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Abstract. Satellite observations of evapotranspiration (ET) have been widely used for water resources management in China. An 

accurate ET product with a high spatiotemporal resolution is required for research on drought stress and water resources management. 

However, such a product is currently lacking. Moreover, the performances of different ET estimation algorithms for China have not 

been clearly studied, especially under different environmental conditions. Therefore, the aims of this study were as follows: (1) to 

use multisource images to generate a long time series (2001-2018) daily ET product with a spatial resolution of 1 km × 1 km based 15 

on the Surface Energy Balance Algorithm for Land (SEBAL); (2) to comprehensively evaluate the performance of the SEBAL ET 

in China using flux observational data and hydrological observational data; (3) to compare the performance of the SEBAL ET with 

the MOD16 ET product at the point-scale and basin-scale under different environmental conditions in China. At the point-scale, 

both the models performed best in the conditions of forest cover, subtropical zones, hilly terrain, or summer, respectively, and 

SEBAL performed better in most conditions. In general, the accuracy of the SEBAL ET (rRMSE = 44.91%) was slightly higher 20 

than that of the MOD16 ET (rRMSE = 48.72%). In the basin-scale validation, both the models performed better than in the point-

scale validation, with SEBAL obtaining superior results (rRMSE = 19.15%) to MOD16 (rRMSE = 33.62%). Additionally, both the 

models showed a negative bias, with the bias of the MOD16 ET being higher than that of the SEBAL ET. In the daily-scale validation, 

the SEBAL ET product showed an RMSE of 0.92 mm/d and an r-value of 0.79. In general, the SEBAL ET product can be used for 

the qualitative analysis and most quantitative analysis of regional ET. SEBAL ET product is freely available at https://doi.org/ 25 

10.5281/zenodo.4218413 (Cheng, 2020). The results of this study can provide a reference for the application of remotely sensed ET 

products and the improvement of satellite ET observation algorithms. 
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1. Introduction 

Evapotranspiration (ET) is the process of transferring surface water to the atmosphere, including soil evaporation and vegetation 

transpiration (Wang and Dickinson, 2012). This process is a key node linking surface water and energy balance. In the process of 

water balance, ET represents the consumption of surface water resources, and in the process of energy balance, the energy consumed 

by ET is called the latent heat flux (λET, W/m2, where λ is the latent heat vaporization), which is an important energy component 35 

(Helbig et al., 2020; Zhao et al., 2019). Approximately 60% of global precipitation ultimately returns to the atmosphere through 

evapotranspiration (Wang and Dickinson, 2012). Therefore, accurately quantifying the ET of different land cover types is necessary 

to better understand changes in regional water resources. However, traditional methods for the estimation of ET based on point-

scale or small-area-scale analysis cannot meet the requirement of global climate change research and regional water resource 

management (Li et al., 2018). Since the United States successfully launched the first meteorological satellite in the 1960s, 40 

hydrological remote sensing (RS) applications have developed rapidly and have led to huge breakthroughs (Karimi and Bastiaanssen, 

2015). Remote sensing technology with a high spatiotemporal continuity provides an effective means for regional ET estimation. 

 

Satellite remote sensing provides a reliable direct estimation of ground parameters; however, it cannot measure ET directly (Wang 

and Dickinson, 2012). Therefore, several RS-based algorithms for the estimation of ET have been proposed and reviewed (Pôças et 45 

al., 2020; Senay et al., 2020; Wang and Dickinson, 2012). These models can be divided into two types according to their mechanism: 

those based on surface energy balance (SEB) and those based on semi-empirical formulas (SEFs). SEB-based models can be further 

divided into one-source models and two-source models (Wang and Dickinson, 2012). One-source models do not distinguish 

vegetation from bare soil and regard the land surface as a system that exchanges energy and water with the atmosphere. Examples 

of one-source models include the Surface Energy Balance Index (S-SEBI) (Roerink et al., 2000), the Surface Energy Balance System 50 

(SEBS) (Su, 1999), and the Surface Energy Balance Algorithm for Land (SEBAL) (Bastiaanssen et al., 1998a; Bastiaanssen et al., 

1998b). These models have a theoretical basis, a simple principle, strong portability, and have been widely used (Bastiaanssen and 

Steduto, 2017; Elnmer et al., 2019; Huang et al., 2015; Wagle et al., 2019). Two-source models distinguish the surface water and 

energy exchange between vegetation and bare soil and calculate fractional canopy coverage (Fc) using an empirical formula and a 

vegetation index obtained from remote sensing data to divide the land surface into vegetation and bare soil in each single pixel. 55 

Examples of two-source models include the Two-source Energy Balance (TSEB) (Kustas et al., 2003), Two-source Trapezoid Model 

for Evapotranspiration (TTME) (Long and Singh, 2012), and Hybrid Dual-source Scheme and Trapezoid Framework-based 

Evapotranspiration Model (HTEM) (Yang and Shang, 2013). Compared to one-source models, two-source models have a superior 

theoretical mechanism. SEF-based models using traditional semi-empirical formulas calculate λET and are simpler than SEB-based 

models. Examples of SEF-based models include the Surface Temperature and Vegetation Index (Ts-VI) space model (Carlson, 2007) 60 

and the Global Land Evaporation Amsterdam Model (GLEAM) based on the Priestley–Taylor (P-T) equation (Miralles et al., 2011). 
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Another well-known SEF-based model is based on the Penman–Monteith (P-M) equation, which has been improved and applied to 

remote sensing data to estimate regional ET (Mu et al., 2007; Mu et al., 2011).  

 

Since ET plays a critical role in the study of hydrology and ecology, ET products with a high spatiotemporal resolution are required. 65 

Therefore, a growing number of ET products have been generated to meet research needs. These include MOD16, which is generated 

by NASA based on the P-M algorithm and has a spatial resolution of 500 m × 500 m and a temporal resolution of eight days (Mu 

et al., 2007; Mu et al., 2011). However, a temporal resolution of eight days is not sufficient to conduct research on water resource 

management. The GLEAM daily ET product with a spatial resolution of 0.25° × 0.25° has been generated by the University of 

Bristol, UK, based on the P-T equation (Miralles et al., 2010). Additionally, Chen generated long time series daily ET datasets with 70 

a spatial resolution of 0.1° × 0.1° based on the SEBS algorithm (Chen et al., 2014; Chen, 2019). However, there are few ET 

products which simultaneously meet the current research needs in terms of temporal and spatial resolution. Therefore, generating a 

kilometer-level daily ET product which can minimize the influence of mixed pixels is critical. Moreover, the accuracy of ET derived 

from satellite imagery is affected by spatiotemporal conditions (Wagle et al., 2017). Several studies have indicated that RS-based 

methods for modeling ET have errors of 15–50% (Velpuri et al., 2013; Xue et al., 2020). RS-based models have different applicable 75 

conditions, and understanding the variation in accuracy between such models is important for their reasonable application. Several 

models have been validated by various researchers. For example, Wagle et al. (2017) compared five one-source SEB-models for 

application to high-biomass sorghum in Oklahoma, USA, and showed that each model has a high accuracy. Xue et al. (2020) 

compared the application of SEBAL and SEBS in different crops in California, USA, and found that SEBAL had a higher accuracy 

for full cover crops. Ramoelo et al. (2014) validated MOD16 products in the savanna of South Africa. However, few studies have 80 

validated the robustness of different models using long time series and at a large spatial scale, and most have focused on the accuracy 

validation and comparison of SEB-based models; however, there have been few comparative studies between SEB-based and SEF-

based models. Furthermore, the performance of different ET estimation algorithms in China has not been clearly discussed, 

especially under different environmental conditions. 

