil moisture products. We have added this explanation into the updated manuscript.

Q3.10: In line 114, please give the spatial distribution of (the used) in-situ soil moisture networks.

Response: Thanks for this helpful comment. The spatial distribution of the used in-situ sites is

depicted as below:

Figure A. The spatial distribution of the used in-situ sites.
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Q3.11: In line 117, please do you mean descending and ascending data for ‘neighboring in-situ

hourly values’?

Response: Thanks for this query. ‘neighboring in-situ hourly values’ means that to validate the

proposed SGD-SM products through in-situ validation, we must match the remote-sensing SM data

with in-situ data nearly at the same time. Because in-situ values are the hourly data, we cannot

obtain the coincident in-situ data for current date AMSR2 descending SM. Therefore, we select the

two neighboring in-situ hourly SM values of AMSR2 SM (e.g., AMSR2 Descending data at 01:20,

the neighboring in-situs are selected at 1:00 and 2:00). Then the two neighboring in-situ hourly

values are averaged as the ultimate result of current date.

Q3.12: The Methodology part is not clear and neat. In line 125, what is ‘the loss convergent

model’. It appears also suddenly. I suggest to rewrite the overall descriptions of the method,

and clearly explain every step and their relations in a logical way. Please present the following

sections in a clearer way. There are lots of numbers mentioned, like T-4, T+4, 3*3*3 (what

does 3 mean?), 11 layers, 90, 0.1 during the training procedure, 128, 300, 0.001, etc. I question

their rationalities, please give the reason for each. In line 190, I am not sure about the relation

between loss function and learning parameters? By the way, who is the learning parameter in

this study? In line 208, “After building up this unified loss function, the presented reconstructing

model employs Adam algorithm as the gradient descent strategy, the number of batch size in

this model is fixed as 128 for network training. The total epochs and initial learning rate are

determined as 300 and 0.001, respectively. Starting every 30 epochs, the learning rate is degraded

through decay coefficient 0.5.” Please explain a bit in a clear way, it is very difficult for laymen

to understand ‘epochs, Adam algorithms and the gradient descent strategy’.
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Response: Many thanks for these meaningful suggestions! Deep learning allows computational

models that are composed of multiple processing layers, to learn representations of data with

multiple levels of abstraction. The forward-propagation and back-propagation are employed for

optimizing the trainable parameters in neural network. I suggest referee can read the classical

article (Yann LeCun et al., Deep Learning, Nature, 2015), to further understand more concepts in

deep learning. Detailed explanations are listed as follows:

1) What is ‘the loss convergent model’: The loss convergence model denotes that the loss of

the proposed model gradually decreases, and finally maintains smooth in training procedure. We

have supplemented this description in the revised manuscript.

2) Overall descriptions of the method: We have rewritten the overall descriptions of the

method, and clearly explain every step and their relations in a logical way.

3) Reason for each number: ‘T’ stands for current daily date. ‘3×3×3’ refers to the kernel

size of 3D convolutional cube filter. ‘11 layers’ represents the depth of the proposed deep neural

network. ‘90’ is the feature map number in CNN. ‘0.1’ denotes the balancing factor to adjust the

local loss and global loss in Eq. (6). ‘128’ stands for the batch size in deep learning model. ‘0.001’

refers to the learning rate for the training procedure.

4) Relation between loss function and learning parameters: In deep learning theory, the loss

function is the ‘baton’ of the whole network, which guides the network parameters learning through

the error back-propagation between the predicted sample and the original sample. In terms of the

learning parameters, they represent the weighted and bias parameters in all the layers.

5) How to understand ‘epochs, Adam algorithms and the gradient descent strategy’: One

‘Epoch’ represents that the network goes through all the training data. ‘Adam algorithms’ is

a gradient descent method in back-propagation step, to optimize the whole network parameters.

‘gradient descent’ denotes the partial differentiation and then updates the variation for each network

parameter, which obeys the chain rule in deep neural network.
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Q3.13: At the beginning of section 4, please put the doi related content in the section of‘Data

availability’. Additionally, please remove the duplicate information that is already mentioned in

the Method. Please only present your results in the Result section.

Response: Thanks for this comment. We have supplemented the doi related content at the beginning

of section 4 as follow. Additionally, the duplicate information has been removed in section 4.

“It should be highlighted that this dataset can be directly downloaded at https://doi.org/

10.5281/zenodo.4417458 for free use.”

Q3.14: Figure 10, the original patch shows almost the same as the reconstructed. Do you mean

the original patch is missing here? I am sorry if I misunderstand.

Response: Thanks for this question. In the simulated missing regions validation, six simulated

square missing patches are performed in six continents based on the original soil moisture products

(As the referee supposed that the original patch ismissing). Through thisway, we can easily compare

the reconstructed SM regions with original SM regions, to validate the 2D spatial continuity of

the proposed SGD-SM products. Detailed original and reconstructed spatial information of four

simulated patches in 2015.7.25 are displayed in Fig. 10.

Original

Reconstructed

Patch 1 Patch 2 Patch 3 Patch 4

Fig. 10. Detailed original/reconstructed spatial information of four simulated patches in 2015.7.25
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Q3.15: Figure 12, no black circles.

Response: Thanks for this issue. We have appended the black circles in Fig. 12(b) and (c), as

shown below:

(c) Original

(d) Time-series averaging (e) Proposed

Figure 12. Original/time-series averaging/proposed global soil moisture results in 2016.9.10

Q3.16: Please describe uncertainties in this generated SGD-SM product.

Response: Thanks for this significant comment. The uncertainties in this generated SGD-SM

product can be classified as three types: 1) The errors of original AMSR2 SM product; 2)

The meteorological factors such as precipitation and snowfall; 3) The generalization of proposed

reconstructing model. Detailed descriptions of these three uncertainties are listed as follows:
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1) The errors of original AMSR2 SM product: The proposed SGD-SM product is generated

based on original AMSR2 SM product. While this original AMSR2 SM product also exists errors,

due to the satellite sensor imaging and SM retrieval algorithm. As shown in Table 1, the R, RMSE,

and MAE evaluation indexes of the original AMSR2 SM product are 0.687, 0.095, and 0.078,

respectively. These errors are also inevitably transmitted into the generated SGD-SM product.

2) The meteorological factors: SGD-SM relies on the temporal continuity and spatial consis-

tency for daily SM gap-filling. Nevertheless, if the unusual meteorologic occurs in single day such

as precipitation and snowfall, it may destroy above assumption and influence the reconstructing

effects. This uncertainty can be noticed in time-series validation, especially for rainy season.

3) The generalization of proposed reconstructing model: In this work, we train the proposed

network through selecting complete soil moisture patches. In addition, the simulated masks are

also chosen from the daily soil moisture products. However, it still exists the differences between

the training data and testing data, such as land covering type, mask size, and so on. This uncertainty

may disturb the generalization of proposed reconstructing model, to some degree.

Table 1. Comparisons between original and reconstructed soil moisture products

Soil Moisture Productions
Evaluation index

R RMSE MAE

Original 0.687 0.095 0.078

Reconstructed 0.683 0.099 0.081

Minor comments:

Q3.17: Please follow the “ESSD Manuscript composition (https://www.earth-system-science-

data.net/submission.html/#manuscriptcomposition)” to make all related, e.g., Data availability

as a separate section and use Sect accord with regulations.
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Response: Thanks for these suggestions. According to the manuscript composition, we have made

all related parts (such as data availability, code availability, and author contributions) as the separate

sections. The abbreviation ‘Sect.’ is also employed in our revised manuscript.

Q3.18: Use ‘besides’ too many times in a scientific paper.

Response: Thanks for this issue. We have rewritten the whole manuscript and removed most

worthless ‘besides’ words.

Q3.19: In line 20, I do not think ESA CCI is a sensor. Please revise.

Response: Many thanks for pointing out this mistake! We have corrected this sentence and deleted

‘ESA CCI is a sensor’ in the revised version.

