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Anonymous reviewer 1 

1 Substantial comments 

This paper presents a reconstruction of the surface mass balance (SMB) of all             
French glaciers for the period 1967-2015 based on a deep learning (DL) approach. It              
strongly relates to the study on the methodology recently published by the same             
authors in The Cryosphere. The data set is comprehensive, interesting and certainly            
deserves publication. However, there are presently some weaknesses in the          
presentation of the findings, as well as in the validation of the approach.  
 
 

We are grateful for the overall positive comments by the reviewer. We believe the              
comments highlighted some aspects that ought to be clearer, and served to further             
develop some analysis to increase the quality of the paper. All comments have been              
answered, including the changes made in the manuscript, presented in bold to            
distinguish them from the unchanged sentences in the updated sections. 

Some relevant improvements have been done to the methods during the review            
process. We have trained a new cross-validation ensemble of 60 members and            
updated the dataset results. This new ensemble is based on weighted bagging            
(Hastie et al., 2009) of Leave-Some-Years-and-Glaciers-Out cross-validation (Bolibar        
et al., 2020), which balances the training data in the model in order to better take into                 
account the lack of data between 1967-1983. The main results and conclusions have             
not changed, only leading to a slightly less negative average mass balance (from             
-0.72 to -0.71 m w.e. a-1), and slightly higher uncertainties due to the increased              
presence of underrepresented values of the 1967-1983 period (RMSE: from 0.49 to            
0.55 m w.e. a-1 and r2: from 0.79 to 0.75). We believe this even more rigorous                
cross-validation leads to more accurate results and uncertainty estimations. 

 

1.1 Structure 

The paper needs to be restructured. A Data section is needed – this is presently               
merged into the Methods. I would also suggest that the study site characteristics are              
presented in a separate section. At present this is contained in the Results section.              
The Methods section needs a clearer structure, separating between the actual           
approach and the uncertainty assessment. 

The methods section has been restructured following the reviewer’s suggestions.          
Sect. 2 is now called “Data and methods”, and it includes three sections: 2.1 Data:               
with a brief introduction of the French Alps and the datasets used and their coverage;               
2.2 Methods: with an explanation of the methods used to reconstruct the annual             
glacier-wide SMB values; and 2.3 Uncertainty assessment: with the analysis of the            
method’s uncertainties and bias. 
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1.2 SMB validation 

A major problem of the paper as it stands now is, in my opinion, the lack of validation                  
with independent measurements: The training data set for 32 glaciers is based on 
“remote-sensing” (Rabatel et al., 2016). As this lies the foundation to the entire study, 
more effort should be invested to describe this data set (methods, uncertainties). The 
training data set also contains models and assumptions – the annual SMB of these 
glaciers has not been directly measured. This needs to be emphasized. Measured (!) 
information on SMB is available from two sources: (1) the direct glaciological surveys, 
(2) geodetic surveys. 
 

Although (1) is probably included in the training data set, it should explicitly be shown               
(e.g. figure with cumulative SMBs) how well the DL approach reproduces the            
observed SMB series. This would give direct evidence on the performance of the             
approach, independent from the training data set by Rabatel et al. (2016) that also              
includes model assumptions.  

I was surprised to see that the study does not show any direct validation with data on                 
geodetic mass balance. With the annual resolution of the data set presented here,             
this would be straight-forward to achieve. For many glaciers in the French Alps,             
geodetic mass balances over varying time periods are available (see e.g. data base             
of the WGMS). I assume that some of them have already been used in the set up of                  
the training data set, but probably not all of them. Geodetic mass balances would              
yield a fantastic way to validate the DL-based estimates of regional variability in mass              
balances. New remote sensing data sets (e.g. TanDEM-X in combination with SRTM,            
or ASTER) would also allow computing geodetic mass balances for each individual            
glacier. I see that deriving such a new geodetic data set is beyond the scope of this                 
study, but it is indispensable to compile the available geodetic survey for French             
glaciers in this regional assessment in order to gain confidence in the results. 

  

There are two main ways to validate the results of a model: comparing them to               
another independent dataset (e.g., the geodetic MB dataset that the reviewer refers            
to), and applying cross-validation. The use of cross-validations ensures a true           
out-of-sample validation, allowing the validation of the full dataset. This presents a            
substantial advantage when few data are available, as all data can be used both for               
training/calibration and validation. For the case of spatio-temporal data, this needs to            
be carefully done, as it was discussed in detail in Bolibar et al. (2020). The               
reconstructed annual glacier-wide SMB series were not validated against other          
datasets than the ones mentioned in the paper since the vast majority of available              
data in the region has already been used for training. The dataset from Rabatel et al.                
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(2016) is extremely useful in (1) the fact that its uncertainties are very close from               
uncertainties from the glaciological method (0.35±0.06 m w.e. a-1), and (2) the fact             
that it is calibrated from geodetic mass balances, meaning that the geodetic data             
explicitly serve to calibrate and validate the bias.  

Regarding the validation against glaciological observations, this has been done as           
part of the cross-validation in the uncertainty assessment. As we have mentioned in             
different instances of the “Data and methods” section, all details regarding the            
methods can be found in Bolibar et al. (2020), which is a purely methodological              
paper. Since the methods in Bolibar et al. (2020) were based on a case study using                
the very same 32 glaciers used in this study, it means that the methods and               
cross-validation results are exactly the same as the ones presented in detail in that              
paper. It also includes a lot of information regarding the dataset of these 32 glaciers,               
the performance for each glacier and year, as well as detailed plots with the              
comparison of simulations and observations (Fig. 6 to 10) . Therefore, our intention             
with the present paper submitted to ESSD is to apply the methods from Bolibar et al.                
(2020) in order to generate a regional dataset. Since all the details regarding the              
methods can be found in a separate paper, here we prefer to focus on the results and                 
the conclusions rather than repeating what has already been presented in detail            
elsewhere.  

On the other hand, we agree that there are a few, independant geodetic mass              
balances for shorter periods available, which can be used to validate the bias for a               
sub-period of the reconstructions, but its added value is lower than that of a              
cross-validation over the entire reconstruction period. However, following the         
reviewer’s suggestions, we have compared the Pléiades geodetic mass balance data           
from Berthier et al. (2014) and the ASTER geodetic mass balance data from the              
newly published Davaze et al. (2020) to our reconstructions. Since these two studies             
cover different sub-periods, the comparisons have been done separately. Both          
studies cover only the beginning of the 21st century, so the relevance of these bias               
validation is moderate, as our model has been calibrated to reconstruct SMB for over              
50 years, with different climate conditions, especially before and after the summer            
heatwave of the year 2003.  

A new section analyzing this (“1 Comparison with independent geodetic mass           
balance data”), including the two following figures have been added to the            
supplementary material, in order to illustrate this. 

“1 Comparison with independent geodetic mass balance data 

All available annual glacier-wide SMB data in the French Alps have been used to train the                
SMB ANN of the present study. However, some multi-annual geodetic mass balance (MB)             
datasets exist that can provide a means to validate the reconstruction’s bias for specific              
glaciers during multi-annual time intervals. This type of analysis is more limited than the              
cross-validation done to annual glacier-wide SMB values in Bolibar et al. (2020), as it only               
gives information about the bias of a sub-period of the reconstructions instead of the              
accuracy found via cross-validation. Our SMB reconstructions are compared against ASTER           
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geodetic MB from Davaze et al. (2020) for the 2000-2015 and 2003-2012 periods (Fig. S1               
and S2) and against Pléiades geodetic MB from Berthier et al. (2014) for the 2003-2012               
period (Fig. S2). 

For certain glaciers, the ASTER and Pléiades geodetic MB give slightly less negative MB              
than the glaciological SMB used to train the deep learning SMB model. This fact might               
explain the slightly more negative trend of our reconstructions seen for the 2000-2015 and              
2003-2012 periods, which experienced very negative SMB after the well known summer            
2003 heatwave. This is quite surprising, since both the GLACIOCLIM glaciological SMB            
measurements and the annual glacier-wide SMB data from Rabatel et al. (2016) have been              
calibrated with geodetic MB from optically-derived DEMs, which have a very high spatial             
resolution. Overall, the independent geodetic MB are well within the uncertainty range of our              
model. There are some exceptions for specific glaciers in the Mont-Blanc massif, such as              
Bossons, Talèfre and Tour. These glaciers have very large and high altitude accumulation             
areas, not seen in almost any glacier in our training dataset. On the other hand, for most of                  
the mid-sized glaciers the reconstructions show a good agreement.” 
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1.3 Language 

Although the paper is well-written in general, there are several instances where the             
writing could be improved (e.g. “allows to : : :”, p2, line 18 and other instances, is not                  
correct English). Proof-reading by a native English speaker would certainly help. 
 
 

The text has been revised again, and any remaining grammar issues will hopefully be              
fixed by Copernicus’ language correction services at publication.  

 

2 Detailed comments 

 

Page 1, line 8: cross-validation against which data set? Please clarify here. 

The sentence in the abstract has been updated as suggested by the reviewer. 

“The method's validity was assessed through an extensive cross-validation against a           
dataset of 32 glaciers, with an estimated average error….” 

 

Page 1, line 16: I would not refer to “meltwater contributions” here: Annual values of               
glacier-wide SMB do not actually yield “meltwater” but just annual glacier mass loss.             
Meltwater has a strong seasonal component and also occurs in the case of SMB=0              
or SMB >0!  
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Indeed, the annual glacier-wide SMB is the net annual mass change of the glacier, so               
it is not precise to refer to it as meltwater contributions. The sentence has been               
updated accordingly. 

“…provides relevant and timely data for studies in the fields of glaciology, hydrology and              
ecology in the French Alps, in need of regional or glacier-specific annual net glacier mass               
changes in glacierized catchments.” 

 

- Page 2, line 12: order references according to year. 
 

The references have been updated as suggested. 

 

Page 2, line 13: Digital Elevation Model, instead of “maps”, is typically used 

The acronym has been updated as suggested.  

 

Page 2, line 22: This is also true for various other global glacier models (see Hock et                 
al 2019 for a compilation). All of these models provide annual SMB for French              
glaciers in the PAST (although with probably limited skill). See also comment above.             
The detailed regional modelling study including the French Alps (Zekollari et al 2019)             
should also be mentioned. 