 85 

Water resources management is essential for China as it has an unbalanced spatial and temporal distribution of water resources. 

However, there is no ET product for China with a high spatiotemporal resolution, and the applicability of different RS-based models 

for the estimation of ET in China is not clear, which hampers the management of ET. In order to improve ET products in China and 

better understand the performance of RS-based ET estimation models in China, in this paper, we aim to (1) generate a long time 

series daily ET product with a spatial resolution of 1 km × 1 km based on the SEBAL model and multisource remote sensing images, 90 

(2) validate the accuracy of the generated ET product in China based on flux tower observational data and hydrological data, and 

(3) compare the performance of the generated ET product with MOD16 datasets in China under different environmental conditions. 
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2. Materials and methods 

2.1 Study area 95 

China (3°31′00″–53°33′47″ N, 73°29′59.79″–135°2′30″ E) covers a land area of approximately 9,600,000 km2, mainly including 

temperate zones, warm-temperate zones, subtropical zones, tropical zones, and plateau climate zones. China can be divided into 

nine basin regions based on the distribution of water resources (Zhang et al., 2011): the Southwest Basin (SwB), Continental Basin 

(CB), Pearl River Basin (PRB), Yangtze River Basin (YRB), Southeast Basin (SeB), Haihe River Basin (HRB), Yellow River Basin 

(YeRB), Huaihe River Basin (HuRB), and Songhua and Liaohe River Basin (SLRB) (Fig. 1).  100 
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Figure 1. The location of the study area. Note: CBM: Changbai mountain; DHM: Dinghu mountain; DX: Dangxiong; HB: Haibei; 

NMG: Neimenggu; QYZ: Qianyanzhou; XSBN: Xishuangbanna; YC: Yucheng. (Note: the Chinese boundry was obtained from 

Institute of Geographic Science and Natural Resources Research, Chinese Academy of Sciences (http://www.resdc.cn/)) 

2.2 Generation of long time series daily ET product  105 

In this study, a long time series daily ET product was generated based on SEBAL, which is a widely used one-source model (Gobbo 

et al., 2019; Jaafar and Ahmad, 2020; Mhawej et al., 2020; Rahimzadegan and Janani, 2019). SEBAL has been shown to have a 

good performance for ET estimation and can be regarded as typical of SEB-based models (Bastiaanssen et al., 1998b; Timmermans 

et al., 2006; Wagle et al., 2017). The workflow for the calculation of the daily ET using the SEBAL model and multisource satellite 

images is shown in Fig. 2. The SEBAL model calculates the instantaneous λET of the satellite transit time as a residual based on the 110 

surface energy balance equation (Eq. 1) as follows: 

nET R G Hλ = − −                                                                                   (1) 

where Rn is the net radiation flux, H is the sensible heat flux, and G is the soil heat flux (the unit of all three parameters is W/m2). 

In this paper, MODIS data (MCD43 surface albedo, MOD11 surface temperature, MOD13 NDVI) and meteorological data (air 

temperature) from the Global Modeling and Assimilation Office (GMAO) were used as input for surface parameterization (Rn, G 115 

and H). The equations for Rn are shown in Eqs. 2–5 below: 

(1 )n s l lR R R Rα= − ↓ + ↓ − ↑                                                                           (2) 

where α is the surface albedo obtained from the MCD43 data; Rs↓, Rl↑, and Rl↓ are the downwelling shortwave radiation, 

downwelling longwave radiation, and upwelling longwave radiation, respectively (the unit of all three parameters is W/m2). Rs↓ can 

be calculated using the Julian day (used to estimate the astronomical distance between the sun and earth), elevation (used to estimate 120 

atmospheric emissivity), and solar zenith angle at the time of satellite transit. Rl↑ and Rl↓ can be calculated using the surface 

temperature (MOD11), NDVI (MOD13, used to estimate surface emissivity) and air temperature (GMAO data), and atmospheric 

emissivity based on the Stefan-Boltzmann law. The equations for Rs↓, Rl↑, and Rl↓ are given in Eqs. 3–5. 

2

cos= sc sw
s

r

GR
d
θ τ× ×

↓                                                                                 (3) 

4=l a aR Tε σ↑                                                                                          (4) 125 

4=l sR Tεσ↓                                                                                           (5) 

where Gsc is the solar constant (1376 W/m2); θ is the solar zenith angle; τsw is the atmospheric transmittance (Eq. 6) (Tasumi, 

2000); dr is the astronomical distance between the sun and earth (Eq. 7) (Bastiaanssen et al., 1998a); εa and ε are the atmospheric 

emissivity (Eq. 8) (Bastiaanssen et al., 1998a) and surface emissivity (obtained from MOD11), respectively; σ is the Stefan-

Boltzmann constant (5.67 × 10-8 W/m2K4); and Ta and Ts are the air temperature (unit: K; obtained from GMAO data) and surface 130 
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temperature (unit: K, obtained from MOD11), respectively.  

50.75 2 10sw Zτ −= × × ×                                                                                (6) 

2 ( 93.5)1 0.0167sin( )
365
Jdr π −

= +                                                                      (7) 

0.2651.08( ln )a swε τ= −                                                                                  (8) 

where Z is the elevation obtained from a DEM (unit: m) and J is the Julian day. G can be calculated by the following empirical 135 

equation (Bastiaanssen et al., 1998a): 

2 4273.16 (0.0032 0.0032( ) ) (1 0.978 )s
n

TG R NDVI
c c
α α

α
−

= × × + × −                                      (9) 

where Ts is the surface temperature (unit: K) and c represents the influence of the satellite transit time on G. The value of c is 0.9 

for transmission times before 12:00 local time (LT), 1.0 for transmission times between 12:00 and 14:00 LT, and 1.1 for transmission 

times between 14:00 and 16:00 LT. H can be calculated as follows: 140 

air p

a

C dT
H

r
ρ

=                                                                                       (10) 

where ρair (unit: kg/m3) is the air density (Eq. 11) (Smith et al., 1991); Cp (unit: J/(kg×K)) is the specific heat of air at constant 

pressure; dT (unit: K) is the difference between the aerodynamic surface temperature (Tz0h; unit: K) and the reference height 

temperature (Ta, unit: K); and ra is the aerodynamic resistance (unit: s/m) (Eq. 12). 