Q3.20: ‘Products’ not ‘Production’

Response: Thanks for this comment. We have replaced all the ‘productions’ with ‘products’ in our

revised manuscript.
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General comments:

The authors present a method and dataset to fill daily AMSR2 soil moisture product gaps

with a CNN for the years 2013-2019. The abstract jumps quickly into the topic, but is somehow

ambiguous by not being clear to which current soil moisture products (“. . . the acquired daily

soil moisture productions”) the introduction relates? It would be good to explicitly state that it

relates to the AMSR2 products (not productions) . . . this lack of language clarity (e.g. “reliable

cooperativity. . . ” etc.) traces through the whole manuscript and needs to be strictly revised

before considering acceptance. Otherwise, it is really hard for the reader to understand, and

thus, to estimate the usefulness of this dataset. I think there is a lot of potential in this paper and

dataset (even if “only” 6 years length). However, many technical aspects make it hard to grasp

the content and estimate the quality in the first place. A few other comments as follows.

Response: We are particularly grateful to the referee’s careful reading and detailed suggestions!

“the acquired daily soil moisture productions” has been corrected as “the acquired daily

AMSR2 soil moisture products” in the abstract part.

For the language clarity, we have revised the whole manuscript sentence by sentence in the

updated version. According to the comments, we have tried our best to improve the previous

manuscript. An item-by-item response to each constructive comment follows.

Major comments:

Q4.1: Still the abstract creates more questions than answers. The evaluation measures are

difficult to interpret. Why stating 2 evaluation measures, with one for original data? Also the

choice of units (m3/m3) is not immediately clear as the dataset only produces percent values for

soil moisture?
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Response: Thanks for these comments. For in-situ validation (2 evaluation measures), we compare

the reconstructed with original AMSR2 daily soil moisture products as ‘A (B)’. ‘B’ refers to

the evaluation index of orginal products. ‘A’ stands for the evaluation index of reconstructed

products after gap-filling. Compared with ‘A’ and ‘B’, the difference is that the reconstrcting

values of gap regions need also to be evaluated in ‘A’, while ‘B’ needn’t. Overall, the accuracy of

reconstructed AMSR2 daily soil moisture products is generally accorded with the original products.

The differences of these indexes R: 0.683 (0.687), RMSE: 0.099 (0.095), and MAE: 0.081 (0.078)

are minor between the reconstructed and original soil moisture products. In other words, this

validation ensures the reliability and availability of the proposed seamless global daily AMSR2

soil moisture products.

For the units of AMSR2 soil moisture products, we have corrected the “m3/m3” value as the

percent value in the whole manuscript.

Q4.2: The introduction is not clearly introducing the AMSR2 original dataset. I think it would

be of great value if at least basic technical cornerstone of the original dataset is described.

Response: Thanks for this meaningful suggestion. We have described the basic technical corner-

stone of the original AMSR2 soil moisture products in sect 2.1 as follow:

“In this work, we focus on dealing with AMSR2 soil moisture products. This sensor was

onboard on the Global Change Observation Mission 1-Water (GCOM-W1) satellite, launched

in May 2012 (Kim et al., 2015). The released datasets include three passive microwave band

frequencies: 6.9 GHz (C1 band), 7.3 GHz (C2 band, new frequency compared with AMSR-E),

and 10.7 GHz (X band). It can observe the global land two times within a day (Wu et al., 2016):

ascending (day-time) and descending (night-time) orbits. The primary spatial resolution of this

datasets denotes 0.25◦ global grids. And the AMSR2 soil moisture retrieval algorithms include
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Land Parameter Retrieval Model (LPRM) and Japan Aerospace Exploration Agency (JAXA) (Du

et al., 2017; Kim et al., 2018). Besides, the uncertainty of soil moisture for each band were also

given in AMSR2 products.

In our study, we choose LPRMAMSR2 descending level 3 (L3) global daily 0.25◦ soil moisture

products as research data. This dataset could be obtained at https://hydro1.gesdisc.eosdis.nasa.gov/.

For instance, the original AMSR2 0.25◦ soil moisture data obtained in April 2, 2019 is displayed

in Fig. 1. Due to the satellite orbit coverage and the limitations of soil moisture retrieving algo-

rithms in tundra areas (Muzalevskiy et al., 2020), the acquired AMSR2 daily soil moisture products

are always incomplete in global land (about 30%∼80% invalid ratio, excluding Antarctica and

most of Greenland), as shown in Fig. 1. The daily global land coverage ratio of AMSR2 soil

moisture data in 2019 is listed in Fig. 2. Distinctly, the global land coverage ratio is low in

wintertime, and high in summertime. The mean global coverage ratio of 2019 is just about 56.5%

in AMSR2 soil moisture daily products. Apparently, these incomplete soil moisture data cannot

be directly applied for subsequent spatial and time-series analysis, as mentioned in previous Sect 1.”

Q4.3: Stating that the codes are also published is misleading so far. “The related Python codes

of this dataset are also available at https://github.com/qzhang95/SGD-SM.” (authors) only holds

an example code of extracting data. I think it would be really helping the transparency of the data

quality if the physical network implementation (TensorFlow, Keras, SKLearn, Pytorch?) would

be also open in the spirit of open data and open source and reproducibility. Understandably, a

trained neural network model is not 100% reproducible, but the model could be also archived on

Zenodo? It only makes sense, because it would be very feasible to update the dataset on a yearly

basis with the developed model. In the end the idea of ESSD is “living data”.

Response: Thanks for this issue. We have revised the sentence “The related Python codes of
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this dataset are also available at https://github.com/qzhang95/SGD-SM.” as “An example Python

code of extracting this dataset are also available at https://github.com/qzhang95/SGD-SM.” The

training and testing procedure of the proposed model are implemented by Pytorch platform. The

implemented code of this work will be released on Zenodo after possible acceptance, to flexibly

update the dataset on a yearly basis with the developed model. We couldn’t agree more with the

referee’s opinion that the idea of ESSD is “living data”. This can also facilitate the development

and utilization of soil moisture products.

Q4.4: The year 2013 folder only contains 362 files, not 365. May 2013 only seems to have 28

files? Please check your upload on Zenodo.

Response: Many thanks for your careful checking of the released dataset! The reason is that the

NASA’s official LPRM AMSR2 L3 soil moisture products indeed only have 28 daily files in May

2013 (missing data files in date May 11, 12, and 13). Referee can also verify this issue at NASA’s

GES DISC website at: https://hydro1.gesdisc.eosdis.nasa.gov/data/WAOB/LPRM_AMSR

2_D_SOILM3.001/2013/05/. We have supplemented this explanation in the updated products

(https://doi.org/10.5281/zenodo.4417458).

Q4.5: (Zhang et al., 2020) This citation is not in the references list, there are only Zhang 2020a

and 2020b. Please add, presumably it is your data citation: DOI: 10.5281/zenodo.3960425

Response: Thanks for this comment. We have added this citation into the reference of this work:

Zhang, Q., Yuan, Q., Li, J., Wang, Y., Sun, F., Zhang, L. (2021). SGD-SM: Generating Seamless

Global Daily AMSR2 Soil Moisture Long-term Products (2013-2019) (Version 1.0) [Data set].

Zenodo. DOI: 10.5281/zenodo.4417458.
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Q4.6: “More details of this work are released at https://qzhang95.github.io/Projects/Global-

Daily-Seamless-AMSR2/...” your current paper should reflect the most important and up to date

source of information until it is published. It would be ok though to refer to it as a “technical

supplement” maybe? However, those URLs are not reliable. Thus, if you have a technical

supplement with more details, it could be added to your Zenodo archive (which will be reliable

and has a DOI).

Response: Thanks for this comment. We have deleted this URL in the revised manuscript, to

avoid misunderstanding this work. Some technical explanations with more details have been sup-

plemented in our Zenodo archive (DOI: 10.5281/zenodo.4417458).