Indeed, any global past SMB simulations include the European Alps with the French             
Alps, but these two specific studies were chosen since they were dedicated            
publications on the European Alps (Huss 2012, Marzeion et al., 2012) and they             
covered the full period from this study (1967-2015). 

The study from Zekollari et al. (2019) was not used for comparison as the main               
purpose of their paper was to present the future evolution of the glaciers. The study               
covers the past period between 2003 until 2017, but this is a minimal fraction of time                
period of our study. It was not clear to us if annual glacier-wide SMB data is available                 
for the 1967-2015 period, as the period seems to only be covered during validation,              
so it might only include glaciers with WGMS observations. Nonetheless, since all            
studies available use substantially different climatic forcings and SMB modelling          
approaches to our study, the type of comparison would still be the same, only serving               
to showcase the different sensitivities and responses of models to the past climate in              
the French Alps. 

We have updated the sentence in order to give some context as suggested by the               
reviewer: 

“On the other hand, SMB reconstructions have already been carried out in the European              
Alps, providing a basis for comparison between different approaches (see Hock et al.             
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(2019) for a compilation). Two studies include reconstructions in the European and            
thus the French Alps over a substantial period of the recent past: ...” 

 

Page 2, line 28: It seems strange to refer to the results of the present paper already                 
within the paper itself. It is clear that the data set is already available, but it should not                  
be referred to, as this is where it is actually described. 

We understand that this might seem strange, and this would probably not be done in               
another journal. But the instructions for manuscript preparation of ESSD say: 

“Data sets: The data sets described in the manuscript need to be deposited in reliable data                
repositories including the assignment of digital object identifiers. Authors are required to properly             
cite the data sets in the abstract, text, and the reference list (see section References below)” 

Therefore, since here we are referring to the dataset itself, which is different from the               
paper (which acts only as a presentation), we believe that the citation makes sense              
according to the author guidelines. Nonetheless, if the reviewer and editor think this             
is not the correct way to use dataset citations for this journal we will remove it.  

 

Figure 1: Although it is stated in the caption that the figure is schematic, it leaves a                 
wrong impression on the density of available information for training the DL            
approach: In fact, green lines should only make up for 5% of the glaciers, whereas               
the figure implies that it is more than a third. It should be revised accordingly. 

Indeed, the representation was not accurate. The number of glaciers with           
observations has now been reduced in Fig. 1. Nonetheless, it does not exactly             
account for 5% (as it would leave only one glacier which would not help to convey the                 
message), but the representation is much more accurate now. 

 

Page 3, line 10: Although this paper is closely related with TC paper of the same                
authors, the location of the training data sets needs to be presented here. 

The methods section of this paper is a brief summary of the whole Bolibar et al.                
(2020) paper. We believe that the exact location of the 32 training glaciers is not very                
relevant for the reader to understand the methods used. The most important fact             
regarding the location is the fact that the training glaciers are distributed along most              
of the glacierized massifs of the French Alps, thus presenting a representative spatial             
coverage. As previously mentioned in other comments, for all the details regarding            
the methods the reader can refer to the dedicated methodological paper. Our            
intention is to avoid repeating unnecessary information, and to allow the reader to             
quickly understand the methods and the implications on the results without bothering            
too much with the details.  

https://www.earth-system-science-data.net/for_authors/repository_criteria.html
https://www.earth-system-science-data.net/for_authors/repository_criteria.html
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Following the reviewer’s suggestion, and in order to make the paper fully            
self-sufficient, we have included the map of the study area with the glaciers used for               
training in the supplementary material.  

“For the reconstruction presented here, a dataset of 32 French alpine glaciers has been used               
for training, covering most of the massifs within the French Alps, which exhibit a great               
variability of topographical characteristics (Fig. S10).” 

 

Figure S10. French Alpine glaciers used for model training and validation and their classification into three 
clusters or regions (Écrins,Vanoise, Mont-Blanc). Coordinates of bottom left map corner: 44º32’ N, 5º40’ E. 
Coordinates of the top right map corner: 46º08’ N, 7º17’E. 
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Page 3, line 16: It is excellent that topographical information is available in repeated              
time steps throughout the study period. However, it remains unclear how this updated             
topographical data was included in the DL approach. This is quite relevant            
information as the feedback of retreating glaciers (shrinking area, changes in           
area-elevation distribution and terminus position) exerts an important effect on          
glacier-wide SMB. A detailed description of this is required. 

We extended the comments in this section in order to make the presentation of the               
training predictors of the model clearer. 

“Out of the 32 glaciers from this dataset, four glaciers include direct SMB measurements              
from the GLACIOCLIM observatory, some of which between 1949 and 2018 (Vincent et al.,              
2017) and 28 glaciers include estimates of annual glacier-wide SMB from remote sensing             
between 1984 and 2014 (Rabatel et al., 2016). This dataset, with a total of 1048 annual                
glacier-wide SMB values, is used as a reference. Unlike point SMB, glacier-wide SMB             
is influenced by both climate and topography, producing complex interactions          
between climate and glacier morphology which need to be taken into account in the              
model. For each annual glacier-wide SMB value available, the following data are            
compiled to train the ANN with an annual time step: (1) climate data from the SAFRAN                
meteorological reanalyses (Durand et al., 2009) with: cumulative positive degree days           
(CPDD), cumulative winter snowfall, cumulative summer snowfall, mean monthly         
temperature and mean monthly snowfall, all variables being quantified at the altitude of the              
glacier's centroid; and (2) annually interpolated topographical data between the 1967,           
1985, 2003 and 2015 glacier inventories in the French Alps (Gardent et al., 2014), with:               
mean and maximum glacier altitude, slope of the lowermost 20% altitudinal range of             
the glacier, surface area, latitude, longitude and aspect. Therefore, the topographical           
feedback of the shrinking glaciers is captured from these annually interpolated           
topographical predictors. These parameters were identified as relevant for glacier-wide          
SMB modelling in the French Alps (Bolibar et al., 2020) and the dates of the glacier                
inventories determined the time interval for the reconstructions presented here.” 

 

Page 4, line 1: Similar comment as above: I would just refer to the paper where the                 
model is described and not have separate references to the model and the             
publication. You can state in the Data availability section where the code of the model               
is located. 

Bolibar et al. (2020) is not a presentation of the model, but a presentation of the deep                 
learning SMB modelling approach, with a case study on the French Alps. Therefore,             
when referring to the model itself (software), we prefer to use the citation for the               
model, as it is more precise. The Data availability section already includes both the              
dataset and the model’s source code. 
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Page 4, line 15: It is a quite relevant aspect in my opinion (probably worth mentioning                
in the Intro) that the DL approach (e.g. in comparison to in-situ observations and              
mass balance modelling) only provides annual SMB, but no information on seasonal            
mass balance as well as mass balance gradients. If my understanding is wrong,             
please correct me. But these additional variables are crucial for various aspects of             
impact assessment and model development. 

We agree that this aspect is important. This is mentioned in different sections of the               
manuscript, in the abstract, introduction and in some sections. We have tried to             
clarify this by systematically referring to the reconstructed SMB as “annual           
glacier-wide SMB”. Moreover, in the update from the reviewer’s comment on Page 3             
Line 16, we have contrasted this fact with the characteristics of point mass balance              
data. If the reviewer thinks it would be clearer to refer to this in another way than                 
“annual glacier-wide SMB” we could adapt the manuscript accordingly.  

Seasonal mass balances are indeed very useful for several applications (see for            
instance Viani et al., 2018 in the field of hydrology). However in our case, the use of                 
annual glacier-wide SMB data is not a problem, since ALPGM uses the delta-h (Huss              
et al., 2010) parameterization in order to redistribute the annual glacier-wide mass            
changes along the glacier. This geometry update is only used for glacier evolution             
simulations, which have nothing to do with the dataset presented here, so this             
information has been omitted in the methods from the present study.  

 

Figure 2/5: Please add letters (A/B) to the panels. 

Letters have been added to the different panels of Figures 2 and 5. 

 

Page 7, line 18: For a more recent reference on exactly this topic, please also see                
Zekollari et al. (2020), Geophysical Research Letters 

Indeed. A reference has been added to this paper.  

 

Page 8, line 2: Please remove the reference to Huss&Hock, 2015. It does not fit here                
in my opinion. 

Well spotted. This is in fact a LaTex reference typo. The intended reference was:              
Huss et al. (2015): “New long-term mass-balance series for the Swiss Alps”, Journal             
of Glaciology. The citation has been updated accordingly.  
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Page 8, line 31: see also substantive comment above: To me, this appears too long               
and too detailed. The comparison to a modelling study is a nice addition but it does                
not actually allow evaluation of the present results. More focus needs to be put on the                
validation using fully independent field observations (in-situ) and geodetic surveys. 

In order to make this section lighter and more straight to the point, we have moved a                 
whole paragraph which compared and detailed the differences between both models           
to the Supplementary material. This allows to convey the message that a direct             
comparison is not possible, jumping straight to results and conclusions and leaving            
the technical details for the avid reader who will be willing to read the Supplementary               
material.  

The new section S2 is the following one: 

“2 Model differences between the updated version of Marzeion et al. (2015) and this study 

In order to contrast the results from Sect. 3.4, three important different aspects between our               
approach and the one of M15U need to be highlighted: 

1. M15U’s model works with simplified physics, with a temperature-index model calibrated           
on observations; in this study we used a fully statistical approach based on deep              
learning, where physics-based considerations only appear in the predictor selection. 
 

2. M15U calibrated their model with SMB observations of 38 glaciers, most of them             
located in Switzerland for the 1901-2013 period; in this study we used observations of              
32 glaciers, all located in the French Alps for the 1967-2015 period. 
 

3. M15U forced their updated model with CRU 6.0 (update of Harris et al., 2014), with 0.5°                
latitude/longitude grid cells, which has a significantly lower spatial resolution and           
suitability to mountain areas than the SAFRAN reanalysis (Durand et al., 2009) used             
in this study, in which altitude bands and aspects are considered for each massif, and               
meteorological observations from high-altitude stations are assimilated. 

The cross-validations of both studies determined a performance with an average RMSE of             
0.66 m.w.e. a-1 and an r2 of 0.43 for M15U for the European Alps, and an average RMSE of                   
0.49 m.w.e. a-1 and an r2 of 0.79 for this study. However, due to the highly different                 
methodologies and forcings of the two models, a direct comparison is not possible, so the               
following analysis is focused on the overall trends and sensitivities in the reconstructions and              
their potential sources.” 