5.26

6.26

( 0.0065 )349.635 a
air

a

T Z
T

ρ −
=                                                                       (11) 145 

2

1

ln( )

a
f

Z
Zr

kU
=                                                                                         (12) 

where k is the von Karman constant (0.41); Uf is the frictional wind speed (unit: m/s) (Eq. 13); and Z1 and Z2 are 0.01 and 2, 

respectively.  

ln( / )
r

f
r om

kUU
Z z

=                                                                                     (13) 

where Ur is the wind speed at height Zr, which can be calculated from the wind speed monitored by weather stations (Uw, Eq. 14); 150 

Zr is 200 m in this study (Zeng et al., 2008); and z0m is the surface roughness (unit: m, Eq. 15) (Moran and Jackson, 1991). 

ln(67.8 5.42)
4.87

w r
r

U ZU × −
=                                                                          (14) 

(5.65 6.32)
0

NDVI
mz e −=                                                                                    (15) 

However, since it is difficult to calculate dT directly, the model assumes that there is a linear relationship between surface 
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temperature (Ts, unit: K) and dT, as shown in Eq. 16: 155 

 sdT aT b= +                                                                                        (16) 

SEBAL solves the values of a and b by selecting the warmest and coldest spots; it assumes that the warmest spots represent pixels 

of dry farmland or saline alkali land covered by vegetation with zero λET (H = Rn - G), and the coldest spots represent pixels with 

sufficient water supply, lush vegetation, and low temperature, with an H of zero (λET = Rn - G). Therefore, a and b can be expressed 

as follows: 160 

_ _

_ _ _

( )
( )

n warmest warmest a warmest

p air warmest s warmest s coldest

R G r
a

C T Tρ
−

=
−

                                                                (17) 

_s coldestb aT= −                                                                                       (18) 

Moreover, it should be noted that H and ra are interrelated variables in the actual calculation; therefore, the Monin–Obkhov 

Similarity Theory (MOST)-based Monin–Obkhov length (L, unit: m) is introduced for iterative calculation to obtain stable values 

of H and ra. The details of MOST are shown in Fig. 3. 165 

The Monin–Obkhov length is a parameter reflecting the turbulent characteristics of the near-surface layer (Eq. 19) (Monin and 

Obukhov, 1954); Ψm(Zr) is the stability correction function of momentum; and ΨH(Z1) and ΨH(Z2) are the stability correction 

functions of sensible heat flux (Eqs. 20–28) (Paulson, 1970). 

3
air p f sC U T

L
kgH

ρ
=                                                                                     (19) 

where g is the acceleration due to gravity (9.81 m/s2). While L>0, indicating a stable state, Ψm(Zr), ΨH(Z1), and ΨH(Z2) are 170 

calculated as follows: 

5( ) r
m r

ZZ
L

−
Ψ =                                                                                     (20) 

1
1

5( )H
ZZ

L
−

Ψ =                                                                                     (21) 

2
2

5( )H
ZZ

L
−

Ψ =                                                                                     (22) 

While L<0, indicating an unstable state, Ψm(Zr), ΨH(Z1), and ΨH(Z2) are calculated as follows: 175 

21 1
( ) 2 ln( ) ln( ) 2arctan( ) 0.5

2 2
r r

r

Z Z
m r ZZ

ζ ζ
ζ π

+ +
Ψ = + + +                                               (23) 

1

2

1

1
( ) 2 ln( )

2
Z

H Z
ζ+

Ψ =                                                                               (24) 

2

2

2

1
( ) 2 ln( )

2
Z

H Z
ζ+

Ψ =                                                                               (25) 
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 0.2516(1 )
r

r
z

Z
L

ζ = −                                                                                   (26) 

1

0.25116(1 )z
Z

L
ζ = −                                                                                   (27) 180 

2

0.25216(1 )z
Z
L

ζ = −                                                                                   (28) 

While L=0, indicating a neutral state, Ψm(Zr) = ΨH(Z1) = ΨH(Z2) = 0. Then, iterative calculation is carried out to correct H (Eqs. 

29–31): 

*

ln( / )- ( )
r

f
r om m m

kUU
Z z Z

=
Ψ

                                                                          (29) 

2
1 2

* 1
*

ln( )- ( ) ( )H H

a
f

Z Z Z
Zr

kU

Ψ −Ψ
=                                                                        (30) 185 

*
air p

a

C dT
H

r
ρ

=                                                                                       (31) 

Several iterations were carried out until the value of H was stable. Then, Eq. 1 was used to calculate λET. However, it should be 

noted that all of the estimated energy component was an instantaneous value including latent heat; therefore, the concept of the 

evaporation fraction (Λ) was used to temporally scale-up from the instantaneous value to the daily ET. The evaporation fraction was 

defined as the ratio of latent heat to available energy (e.g., Rn-G) (Eq. 32). Several studies have indicated that the evaporation 190 

fraction can be regarded as constant throughout the day (Crago, 1996); therefore, the daily ET can be calculated as follows:  

n

ET
R G
λ

Λ =
−

                                                                                       (32) 

 
( )daily daily

daily

R G
ET

λ
Λ −

=                                                                           (33) 

where ETdaily, Rdaily, and Gdaily are the daily evapotranspiration, daily net radiation, and daily soil heat flux, respectively. Finally, the 

daily ET value was calculated. More details about SEBAL can be found in Bastiaanssen et al. (1998a).  195 

 

The spatial and temporal resolutions of the MCD43 surface albedo and the MOD11 surface temperature are 1 day and 1 km × 1 km, 

while those of MOD13 NDVI are 16 days and 500 m × 500 m. In this study, MOD13 was resampled to 1 km × 1 km and processed 

by smoothing and gap-filling from time series to daily data (Vuolo et al., 2017). The spatial and temporal resolutions of GMAO air 

temperature are 1 day and 0.25° × 0.25°, respectively. The coarse-resolution GMAO data were non-linearly interpolated to a spatial 200 

resolution of 1 km × 1 km based on the four GMAO pixels surrounding a given pixel (Zhao et al., 2005). The spatial and temporal 

resolutions of wind speed are 1 day and 1 km × 1 km (China Meteorological Data Network, http://data.cma.cn). The final generated 
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daily ET product has a spatial resolution of 1 km × 1 km and covers the period 2001 to 2018. 

MCD43 
Surface Albedo

MOD11
Surface Temperature

MOD13
NDVI

GMAO
Air Temperature

Net Radiation Flux

Soil Heat Flux

Sensible Heat Flux

Latent Heat 
Flux

Instantaneous
Evaporation 

Fraction

Daily 
Evapotranspiration

Land Surface 
Parameterization

Surface
Energy Balance

Temporal 
Scaling-up  

Figure 2. A flowchart of the Surface Energy Balance Algorithm for Land (SEBAL) which was used to convert multisource images 205 

to daily evapotranspiration. 

  

Figure 3. A flowchart of the calculation of sensible heat flux using Monin–Obkhov Similarity Theory (MOST). 

 

2.3 Validation methods 210 

2.3.1 Point-scale validation 

The eddy covariance method measures λET using the covariance of vapor and heat fluxes; it is regarded as the most effective method 

for the estimation of ET and has been widely used (Wang and Dickinson, 2012). In this study, eddy covariance tower-measured 

daily flux data from eight stations in China (Table 1) obtained in 2003–2010 were used to validate the modeled ET (ETSEBAL, 

https://doi.org/10.5194/essd-2020-345

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 29 December 2020
c© Author(s) 2020. CC BY 4.0 License.



10 
 

ETMOD). The latent heat flux (λET) observed at the flux towers was converted into the observed ET (ETflux). The water demand is 215 

different under different environmental conditions. Therefore, it is necessary to understand the accuracy performance of ET products 

for different vegetation types when a single ET product is not comprehensive (Velpuri et al., 2013). In order to better understand the 

influence of different environmental conditions on the accuracy of the model, the modeled ET were validated for different terrain, 

climate zones, land cover types, and seasons. Additionally, MOD16 data were resampled to a spatial resolution of 1 km × 1 km and 

daily ETSEBAL and daily ETflux data were accumulated to eight days to match the MOD16 data. ETSEBAL was validated at the daily 220 

scale and 8-day scale, respectively. 