Q4.7: Section 3.1 starting on page 7 is the methodological main part of your neural network

implementation. While I’d like to acknowledge that technical level of description, I have two

contradicting issues with it:

1) p7 ll137-139: “This network includes 11 layers (3D partial CNNunit and ReLU (Rectified

Linear Unit)) in Fig. 4. The size of 3D filters is all set as 3×3×3. Number of feature maps before

ten layers is fixed as 90, and the channel of feature map in the final layer is exported as 1”.

That is very technical, yet it is not clear why those dimensions where chosen. The discussion

section does not discuss the CNN and the design choices at all and what effect they have. For

example, how can this capture the comparatively big gap areas of the original AMSR2 dataset?

2) On the other hand, much of this could also go into a technical supplement and you

could provide a much higher-level overview for the reader in the paper. The paper is the

data description, and many readers and future users of the dataset will not have the technical

understanding of judging or even reading through the technical low-level design of the CNN –

nevertheless this still also needs to be documented.
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Response: Thanks for these meaningful issues. We have added a technical supplement of the

network implementation. Detailed effects of 3D filters, layers, and feature maps in the proposed

model are depicted below:

1) 3D CNN filters: 3D CNN filters are employed to simultaneously capture both spatial and

temporal soil moisture information in time-series products. For large gap areas, partial CNN is

developed to exclude the invalid AMSR2 soil moisture information.

2) Layers: More layers in deep neural network can extract more intrinsic feature information

for soil moisture products gap-filling.

3) Feature maps: Feature maps get the description of the original soil moisture products from

multiple angles, through different 3D CNN filters.

For clearly understanding the parameters chosen in the proposed network such as 3D CNN

filters, layer numbers, and feature maps, we have supplemented the sensitivity analysis of these

parameters in discussion part. As listed in Table 4, Table 5, and Table 6, discussions for the 3DCNN

filters, layer numbers, and feature maps are investigated in simulated missing regions validation,

respectively. Accordingly, the optimal indexes are chosen as the setting value.

Table 4. Discussion for the 3D CNN filters in simulated missing regions validation

Parameter
Evaluation index

R RMSE MAE

3×3×3 0.968 0.068 0.047
5×5×5 0.957 0.076 0.048

7×7×7 0.949 0.081 0.050

Table 5. Discussion for the layer numbers in simulated missing regions validation

Parameter
Evaluation index

R RMSE MAE

10 0.962 0.072 0.048

11 0.968 0.068 0.047
12 0.966 0.070 0.049
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Table 6. Discussion for the feature maps in simulated missing regions validation

Parameter
Evaluation index

R RMSE MAE

60 0.963 0.071 0.048

90 0.968 0.068 0.047
120 0.967 0.069 0.047

Q4.8: Also, why not an LSTM type network?

Response: Thanks for this interesting query. LSTM type network indeed plays an important role

for time-series data. In fact, the spatial and temporal information are both significant on spatial

consistency between the valid and invalid soil moisture regions, and temporal continuity in time-

series curve. Therefore, we develop the spatio-temporal convolutional network in this study, to

simultaneously utilize the spatial and temporal soil moisture information. Through this 3-D strat-

egy, we can both exploit the spatial consistency and temporal continuity for soil moisture products

gap-filling. In our future work, we will combine the LSTM network with 3-D partial convolutional

network, to futher ullize the spatio-temporal soil moisture information.

Q4.9: Calling it spatio-temporal 3D might be misleading, as it is areal 2D and then a temporal

dimension. Spatio-temporal indicates that already, the added 3D might lead to think of spatial

3D plus time.

Response: Thanks for this comment. To avoid misleading, we have corrected “spatio-temporal

3D” as “spatio-temporal” in the whole manuscript.
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Q4.10: What was the reason to choose the 0.25 dec degrees as spacing for the data files?

Response: Thanks for this query. The spatial resolution of the original global daily AMSR2 soil

moisture products is 0.25 dec degrees. To avoid introducing additional error and uncertainty, we

didn’t carry out the downscaling operation of the generated SGD-SM products. We have supple-

mented this explanation in the revised manuscript.

Q4.11: Last but not least, I’d like to advocate for a bit more metadata in the netcdf files, because

netcdf provides great means for metadata. For example, you could adhere a bit more to the

NetCDF-CF conventions, or at least add e.g. attributes such as title, reference and a time stamp

in the dataset, not relying on the filename for example. You could also join at least the yearly slices

into a “cube” that follows conventions of the Earth Sciences community (e.g. longitude instead

of lon as variable name). Also the Zenodo deposit could have more fields filled out for improved

discovery, more keywords (e.g. “soilmoisture”?) and terms from controlled vocabularies, such as

GEMET (https://www.eea.europa.eu/help/glossary/gemet-environmental-thesaurus ) or similar.

Response: We are very grateful for referee’s detailed guidance on our released dataset! We

have regenerated the SGD-SM products and updated them on Zenodo flatform (DOI: 10.5281/zen-

odo.4417458). The title, reference, and time stamp have been added into the metadata in daily

NetCDF files, as shown in the following table. In addition, we have also replaced the abbreviation

variables “lon” and “lat” with the full names “longitude” and “latitude” in all the NetCDF files.

More keywords like soil moisture, AMSR2, seamless, global, daily, and SGD-SM have been

supplemented in Zenodo flatform (https://doi.org/10.5281/zenodo.4417458), for better improving

the utilization of our products in Figure A.
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netcdf file: D:/SGD -SM /2019/ LPRM_AMSR 2_20190101. nc

{

float Latitude(Latitude =720);

:units = "degree_north";

float Longitude(Longitude =1440);

:units = "degree_east";

global attributes:

:reference = "SGD -SM: Generating Seamless Global Daily AMSR2

Soil Moisture Long -term Products (2013 -2019) ";

:url = "https ://doi.org /10.5281/ zenodo .3960425";

:time_stamp = "2021 -01 -04 20:32:22";

:author = "Processed by Qiang Zhang , Wuhan University ";

:date = "20190101";

:source = "netCDF4 python module tutorial ";

}

Figure. A. Updated keywords in Zenodo flatform (DOI: 10.5281/zenodo.4417458).
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Generating Seamless Global Daily AMSR2 Soil Moisture (SGD-SM)
Long-term Products 2013-2019
Qiang Zhang1, Qiangqiang Yuan2, 3 *, Jie Li2, Yuan Wang2, Fujun Sun4, and Liangpei Zhang1 *

1State Key Laboratory of Information Engineering, Survey Mapping and Remote Sensing, Wuhan University, China
2School of Geodesy and Geomatics, Wuhan University, China
3Key Laboratory of Geospace Environment and Geodesy, Ministry of Education, Wuhan University, China
4Beijing Electro-mechanical Engineering Institute, Beijing, China

Correspondence: Qiangqiang Yuan (yqiang86@gmail.com) and Liangpei Zhang (zlp62@whu.edu.cn)

Abstract. High quality and long-term soil moisture products are significant for hydrologic monitoring and agricultural man-

agement. However, the acquired daily Advanced Microwave Scanning Radiometer 2 (AMSR2) soil moisture products are

incomplete in global land (just about 30%∼80% coverage ratio), due to the satellite orbit coverage and the limitations of

soil moisture retrieving algorithms. To solve this inevitable problem, we develop a novel spatio-temporal partial convolutional

neural network (CNN) for AMSR2 soil moisture products gap-filling. Through the proposed framework, we generate the seam-5

less global daily (SGD) AMSR2 soil moisture long-term products from 2013 to 2019. To further validate the effectiveness of

these products, three verification ways are used as follows: 1) In-situ validation; 2) Time-series validation; And 3) simulated

missing regions validation. Results show that the seamless global daily soil moisture products have reliable cooperativity with

the selected in-situ values. The evaluation indexes of the reconstructed (original) dataset are correlation coefficient (R): 0.683

(0.687), Root Mean Squard Error (RMSE): 0.099 (0.095), and Mean Absolute Error (MAE): 0.081 (0.078), respectively. The10

temporal consistency of the reconstructed daily soil moisture products is ensured with the original time-series distribution of

valid values. The spatial continuity of the reconstructed regions accords with the spatial information (R: 0.963∼0.974, RMSE:

0.065∼0.073, and MAE: 0.044∼0.052). This dataset can be downloaded at https://doi.org/10.5281/zenodo.4417458 (Zhang

et al., 2021).