 

Page 10, line 3: Potentially also related to the way glacier retreat (updating of area               
elevation distribution) is accounted for in the model by Marzeion et al 2015, and the               
present approach? Probably worth discussing here as well. 

That’s a very good point. On top of the differences in the climate forcings, there might                
be differences in the topographical feedback of the models due to the different             
modelling approaches. This element has been added to the discussion: 
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“The fact that M15U used a volume-area scaling compared to the interpolated topographical             
data from inventories from this study means that the topographical feedback of the models              
might differ as well throughout the reconstructed period.” 

 

Page 11, line 6: Actually, all Supplementary Figures should be referenced from the             
main text. I found the analysis in the Supplementary interesting but not            
straightforward to understand. It might be beneficial to present this additional analysis            
more prominently in the main text. 

All Supplementary Figures that were not previously mentioned in the main text have             
now been added as references in the appropriate sections. With this we hope the              
reader will be encouraged to read the supplementary material in case she/he is             
interested in the detailed methods. By giving the references in the right context, it is               
now easier to relate the explanations of Sect. 2 in the Supplementary to the content               
of the main text. Our intention is to keep the methods section and technical details as                
light as possible, in order to convey an easy message based on the results, and allow                
the avid reader to check the details in the methods paper and the Supplementary              
material.  

 

Page 12, line 12: Is there no possibility to go beyond the year 2015 by the way? In                  
my understanding the trained DL approach should enable to predict mass balance            
also for the most recent years. This would be quite interesting as the last years were                
extraordinary in terms of their mass losses.  

Indeed, it would be very interesting, but unfortunately with the current framework it             
cannot be done, unless some modifications are done to it. Since we are working with               
topographical data by interpolating glacier inventories, we would need a glacier           
inventory after 2015 in order to have topographical information for these years. One             
possible hypothesis to bypass this would be to continue interpolating the           
topographical data with the same trend as for the 2003-2015 period, but this would              
introduce some inhomogeneity in the method. On the other hand, the version of the              
meteorological reanalysis that we are using (SAFRAN) only extends until 2016. A            
new version has just been released, that covers the same period until 2019 ; its use                
would require some technical adaptations and reprocessing of the years previous           
2015 for homogeneity. Considering these two facts, we believe it is not worth the time               
investment for just four additional years.  
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Ben Marzeion 

1 General comments 

Bolibar et al. present the results of a new approach to reconstruct glacier mass              
balances at times and/or locations where meteorological conditions (and some          
topographical information) are known, but no observations of glacier mass balance           
exist. Their approach, based on a neural network algorithm, adds considerable           
diversity to the existing group of reconstruction methods. The thorough validation of            
the results leads to great confidence in the robustness of the method. Except for              
some minor issue listed below, the manuscript is very clear and easy to follow. The               
data set produced and presented here will be of great use for the community. I               
particularly appreciate the great care that has been taken in documenting the test for              
overfitting in the supplementary material. I recommend publication once the authors           
have gone through the list of questions/suggestions below. 
 

We are grateful for the positive and encouraging comments. These comments will            
help improve the manuscript’s quality and clarity. Most figures in the paper have been              
re-processed taking into account the feedback, hopefully leading to better          
visualization and presentation. Every comment/suggestion has been addressed        
individually in the following section. 

As explained in one of the comments regarding the validation approach based on             
cross-validation, we have trained a new cross-validation ensemble of 60 members           
and updated the dataset results. This new ensemble is based on weighted bagging             
(Hastie et al., 2009) of Leave-Some-Years-and-Glaciers-Out cross-validation (Bolibar        
et al., 2020), which balances the training data in the model in order to better take into                 
account the lack of data between 1967-1983. The main results and conclusions have             
not changed, only leading to a slightly less negative average mass balance (from             
-0.72 to -0.71 m w.e. a-1), and slightly higher uncertainties due to the increased              
presence of underrepresented values of the 1967-1983 period (RMSE: from 0.49 to            
0.55 m w.e. a-1 and r2: from 0.79 to 0.75). We believe this even more rigorous                
cross-validation leads to more accurate results and uncertainty estimations.  

 

2 Specific/minor comments 

 

P1 L9: please specify “1\sigma” instead of “\sigma” for clarity. 

The sentence in the abstract has been updated as suggested by the reviewer. 

 

P1 L10: the “moderately” should only apply to the 1980s, I think  
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Indeed. The sentence has been updated: 

“We estimate an average regional area-weighted glacier-wide SMB of -0.72±0.20 (1\sigma)           
m.w.e. a-1 for the 1967-2015 period, with negative mass balances in the 1970s (-0.52              
m.w.e. a-1), moderately negative in the 1980s (-0.12 m.w.e. a-1), and an increasing negative              
trend from the 1990s onwards, up to -1.39 m.w.e. a-1 in the 2010s.” 

 

P1 L10: avoid line break within negative number  
This has been fixed with the rephrasing of some parts of the abstract.  

 

P1 L12: unclear, what “this period” refers to  

The sentence has been updated to clearly indicate the time period: 

“Following a topographical and regional analysis, we estimate that the massifs with the             
highest mass losses for the 1967-2015 period are the...” 

 

abstract: why are no uncertainties given for the values of the different massifs? (also              
concerns the conclusions) 

Because we have no way to dissociate the uncertainties for each massif from the              
overall uncertainties computed through cross-validation. Therefore, all massifs would         
display the same uncertainty, which is already given with the average performance of             
the method for this region (RMSE = 0.55 m w.e. a-1). If the reviewer thinks it would                 
still be better to give the uncertainty for each massif we can add it in the abstract and                  
text.  

 

P2 L8: “these points” refers to the points of MB measurements, but this reference is               
not very clear here; also, it’s not the points that show nonlinear variability, but the               
measurements at the points; suggest to rephrase 

This sentence has been adapted to improve clarity as suggested: 

“These different point SMB measurements can show a high nonlinear variability...” 
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P2 L23: there more four global parameters in the Marzeion et al. (2012) model, and I                
wouldn’t necessarily say they were “optimized”, because that “optimization” was very           
subjective... 

The word “optimized” has been removed to erase these connotations from the            
sentence as suggested by the reviewer: 

“They used a minimal model relying only on temperature and precipitation data, based on a               
temperature-index method, with two parameters to calibrate the temperature sensitivity and           
the precipitation lapse rate.” 

 

Fig. 1: the figure certainly works well for presentations etc., but I’m not sure it is                
necessary here, since the text describes very well what is done, and there is little to                
be gained from the figure. 

Indeed, the main key aspects of the overall analysis are already given in the abstract               
and in the text. Nonetheless, we believe it is a complementary way to show the               
regional variability, as it shows in a single figure the spread of glacier behaviour and               
the common variability in a nice and easy way. This is our personal opinion, if the                
reviewer strongly suggests to remove it, we will move it to the supplementary             
material.  

P3 L14-15: it would be great if you can add a sentence or two here, specifying how                 
any difference in the altitude of the glaciers’ centroids and the reanalysis grid points              
were treated (lapse rates or similar?)  

The explanation on climate data and predictors has been updated with the following             
sentences in order to give some context on how the forcings are adjusted to each               
glacier centroid’s altitude: 

“(1) climate data from the SAFRAN meteorological reanalyses (Durand et al., 2009) with:             
cumulative positive degree days (CPDD), cumulative winter snowfall, cumulative summer          
snowfall, mean monthly temperature and mean monthly snowfall, all variables being           
quantified at the altitude of the glacier's centroid. In order to capture the climate signal at                
each glacier's centroid, temperatures are taken from the nearest SAFRAN 300 m            
altitudinal band and adjusted with a 6ºC/km lapse rate. The updated temperature is             
then used to update the snowfall amount from the same 300 m altitudinal band.” 

 

P4 L22 or lower: It might be worth pointing out/discussing that the density of              
observations used in the LOGO cross validation is denser towards the end of the              
reconstruction interval, when presumably, also the quality of the meteorological data           
are higher, such that the uncertainty of the methods might be underestimated for the              
(roughly) first half of the period. I also wonder if/how this interferes with your              
assessment of the model’s ability to reconstruct the more neutral MB values during             
1967-1984?  
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That’s a very good point. That was one of our main concerns during the validation               
process, which we tried to address in two different ways.  

First of all, we performed a separate cross-validation with only data from the             
1967-1984 period, in order to specifically assess the performance during this period.            
This is explained in the newly created Sect. “2.3 Uncertainty assessment” (as            
suggested by Anonymous reviewer 1). This was already present in the version of the              
manuscript sent for review.  

On the other hand, in order to improve our estimates and to better take into account                
this lack of homogeneity in the dataset, we have trained a new ensemble of models               
based on Leave-Some-Years-and-Glaciers-Out (LSYGO) cross-validation, as      
explained in Bolibar et al. (2020). We used an ensemble of 60 CV models using               
weighted bagging (Hastie et al., 2009) by giving +33% more weight to data between              
1967-1984, in order to compensate for this lack of observations during this period,             
which covers a third of the 49-year period. This has not affected much the results,               
and the conclusions remain exactly the same, but it allows giving a more accurate              
and realistic assessment of the model’s performance, with a RMSE of 0.55 m w.e.              
a-1, a coefficient of determination of 0.75 and an average bias of -0.019 m w.e. a-1. 

 

Fig. 2: since there are so many lines, it is somewhat hard to see the distribution.                
Particularly in the lower panel, a histogram for showing the distribution of the             
accumulated values (vertically, to the right of the panel) would be quite interesting. It              
would be possible to see, e.g., how/if the area weighted mean differs from the              
“ensemble” mean and/or median, if the distribution is (a)symmetric, etc. Just a            
suggestion to consider.  

That is a good idea. A panel to the right of the cumulative plot has been added with a                   
histogram, the PDF and the position of the area weighted mean SMB.  
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Fig. 3: why are no uncertainties included for the decadal averages? 

Fig. 3 has been updated with decadal uncertainties. 
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Fig. 4: great figure! But a bit busy (just visually); would it be possible to mute the                 
background image a bit (and then perhaps change the text color to black) so that the                
colors of the glaciers stand out more?  

We do agree that Fig. 4 could be a little bit overwhelming. We have updated it                
following the suggestions of the reviewer. Now the colours of the glaciers are more              
visible, and it has a more homogenous feeling with all contour lines in black. 
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P8 L16: it’s more than three parameters: one local (the temperature sensitivity) and             
four global ones (precipitation correction factor, precipitation lapse rate, temperature          
threshold for solid precipitation, and melt temperature threshold); see Figs. 4-7 in            
Marzeion et al. (2012). 