Table 1. Details of the eight flux observation stations. 

Station  Observation period Longitude Latitude Elevation/m Climate zone Land use type 

CBM 2003–2010 128.10°E 42.40°N 738 (mountain) temperate zone Forest 

DHM 2003–2010 112.53°E 23.17°N 319 (hill) subtropical zone Forest 

DX 2004–2010 91.07°E 30.85°N 5676 (plateau) plateau climate zone Grassland 

HB 2003–2010 101.29°E 37.62°N 3216 (plateau) plateau climate zone Grassland 

NMG 2004–2010 116.68°E 43.55°N 1200 (plateau) temperate zone Grassland 

QYZ 2003–2010 115.06°E 26.74°N 370 (hill) subtropical zone Cropland 

XSBN 2003–2010 101.20°E 21.96°N 570 (mountain) tropical zone Forest 

YC 2003–2010 116.60°E 36.95°N 28 (plain) warm-temperate zone Cropland 

 

2.3.2 Regional-scale validation 

Furthermore, the regional (basin-scale) ET was calculated using the water balance method (Eq. 34) to validate the modeled ET at 225 

the regional scale.  

ET P Q S= − −∆                                         (34) 

where P (unit: mm) is the annual precipitation in the basin; Q (unit: mm) is the annual runoff in the basin, which includes surface 

runoff and groundwater runoff; ΔS is the change in the groundwater and surface water storage in a year; the change of ΔS at the 

annual-scale can be ignored. The annual ET was calculated in each primary water resources division in China (the nine basins shown 230 

in Fig. 1) from 2001 to 2018; these values of ET are referred to as ETWB. 
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2.3.3 Accuracy estimation 

The modeled ET values were compared with the observed ET (ETflux, ETWB) to evaluate the performance of ETSEBAL and ETMOD, 

respectively. The correlation coefficient (r), root-mean-square error (RMSE), relative root-mean-square error (rRMSE), and mean 235 

bias error (MBE) were selected to quantify the accuracy of the modeled ET. The equations for these parameters are shown below: 

1

2 2

1 1

( )( )

( ) ( )

n

Mi M Obi Ob
i

n n

Mi M Obi Ob
i i

ET ET ET ET
r

ET ET ET ET

=

= =

− −
=

− −

∑

∑ ∑
                                                            (35)

2

1

1 ( )
n

Mi Obi
i

RMSE ET ET
n =

= −∑                                                                       (36) 

×100%
Ob

RMSErRMSE
ET

=                                                                              (37) 

1

1 ( )
n

Mi Obi
i

MBE ET ET
n =

= −∑                                                                           (38) 240 

where ETM is the modeled ET (ETSEBAL and ETMOD); ETOb is the observed ET (ETflux and ETWB); and n is the number of samples. 

r was calculated to evaluate the linear relationship between the modeled and observed ET; higher r-values mean a higher correlation. 

RMSE and rRMSE were used to evaluate the absolute bias and relative bias of the modeled ET, respectively: smaller RMSE and 

rRMSE mean a higher accuracy. rRMSE is a critical indicator to evaluate the accuracy of a model (Jin et al., 2020). The MBE was 

used to measure whether the result was overestimated (positive values of MBE) or underestimated (negative values of MBE). 245 

 

2.4 Data sources and tools used 

2.4.1 MOD16 data 

The MOD16 ET data (ETMOD) were produced using an ET algorithm based on the P-M equation (Eq. 39) (Monteith, 1965) that has 

been improved (Mu et al., 2007; Mu et al., 2011).  250 

/
(1 / )

p a

s a

sA C VPD r
ET

s r r
ρ

λ
γ

+
=

+ +
                                                                          (39) 

where s (unit: Pa/K) is the slope of the temperature-saturated water pressure curve at the current temperature; A (unit: W/m2) is the 

available energy; ρ (unit: kg/m3) is the air density; Cp (unit: J/(kg×K)) is the specific heat of air at constant pressure; VPD (unit: Pa) 

is the difference in water vapor pressure; γ (unit: Pa/K) is the psychrometric constant; and ra and rs (unit: s/m) are the aerodynamic 

resistance and surface resistance, respectively. The MOD16 ET data are available for regular 500 m grid cells for the entire global 255 

vegetated land surface at 8-day composite, and the data do not cover regions corresponding to water, barren land, and buildings (He 
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et al., 2019). In this study, MOD16 data were obtained from the NASA Atmosphere Archive & Distribution System Distributed 

Active Archive Center (LAADS DAAC, https://ladsweb.modaps.eosdis.nasa.gov). 

 

2.4.2 Auxiliary data 260 

In order to ensure the objectivity of the comparison between the SEBAL and P-M models, MODIS satellite data were selected as 

the input for SEBAL, including the surface albedo (MCD43), surface temperature (MOD11), and NDVI (MOD13) obtained from 

LAADS DAAC. Additionally, gridded air temperature data were obtained from the GMAO (https://gmao.gsfc.nasa.gov). Flux-tower 

observational data were obtained from ChinaFLUX (www.chinaflux.org). Precipitation and runoff data for each basin from 2001 to 

2018 were obtained from the Water Resources Bulletin provided by the Ministry of Water Resources of the People’s Republic of 265 

China (http://www.mwr.gov.cn/). 

 

2.4.3 Tools used 

Python (version 3.7; Google Inc., Mountain View, California, USA) and the Geospatial Data Abstraction Library (GDAL; version 

3.1.1; Google Inc.) were used to construct SEBAL. The ArcGIS software (version 10.4; Esri Inc., Redlands, California, USA) and 270 

ENVI software (version 5.3; Esri Inc.) were used to process raster data. Python and the SPSS software (version 21; IBM Inc., 

Armonk, New York, USA) were used for numerical calculation and analysis. 

 

3. Results 

3.1 Validation of daily SEBAL ET at the point-scale using flux tower observations 275 

The validation results for the daily SEBAL ET (ETSEBAL) obtained using flux tower observational data are shown in Fig. 4. 

Compared to ETflux, ETSEBAL showed a good performance in China; the two data showed a high consistency, with an r-value of 0.79 

with 9896 samples. However, the bias of SEBAL was relatively high; the RMSE and rRMSE were 0.92 mm/d and 42.04%, 

respectively. As shown in the scatter diagrams in Fig. 4, ETSEBAL showed a negative bias at high values and a positive bias at low 

values. In general, SEBAL underestimated ET in China, with an MBE of –0.15 mm/d. Moreover, the daily ETSEBAL performed 280 

similarly for different land use types. The daily ETSEBAL had a bias of 0.95 mm/d (rRMSE = 37.24%) in cropland and 0.89 mm/d 

(rRMSE = 44.25%) in grassland, and the daily ETSEBAL underestimated in both cropland and grassland, with MBEs of –0.26 mm/d 

and –0.44 mm/d, respectively. In forest, the daily ETSEBAL had the highest RMSE of 1.02 mm/d (rRMSE = 41.25%) and the lowest 

r-value of 0.73, and slightly overestimated compared to ETflux (MBE = 0.09 mm/d). These results suggest that, in general, ETSEBAL 

is relatively reliable for daily-scale applications.  285 
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Figure 4. The validation of daily ET estimates using the SEBAL model and multisource images. (a) cropland; (b) grassland; (c) 

forest; (d) all land cover types. 