1 Introduction15

Surface soil moisture is a crucial Earth land characteristic in describing hydrologic cycle system (Wigneron et al., 2003;

Lievens et al., 2015). It can be applied for monitoring droughts and floods in agriculture (Samaniego et al., 2018) and geologic

hazards (Long et al., 2014). To obtain the global and high-frequency soil moisture products, many active or passive satellite

sensors have been launched such as Advanced Microwave Scanning Radiometer for EOS (AMSR-E), Advanced Microwave

Scanning Radiometer 2 (AMSR2), Soil Moisture Active and Passive (SMAP), Soil Moisture and Ocean Salinity (SMOS) and20

so on (McColl et al., 2017; Ma et al., 2019). Nevertheless, the acquired daily soil moisture products are always incomplete

in global land (about 30%∼80% missing ratio in AMSR2), because of the satellite orbit coverage and the limitations of soil

moisture retrieving algorithms (Cho et al., 2017; Long et al., 2019). The invalid land regions refer to the gap or information

1
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missing area. Especially in the regions close to the equator, or in the permafrost region, the soil moisture data missing degree

is more serious (Zeng et al., 2015; Santi et al., 2018). This phenomenon greatly disturbs subsequent soil moisture applications,25

especially for the consecutive daily temporal analysis and global spatial-distribution comparisons (Colliander et al., 2017; Liu

et al, 2019).

To reduce this negative effect, most existing works employed the strategy of multi-temporal soil moisture data selecting,

multi-temporal soil moisture data averaging, or multi-temporal soil moisture data synthesizing. Detailed descriptions and anal-

yses of these three strategies (Bitar et al., 2017) are presented as follows:30

1) Multi-temporal soil moisture data selecting: Criterion of this strategy denotes to selecting the highest coverage regions

in single date from multi-temporal soil moisture products (Wang and Qu, 2009). However, this assumption can only deal with

local regions, and not applicable for global regions. The main reason is that almost all the global daily soil moisture products

suffer from the defect of satellite orbit coverage missing and retrieving algorithm failure. Multi-temporal soil moisture data

selecting strategy greatly reduces the data utilization, and is not qualified for dense time-series analysis on daily temporal35

resolution (Liu et al., 2020; Purdy et al., 2018).

2) Multi-temporal soil moisture data averaging: This strategy is commonly used for most soil moisture study or appli-

cations. The incomplete soil moisture products are overall averaged as the monthly/quarterly/yearly results to generate the

complete products (Jalilvand et al., 2019). For most applications and spatial analysis, this operation can effectively improve the

spatial soil moisture coverage (Zhao et al., 2020). However, it distinctly sacrifices the high-frequency temporal resolution as40

low-frequency temporal resolution, which also severely reduces the data utilization. In addition, it ignores the unique spatial-

distribution of single day and loses the dense time-series changing information. In other word, the monthly/quarterly/yearly

soil moisture data averaging operations damage the initial information on both spatial and temporal dimension.

3) Multi-temporal soil moisture data synthesizing: Different from soil moisture data selecting and averaging, this strategy

employs the time-series daily soil moisture data and selects the valid observed value from corresponding time-series pixels.45

This strategy can produce synthesizing result through valid single-point, while it ignores the spatial local correlation and exists

incontinuous and inconsistent effects in local regions. In addition, it also sacrifices high temporal resolution just as multi-

temporal data averaging strategy (Peng et al., 2017; Sun et al., 2020).

To overcome above-mentioned limitations, some missing values reconstruction methods have been developed especially

on multi-temporal images thick cloud removal and deadline gap-filling (Zhang et al., 2020a). For example, Zhu et al. (2011)50

proposed the multi-temporal neighboring homologous value padding method for thick cloud removal. Chen et al. (2011)

presented an effective interpolating algorithm for recovering the invalid regions in Landsat images. Zhang et al. (2018a) built

an integrative spatio-temporal-spectral network for missing data reconstruction in multiple tasks.

In terms of the soil moisture products gap-filling, several methods have also been proposed to address this issue. Wang et al.

(2012) presented a penalized least square regression-based approach for global satellite soil moisture gap filling observation.55

Fang et al. (2017) introduced a long short-term memory network to generate spatial complete overlay SMAP in U.S. Long et

al. (2019) fused multi-resolution soil moisture products, which can produce daily fine-resolution data in local regions. Llamas
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et al. (2020) used geostatistical techniques and multiple regression strategy to get spatial complete results of satellite-derived

products. Overall, there are few works for soil moisture productions reconstructing on global and daily scale.

In spatial dimension, the invalid land areas and adjacent valid land areas exist the spatial consistency and spatial correlation60

on daily soil moisture products (Long et al., 2020). In temporal dimension, daily time-series changing curve of the same point

natively appears with the continuous and smooth peculiarities (Chan et al., 2018). Overall, these methods can effectively fill

the gaps of soil moisture products. However, these methods cannot simultaneously take both spatial and temporal information

into consideration. In addition, the daily soil moisture products in global scale have not been exploited up to now.

Therefore, how about simultaneously extracting both spatial and temporal features for seamless global daily soil moisture65

products gap-filling? Recently, deep learning has gradually revealed the potential for remote sensing products processing

(Chen et al., 2021). In consideration of the powerful feature expression ability via deep learning, can we utilize spatio-temporal

information to generate long-term soil moisture products?

From these perspectives, a novel spatio-temporal deep learning framework is proposed for global daily AMSR2 soil moisture

products gap-filling. By means of the proposed method, we can effectively break through the above-mentioned limitations. And70

finally, this work generates the seamless global daily AMSR2 soil moisture long-term products from 2013 to 2019. The main

innovations are summarized as below:

1) We develop a deep 3D partial reconstruing model, which can take both the spatial and temporal information into consid-

eration. Aiming at the invalid or coastline region boundary, the 3D partial CNN and global-local loss function are presented

for better extracting the valid region features and ignoring the invalid regions through both soil moisture data and mask infor-75

mation.

2) A seamless global daily (SGD) AMSR2 soil moisture long-term (2013-2019) dataset is generated through the proposed

model. The dataset includes the original and reconstructing soil moisture data. And this SGD products could be directly

downloaded at https://doi.org/10.5281/zenodo.4417458 (Zhang et al., 2021).

3) Three verification strategies are employed to testify the precision of our SGD soil moisture dataset as follows: in-situ80

validation; time-series validation; and simulated missing regions validation. Evaluating indexes demonstrate that the seamless

global daily AMSR2 soil moisture dataset shows high accuracy, reliability, and robustness.

The schema of this work is listed below. Sect 2 describes the study ASMR2 soil moisture products and in-situ soil moisture

network data. Sect 3 presents the methodology for generating the seamless global daily AMSR2 soil moisture products. Sect

4 gives the experimental results and related validation results. The comparisons between time-series averaging method and85

proposed method are discussed in Sect 5. And at last, Sect 6 makes the conclusions of this study.