The sentence has been updated with the correct information as it follows: 

“This model was optimized based on five parameters: the temperature sensitivity of the             
glacier (local); and a precipitation correction factor, precipitation lapse rate, temperature           
threshold for solid precipitation and melt temperature threshold (global)” 

 

P8 L22: perhaps clarify that the 38 glaciers are not the global sample used for               
calibration. 

The new section in the supplementary material has been updated following this            
suggestion: 
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“M15U calibrated their model with global SMB observations, including 38 glaciers in            
the European Alps, most of them located in Switzerland for the 1901-2013 period; in              
this study we used observations of 32 glaciers, all located in the French Alps for the                
1967-2015 period.” 

 

P8 L31: I believe that the CV results in the Marzeion et al. (2012) study are also                 
influenced by the global “optimization” (see above) of the four parameters; probably,            
a focus on the Alps would have led to a different parameter choice, and hence               
different CV results.  

Indeed, that is what we tried to convey with the warning to the readers. We are                
comparing a global model with a regional model, so the specificity of the calibration is               
completely different, giving a clear advantage to the regional model. We hope that             
with the updated sentence from the previous comment this will be more clear to the               
reader. 

 

P10 L1 and following: another reason for the different behaviour around the 2003             
“break point” might be that the Marzeion et al. (2012) model, by construction, cannot              
capture the lasting effect that the extreme 2003 year may have had on albedo; while               
your model may be able to capture this (I guess – I’m not sure) by essentially taking                 
the time as an additional predictor? 

Our mass balance model does not have any perception of time, as no time stamps               
are used as predictors. I believe the main reason(s), as stated in the article, are the                
fact that we use higher resolution climate forcings, which better capture the climate             
signal on the glaciers, and most importantly, that the deep learning SMB model is              
nonlinear, which gives it a greater deal of flexibility to simulate this kind of transitions               
compared to linear models. This was already observed during the cross-validation           
analysis in Bolibar et al. (2020), where the linear model with Lasso, which behaves              
similarly to a temperature-index model, showed biases at the beginning and end of             
the 1984-2015 period, as the parameters were calibrated to fit the whole period,             
which presents rather neutral SMBs at the beginning and strongly negative SMBs by             
the end (see the Figure below taken from Bolibar et al., 2020). The nonlinear deep               
learning SMB model showed much lower biases, further demonstrating that the           
climate and glacier systems are highly nonlinear. 
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Fig. S2: would it be possible to re-arrange the legend such that it is easier to                
compare the “B” to the “M” lines (e.g., shift the lowest line in the legend to the right)?  

The legend in Fig. S4 (previously S2) has been updated in order to have the “B” and 
“M” lines on different columns. 
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Abstract. Glacier surface mass balance (SMB) data are crucial to understand and quantify the regional effects of climate on

glaciers and the high-mountain water cycle, yet observations cover only a small fraction of glaciers in the world. We present

a dataset of annual glacier-wide surface mass balance of all the glaciers in the French Alps for the 1967-2015 period. This

dataset has been reconstructed using deep learning (i.e. a deep artificial neural network), based on direct and remote sensing

SMB observations, meteorological reanalyses and topographical data from glacier inventories. This data science reconstruction5

approach is embedded as a SMB component of the open-source ALpine Parameterized Glacier Model (ALPGM). An extensive

:::
The

::::::::
method’s

:::::::
validity

::::
was

::::::::
assessed

:::::::
through

::
an

::::::::
extensive

:
cross-validation allowed to assess the method’s validity

::::::
against

:
a
::::::
dataset

:::
of

::
32

:::::::
glaciers

:
, with an estimated average error (RMSE) of 0.49

::::
0.55 m.w.e. a−1, an explained variance (r2) of

79
::
75% and an average bias of +0.017

::::::
-0.021 m.w.e. a−1. We estimate an average regional area-weighted glacier-wide SMB of

-0.72
::::
-0.71±0.20 (

::::
0.21

::
(1σ) m.w.e. a−1 for the 1967-2015 period, with moderately negative mass balances in the 1970s (-0.5210

::::
-0.44

:
m.w.e. a−1)and ,

::::::::::
moderately

:::::::
negative

::
in

:::
the

:
1980s (-0.12

::::
-0.16 m.w.e. a−1), and an increasing negative trend from the

1990s onwards, up to -1.39
::::
-1.34 m.w.e. a−1 in the 2010s. Following a topographical and regional analysis, we estimate that

the massifs with the highest mass losses for this
::
the

::::::::::
1967-2015 period are the Chablais (-0.90

:::::
-0.93 m.w.e. a−1)and Ubaye

and Champsaur ranges (-0.91 ,
::::::::::

Champsaur
::::
and

:::::::::::::::
Haute-Maurienne

:::::
(-0.86

::::::
m.w.e.

::::
a−1

:::::
both)

:::
and

::::::
Ubaye

::::::
ranges

::::::
(-0.83 m.w.e.

a−1both), and the ones presenting the lowest mass losses are the Mont-Blanc (-0.74
::::
-0.69

:
m.w.e. a−1), Oisans and Haute-15

Tarentaise ranges (-0.78
::::
-0.75

:
m.w.e. a−1 both). This dataset - available at: https://doi.org/10.5281/zenodo.3663630 (Bolibar

et al., 2020a) - provides relevant and timely data for studies in the fields of glaciology, hydrology and ecology in the French

Alps, in need of regional or glacier-specific meltwater contributions
:::::
annual

:::
net

::::::
glacier

::::
mass

:::::::
changes

:
in glacierized catchments.

1 Introduction

Among all the components of the Earth system, glaciers are some of the most visibly affected by climate change, with an over-20

all worldwide shrinkage despite important differences between regions (Zemp et al., 2019). The European Alps are among the

1



regions with the strongest glacier mass loss over recent decades, with expected mass losses between 60% and 95% by the end of

the 21st century (Zekollari et al., 2019). These major glacier mass changes are likely to have an impact on water resources, so-

ciety and alpine ecosystems (e.g. Huss and Hock, 2018; Immerzeel et al., 2020; Cauvy-Fraunié and Dangles, 2019). In order to

study and quantify all these potential consequences, the availability of glacier mass balance data is of high relevance. Therefore,

open historical datasets are crucial for the understanding of the driving processes and the calibration of models used for projec-5

tions. Unlike glacier length, glacier surface mass balance (SMB) provides a more direct indicator of the climate-glacier interac-

tions (Marzeion et al., 2012). Glacier SMB is classically measured using the direct or glaciological method, by separately deter-

mining the ablation and accumulation totals. Direct measurements quantify the surface mass balance at different points of the

glacier, and these values must be integrated at the glacier scale in order to assess the glacier-wide SMB (Benn and Evans, 2014).

These different points
::::
point

:::::
SMB

::::::::::::
measurements

:
can show a high nonlinear variability, which can complicate this integration10

process towards glacier-wide estimates (Vincent et al., 2018). Moreover, field measurements require a lot of manpower, time

and economic resources in order to be sustained for a meaningful period of time. On the other hand, recent advances in remote

sensing allow estimating glacier SMB changes at a regional level with unprecedented efficiency using geodetic and gravimetric

methods (Kääb et al., 2012; Berthier et al., 2016; Fischer et al., 2015; Brun et al., 2017; Dussaillant et al., 2019)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Kääb et al., 2012; Fischer et al., 2015; Berthier et al., 2016; Brun et al., 2017; Dussaillant et al., 2019)

. Due to constraints related to the availability of digital elevation maps
::::::
models (DEMs) or airborne data, these mass balance es-15

timates normally encompass several years or decades. Some studies are bridging the gap towards an annual temporal resolution

(Rabatel et al., 2005, 2016; Rastner et al., 2019), but the coverage is still limited to glaciers without cloud cover or acquisition-

related artefacts. This means that these mass balance datasets are often restricted to certain glaciers and years within a region.

All these new datasets are extremely beneficial for data-driven approaches, fostering the training of machine learning models

capable of capturing the regional characteristics and relationships (Bolibar et al., 2020b). This type of approach allows to fill the20

spatiotemporal gaps in the SMB datasets, therefore, it can be seen as a complement to remote sensing and direct observations.

On the other hand, SMB reconstructions have already been carried out in the European Alps, providing a basis for compari-

son between different approaches . For example,
:::
(see

:::::::::::::::
Hock et al. (2019)

:::
for

:
a
:::::::::::
compilation).

::::
Two

::::::
studies

::::::
include

:::::::::::::
reconstructions

::
in

:::
the

::::::::
European

::::
and

::::
thus

:::
the

::::::
French

::::
Alps

:::::
over

:
a
:::::::::
substantial

::::::
period

:::
of

:::
the

:::::
recent

:::::
past: Marzeion et al. (2012, 2015) recon-

structed annual SMB series of all glaciers in the Randolph Glacier Inventory - including the European Alps - for the last25

century. They used a minimal model relying only on temperature and precipitation data, based on a temperature-index method,

with two optimized parameters to calibrate the temperature sensitivity and the precipitation lapse rate. Huss (2012) presented

an approach to extrapolate SMB series of a limited number of glaciers to the mountain-range scale. By comparing multiple

methods, he found the best results with a multiple linear regression based on 6 topographical parameters. From this relationship

he reconstructed area-averaged SMB series of all the glaciers of the European Alps between 1900-2100 and analysed the trends30

for the different alpine nations and different glacier sizes.