3.2 Comparison of SEBAL and MOD16 ET under different environmental conditions at the 8-day scale 

3.2.1 Performance of the RS-based model for different land cover types 290 

The validation results for different land cover types are shown in Fig. 5. The results indicate that the accuracy of SEBAL and 

MOD16 both varied with land cover type. The RMSE of SEBAL varied from 6.51 to 8.57 mm/8 d, its rRMSE varied from 38.08 to 

52.63%, and its r-value varied from 0.81 to 0.87. The performance of SEBAL was superior for forest (RMSE = 8.54 mm/8 d, rRMSE 

= 38.08%) compared to other land cover types, and the lowest accuracy was obtained over grassland (RMSE = 6.51 mm/8 d, rRMSE 

= 52.63%). The results of the MOD16 validation indicate that MOD16 had a better performance for forest (RMSE = 8.88 mm/8 d, 295 

rRMSE = 39.29%) than other land cover types, as was observed for SEBAL, and the performance of MOD16 over grassland was 

also the worst (RMSE = 7.77 mm/8 d, rRMSE = 62.89%). The MBE values for MOD16 varied from 0.42 to 3.44 mm/8 d, which 

indicated that both the ET models underestimated ET over all land cover types. Overall, the accuracy of SEBAL was higher than 

that of MOD16. 
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 300 

Figure 5. Validations for different land cover types. (a) SEBAL ET for cropland; (b) MOD16 ET for cropland; (c) SEBAL ET for 

grassland; (d) MOD16 ET for grassland; (e) SEBAL ET for forest; (f) MOD16 ET for forest. 

3.2.2 Performance of the RS-based model for different climate zones 

The validation results for different climate zones are shown in Fig. 6. The results show that the r-value varied from 0.68 to 0.90 for 

SEBAL and varied from 0.61 to 0.94 for MOD16. Climate zones were found to influence the accuracy of the RS-based models. In 305 

tropical zones, both of the two models showed poor accuracy, with RMSEs of 10.75 and 11.37 mm/8 d for SEBAL and MOD16, 

respectively, and low r-values of 0.68 and 0.61 for SEBAL and MOD16, respectively. Additionally, both the models overestimated, 

with MBEs of 7.58 and 8.86 mm/8 d for SEBAL and MOD16, respectively. For subtropical zones, both the models had high 

precision, with rRMSEs of 32.32% and 36.73% for SEBAL and MOD16, respectively, and both underestimated, with r-values of 

0.86 and 0.82 for SEBAL and MOD16, respectively. For warm temperate zones, both SEBAL and MOD16 showed poor accuracy, 310 

with rRMSEs of 53.95% and 56.12%, respectively, and both underestimated. For temperate zones, MOD16 overestimated, while 

SEBAL underestimated, and both models had high r-values, namely 0.90 for SEBAL and 0.94 for MOD16, and low RMSEs of 5.72 

mm/8 d for SEBAL and 4.61 mm/8 d for MOD16. In general, MOD16 performed better than SEBAL for temperate zones. For 

alpine zones with low temperature, both the models still underestimated, however, SEBAL performed better than MOD16: the 

RMSE was 7.53 and 9.20 mm/8 d and the r-value was 0.79 and 0.77 for SEBAL and MOD16, respectively. 315 
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Figure 6. Validations for different climate zones. (a) SEBAL ET for tropical zones; (b) MOD16 ET for tropical zones; (c) SEBAL 

ET for subtropical zones; (d) MOD16 ET for subtropical zones; (e) SEBAL ET for warm temperate zones; (f) MOD16 ET for warm 

temperate zones; (g) SEBAL ET for temperate zones; (h) MOD16 ET for temperate zones; (i) SEBAL ET for alpine zones; (j) 

MOD16 ET for alpine zones. 320 

3.2.3 Performance of the RS-based model over different terrain types 

The validation results for different terrain types are shown in Fig. 7. The results indicate that both models showed a negative bias 

(negative MBE) for all terrain types except mountainous areas, for which both models overestimated, with MBEs of 1.19 and 1.67 

mm/8 d for SEBAL and MOD16, respectively. In general, for mountainous areas, MOD16 showed a higher accuracy (RMSE = 7.79 

mm/8 d, rRMSE = 41.88%, r = 0.82) than SEBAL (RMSE = 8.37 mm/8 d, rRMSE = 45.06%, r = 0.79). However, for all other 325 

terrain types, SEBAL showed a higher accuracy. With SEBAL, the RMSE decreased from 9.01 to 6.51 mm/8 d as elevation increased. 

For hilly areas, SBEAL showed the lowest rRMSE (32.32%) while MOD16 showed the highest rRMSE (36.73%). For plain areas, 

SEBAL showed a slightly higher accuracy (RMSE = 9.01 mm/8 d, rRMSE = 53.95%) than MOD16 (RMSE = 9.37 mm/8 d, rRMSE 

= 56.12%), while for plateau area, SEBAL (RMSE = 6.51 mm/8 d, rRMSE = 52.63%) was more accurate than MOD16 (RMSE = 

7.77 mm/8 d, rRMSE = 62.89%).  330 
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Figure 7. Validation over different terrain: (a) SEBAL ET in plain area; (b) MOD16 ET in plain area; (c) SEBAL ET in hill area; 

(d) MOD16 ET in hill area; (e) SEBAL ET in mountain area; (f) MOD16 ET in mountain area; (g) SEBAL ET in plateau area; (h) 

MOD16 ET in plateau area. 

3.2.4 Performance of the RS-based model in different seasons 335 

The validation results for different seasons are shown in Fig. 8. SEBAL showed a negative bias in summer, autumn, and winter, 

with MBE values varying from –2.95 to –0.62 mm/8 d, and showed a positive bias in spring (MBE = 3.13 mm/8 d). MOD16 showed 

a positive bias in winter (MBE = 3.8 mm/8 d) and a negative bias in other seasons, with MBE values varying from –0.58 to –0.50 

mm/8 d. In spring, MOD16 generally showed a better performance (RMSE = 8.10 mm/8 d, rRMSE = 50.13% and r = 0.77) than 

SEBAL (RMSE = 9.18mm/8 d, rRMSE = 56.92% and r = 0.75), while SEBAL performed better than MOD16 in other seasons. In 340 

winter, both the models showed a poor performance, with rRMSEs of 66.92% and 87.80% for SEBAL and MOD16, respectively. 

For both models, the highest accuracy was achieved in summer, with rRMSEs of 36.56% and 43.95% for SEBAL and MOD16, 

respectively. Meanwhile, the highest r-values were obtained in autumn, with values of 0.89 and 0.84 for SEBAL and MOD16, 

respectively. 
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 345 

Figure 8. Validation for different seasons. (a) SEBAL ET for spring; (b) MOD16 ET for spring; (c) SEBAL ET for summer; (d) 

MOD16 ET for summer; (e) SEBAL ET for autumn; (f) MOD16 ET for autumn; (g) SEBAL ET for winter; (h) MOD16 ET for 

winter.  