2 Data description

2.1 AMSR2 soil moisture products

In consideration of the global coverage, temporal-resolution, and current availability, we select AMSR2 soil moisture prod-

ucts as the focused object. This sensor was onboard on the Global Change Observation Mission 1-Water (GCOM-W1) satellite,90
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launched in May 2012 (Kim et al., 2015). The released datasets include three passive microwave band frequencies: 6.9 GHz

(C1 band), 7.3 GHz (C2 band, new frequency compared with AMSR-E), and 10.7 GHz (X band). It can observe the global

land two times within a day (Wu et al., 2016): ascending (day-time) and descending (night-time, about 0:00-1:00 AM of the

local time) orbits. The primary spatial resolution of this datasets denotes 0.25◦ global grids. And the AMSR2 soil moisture

retrieval algorithms include Land Parameter Retrieval Model (LPRM) and Japan Aerospace Exploration Agency (JAXA) (Du95

et al., 2017; Kim et al., 2018). The error of soil moisture for each frequency were also given in AMSR2 products.

In our study, we choose LPRM AMSR2 descending level 3 (L3) global daily 0.25◦ soil moisture products as the study

data. To avoid introducing additional error and uncertainty, we didn’t carry out the downscaling operation of the generated

SGD-SM products. This dataset was obtained from https://hydro1.gesdisc.eosdis.nasa.gov/. For instance, the original AMSR2

0.25◦ soil moisture data in April 2, 2019 is displayed in Fig. 1(a). Due to the satellite orbit coverage and limitations of soil100

moisture retrieving algorithms in tundra areas (Muzalevskiy et al., 2020), the acquired AMSR2 daily soil moisture products

are always incomplete in global land (about 30%∼80% invalid ratio, excluding Antarctica and most of Greenland), as shown

in Fig. 1(a). The daily global land coverage ratio of AMSR2 soil moisture data in 2019 is listed in Fig. 2. Distinctly, the global

land coverage ratio is low in wintertime, and high in summertime. The mean global land coverage ratio in 2019 is just about

56.5% in AMSR2 soil moisture daily products. Apparently, these incomplete soil moisture data cannot be directly applied for105

subsequent spatial and time-series analysis, as mentioned in previous Sect 1.

(a) Original global AMSR2 0.25◦ soil moisture data in April 2, 2019 (b) The spatial distribution of the used in-situ sites.

Figure 1. AMSR2 soil moisture product and selected in-situ soil moisture sites

2.2 International Soil Moisture Network in-situ data

The International Soil Moisture Network (ISMN) was established from 2009 to now (Dorigo et al., 2011) providing the

correction/validation schemes for remote sensing satellite-based soil moisture retrieval. ISMN includes the globally distributed

in-situ soil moisture sites supported by the earth observation of the European Space Agency (ESA) and many voluntary con-110

tributions of researchers and organizations from all over the world (Dorigo et al., 2012; Dorigo et al., 2013).
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Figure 2. The daily global land coverage ratio of AMSR2 soil moisture products in 2019

The ISMN in-situ surface soil moisture values could be acquired through https://ismn.geo.tuwien.ac.at. In our experiments,

we selected a portion of in-situ soil moisture sites of ISMN as ground truth values (Zhang et al., 2017), to testify the precision

and credibility of the reconstructing datasets in Sect 4.2. The spatial distribution of the used in-situ sites is depicted in Fig.

1(b). It should be noted that the time range is restrained from 2013.1.1 to 2019.12.31. Then the daily soil moisture values are115

matched with the in-situ sites in the same location. Two neighboring in-situ hourly values are averaged as the ultimate result of

current date (Dong et al., 2020).

3 Methodology

The flowchart of the presented framework is depicted in Fig. 3. The overall structure could be divided as two stages: the

training procedure and testing procedure. Firstly, we designate the processing daily soil moisture data in date T, and simultane-120

ously select its adjacent time-series data before and after four days (date T-4 to T+4). The corresponding land masks of these

daily soil moisture data are generated through the invalid pixel marking.

In the training procedure, these spatio-temporal soil moisture data and land mask patch groups are imported as the training

data of the presented spatio-temporal 3-D reconstructing model through patch selecting and mask simulating. The convergence

condition denotes that the loss of the proposed model gradually decreases, and finally maintains smooth in training procedure125

through back-propagation (BP) in Fig. 3. Then in the testing procedure, seamless global daily reconstructing soil moisture

data is outputted through the convergent model. Subsequently, the next processing daily soil moisture data is designated and

repeat above-mentioned steps, until all the daily data are serially reconstructed in order. Details of the reconstructing model

and network are described below.
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Figure 3. Flowchart of the presented framework

3.1 Spatio-temporal 3-D reconstructing model130

The spatio-temporal soil moisture reconstructing model is displayed in Fig. 4. After assigning the original soil moisture

data in date T, time-series soil moisture data and corresponding masks in date T-4 to T+4 are simultaneously imported as the

3D-tensor inputs of the presented deep reconstructing model in Fig. 4. In spatial dimension, missing and non-missing areas

exist the spatial consistency in daily soil moisture data. In temporal dimension, the daily time-series changing curve of the

same point natively appears with the continuous and smooth peculiarities. Therefore, the 3D CNN is employed to process the135

spatio-temporal soil moisture data in this model. Through this way, we can jointly utilize both spatial and temporal information

of these time-series soil moisture products. Further, it can better richly exploit the deep spatio- temporal feature for data

reconstructing and model optimization. The structure and details are depicted in Fig. 4.

This network includes 11 layers (3D partial CNN unit and ReLU (Rectified Linear Unit)) in Fig. 4. The size of 3D filters is

all set as 3×3×3. Number of feature maps before ten layers is fixed as 90, and the channel of feature map in the final layer is140
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exported as 1. It should be noted that after finishing each partial 3D-CNN layer, we must update all the new masks for next

layer. The mask updating operation is defined in Sect 3.2. In terms of the model training and optimization, three steps: patch

selecting, mask simulating, and back propagation are performed in Sect 3.3. For network optimization, we take the global loss

and local loss into consideration. As described in Fig. 3, this deep reconstructing model need to be learned with large training

label samples, before the testing procedure for outputting global seamless daily soil moisture products. The global land mask145

and the mask in current date T are also employed for the global loss and local loss in Fig. 4. Descriptions of partial 3D-CNN

and model optimization are demonstrated in Sect 3.2 and Sect 3.3, respectively.
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Figure 4. Spatio-temporal soil moisture 3D reconstructing model

3.2 Partial convolutional neural network

Deep convolution neural network has been widely applied for nature image reconstructing (Liu et al., 2018a; Yeh et al., 2017;

Liu et al., 2019) and satellite imagery recovering (Yuan et al., 2019; Zhang et al., 2019; Zhang et al., 2020b). Nevertheless, it150

should be highlighted that the valid and invalid pixels simultaneously exist especially around the coast regions and gap regions

(Pathak et al., 2016). The common CNN ignores the location information of invalid or valid pixels in soil moisture data, which

cannot eliminate the invalid information (Liu et al., 2018b). Therefore, to solve this negative effect, we develop the partial

3D-CNN to ignore the invalid information in the proposed reconstructing model.

Before introducing the partial convolution, the operation of common convolution in most deep learning framework can be155

defined as below:

x= WTX+ b (1)
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where X denotes the inputted tensor data. W and b are the weight and bias parameters, respectively. Different from the common

convolution, the mask information M of the corresponding soil moisture data is introduced into the partial convolution:

x′ =

WT (X(w,h,t)�M(w,h,t))
‖1(w,h,t)‖1
‖M(w,h,t)‖1

+ b,
∥∥M(w,h,t)

∥∥
1
6= 0

0, otherwise
(2)160

where � stands for the pixel-wise multiplication. w, h, and t refer to the width, height, and temporal number of the input data,

respectively. 1 denotes the identical dimension tensor with mask M, whose elements are all value 1. Obviously, the partial

convolutional output x′ is only decided by the valid soil moisture pixels of input X, rather than the invalid soil moisture pixels.

Through the mask M, we can effectively exclude the interference information of invalid soil moisture pixels such as marine

regions and gap regions. Then the scaling divisor in Eq. (2) further adjusts for the variational number of valid soil moisture165

pixels.