Here, we introduce a dataset of annual glacier-wide SMB of all the glaciers in the French Alps (Bolibar et al., 2020a),

located in the westernmost part of the European Alps, between 5.08° and 7.67°E, and 44° and 46°13’N. Glacier-wide SMBs

have been reconstructed for the 1967-2015 period, using deep learning (i.e. a deep artificial neural network). This approach was

introduced in Bolibar et al. (2020b), for which a deep artificial neural network (ANN) was trained with data from 32 French35

2
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Figure 1. Summary of the deep learning regional SMB reconstruction approach. From the available annual glacier-wide SMB observations,

a deep learning model is used to reconstruct the full dataset, thus filling the spatiotemporal gaps in the observational dataset. Green indicates

glaciers and years with SMB observations and blue indicates reconstructed SMB values. The grid size with glaciers and years is schematic

and only serves to illustrate the concept.

alpine glaciers, as part of the ALPGM glacier evolution model (Bolibar, 2020). Annual glacier-wide SMB values are reported

for each glacier in the French Alps found in the 2003 glacier inventory (Gardent et al., 2014). An overview of the methodology

used to produce the dataset and a review of the associated uncertainties is presented in Sect. 2, followed by a dataset overview

in Sect. 3, where the data structure and regional trends are described and where the dataset is compared to a previous study and

observations.5

2 Methodology
::::
Data and uncertainties

:::::::
methods

The annual glacier-wide SMB dataset for the 661 French alpine glaciers has been reconstructed using a deep artificial neural

network (ANN), also known as deep learning. ANNs are nonlinear statistical models inspired by biological neural networks

(Fausett, 1994; Hastie et al., 2009). Recent developments in the field of machine learning and optimization enabled the use

of deeper ANN architectures, which allow to capture more nonlinear and complex patterns in data even for small datasets10

(Ingrassia and Morlini, 2005).

2.1
::::

Data

For the reconstruction presented here, a deep feed-forward ANN has been trained with a dataset of 32 French alpine glaciers
:::
has

::::
been

::::
used

:::
for

:::::::
training, covering most of the massifs within the French Alps, which exhibit a great variability of topographical

characteristics (Fig. 4 in Bolibar et al., 2020b). Four glaciers
::::
(Fig.

:::::
S10).

:::
The

:::::::
French

::::
Alps

:::
are

::::::
located

::
in
:::
the

:::::::::::
westernmost

::::
part15

::
of

:::
the

::::::::
European

:::::
Alps,

::::::
rising

::::
from

:::
the

:::::::::::::
Mediterranean

:::
sea

::::::::::
northwards

:::::::
between

:::
44

:::
and

:::::::
46º13’

::
N,

::::
5.08

::::
and

:::::
7.67º

::
E.

::::
Due

:::
to

3



::
its

::::::::
particular

:::::::::::
geographical

:::::
setup,

::::::::::
glacierized

::::::::
mountain

::::::
ranges

::
in

:::
the

::::::
French

:::::
Alps

::::
have

:::::::
distinct

:::::::
climatic

:::::::::
signatures.

::::::::
Southern

::::::
glaciers

::::::
exhibit

::
a
::::::::::::
Mediterranean

::::::::
influence,

:::::::
whereas

::::::::
northern

::::::
glaciers

:::
are

::::::
mostly

:::::::
affected

:::
by

:::::::
western

:::::
fluxes

::::
from

:::
the

::::::::
Atlantic,

:::::
except

:::
for

::::::
eastern

:::::::
glaciers

:::::
close

::
to

:::
the

:::::
Italian

::::::
border,

::::::
which

:::
are

::::
more

:::::::::
influenced

:::
by

:::
east

:::::::
returns.

:::
Out

::
of

:::
the

:::
32

:::::::
glaciers

::::
from

:::
this

:::::::
dataset,

::::
four

:::::::
glaciers include direct SMB measurements from the GLACIOCLIM observa-

tory, some of which between
::::
since

:
1949 and 2018 (Vincent et al., 2017), and 28 glaciers include estimates of annual glacier-5

wide SMB from remote sensing between 1984 and 2014 (Rabatel et al., 2016). Training data consists of : (1)
::::
This

:::::::
dataset,

::::
with

:
a
::::
total

::
of

:::::
1048 annual glacier-wide SMB for each of the 32 glaciers

::::::
values,

::
is

::::
used as a referencedataset; (2.

::::::
Unlike

:::::
point

:::::
SMB,

::::::::::
glacier-wide

:::::
SMB

::
is

:::::::::
influenced

::
by

:::::
both

::::::
climate

:::
and

:::::::::::
topography,

::::::::
producing

::::::::
complex

::::::::::
interactions

:::::::
between

::::::
climate

::::
and

:::::
glacier

:::::::::::
morphology

:::::
which

:::::
need

::
to

:::
be

:::::
taken

::::
into

::::::
account

:::
in

:::
the

::::::
model.

:::
For

:::::
each

::::::
annual

:::::::::::
glacier-wide

::::
SMB

:::::
value

:::::::::
available,

::
the

:::::::::
following

::::
data

:::
are

::::::::
compiled

::
to

::::
train

:::
the

:::::
ANN

::::
with

:::
an

::::::
annual

::::
time

::::
step:

::
(1) climate data from the SAFRAN meteorolog-10

ical reanalyses (Durand et al., 2009), with: cumulative positive degree days (CPDD), cumulative winter snowfall, cumulative

summer snowfall, mean monthly temperature and mean monthly snowfall, all variables being quantified at the altitude of the

glacier’s centroid; and (3
::
’s

:::::::
centroid.

:::
In

:::::
order

::
to

::::::
capture

:::
the

:::::::
climate

:::::
signal

::
at
:::::
each

:::::::
glacier’s

::::::::
centroid,

:::::::::::
temperatures

:::
are

:::::
taken

::::
from

:::
the

::::::
nearest

:::::::::
SAFRAN

:::
300

:::
m

::::::::
altitudinal

:::::
band

:::
and

::::::::
adjusted

::::
with

::
a

:
6
::::::
ºC/km

:::::
lapse

::::
rate.

:::
The

:::::::
updated

:::::::::::
temperature

::
is

::::
then

::::
used

::
to

::::::
update

:::
the

:::::::
snowfall

:::::::
amount

::::
from

:::
the

:::::
same

:::
300

:::
m

::::::::
altitudinal

:::::
band.

:::
(2) annually interpolated topographical data from15

:::::::
between the 1967, 1985, 2003 and 2015 glacier inventories in the French Alps (update of Gardent et al., 2014), with: mean

and maximum glacier altitude, slope of the lowermost 20% altitudinal range of the glacier, surface area, latitude, longitude

and aspect. These
::::::::
Therefore,

:::
the

:::::::::::
topographical

::::::::
feedback

::
of

:::
the

::::::::
shrinking

:::::::
glaciers

::
is

:::::::
captured

:::::
from

::::
these

::::::::
annually

::::::::::
interpolated

:::::::::::
topographical

:::::::::
predictors.

:
.
::::::
These

::::::::::
topoclimatic

:
parameters were identified as relevant for glacier-wide SMB modelling in the

French Alps (Bolibar et al., 2020b), and the dates of the glacier inventories determined the time interval for the reconstructions20

presented here.

:::
For

::::
more

::::::
details

:::
on

:::
the

:::::
choice

::
of

:::::::::
predictors,

:::
the

::::::
reader

:::
can

::::
find

:
a
::::::::
thorough

:::::::
analysis

::
in

::::::::::::::::::
Bolibar et al. (2020b).

:

2.2
:::::::

Methods

:::
The

::::::
annual

:::::::::::
glacier-wide

::::
SMB

::::::
dataset

:::
for

:::
the

::::
661

::::::
French

::::::
alpine

::::::
glaciers

::::
has

::::
been

:::::::::::
reconstructed

:::::
using

::
a

::::
deep

:::::::
artificial

::::::
neural

:::::::
network

::::::
(ANN),

::::
also

::::::
known

::
as

:::::
deep

:::::::
learning.

::::::
ANNs

:::
are

::::::::
nonlinear

:::::::::
statistical

::::::
models

:::::::
inspired

:::
by

::::::::
biological

::::::
neural

::::::::
networks25

::::::::::::::::::::::::::::
(Fausett, 1994; Hastie et al., 2009).

::::::
Recent

::::::::::::
developments

::
in
::::

the
::::
field

::
of

::::::::
machine

:::::::
learning

:::
and

:::::::::::
optimization

:::::::
enabled

:::
the

::::
use

::
of

::::::
deeper

:::::
ANN

:::::::::::
architectures,

::::::
which

::::::
allows

::::::::
capturing

:::::
more

::::::::
nonlinear

:::
and

::::::::
complex

:::::::
patterns

::
in

::::
data

:::::
even

:::
for

:::::
small

:::::::
datasets

::::::::::::::::::::::::
(Ingrassia and Morlini, 2005).

:
This modelling approach is part of the SMB component of ALPGM (Bolibar, 2020), an open-

source data-driven parameterized glacier evolution model. For a detailed explanation of the methodology, please refer to Bolibar

et al. (2020b). For the final reconstructions presented here, a cross-validation ensemble approach was used, in which the30

individual predictions of each of the Leave-One-Glacier-Out (LOGO
::
60

::::::::::::::::::::::::::::::
Leave-Some-Years-and-Glaciers-Out

::::::::
(LSYGO) cross-

validation models
:::::
model

::::::::
members

:
were averaged to produce a single output. An ensemble approach has the advantage of

further improving generalization, and reducing overfitting as well as the inter-model high variance typical from neural networks

(Krogh and Vedelsby, 1995).
::
A

:::::::
weighted

:::::::
bagging

::::::::
approach

:::::::::::::::::
(Hastie et al., 2009)

:::
was

::::
used

::
in

::::
order

::
to
:::::::
balance

:::
the

::::::
dataset,

::::::
giving

4



::::
more

::::::
weight

::
to

:::::::::::::::
under-represented

::::
data

:::::::
samples

::::
from

:::
the

:::::
years

::::::::::
1967-1983. On the other hand, for the 32 glaciers with glacier-

wide SMB observations used for training, an ensemble of 50 models trained with the full dataset was used, in order to achieve

the best possible performance for this subset of glaciers, which represents a substantial fraction (45% in 2003) of the total

glacierized surface area in the French Alps.