3.2.5 Summary of point-scale validation 

Based on the contents of sections 3.1.1–3.1.4, SEBAL showed a higher accuracy than MOD16 in most conditions, while MOD16 350 

showed a better performance only for temperate zones, mountainous areas, or the spring season based on the values of RMSE and 

rRMSE. Moreover, both the models underestimated for all conditions, except that SBEAL overestimated for tropical zones (MBE 

= 7.58 mm/8 d), mountainous areas (MBE = 1.19 mm/8 d), or spring (MBE = 3.13 mm/8 d), and MOD16 overestimated for tropical 

zones (MBE = 8.86 mm/8 d), temperate zones (MBE = 0.29 mm/8 d), mountainous areas (MBE = 1.67 mm/8 d), or winter (MBE = 

3.18 mm/8 d). In general, SEBAL showed a higher accuracy than MOD16 based on point-scale validation (Fig. 9). For SEBAL and 355 

MOD16, respectively, the RMSE was 7.77 and 8.43 mm/8 d, the rRMSE was 44.91% and 48.72%, and the r-value was 0.85 and 

0.83. Furthermore, both the models slightly underestimated overall, with an MBE of –1.27 and –1.66 mm/8 d for SEBAL and 

MOD16, respectively.  
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Figure 9. The results of the overall validation. (a) SEBAL ET validation at the 8-day scale; (b) MOD16 ET validation at the 8-day 360 

scale. 

3.3 Validation at the basin-scale using the water balance method 

Additionally, validation using hydrological data was performed to investigate the performance of the RS-based models at the basin-

scale. The results (Fig. 10) showed that both the models had a negative bias, with an MBE of –19.17 and –96.66 mm/year for SEBAL 

and MOD16, respectively, at the basin-scale. SEBAL showed a higher accuracy, with an RMSE of 91.39 mm/year, an rRMSE of 365 

19.15%, and an r-value of 0.88 (MOD16: RMSE = 160.41 mm/year, rRMSE = 33.62%, r = 0.79). As shown in Table 2, the rRMSE 

of SEBAL varied from 8.93 to 40.25% among the different basins, with this model showing the best performance in the YRB and 

the worst performance in the CB. The RMSE of SEBAL varied from 35.80 to 188.54 mm/year. The rRMSE of MOD16 varied from 

7.26% to 71.59% among the different basins; MOD16 showed the best performance for the SWB and the worst performance for the 

CB, and the RMSE varied from 29.37 to 274.96 mm/year. In general, both the models performed better at the basin-scale than the 370 

point-scale. 
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Figure 10. The results of validation at the basin-scale. (a) SEBAL; (b) MOD16. Note: SwB: Southwest Basin; CB: Continental 

Basin; PRB: Pearl River Basin; YRB: Yangtze River Basin; SeB: Southeast Basin; HRB: Haihe River Basin; YeRB: Yellow River 

Basin; HuRB: Huaihe River Basin; SLRB: Songhua and Liaohe River Basin. 375 

Table 2. The performance of the ET estimation of RS-based models at the basin-scale. 

Basin Model Average (mm/year) RMSE (mm/year) rRMSE (%) 

SLRB 
SEBAL 369.11 35.8 9.91% 

MOD16 339.09 44.26 12.26% 

HRB 
SEBAL 403.46 55.6 13.11% 

MOD16 319.43 111.72 26.33% 

HuRB 
SEBAL 535.56 111.28 19.15% 

MOD16 372.45 223.51 38.47% 

YeRB 
SEBAL 332.92 98.2 26.29% 

MOD16 333.18 86.71 23.21% 

YRB 
SEBAL 549.04 47.83 8.93% 

MOD16 419.77 122.37 22.84% 

PRB 
SEBAL 673.91 126.07 16.72% 

MOD16 473.13 295.81 39.22% 

SeB 
SEBAL 682.22 188.54 24.23% 

MOD16 559.22 274.96 35.34% 

SwB 
SEBAL 444.27 53.73 13.28% 

MOD16 400.52 29.37 7.26% 

CB 
SEBAL 141.82 56.36 40.25% 

MOD16 238.44 100.24 71.59% 

 

3.4 Comparison of the spatial distribution of ET between SEBAL and MOD16 

Regarding the modeled spatial distribution of ET, both the SEBAL and MOD16 models showed that the annual average (2001–

2018) ET in China increased from the northwest to the southeast (Fig. 11(a), (b)). Fig. 11(d). The annual ET of SEBAL varied from 380 

0 to 1600 mm in space, with a mean value of 482.27±192.31 mm, while that of MOD16 varied from 0 to 1200 mm, with a mean 

value of 359.61±59.52 mm. In general, compared to the ET value estimated using MOD16 and SEBAL, the ET value estimated 
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using SEBAL was higher and showed a greater spatial difference of ET in China. For 84.07% of the total area of China, the annual 

ET estimated by SEBAL was higher than that estimated by MOD16; for 14.07% of the total area of China, the difference was more 

than two times—these areas are mainly distributed in Southern China, where ET is relatively high, and the difference reaches more 385 

than 600 mm in some places. Only in 15.93% of the total area of the country was the annual ET estimated by SEBAL lower than 

that estimated by MOD16; these areas are mainly distributed in Northwest China, where ET is relatively low (Fig. 11(c), (e)).  

 

Figure 11. A comparison between the SEBAL and MOD16 models. (a) Distribution of annual average ETSEBAL; (b) Distribution of 

annual average ETMOD; (c) Distribution of the difference between SEBAL and MOD16 (ETSEBAL – ETMOD); (d) Histogram of annual 390 

average ETSEBAL and ETMOD; (e) Histogram of the relative difference between SEBAL and MOD16 ((ETSEBAL – ETMOD)/ETMOD). 

4. Discussion 

4.1 Summary of validation results and comparison with other studies 

The ETSEBAL showed a relatively good performance in China as a whole, with an average r-value of 0.79 and an average RMSE of 

0.92 mm/d. These results are close to those obtained in other studies. Rahimzadegan and Janani (2019) used SEBAL to estimate the 395 

actual ET of pistachio in Semnan, Iran, and found that the modeled value had a high consistency with the in-situ measured value (r 

= 0.80); this value was slightly lower than the cropland validation obtained in the present study (r = 0.88, daily-scale). This difference 

is mainly due to differences in the validation method between these two studies. Rahimzadegan and Janani (2019) used the P-M 
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equation and field observational data from Intelligent Meteorological instruments to measure the standard ET, and MOD16 data 

which is also based on P-M equation was evaluated in this study that performed worse than SEBAL estimation at both point-scale 400 

and basin-scale. Xue et al. (2020) used pySEBAL (SEBAL in the Python environment) to estimate the ET of almonds, tomatoes, 

and maize in the Central Valley of California, USA, and showed that the r-value and RMSE of pySEBAL varied from 0.60 to 0.86 

and from 1.08 to 1.79 mm/d, respectively; the authors used Landsat 8 OLI/TIRS images with a spatial resolution of 30 m × 30 m as 

the model input, which leads to a lower influence of mixed pixels compared to MODIS data with a spatial resolution of 1 km × 1 

km. Wagle et al. (2017) evaluated the performance of SEBAL for ET estimation for sorghum based on flux tower observational data 405 

from Oklahoma, USA; the results showed that the r-value varied from 0.73 to 0.87 while the RMSE varied from 0.83 to 1.24 mm/d, 

which is basically in agreement with the results of this study (r-value varied from 0.68 to 0.90 and RMSE varied from 4.48 to 10.75 

mm/8 d under different environmental conditions). MOD16 performed worse than SEBAL. Part of the bias is caused by objective 

factors such as the inaccuracy of the input data and the limitations of the validation methods. Meanwhile, other bias is contributed 

by the subjective factor of the inborn defects of the algorithms. These factors will be discussed in detail in Sections 4.2 and 4.3. 410 