After finishing each partial convolution layer, all the masks need to updated through the following rule: If the partial con-

volution can generate at least one valid value of the output result, then we mark this location as valid value in the new masks.

This updating operation is demonstrated as below:

m′(w,h,t) =

Land(w,h) · 1,
∥∥M(w,h,t)

∥∥
1
6= 0

0, otherwise
(3)170

where Land(w,h) is the global land mask in location (w,h) of the global soil moisture product. This global land mask covers

six continents and excludes Antarctica and most of Greenland.

3.3 Model training and optimization

As shown in Fig. 3, the training procedure needs to generate large numbers of training samples for learning the proposed

spatio-temporal 3-D reconstructing model in Fig. 4. Different from the testing procedure, the training procedure additionally175

contains the patch selecting, mask simulating, and back propagation (BP) steps. These three steps are significant for model

training and optimization. The purpose of patch selecting and mask simulating step in Fig. 3 is to establish the label (complete)-

data (incomplete) training samples in the deep learning framework. The significance of BP step in Fig. 3 is to optimize the

reconstructing network in Fig. 4 and acquire the loss convergence model for testing use.

In the patch selecting step, we traverse the global regions in date T to select the complete soil moisture patch label, whose180

local land regions are undamaged. It should be noted the rest incomplete patches in date T are excluded because they cannot

participate in the supervised learning. The corresponding time-series soil moisture patches of this selected patch between date

T-4 to T+4, is set as the spatio-temporal 3D data patch groups. And their corresponding masks between date T-4 to T+4 is set

as the spatio-temporal 3D mask patch groups. After traversing the original global daily AMSR2 soil moisture products from

2013 to 2019, we finally establish the spatio-temporal data and mask patch groups with the number of 276488 patches. The185

soil moisture patch size is fixed as 40×40 for patch selecting.
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In the mask simulating step, 10000 patch masks of the size 40×40 are chosen from the global AMSR2 soil moisture masks

from 2013 to 2019. The missing ratio range of these masks is set as [0.3, 0.7]. Then these patch masks are randomly selected

for label patches use within the spatio-temporal data and mask patch groups. The complete patch in date T (label) is simulated

as the incomplete patch (data) through the above mask. And the original corresponding mask of this patch needs also to be190

replaced. After traversing and building the label-data 3D spatio-temporal patch groups, this dataset is set as the training samples

for the usage of reconstructing network in Fig. 3.

In the back propagation step, we need a loss function to iteratively optimal the learning parameters of the deep reconstructing

network. This operation follows the chain rule in model optimizing. The Euclidean loss function is employed in most data

reconstruction or regression issues based on deep learning, such as satellite products downscaling (Fang et al., 2020) and195

retrieving (Lee et al., 2019). Nevertheless, Euclidean loss function only pays attention to the holistic information bias for

network optimization. It ignores the soil moisture particularity of the local areas, especially in local coastal, mountain, and

hinterland regions. However, this particularity is extremely significant for invalid regions gap-filling, because of the spatial

heterogeneity in soil moisture products. Therefore, to take both the global consistency and local soil moisture particularity into

consideration, the global land mask and current mask in date T are both employed after the final layer as shown in Fig. 3.200

Further, the reconstructing network presents the local and global 2-norm loss as below:

ζlocal = ‖(1−MT )� (SMrec−SMori)‖22 (4)

ζglobal = ‖MG� (SMrec−SMori)‖22 (5)

where MT stands for current mask patch in date T. MG represents the corresponding global land mask patch. SMrec and205

SMori denote the reconstructed soil moisture patch and original seamless soil moisture patch, respectively. The unified loss

function of the reconstructing network combines ζlocal and ζglobal as below:

ζ(Θ) = ζlocal + η · ζglobal (6)

where Θ refers to the learnable arguments for each layer of the deep reconstructing model. η denotes the balancing factor to

adjust the ζlocal and ζglobal. In this work, we fixed this factor as 0.1 during the training procedure.210

After building up this unified loss function, the presented reconstructing model employs Adam algorithm as the gradient

descent strategy. The number of batch size in this model is fixed as 128 for network training (Shi et al., 2020). The total epochs

and initial learning rate are determined as 300 and 0.001, respectively. Starting every 30 epochs, the learning rate is degraded

through decay coefficient 0.5 (Zhang et al., 2018b). The training and testing procedure of the proposed model are implemented

by Pytorch platform. The software environment is listed as follows: Python 3.7.4 language, Windows 10 operating system, and215
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PyCharm 2019 integrated development environment (IDE). The final soil moisture products are exported as hierarchical data

format, which both contains the original and reconstructed soil moisture data.

4 Experimental results and validation

In this section, we provide the experimental results and related validation results to testify the availability of the presented

framework. Through this framework, we finally generate the seamless global daily AMSR2 soil moisture long-term products220

from 2013.1.1 to 2019.12.31. The daily soil mositure products are saved as NetCDF4 format. It should be highlighted that this

dataset can be directly downloaded at https://doi.org/10.5281/zenodo.4417458 (Zhang et al., 2021) for free-use. An example

Python code of extracting this dataset are also available at https://github.com/qzhang95/SGD-SM.

We firstly give two sample seamless reconstructing results of global time-series soil moisture products. The original and

reconstructed results are both given for comparisons. Later, to further validate the effectiveness of these products, three verifi-225

cation ways are respectively employed as follows:

1) In-situ validation.

2) Time-series validation.

3) Simulated missing regions validation.

In-situ validation is utilized to compare the reconstructed soil moisture with original AMSR2 soil moisture through the230

selected in situ sites from the spatial prospect. In-situ shallow-depth soil moisture sites can be employed as the ground-truth

to validate the reconstructing satellite soil moisture products. Time-series validation is employed for evaluating the time-series

continuity from the temporal prospect. Soil moisture time-series scatters can obviously reveal the annual periodic variations

for time-series validation. Simulated missing regions validation is used to testify the soil moisture consistency from the spatial

prospect. It can verify the spatial consistency between the valid and invalid soil moisture regions.235

4.1 Experimental results

As displayed in Fig. 5 (a)-(h) and Fig. 6 (a)-(h), original and reconstructing global daily time-series AMSR2 soil moisture

products between 2019.6.1 to 6.4 and 2016.10.1 to 10.4 are given as the sample results, respectively. The left column lists

the original incomplete soil moisture results, and the right column lists the corresponding complete soil moisture results after

reconstructed by the proposed method in 2019.6.1 to 6.4 and 2016.10.1 to 10.4. We ignore the coverage of Antarctica and most240

of Greenland, because the satellite soil moisture data within these regions behaves perennially missing.

From the spatial dimension, the reconstructing global soil moisture products are consistent between invalid regions and their

adjacent valid regions in Fig. 5 and Fig. 6. Especially around the high-value areas and low-value areas, the spatial information

consecutive without obvious reconstructing boundary effects such as in Africa, Australia, and Europe in Fig. 5 and Fig. 6.