2.3
::::::::::
Uncertainty

::::::::::
assessment5

The uncertainties linked to the deep learning approach used in this study have been assessed through cross-validation, for

which deep learning predictions were compared with observations
:::
and

::::::
remote

::::::
sensing

::::::::
estimates. A detailed presentation of the

method’’s uncertainties and performance from the cross-validation study can be found in Bolibar et al. (2020b). Block cross-

validation ensured that all the 32 glaciers in the dataset were evaluated, with spatiotemporal structures formed by glaciers and

years being considered in order to prevent the violation of the assumption of independence (Roberts et al., 2017). This means10

that three different deep ANNs were produced: one for reconstructing glacier-wide SMB in space, one for the reconstruction

in time (future and past), and another one for both dimensions at the same time; each of these with a different calibration and

performance. It was shown that the deep ANN performs better in the spatial dimension, in which the SMB signal relationships

with the predictors are the simplest. SMB interannual variability is mostly driven by climate, whereas geography and local

topography (i.e. differences between glaciers) modulate the signal in space in a simpler way (Vincent et al., 2017; Bolibar15

et al., 2020b). Therefore, deep learning is capable of finding more structures in the spatial dimension, accounting for a better

accuracy and explained variance compared to the temporal dimension. The deep ANN used in this study presents an RMSE

of 0.49
::::
0.55

:
m.w.e a−1 with an r2 of 0.79 in LOGO

:::
0.75

:::
in

:::::::
LSYGO

:
cross validation. Nonetheless, only one glacier in the

training dataset is smaller than 0.5 km2 (Glacier de Sarennes, 0.3 km2 in 2003), implying that uncertainties for very small

glaciers (< 0.5 km2) might differ from those estimated using cross-validation. In 2015, very small glaciers in the French Alps20

represented about 80% of the total glacier number, but they accounted for only 20% of the total glacierized area. This means

that their importance is relative, for example in terms of water resources, but a user of this dataset should bear in mind that

SMB from these very small glaciers might carry greater uncertainties than the ones assessed during cross-validation. This

might be especially true for extremely small glaciers (< 0.05 km2) which can be considered as spatial outliers for the deep

ANN. Since there is only one glacier with SMB observations for very small glaciers and none for extremely small glaciers,25

there is no precise way to quantify these uncertainties. On the other hand, the ANN is mostly trained with glacier-wide SMB

data between 1984 and 2014, with a reduced amount of values between 1967 and 1984 (986 and 62 values, respectively).

Since this early period contains on average more positive and neutral glacier-wide SMB values than the 1984-2014 period,

the performance of the ANN was specifically assessed for this period. An additional cross-validation was performed with four

folds, each with a glacier including glacier-wide SMB data before 1984. For each fold, all SMB data of that glacier and time30

period were hidden from the ANN, and the simulated glacier-wide SMBs between 1967 and 1983 were tested in order to

assess the model’s performance. The results showed that the ANN is capable of correctly reconstructing glacier-wide SMB for

glaciers and years before 1984 (Fig. S3
::
S5), with an estimated accuracy (RMSE) of 0.47 m.w.e. a−1 and an estimated explained

variance (r2) of 0.65. This uncertainty assessment is based on roughly 10% of the full dataset, meaning that these estimates

5



lack the robustness of the full cross-validation from Bolibar et al. (2020b), but they serve to show that the model can accurately

reconstruct glacier-wide SMB data outside the main cluster of years used during training.

::
In

::::
order

::
to

::::::
further

:::::::
validate

:::
the

::::::::::::
reconstructions

::::::::
presented

::::
here,

::
a
:::::::::
comparison

::::::
against

:::::::::::
independent

::::::
ASTER

::::::::::::::::::
(Davaze et al., 2020)

:::
and

:::::::
Pléiades

::::::::::::::::::
(Berthier et al., 2014)

:::::::
geodetic

::::
mass

:::::::
balance

:::
data

:::
has

:::::
been

::::::::
performed

::
to

:::::::
validate

:::
the

:::
bias

::
of

:::
the

:::::
SMB

::::::::::::
reconstructions

::
for

:::
the

:::::::::
2000-2015

::::
(Fig.

::::
S1)

:::
and

:::::::::
2003-2012

::::
(Fig.

:::
S2)

:::::::::::
sub-periods.

:::
Our

:::::::::::::
reconstructions

::::
show

::
a

::::
good

:::::::::
agreement

::::
with

:::
the

:::::::
geodetic5

::::
mass

::::::::
balances,

:::::
except

:::
for

:::::
some

::::
quite

::::::::
particular

::::
high

:::::::
altitude

:::::::
glaciers

::::
from

:::
the

::::::::::
Mont-Blanc

::::::
massif

:::
that

:::::::::::
substantially

::::
differ

:::::
from

::::
most

:::::::
glaciers

::
in

:::
the

::::::
French

:::::
Alps.

::
A

::::
more

:::::::
detailed

:::::::
analysis

::::
and

:::
the

::::::
figures

:::::::::
comparing

:::
the

::::
mass

:::::::
balance

:::::::
datasets

:::
can

:::
be

:::::
found

::
in

:::
the

:::::::::::::
supplementary

:::::::
material.

:

3 Dataset overview

3.1 Dataset format and content10

The SMB dataset is comprised of multiple CSV files, one for each of the 661 glaciers from the 2003 glacier inventory (Gardent

et al., 2014), named with its GLIMS ID and RGI ID with the following format: GLIMS-ID_RGI-ID_SMB.csv. Both indexes

are used since some glaciers that split into multiple sub-glaciers do not have an RGI ID. Split glaciers have the GLIMS ID

of their "parent" glacier and an RGI ID equal to 0. Every file contains one column for the year number between 1967 and

2015 and another column for the annual glacier-wide SMB time series. Glaciers with remote sensing-derived observations15

(Rabatel et al., 2016) include this information as an additional column. This allows the user to choose the source of data, with

remote sensing data having lower uncertainties (0.35±0.06 (σ) m.w.e. a−1 as estimated in Rabatel et al. (2016)). Columns are

separated by semicolon (;). All topographical data for the 661 glaciers can be found in the updated version of the 2003 glacier

inventory included in the Supplementary material and in the dataset repository.

3.2 Overall trends20

We estimate an average area-weighted regional glacier-wide SMB of -0.72
::::
-0.71±0.20

::::
0.21 (σ) m.w.e. a−1 between 1967 and

2015 (Fig. 3). As reported in previous studies (Huss, 2012; Rabatel et al., 2016; Vincent et al., 2017), our reconstructed SMB

data show a slightly negative average value during the 1970s, even less negative in the 1980s, and then increasingly negative

values in recent decades with an abrupt change in 2003 (Fig. 2 and 3). For this period (1967-2015), the year 2003 with its

remarkable heatwave remains the most negative glacier-wide SMB year (-2.26 m.w.e. a−1 on average), with 1984 being the25

most positive year of the study period (+0.85 m.w.e. a−1 on average).
:::
The

::::::::::::
area-weighted

::::::
average

:::::
SMB

::
is

::::::
slightly

::::
less

:::::::
negative

:::
than

:::
the

:::::
mean

::::::
annual

:::::::::::
glacier-wide

:::::
SMB,

:::::::
showing

:
a
:::::
light

:::::::::
asymmetry

::
in

:::
the

:::::::::
probability

::::::::::
distribution

:::::::
function

::::::
(PDF)

::::
(Fig.

:::
2c).

:

3.3 Regional and topographical trends

Here we analyse the main trends for the glacierized massifs and for some relevant topographical parameters. The reported

glacier-wide SMBs are only area-weighted if specifically mentioned. Interesting differences appear once the dataset is divided30
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a

b

c

Figure 2.
::
(a)

:
Annual glacier-wide SMB reconstruction

::
and

:::
(b)

::::::::
cumulative

::::::::::
glacier-wide

::::
SMB

:::::::::::
reconstructions

:
of all the glaciers in the French

Alps (N = 661) between 1967 and 2015. For each individual glacier, line thickness depends on glacier area, with smaller glaciers having

thinner lines.
:::
The

:::::::
histogram

:::
(c)

::::::
indicates

:::
the

:::::::::
distribution

:::
and

::::::::
probability

::::::
density

::::::
function

:::::
(PDF)

::
of

:::
the

::::::::
1967-2015

::::::::
cumulative

::::
SMB

:::
(m

::::
w.e.)

:
of
:::

the
::::::
dataset.

into mountain ranges (Fig. 4). The Mont-Blanc massif presents the lowest mass loss over the entire study period, with an

average cumulative loss over the 1967-2015 period of 36.42
::::
34.10 m.w.e. This is probably due to its northern location within the

French Alps and its large high altitude accumulation areas, which resulted in more positive or less negative SMBs, especially

during the 1980-2000s. Oisans is the massif with the second lowest average cumulative mass loss (38.35
:::::
37.20

:
m.w.e.). Its

glaciers have average altitudes ranging from 2290 to 3470 m.a.s.l., with around 50% of them having mean altitudes over5

3000 m.a.s.l. and with about 40% of glaciers (including most of the large ones) having a northern aspect. Glaciers in Haute-

Tarentaise present similar characteristics to those from Oisans, with mean altitudes ranging between 2300 and 3600 m.a.s.l.,

with about 60% of the glaciers above 3000 m.a.s.l. This less negative trend was especially important during the recent years

with high mass losses from 2003 onwards. On the other hand, the Ubaye, Champsaur, Chablais and Haute-Maurienne massifs

7
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Figure 3. Averaged area-weighted decadal glacier-wide SMB for the French Alps
::::
with

::::::
decadal

:::::::::
uncertainties. The total area-weighted glacier-

wide SMB is estimated for the 1967-2015 period

appear as the most affected mountain ranges with cumulative mass losses reaching between 44 and 45
::
41

:::
and

:::
46

:
m.w.e. for

the four massifs over the 1967-2015 period. The Chablais range has a very small number of glaciers remaining, all of them at

rather low altitudes (2200-2900 m.a.s.l.), relatively small (0.01 - 1.1 km2), and with a northwestern aspect. Despite being the

northernmost mountain range in the French Alps, its low altitude is most likely the main reason for the very negative SMBs,

which were under the regional average even during the positive years in the 1980s. The Champsaur range shows a similar5

situation, with very small glaciers (0.03 - 0.89 km2) lying at relatively low altitudes (2300-3100 m.a.s.l.) in the southernmost

latitudes of the Alps (44º7’). Finally, the situation of the Ubaye massif is quite similar to the one of Champsaur, being the

southernmost glacierized massif in the French Alps, with a strong mediterranean influence. Such glaciers are remnants of the

Little Ice Age, far from being in equilibrium with the warming climate, and can quickly lose a lot of mass through non-dynamic

downwasting (Paul et al., 2004).10

When classifying the SMB time series by glacier surface area, we encounter the following patterns, with n being the num-

ber of glaciers in the subset and s its standard deviation: (1) Very small glaciers (< 0.5 km2; n = 534; SMB1967−2015

= -0.82
::::
-0.79

:
m.w.e. a−1; s = 0.21

:::
0.23

:
m.w.e. a−1) present more negative glacier-wide SMBs than (2) small/medium

glaciers (ranging from 0.5 to 2 km2; n = 93; SMB1967−2015 = -0.76 m.w.e. a−1; s = 0.16
::::
0.17

:
m.w.e. a−1) and (3)

large glaciers (> 2 km2; n = 34; SMB1967−2015 = -0.72
::::
-0.71

:
m.w.e. a−1; s = 0.10 m.w.e. a−1).