 

4.2 Errors caused by objective factors  

4.2.1 Inaccuracy of input data  

Both SEBAL and MOD16 used MODIS data as the main input images (e.g., MCD43 surface albedo, MOD13 NDVI, MOD11 

surface temperature). However, the accuracy of these data is uncertain to some extent (Ramoelo et al., 2014). For instance, surface 415 

albedo is a critical radiative parameter, however, the complex algorithm-led remote sensing-based albedo products can contain errors 

introduced by the spectral conversion (Song et al., 2020). Wang et al. (2014) compared MODIS albedo products with ground data 

and Landsat data for different land cover types in the USA, and found that the RMSE of the products varied from 0.01–0.05 and 

that the error was higher during periods of snow cover. Furthermore, surface temperature, as a fundamental parameter for the 

calculation of surface energy balance, affected the estimation of ET to a great extent (Long et al., 2011). Timmermans et al. (2006) 420 

analyzed the sensitivity of each parameter of the SEBAL model to grassland in Oklahoma, USA, and the results indicated that the 

difference in surface air temperature had the greatest influence on the accuracy of SEBAL estimation. MODIS surface temperature 

products are retrieved using the split-window algorithm. Yu et al. (2019) used in-situ measurement data to validate MODIS surface 

temperature products in the Heihe River Basin (HRB) in Northwest China; the results indicated that the daytime MOD11 (obtained 

by the Terra satellite) and MYD11 (obtained by the Aqua satellite) products have accuracies of –0.84±0.88 K and –0.11±0.42 K, 425 

respectively. Additionally, Heinsch et al. (2006) evaluated the influence of GMAO meteorological data on the estimation of GPP, 

and showed that the error of GPP computed from GMAO reached 28%. Therefore, the GMAO data were not accurate enough.  
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4.2.2 Errors in flux tower measurements  

The eddy covariance system (flux tower observations) is the most commonly used observation system to calculate and analyze the 430 

energy and mass exchange between the surface and atmosphere (Wang and Dickinson, 2012). However, the typical error of ET 

estimation based on the eddy covariance system is about 5–20% (Culf et al., 2008; Vickers et al., 2010). In this study, the results of 

the point-scale validation based on flux tower observations showed that the rRMSE of SEBAL varied from 32.32% to 66.92% and 

that of MOD16 varied from 36.73% to 87.80%. Compared to the basin-scale validation based on a water balance method, which is 

simpler and more direct than the point-scale validation, the rRMSE was 19.15% for SEBAL and 33.62% for MOD16, and both the 435 

models showed a lower bias at the basin-scale. The poor point-scale validation of the RS-based models may be partly due to the 

error of the flux tower observations. Furthermore, the spatial range (footprint) of the flux tower observational data is not consistent 

with the spatial resolution of the RS-based models. In a study in Asia, Kim et al. (2012) resampled the MOD16 product to 3 km × 

3 km to match the footprint of the flux tower data. Velpuri et al. (2013) used ET estimated using MOD16 and the Operational 

Simplified Surface Energy Balance (SSEBop) with a spatial resolution of 1 km × 1 km to match the footprint of the flux tower data 440 

in the USA. Several studies have indicated that the footprint should be determined by the height of the observation instrument and 

the intensity of the turbulence (Damm et al., 2020; Schmid, 1994). It should be noted that the footprint of the flux tower data used 

in this study varied with the meteorological conditions. Therefore, the inconsistency between the footprint of the in-situ 

measurements and the modeled data will cause errors in the validation process.  

 445 

4.3 Errors caused by subjective factors  

4.3.1 Temporal scaling-up method 

Remotely sensed information represents the information of satellite-passing time. Therefore, in the RS-based models, scaling-up 

was performed from the instantaneous level to the daily level. SEBAL uses the evaporative fraction (Λ) for scaling-up (Gao et al., 

2020), as shown in Eqs. 32 and 33. However, several studies have indicated that the assumption of a constant evaporative fraction 450 

is not reasonable (Gentine et al., 2011; Hoedjes et al., 2008). Gentine et al. (2007) proposed that soil moisture and vegetation 

resistance are the factors that mainly affect the stability of Λ, and soil moisture is positively correlated with Λ. Additionally, a larger 

leaf area index will generally lead to a lower stability of Λ under the same soil moisture (Farah et al., 2004). In general, due to the 

instability of Λ, the above assumption will cause a negative bias of 10–20% in the estimation of daily ET (Delogu et al., 2012; Ryu 

et al., 2012; Van Niel et al., 2012). This can explain why the validation in this paper showed that the ET estimated using SEBAL 455 

was underestimated. While the MOD16 model estimates daily ET using the P-M equation, which is a semi-empirical equation, it 

uses 8-day or 16-day composite remotely sensed input data and daily meteorological input data to compute the 8-day composite ET 

products (Mu et al., 2011). The use of a semi-empirical equation avoids the need to perform scaling-up, however, it has the problem 
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of theoretical deficiency (Mu et al., 2007; Ramoelo et al., 2014).  

 460 

4.3.2 Classification of ET 

The MOD16 model (a model based on the P-M equation) divides surface ET into three parts: evaporation from wet canopy surface 

(ETwet_c), plant transpiration (ETtrans), and evaporation from the soil surface (ETsoil) (Eqs. 40–42); the daily ET is calculated as the 

sum of these three parts (Mu et al., 2011).  
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               (42) 

where Ac and Asoil (unit: W/m2) are the parts of the available energy allocated to the vegetation canopy and soil surface, respectively; 

Fc is the vegetation cover fraction; Fwet is the water cover fraction, which is calculated using the relative humidity (RH, unit: %); 

Pa (unit: Pa) is atmospheric pressure; ETwet_soil and ETpot_soil (unit: mm) are the wet soil evaporation and potential soil evaporation, 470 

respectively; β is a constant, which is given a value of 200 (Mu et al., 2011); rtot (unit: s/m) is the aerodynamic resistance to vapor 

transport; and ras (unit: s/m) is the boundary-layer resistance. Unlike in the MOD16 model, in the SEBAL model, the soil evaporation 

and vegetation transpiration are calculated as a whole in the form of latent heat. This may explain why, in the present study, MOD16 

performed better in conditions with more mixed pixels, such as in mountainous areas and the spring season. However, due to the 

theoretical deficiency of the P-M algorithm, the performance of MOD16 was worse than that of SEBAL in most conditions. 475 

Furthermore, two-source SEB-based models distinguish vegetation and soil to calculate aerodynamic resistance (Long and Singh, 

2012; Yang and Shang, 2013). Several studies have compared one-source SEB-based models with two-source SEB-based models, 

and the results indicated that these two types of model performed differently in different conditions (French et al., 2015; Xia et al., 

2016). However, there is no evidence that two-source SEB-based models have better performance than one-source SEB-based 

models. 480 

 

4.3.3 Calculation of sensible heat flux 

Sensible heat flux is the most complicated part of the energy balance calculation (Wang and Dickinson, 2012). The P-M algorithm 

https://doi.org/10.5194/essd-2020-345

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 29 December 2020
c© Author(s) 2020. CC BY 4.0 License.