From the temporal dimension, although the incomplete time-series daily results are highly similar and correlative, there245

are still some variations and differences between each other. The proposed method performs well on consistent temporal

information preserving and specific temporal information predicting in Fig. 5 and Fig. 6.
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(a) Original SM in 2019.6.1 (b) Reconstructing SM in 2019.6.1

(c) Original SM in 2019.6.2 (d) Reconstructing SM in 2019.6.2

(e) Original SM in 2019.6.3 (f) Reconstructing SM in 2019.6.3

(g) Original SM in 2019.6.4 (h) Reconstructing SM in 2019.6.4

Figure 5. Original/reconstructing global daily SM results between 2019.6.1 to 6.4

11



(a) Original SM in 2016.10.1 (b) Reconstructing SM in 2016.10.1

(c) Original SM in 2016.10.2 (d) Reconstructing SM in 2016.10.2

(e) Original SM in 2016.10.3 (f) Reconstructing SM in 2016.10.3

(g) Original SM in 2016.10.4 (h) Reconstructing SM in 2016.10.4

Figure 6. Original/reconstructing global daily SM results between 2016.10.1 to 10.4
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4.2 In-situ validation

In-situ shallow-depth soil moisture sites can be employed as the ground-truth to validate the reconstructing satellite soil

moisture products. We select 125 soil moisture stations (0-10cm) through ISMN between 2013.1.1 to 2019.12.31. Nine soil250

moisture in-situ sites and the corresponding reconstructing data within invalid regions are then contrast as the scatter plots in

Fig. 7 (a)-(i), respectively. The horizontal axis stands for in-situ soil moisture value. Meanwhile the vertical axis represents

reconstructing soil moisture value. It should be highlighted that due to the lacks of part recorded data between 2013 to 2019,

most in-situ values are incompleteness with different point numbers. As shown in Fig. 7 (a)-(i), the correlation coefficients (R)

indexes are distributed between 0.679 to 0.754. The root-mean-square error (RMSE) and mean absolute error (MAE) indexes255

are distributed from 0.026 to 0.134 and from 0.021 to 0.107, respectively.
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(b) COSMOS-055
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(c) COSMOS-098
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(d) COSMOS-044
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(e) COSMOS-033
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(f) COSMOS-076
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(g) COSMOS-087
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(h) COSMOS-048

In-situ SM value (percent)

0 20 40 60 80 100

R
e

c
o

n
s
tr

u
c
te

d
 S

M
 v

a
lu

e
 (

p
e

rc
e

n
t)

0

20

40

60

80

100
R=0.691

RMSE=0.079 m3/m3

MAE=0.063 m3/m3
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Figure 7. Scatters of the in-situ/reconstructed soil moisture values within selected stations

13



In additions, we compare the reconstructed with original AMSR2 soil moisture products through the selected 125 in-situ

sites, as listed in Table 1. The averaged R, RMSE, and MAE of the original and reconstructed soil moisture products are

0.683 (0.687), 0.099 (0.095), and 0.081 (0.078), respectively. Overall, the accuracy of reconstructed soil moisture products

is generally accorded with the original products. The differences of these indexes R, RMSE and MAE are minor between the260

original and reconstructed soil moisture results in Table 1. To some degree, this validation ensures the reliability and availability

of the proposed seamless global daily AMSR2 soil moisture products.

Table 1. Comparisons between original and reconstructed soil moisture products

Soil Moisture products
Evaluation index

R RMSE MAE

Original 0.687 0.095 0.078

Reconstructed 0.683 0.099 0.081

4.3 Time-series validation

To further validate the reconstructed soil moisture results, time-series variations of both original and reconstructed re-

sults are stacked in six points around the six continents: Africa (0.375◦N, 36.875◦E), Europe (49.375◦N, 35.125◦E), Asia265

(38.125◦N, 117.375◦E), North America (39.875◦N, 106.125◦W), South America (15.125◦S, 52.625◦W), Australia (30.125◦S,

150.375◦E), respectively. As described in Fig. 8(a)-(f), the horizontal axis stands for daily time-series date between Jan 1 2013

to Dec 31 2019. The vertical axis represents the soil moisture value. The blue points refer to the original valid soil moisture

daily results, and the red forks stands for the reconstructed invalid soil moisture daily results in Fig. 8.

As depicted in Fig. 8(a)-(f), most of the soil moisture time-series scatters can obviously reveal the annual periodic variations.270

The reconstructed soil moisture results generally behave fine temporal consistency with the original soil moisture results in

different areas. Related low soil moisture values mostly existed in the droughty season of winter with the frozen lands such as

in Fig. 8(d). Related high soil moisture values mainly generated in the moist season of summer with more rainy days, especially

in Fig. 8 (b), (d) and (f).

Overall, compared with the whole original variation tendency between 2013 to 2019, the generated seamless global daily275

AMSR2 soil moisture long-term products can steadily reflect the temporal consistency and variation. It is significant for time-

series applications and analysis. This daily time-series validation also demonstrates the robustness of the presented method and

the availability of the established seamless global daily products.
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(b) Time-series results in Europe (49.375◦N, 35.125◦E)
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(c) Time-series results in Asia (38.125◦N, 117.375◦E)
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(d) Time-series results in North America (39.875◦N, 106.125◦W)
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(e) Time-series results in South America (15.125◦S, 52.625◦W)
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(f) Time-series results in Australia (30.125◦S, 150.375◦E)

Figure 8. Original/reconstructed time-series results in selected regions
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4.4 Simulated missing regions validation

In addition to the time-series consistency in Sect 4.3, the spatial continuity is also important for the reconstructed seamless280

soil moisture products. Therefore, to further testify this key point, we carry out the simulated missing regions validation in this

subsection. Based on the original soil moisture products, six simulated square missing regions are performed in six continents,

respectively. Through thisway,we can easily compare the reconstructed SM regions with original SM regions, to validate

the 2D spatial continuity of the proposed SGD-SM products. We select four dates of the long-term soil moisture products:

2013.7.25, 2015.7.25, 2017.7.25, and 2019.7.25 as the simulated objects. For example, original and reconstructed results with285

simulated missing regions in 2019.7.25 are depicted in Fig. 9(a) and (b), respectively. The simulated missing regions can be

clearly observed in Fig. 9(a) around the six continents. Detailed original and reconstructed spatial information of four simulated

patches in 2015.7.25 are displayed in Fig. 10. Table 2 gives the evaluation index (R, RMSE, MAE) of the simulated patches

between 2013 to 2019. Then the original-reconstructed scatters of simulated regions in 2013, 2015, 2017, and 2019.7.25 are

listed in Fig. 11(a)-(b), respectively.290

As shown in Fig. 9 (a) and (b), the reconstructed invalid regions are consecutive between the original valid regions. And

in the simulated missing regions, the spatial texture information is also continuous without obvious boundary reconstructing

effects in Fig. 9(b). To better distinguish the spatial details of reconstructed soil moisture, we select four enlarged patches in

simulated regions in Fig. 10. It can be clearly observed that the reconstructed patches perform the high consistency with the

original patches, as displayed in Fig. 10.295

In addition, the reconstructed soil moisture patches in simulated missing regions behave high reconstructing accuracy, whose

R values are distributed between 0.963 to 0.974 in Table 2 and Fig. 11(a)-(d). RMSE and MAE values also perform well on

0.065 to 0.073 m3/m3 and 0.044 to 0.052 m3/m3 in Table 2 and Fig. 11(a)-(d), respectively. Overall, this simulated missing

regions validation manifests the reconstructing ability of spatial information continuity.

Table 2. Evaluation indexes of the simulated patches between 2013 to 2019

Year
Evaluation index

R RMSE MAE

2013 0.974 0.065 0.044

2014 0.963 0.073 0.052

2015 0.968 0.069 0.050

2016 0.972 0.067 0.046

2017 0.966 0.070 0.049

2018 0.970 0.065 0.046

2019 0.969 0.069 0.048

Average 0.968 0.068 0.471
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(a) Original soil moisture result with simulated missing regions (square regions)

(b) Reconstructed soil moisture result

Figure 9. Original and reconstructed results with simulated missing regions in 2019.7.25
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Original

Reconstructed

Patch 1 Patch 2 Patch 3 Patch 4

Figure 10. Detailed original/reconstructed spatial information of four simulated patches in 2015.7.25
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(a) Scatter of simulated regions in 2013.7.25
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(b) Scatter of simulated regions in 2015.7.25
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(c) Scatter of simulated regions in 2017.7.25
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(d) Scatter of simulated regions in 2019.7.25

Figure 11. Original-reconstructed scatter of simulated regions in 2013, 2015, 2017, and 2019.7.25
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5 Discussion300

5.1 Comparisons with time-series averaging

As mentioned in Sect 1, some simple strategies such as time-series averaging can be also employed for synthesizing the

complete soil moisture products. Therefore, we perform the comparisons between the time-series averaging approach and the

presented method, to further validate the effectiveness and rationality of our dataset and framework. In terms of the time-series

averaging method, it averages the time-series daily soil moisture data to reconstruct gap regions. The original soil moisture305

result, time-series averaging result, and the proposed reconstructing result in 2016.9.10 are shown in Fig. 12(a)-(c), respectively.