::::
(Fig.

::::
S8).

:
Very small15

glaciers present a larger spread of values than small/medium and large glaciers (s = 0.21
:::
0.23

:
m.w.e. a−1 versus 0.17 and

0.10 m.w.e. a−1, respectively). As explained in Sect. 2, the uncertainties for very small glaciers are greater due to their

underrepresentation
:::::::::::::::::
under-representation

:
in the training dataset, meaning that analysis

:::::::
analyses

:
based on small glaciers have

to be taken with greater care.
:::
The

::::::
effects

:::
of

:::::
these

:::::
trends

::::
can

::
be

:::::
seen

::
in

:::
the

:::::
PDF

::
of

:::
the

::::::::::
cumulative

:::::
SMB

:::::::::::::
reconstructions
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::::
(Fig.

::::
2c),

:::::
where

::::
the

::::::::::::
area-weighted

:::::
mean

:::
lies

:::::::
slightly

:::::::
outside

:::
the

:::::
PDF

:::::::::
maximum,

::::::::
showing

::::
how

:
a
:::::

great
:::::::

number
:::
of

:::::
small

::::::
glaciers

:::
are

:::::::::
presenting

::::::
higher

::::::
losses.

:
On the other hand, a clearer relationship between the glacier slope (computed here as

the lowermost 20% altitudinal range slope) and glacier-wide SMB arises, with steeper glaciers having less negative glacier-

wide SMBs (Fig. S4 and S7
::
S6

:::
and

:::
S9). Glaciers with a gentle tongue slope generally present longer response times and

higher ice thickness, which are associated with more negative mass balances (Hoelzle et al., 2003; Huss and Fischer, 2016)5

:::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Hoelzle et al., 2003; Huss and Fischer, 2016; Zekollari et al., 2020). These results are in agreement with the findings by Fis-

cher et al. (2015), who computed the geodetic mass balance of all the Swiss glaciers for the 1980-2010 period. Overall, the topo-

graphical relationships found here are similar, although more negative than for the Swiss Alps (Huss, 2012; Huss and Hock, 2015)

:::::::::::::::::::::::::
(Huss, 2012; Huss et al., 2015), showing how the southernmost glaciers in the Écrins and Vanoise regions present stronger

glacier mass losses. This is mostly due to their mediterranean climatic influence compared to the more continental Swiss and10

Austrian glaciers, which results in more negative SMB in a warming climate (Oerlemans and Reichert, 2000). Nonetheless,

results from this type of bivariate analysis can show rather biased trends, since the topographical variables are highly intercorre-

lated, with for example small glaciers having steeper slopes and vice versa (Gardent et al., 2014). The position and evolution of

the equilibrium line can totally reverse the trends of small or steep glaciers, so these relationships can strongly vary depending

on the region or time period observed.15

3.4 Comparison with previous studies and observations

In order to put into perspective the reconstructions presented in this study, we compare them to an updated version from the

Marzeion et al. (2015) reconstructions (B. Marzeion, personal communication, October 2019 - January 2020), and to all the

available glacier-wide SMB observations in the French Alps. The goal of this comparison is not to draw conclusions on the

quality of either reconstruction, but to analyse the differences among them and to try to understand the causes. In the updated20

version of Marzeion et al. (2015) - referred as M15U from now on - a global SMB model relying on temperature and solid

precipitation was used to reconstruct SMB time series for all the glaciers in the world present in the Randolph Glacier Inventory

(Consortium, 2017). This model was optimized based on three
:::
five

:
parameters: the temperature sensitivity of the glacier ,

::::::
(local);

:::
and

:
a precipitation correction factorand a bias correction,

:::::::::::
precipitation

:::::
lapse

::::
rate,

:::::::::::
temperature

::::::::
threshold

:::
for

:::::
solid

::::::::::
precipitation

::::
and

::::
melt

::::::::::
temperature

::::::::
threshold

::::::
(global). As in Bolibar et al. (2020b), the approach by M15U was cross-validated25

respecting the spatiotemporal independence in order to evaluate its performance for unobserved glaciers and years. Prior to

contrasting the results, three important different aspects between our approach and the one of M15U need to be highlighted:

(1) M15U ’s model works with simplified physics, with a temperature-index model calibrated on observations; in this study

we use a fully statistical approach based on deep learning, where physics-based considerations only appear in the predictor

selection. (2) M15U calibrated their model with SMB observations of 38 glaciers, most of them located in Switzerland for the30

1901-2013 period; in this study we used observations of 32 glaciers, all located in the French Alps for the 1967-2015 period.

(3) M15U force their updated model with CRU 6.0 (update of Harris et al., 2014), with 0.5° latitude/longitude grid cells, which

has a significantly lower spatial resolution and suitability to mountain areas than the SAFRAN reanalysis (Durand et al., 2009)

used in this study, in which altitude bands and aspects are considered for each massif, and meteorological observations from

9
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Figure 4. (a) Averaged annual glacier-wide SMB and (b) cumulative averaged glacier-wide SMB time series for each of the massifs in the

French Alps between 1967 and 2015. (c) Glacierized massifs in the French Alps with the average glacier-wide SMB for the 1967-2015

period. Coordinates of bottom left map corner: 44º32’ N, 5º40’ E. Coordinates of the top right map corner: 46º08’ N, 7º17’ E. (Basemap ©

imagico.de)

high-altitude stations are assimilated. The cross-validations of both studies determined a performance with an average RMSE

of 0.66 m.w.e. a−1 and an r2 of 0.43 for M15U for the European Alps, and an average RMSE of 0.49 m.w.e. a−1 and an r2

of 0.79 for this study. However, due to the
::::
Due

::
to

:::
the highly different methodologies and forcings of the two models, a direct

comparison is not possible, so the following analysis is focused on the overall trends and sensitivities in the reconstructions

10



and their potential sources.
:::
All

:::
the

::::::
specific

::::::::::
differences

:::
and

::::::
details

:::::::
between

:::
the

::::
two

::::::
models

:::
can

:::
be

:::::
found

::
in

:::::
Sect.

::
S2

:::::
from

:::
the

::::::::::
supplement.

As shown in Figure 5, the interannual variability, driven by climate, is quite similar between the two reconstructions. Con-

versely, important differences are found for different subperiods in the amplitude of the area-weighted mean glacier-wide SMB

series. These differences are the greatest in the 1970s, 1980s and 2010s, with similar average values for the 1990s and 2000s5

(Fig. 5 and S5
:::
S7). M15U presents less negative and more positive glacier-wide SMB values in the 1970s, but on the contrary,

it presents more negative values in the 1980s compared to our results. We believe there might be two potential reasons for

this: (1) In 1976 there was a shift in the winter mass balance regime in the French Alps, with more humid winters bringing

more accumulation; and in 1982 there was a shift in the summer mass balance, resulting in increased ablation (Thibert et al.,

2013). Since both models use parameterized or statistical relationships for SMB response to precipitation and temperature,10

they are likely to react differently to these changes. A similar situation is found from the year 2003 onwards, where there was

a substantial increase in temperatures and mass loss (e.g. Six and Vincent, 2014). Our reconstructions show a marked change

in 2003 (change of slope in the cumulative plot in Fig. 5), whereas M15U present a rather linear trend.
:::
The

::::
fact

:::
that

::::::
M15U

::::
used

:
a
:::::::::::
volume-area

::::::
scaling

:::::::::
compared

::
to

:::
the

::::::::::
interpolated

::::::::::::
topographical

:::
data

:::::
from

:::::::::
inventories

:::::
from

:::
this

:::::
study

::::::
means

::::
that

:::
the

:::::::::::
topographical

::::::::
feedback

::
of

:::
the

::::::
models

:::::
might

:::::
differ

::
as

::::
well

:::::::::
throughout

:::
the

::::::::::::
reconstructed

::::::
period. (2) For the 1967-1983 interval,15

the amount of available glacier-wide SMB data for training is much lower than for the rest of the period (green numbers in Fig.

5). This is likely the reason why the differences between our reconstructions and observations are greater for that period (Fig.

5). On the other hand, the similarities between our reconstructions and the observations for the 1984-2014 period are explained

by the fact that the 32 glaciers with observations represent around 45% of the total glacierized area in the French Alps in the

year 2003. For the periods before and after this interval, differences and uncertainties in the reconstructed values are greater20

because of the smaller sample size.

Important similarities between observations and the reconstructed glacier-wide SMB values for the 1984-2015 period in this

study (Fig. 5) question a possible overfitting of the reconstructions to the training data. First, for the vast majority of the 661

French glaciers, the reconstructions are based on an ensemble of cross-validated models, which intrinsically limits overfitting

(see Sect. 2). Second, we analysed the deviation to the climatological mass-balance signal of the SMB for each cluster of25

glacier-sizes. This analysis is presented in the Supplementary
::::::::::::
supplementary

:::::::
material. It reveals that the similarities between

observations and the reconstructed glacier-wide SMB values for the 1984-2015 period in Fig. 5 proceed from big glaciers, that

dominate both in the area-weighted reconstructions and in the observations .
::::
(Fig.

::
S3

::::
and

::::
S4). However, for the other glacier-

size classes, our reconstruction shows different patterns from the data in the observations, which suggests that the model is not

overfitting (Fig. S1
::
S3).30

4 Data availability

The full glacier-wide SMB dataset and the detailed topographical information of all the French alpine glaciers is available in

the following Zenodo repository: https://doi.org/10.5281/zenodo.3663630 (Bolibar et al., 2020a).

11



2 3 4 32 5

a

b

Figure 5. Comparison of
::
(a)

:
annual and

::
(b) cumulative glacier-wide SMB simulations in the French Alps between this study, reconstructions

from an update from Marzeion et al. (2015) and the mean of all observations available in the French Alps. Green numbers indicate the number

of glaciers with SMB observations for each period and thin light blue lines indicate the area-weighted mean of each of the cross-validation

ensemble members.