24 
 

defines the available energy (A, unit: W/m2) as the sum of the sensible heat flux and latent heat flux (Eq. 43) (Mu et al., 2011). 

nA H ET R Gλ= + = −                                                                               (43) 485 

The P-M algorithm calculates λET using a semi-empirical formula and A, and therefore avoids the direct calculation of H. 

Meanwhile, SEBAL calculates H based on MOST and the warmest and coldest spots (Bastiaanssen et al., 1998a; Bastiaanssen et 

al., 1998b). However, several studies have indicated that MOST has an error of 10–20% for the estimation of the boundary layer 

thickness (Foken, 2006; Högström and Bergström, 1996). Therefore, MOST is also a source of error in SEBAL. Due to the 

complexity of the sensible heat flux, SEBAL makes several assumptions to estimate H, which may introduce error into the ET 490 

estimation (Zheng et al., 2016). Furthermore, the selection of the warmest and coldest spots depends on the domain size (Long et 

al., 2011). For instance, the basin-scale selection of the warmest and coldest spots with diverse vegetation cover and single vegetation 

cover, respectively, will lead to different results for dT, which may explain why SEBAL performed the worst in spring, which has 

low vegetation cover and a low domain size. This method for the estimation of H has an accuracy of ∼50 W/m2 (Seguin et al., 1999). 

Although several algorithms have been proposed that use other methods to avoid the error caused by the selection of the warmest 495 

and coldest spots, such as the SEBS (Su, 1999), these replaced the selection of the warmest and coldest spots with the fitting of dry 

and wet edges. However, no evidence has been found that the method of fitting dry and wet edges can significantly improve the 

accuracy of ET estimation (Wagle et al., 2017; Xue et al., 2020).  

 

5. Data availability 500 

The dataset that was generated using SEBAL with a spatial resolution of 1 km and a temporal resolution of 1 day can be used for 

various types of geoscientific studies, especially for global change, water resources management, agricultural drought monitoring, 

etc. The evapotranspiration (ET) dataset for China is distributed under a Creative Commons Attribution 4.0 International license. 

The dataset is named SEBAL evapotranspiration in China (SEBAL ET) and consists of 18 years of data. More information and data 

are freely available from the Zenodo repository at https://doi.org/ 10.5281/zenodo.4218413 (Cheng, 2020). 505 

6. Conclusions 

In this study, we generated a long time series (2001–2018) ET product based on SEBAL and multisource images. We further 

conducted a comprehensive validation of the product and compared its performance under different environmental conditions in 

China with the performance of the ET estimated using MOD16 data. The conclusions are as follows: 

 510 

(1) The ET product generated using SEBAL showed a good performance in China. Compared to flux tower observational data, the 

r-value of the SEBAL ET reached 0.79 for 9896 samples; the RMSE was 0.92 mm/d and the rRMSE was 42.04%. SEBAL 
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underestimated ET as whole, with an MBE of –0.15 mm/d. The SEBAL ET product can adequately represent the actual ET and can 

be used in research on water resources management, drought monitoring, ecological change, etc. 

 515 

(2) Based on observational data from eight flux towers from 2003 to 2010, the ET datasets estimated using SEBAL and MOD16 

were validated at the 8-day scale for different land cover types, climate zones, terrain types, and seasons. The results showed that 

SEBAL performed best in the conditions of forest cover (rRMSE = 38.08%), subtropical zones (rRMSE = 32.32%), hilly terrain 

(rRMSE = 32.32%), and the summer season (rRMSE = 36.56%), respectively, and performed worst in the conditions of grassland 

cover (rRMSE = 52.63%), warm-temperate zones (rRMSE = 53.95%), plain terrain (rRMSE = 53.95%), and the winter season 520 

(rRMSE = 66.92%), respectively; MOD16 performed best in the conditions of forest cover (rRMSE = 39.29%), subtropical zones 

(rRMSE = 36.73%), hilly terrain (rRMSE = 36.73%), and the summer season (rRMSE = 43.95%), respectively, and performed 

worst in the conditions of grassland cover (rRMSE = 62.89%), warm-temperate zones (rRMSE = 52.10%), plateau terrain (rRMSE 

= 62.89%), and the winter season (rRMSE = 87.80%), respectively. In general, the two models have similar adaptability to different 

conditions, although SEBAL performed slightly better than MOD16. 525 

 

(3) Based on flux tower observational data and hydrological observational data, the ET estimated by SEBAL and MOD16 were 

validated at the point-scale and basin-scale. The results showed that, at the point-scale, the accuracy of SEBAL was 7.77 mm/8 d 

for the RMSE, 44.91% for the rRMSE, and 0.85 for the r-value, and the accuracy of MOD16 was 8.43 mm/8 d for the RMSE, 48.72% 

for the rRMSE, and 0.83 for the r-value. At the basin-scale, the accuracy of SEBAL was 91.39 mm/year for the RMSE, 19.15% for 530 

the rRMSE, and 0.88 for the r-value. SEBAL performed best in the YRB (rRMSE = 8.93%) and worst in the CB (rRMSE = 40.25%). 

At the basin-scale, the accuracy of MOD16 was 160.41 mm/year for the RMSE, 33.62% for the rRMSE, and 0.85 for the r-value. 

MOD16 performed best in the SWB (rRMSE = 7.26%) and worst in the CB (rRMSE = 71.59%). Moreover, both the models showed 

a negative bias at all scales of validation. In general, SEBAL performed slightly better than MOD16 at the point-scale, while 

SEABAL had a larger accuracy advantage at the basin-scale. 535 

 

(4) Overall, the SEBAL ET is higher than the MOD16 ET: for 84.07% of the total area of China, the SEBAL ET showed higher 

values. Additionally, the SEBAL ET is closer to the in-situ measured ET in most conditions, while the MOD16 ET performed better 

only in temperate zones, mountain areas, or the spring season. In general, the two models both have a good performance and can be 

used in the qualitative analysis and most quantitative analysis of regional ET. Furthermore, the combination of the two models can 540 

improve the overall ET estimation accuracy for use in applications with higher accuracy requirements. 

 

Compared the widely used MOD16 ET data, the SEBAL ET product showed a higher accuracy and temporal resolution. However, 
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it still has a daily error of 42.04% (0.92 mm/d) at the point-scale and a yearly error of 19.15% (91.39 mm/year) at the basin-scale. 

Therefore, the improvement of the SEBAL algorithm will be the focus of follow-up research. Moreover, the 1 km spatial resolution 545 

of the SEBAL ET product cannot meet the requirements of more detailed research. Due to the difficulty of simultaneously satisfying 

the requirements for the spatial and temporal resolutions of remote sensing data, the fusion of multiple sources of remote sensing 

data may be the most effective way to improve the spatiotemporal resolution of daily ET products. 

 

 550 
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