Three reconstructed regions are marked with black circle in Fig. 12(b) and (c). The evaluation index comparisons between the

time-series averaging method and proposed method are listed in Table 3 through the corresponding in-situ data validations.

(a) Original

(b) Time-series averaging (c) Proposed

Figure 12. Original/time-series averaging/proposed global soil moisture results in 2016.9.10

As displayed in the balck circled regions of Fig. 12(b) and (c), we can clearly distinguish the spatial discontinuity in the

time-series averaging result. Reversely, the proposed method performs better on spatial continuity between the valid and invalid310

regions. The evaluation indexes R, RMSE, and MAE also manifest the superiority of the presented approach, compared with the
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Table 3. Evaluation index (R, RMSE, MAE) comparisons between the time-series averaging and proposed method

Method
Evaluation index

R RMSE MAE

Time-series averaging 0.635 0.124 0.093

Proposed 0.708 0.085 0.066

time-series averaging method in Table 3. The main reason is that daily soil moisture products exist temporal differences. While

the time-series averaging strategy cannot use the 2D-spatial information and ignores these temporal differences. Therefore, it

reflects the obvious “boundary difference effect” especially in the circled regions of Fig. 12(b). This also reveals the limitations

and shortages of the time-series averaging method. On the contrary, the proposed method jointly utilizes both spatial and315

temporal information of these time-series soil moisture products. Further, it can better richly exploit the deep spatio-temporal

feature for soil moisture data reconstructing. Overall, this discussion demonstrates the superiority of the proposed framework

on time-series products daily reconstructing, especially compared with the time-series averaging strategy.

5.2 Uncertainty analyse of the SGD-SM products

Uncertainty analyse is important for remote sensing quantitative products. The uncertainties in this generated SGD-SM320

product can be classified as three types: 1) The errors of original AMSR2 SM product; 2) The meteorological factors such

as precipitation and snowfall; 3) The generalization of proposed reconstructing model. Detailed descriptions of these three

uncertainties are listed as follows:

1) The errors of original AMSR2 SM product: The proposed SGD-SM product is generated based on original AMSR2

SM product. While this original AMSR2 SM product also exists errors, due to the satellite sensor imaging and SM retrieval325

algorithm. As shown in Table 1, the R, RMSE, and MAE evaluation indexes of the original AMSR2 SM product are 0.687,

0.095, and 0.078, respectively. These errors are also inevitably transmitted into the generated SGD-SM product.

2) The meteorological factors: SGD-SM relies on the temporal continuity and spatial consistency for daily SM gap-filling.

Nevertheless, if the unusual meteorologic occurs in single day such as precipitation and snowfall, it may destroy above as-

sumption and influence the reconstructing effects. This uncertainty can be noticed in time-series validation, especially for rainy330

season.

3) The generalization of proposed reconstructing model: In this work, we train the proposed network through selecting com-

plete soil moisture patches. In addition, the simulated masks are also chosen from the daily soil moisture products. However,

it still exists the differences between the training data and testing data, such as land covering type, mask size, and so on. This

uncertainty may disturb the generalization of proposed reconstructing model, to some degree.335
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6 Conclusions

In this work, aiming at the spatial incompleteness and temporal incontinuity, we generate a seamless global daily (SGD)

AMSR2 soil moisture long-term products from 2013 to 2019. To jointly utilize spatial and temporal information, a novel

spatio-temporal partial CNN is proposed for AMSR2 soil moisture products gap-filling. The partial 3D-CNN and global-local

loss function are developed for better extracting valid region features and ignoring invalid regions through data and mask340

information. Three validation strategies are employed to testify the precision of our seamless global daily products as follows:

1) In-situ validation; 2) Time-series validation; And 3) simulated missing regions validation. Evaluating results demonstrate

that the seamless global daily AMSR2 soil moisture dataset shows high accuracy, reliability, and robustness.

Although the proposed framework performs well on generating this seamless global daily soil moisture dataset, some draw-

backs and limitations still need to be overcome especially on multi-source data fusion, spatio-temporal information extracting345

and deep learning model optimization. In our future work, we will introduce multi-source information fusion into the proposed

model, such as precipitation and snowfall. The proposed reconstructing model will be increasingly improved by means of more

powerful units and structures. In addition, we will consider more soil moisture products in our future work such as AMSR-E,

SMOS-IC, SMAP and so on.

7 Data availability350

This dataset can be downloaded at https://doi.org/10.5281/zenodo.4417458 (Zhang et al., 2021).
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Supplement of

“Generating Seamless Global Daily AMSR2 Soil

Moisture (SGD-SM) Long-term Products 2013-2019”

This document mainly demostrates the technical supplement of the network implementation.

Detailed descriptions are depicted below:

1) ‘The loss convergent model’: The loss convergence model denotes that the loss of the

proposed model gradually decreases, and finally maintains smooth in training procedure.

2) Reason for each number: ‘T’ stands for current daily date. ‘3×3×3’ refers to the kernel

size of 3D convolutional cube filter. ‘11 layers’ represents the depth of the proposed deep neural

network. ‘90’ is the feature map number in CNN. ‘0.1’ denotes the balancing factor to adjust the

local loss and global loss in Eq. (6). ‘128’ stands for the batch size in deep learning model. ‘0.001’

refers to the learning rate for the training procedure.

3) Relation between loss function and learning parameters: In deep learning theory, the

loss function is the ‘baton’ of the whole network, which guides the network parameters learning

through the error back-propagation between the predicted sample and the original sample. In terms

of the learning parameters, they represent the weighted and bias parameters in all the layers.

4) How to understand ‘epochs, Adam algorithms and the gradient descent strategy’:

One ‘Epoch’ represents that the network goes through all the training data. ‘Adam algorithms’ is

a gradient descent method in back-propagation step, to optimize the whole network parameters.

‘gradient descent’ denotes the partial differentiation and then updates the variation for each network

1



parameter, which obeys the chain rule in deep neural network.

5) 3D CNN filters: 3D CNN filters are employed to simultaneously capture both spatial and

temporal soil moisture information in time-series products. For large gap areas, partial CNN is

developed to exclude the invalid AMSR2 soil moisture information.

6) Layers: More layers in deep neural network can extract more intrinsic feature information

for soil moisture products gap-filling.

7) Feature maps: Feature maps get the description of the original soil moisture products from

multiple angles, through different 3D CNN filters. The feature map of final layer is fixed as 1, to

export the reconstructing daily soil moisture result in date T.

For clearly understanding the parameters chosen in the proposed network such as 3D CNN

filters, layer numbers, and feature maps, we have supplemented the sensitivity analysis of these

parameters in discussion part. As listed in Table 1, Table 2, and Table 3, discussions for the 3DCNN

filters, layer numbers, and feature maps are investigated in simulated missing regions validation,

respectively. Accordingly, the optimal indexes are chosen as the setting value.

Table 1. Discussion for the 3D CNN filters in simulated missing regions validation

Parameter
Evaluation index

R RMSE MAE

3×3×3 0.968 0.068 0.047
5×5×5 0.957 0.076 0.048

7×7×7 0.949 0.081 0.050

Table 2. Discussion for the layer numbers in simulated missing regions validation

Parameter
Evaluation index

R RMSE MAE

10 0.962 0.072 0.048

11 0.968 0.068 0.047
12 0.966 0.070 0.049
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Table 3. Discussion for the feature maps in simulated missing regions validation

Parameter
Evaluation index

R RMSE MAE

60 0.963 0.071 0.048

90 0.968 0.068 0.047
120 0.967 0.069 0.047
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