5 Conclusions

We presented a dataset of annual glacier-wide SMB of all the glaciers in the French Alps (44° - 46°13’N, 5.08° - 7.67°E) for

the 1967-2015 period (Bolibar et al., 2020a). This dataset has been reconstructed using deep learning (i.e. an artificial neural

network), based on direct and remote sensing annual glacier-wide SMB observations, climate reanalysis and topographical

data from multitemporal glacier inventories. The deep learning model is capable of reconstructing glacier-wide SMB time5

series for unobserved glaciers in the same region based on patterns and structures learnt by the artificial neural network from

the observations and their relationships with predictors. An extensive cross-validation was implemented to understand the

characteristics of the SMB signal in the region and to assess the method’s validity and uncertainty. The average accuracy

12



(RMSE) of the dataset is estimated at 0.49
::::
0.55 m.w.e. a−1 with an explained variance (r2) of 79

::
75%. Reconstructions show a

mean area-weighted glacier-wide SMB of -0.72
::::
-0.71±0.20

:::
0.21

:
(σ) m.w.e. a−1 for the 1967-2015 period. Important differences

are found among different massifs, with the Mont-Blanc (-0.74
::::
-0.69

:
m.w.e. a−1), Oisans and Haute-Tarentaise ranges (-0.78

::::
-0.75

:
m.w.e. a−1 both) presenting the lowest mass losses and the Chablais (-0.90

::::
-0.93 m.w.e. a−1), Ubaye and Champsaur

(-0.91
::::::::::
Champsaur

:::
and

:::::::::::::::
Haute-Maurienne

:::::
(-0.86

:
m.w.e. a−1 both)

:::
and

::::::
Ubaye

::::::
(-0.83

::::::
m.w.e.

::::
a−1)

:
showing the highest losses.5

In order to put these results into perspective, this reconstruction was compared to all available glacier-wide SMB observations

in the French Alps as well as the physical/empirical reconstructions from another study (update from Marzeion et al., 2015).

Interesting differences were found between the two methods, highlighting the different sensitivities and responses of different

approaches to climate shifts that occurred during the study period. These differences are particularly relevant in the 1970s

and 1980s, previous to a winter precipitation and summer temperature shift that occurred in the French Alps in the years10

1976 and 1982, respectively. Moreover, after the famous 2003 European heatwave, glaciers experienced an acceleration in

mass loss which is well captured by our reconstruction. This open glacier-wide SMB dataset can be useful for hydrological or

ecological studies in need of meltwater
::
net

::::::
glacier

::::
mass

:
contributions of glacierized catchments in the French Alps. Moreover,

the publication of such open datasets is the cornerstone of future community-based data-driven scientific studies.
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1 Comparison with independent geodetic mass balance data

All available annual glacier-wide SMB data in the French Alps have been used to train the SMB ANN of the present study.

However, some multi-annual geodetic mass balance (MB) datasets exist that can provide a means to validate the reconstruc-

tion’s bias for specific glaciers during multi-annual time intervals. This type of analysis is more limited than the cross-validation

done to annual glacier-wide SMB values in Bolibar et al. (2020), as it only gives information about the bias of a sub-period of

the reconstructions instead of the accuracy found via cross-validation. Our SMB reconstructions are compared against ASTER

geodetic MB from Davaze et al. (2020) for the 2000-2015 and 2003-2012 periods (Fig. S1 and S2) and against Pléiades

geodetic MB from Berthier et al. (2014) for the 2003-2012 period (Fig. S2).

For certain glaciers, the ASTER and Pléiades geodetic MB give slightly less negative MB than the glaciological SMB used

to train the deep learning SMB model. This fact might explain the slightly more negative trend of our reconstructions seen for

the 2000-2015 and 2003-2012 periods, which experienced very negative SMB after the well known summer 2003 heatwave.

This is quite surprising, since both the GLACIOCLIM glaciological SMB measurements and the annual glacier-wide SMB

data from Rabatel et al. (2016) have been calibrated with geodetic MB from optically-derived DEMs, which have a very high

spatial resolution. Overall, the independent geodetic MB are well within the uncertainty range of our model. There are some

exceptions for specific glaciers in the Mont-Blanc massif, such as Bossons, Talèfre and Tour. These glaciers have very large

and high altitude accumulation areas, not seen in almost any glacier in our training dataset. On the other hand, for most of the

mid-sized glaciers the reconstructions show a good agreement.

2 Model differences between the updated version of Marzeion et al. (2015) and this study

In order to contrast the results from Sect. 3.4, three important different aspects between our approach and the one of M15U

need to be highlighted:
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Figure S1. Comparison between glaciological observations from the GLACIOCLIM observatory (GC), ASTER geodetic mass balances

from Davaze et al. (2020) (D20) and the deep learning reconstructions from the present study (B20).

1. M15U ’s model works with simplified physics, with a temperature-index model calibrated on observations; in this study

we used a fully statistical approach based on deep learning, where physics-based considerations only appear in the

predictor selection.
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Figure S2. Comparison between glaciological observations from the GLACIOCLIM observatory (GC), ASTER geodetic mass balances

from Davaze et al. (2020) (D20), the deep learning reconstructions from the present study (B20) and Pléiades geodetic mass balances from

Berthier et al. (2014) (B14).

2. M15U calibrated their model with global SMB observations, including 38 glaciers in the European Alps, most of them

located in Switzerland for the 1901-2013 period; in this study we used observations of 32 glaciers, all located in the

French Alps for the 1967-2015 period.

3. M15U forced their updated model with CRU 6.0 (update of Harris et al., 2014), with 0.5° latitude/longitude grid cells,

which has a significantly lower spatial resolution and suitability to mountain areas than the SAFRAN reanalysis (Durand

et al., 2009) used in this study, in which altitude bands and aspects are considered for each massif, and meteorological

observations from high-altitude stations are assimilated.

The cross-validations of both studies determined a performance with an average RMSE of 0.66 m.w.e. a−1 and an r2 of

0.43 for M15U for the European Alps, and an average RMSE of 0.49 m.w.e. a−1 and an r2 of 0.79 for this study. However,

due to the highly different methodologies and forcings of the two models, a direct comparison is not possible, so the following

analysis is focused on the overall trends and sensitivities in the reconstructions and their potential sources.

3 Influence of area in glacier-wide SMB signal and proof on non overfitting

Due to similarities between the averaged reconstructed glacier-wide surface mass balance (SMB) and the observations during

the 1984-2015 period, we decided to include an analysis to isolate the topographical influence in the glacier-wide SMB signal,
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in order to verify that the model is not overfitting. Since the climate signal is the main common driver of interannual variability

of glacier-wide SMB in the region, one needs to find a way to isolate the topographical signal. In Fig. S3, the median recon-

structed annual glacier-wide SMB of the 661 glaciers in the French Alps (i.e. the interannual variability, hence a proxy of the

climate signal) is subtracted to the mean annual values of the observations and of 4 subsets of glaciers divided by area classes.

Therefore, one can observe the residual influence of glacier area on the glacier-wide SMB signal. The influence of area on

glaciers with observations is quite similar to glaciers with areas greater than 2 km2, which is reasonable since glaciers with

observations have an average of 4 km2 (range: 0.3-31.8 km2 in 2003). Moreover, one can see that even for a relatively short

period of 30 years, the differences between the reconstructions for very small glaciers (< 0.5 km2) and observations are quite

important, accounting for an average cumulative loss of more than 5 m.w.e. As stated in Sect. 2, this does not necessarily mean

that the model has fully captured the topographical influence in the glacier-wide SMB signal in the region, but it does prove

that the model is not overfitting since it exhibits consistent variations in SMB when the topographical predictors move away

from the training data. Moreover, this is coherent with the importance attributed to topographical predictors (Bolibar et al.,

2020).

The same analysis has been performed with the reconstructions from the updated version of Marzeion et al. (2015), shown

in Fig. S4. The gradient with respect to glacier surface area appears to be similar, except for the behaviour of glaciers after

2007. Small and middle sized glaciers (0.1 - 2 km2) switch to a positive influence, as opposite to large glaciers (> 2 km2),

which transition to a negative influence. Conversely, our results show a more continuous trend, without a change of behaviour

in the last years of the analysed period.
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4 Supplementary figures
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Figure S3. Influence of glacier area on the glacier-wide SMB signal. The reconstructed median annual glacier-wide SMB of the 661 glaciers

in the French Alps can be seen as a proxy of the climate signal in the region. It is subtracted to the mean annual glacier-wide SMB of the

glaciers with observations and to four different subsets of reconstructions divided into glacier area size, showing only the annual differences

based on glacier area classes. The dotted line depicts the subtracted signal (non cumulative) in order to give some context.
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Figure S4. Same as S3 but comparing this study to the updated version of Marzeion et al. (2015). In the legend, “B” stands for Bolibar et al.

(this study) and “M” for the update of Marzeion et al. (2015). Both models show a relatively similar gradient effect with respect to glacier

area, with differences in the amplitude of the effects. The main differences appear from 2007, where small and middle sized glaciers (0.1 -

2 km2) from the update of Marzeion et al. (2015) switch to a positive influence, as opposite to large glaciers (> 2 km2), which transition

to a negative influence. The reconstructed SMB dotted lines are not cumulative and they are depicted in order to give some context of the

subtracted climate signal.
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Figure S5. Cross-validation for annual glacier-wide SMB values outside the main 1984-2014 training period. The black line indicates the

one-to-one reference. Simulations have been done from 1959, the earliest date with observations to validate against the maximum number of

values. This serves to confirm that the model is capable of reproducing glacier-wide SMB outside the main observed period.
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Figure S6. Average annual glacier-wide SMB for each glacier over the entire study period with respect to (a) glacier surface area, (b) the

lowermost 20% altitudinal range slope and (c) mean glacier altitude. p indicates the p-value and r the correlation between the topographical

variables and the average glacier-wide SMB.
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Figure S7. Comparison of area-weighted decadal glacier-wide SMB simulations in the French Alps between this study and an update from

Marzeion et al. (2015).
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Figure S8. Average annual glacier-wide SMB per glacier area classes
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Figure S9. Average annual glacier-wide SMB for classes of glacier slope of the lowermost 20% altitudinal range (i.e. a proxy of the glacier’s

tongue slope)
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Figure S10. French Alpine glaciers used for model training and validation and their classification into three clusters or regions (Écrins,

Vanoise, Mont-Blanc). Coordinates of bottom left map corner: 44º32’ N, 5º40’ E. Coordinates of the top right map corner: 46º08’ N, 7º17’

E.
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