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Abstract. Stochastic weather generator CLIGEN can simulate long-term weather sequences as input to WEPP for erosion 

predictions. Its use, however, has been somewhat restricted by limited observations at high spatial-temporal resolutions. Long-10 

term daily temperature, daily and hourly precipitation data from 2405 stations and daily solar radiation from 130 stations 

distributed across mainland China were collected to develop the most critical set of site-specific parameter values for CLIGEN. 

Ordinary Kriging (OK) and Universal Kriging (UK) with auxiliary covariables, i.e. longitude, latitude, elevation, and the mean 

annual rainfall were used to interpolate parameter values into a 10 km × 10 km grid and the interpolation accuracy was 

evaluated based on the leave-one-out cross-validation. Results showed that UK generally outperformed OK. The root mean 15 

square error between UK-interpolated and observed temperature related parameters was < 1.63℃ (2.94℉). The Nash-Sutcliffe 

efficiency coefficient for precipitation and solar radiation related parameters was ≥ 0.87, apart from that for the skewness 

coefficient, which was 0.78. In addition, CLIGEN-simulated daily weather sequences using UK-interpolated and observed 

parameters showed consistent statistics and frequency distributions. The mean absolute discrepancy between the two sequences 

for temperature was < 0.51℃, and the mean absolute relative discrepancy for solar radiation, precipitation amount, duration 20 

and maximum 30-min intensity was < 5% in terms of the mean and standard deviation. These CLIGEN parameter values at 

10 km resolution would meet the minimum data requirements for WEPP application throughout mainland China. The dataset 

is available at http://clicia.bnu.edu.cn/data/cligen.html and http://doi.org/10.12275/bnu.clicia.CLIGEN.CN.gridinput.001 

(Wang et al., 2020).  

Keywords: CLIGEN, input parameters, database, China, storm pattern  25 

1 Introduction 

Weather generators (WGs) are stochastic models that can generate arbitrarily long sequences of weather variables 

with statistical properties that are similar to observations for a specific location or area (Yin and Chen, 2020). Early WGs were 

originally developed to provide surrogate climate series for hydrological, soil erosion, and agricultural models when the 

observed data could not satisfy the application requirements due to missing data, limited record length or spatial coverage 30 

(Wilks and Wilby, 1999). Since the 1990s, WGs have received increased attention as a statistical downscaling tool for the 

http://clicia.bnu.edu.cn/data/cligen.html
http://doi.org/10.12275/bnu.clicia.CLIGEN.CN.gridinput.001
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assessment of climate change impact (Katz and Parlange, 1996; Maraun et al., 2010). While global climate models (GCMs) / 

regional climate models (RCMs) have been used for climate projections, outputs from these models were often too coarse to 

meet the requirements of earth surface process models in terms of spatial-temporal resolutions and were biased compared with 

observations. Statistical downscaling methods, mainly including perfect prognosis (PP), model output statistics (MOS) and 35 

WGs, can be used to downscale and bias-correct the output from GCM/RCMs prior to earth surface model applications 

(Maraun and Widmann, 2018; Yin and Chen, 2020).  

CLIGEN is a stochastic WG developed based on the generators used in the EPIC and SWRRB models (Williams et 

al., 1985; Williams et al., 1984) and was released in 1995 initially accompanying the process-based Water Erosion Prediction 

Project (WEPP) model from the United States Department of Agriculture (Nicks et al., 1995). CLIGEN can simulate a series 40 

of long-term climate data in daily scale, including maximum and minimum temperatures, precipitation, solar radiation, dew 

point, wind velocity and direction. In addition, CLIGEN can generate three inter-storm variables in sub-daily scale, including 

storm duration, time to peak intensity (tp) and the ratio of the peak intensity to the average intensity (ip), from which an 

unlimited length of high-resolution breakpoint data can be generated (Flanagan et al., 2001; Nicks et al., 1995; Yu, 2003).  

Of the ten CLIGEN-simulated weather elements, seven, namely daily maximum and minimum temperature, daily 45 

precipitation, duration, tp, ip, and daily solar radiation, are all that are required for predicting hydrological processes, soil 

erosion, and bio-production (Arnold et al., 1998; Flanagan et al., 2001; USDA-ARS, 2013; Wallis and Griffiths, 1995). These 

seven climate elements are considered to meet the minimum data requirements for WEPP. As CLIGEN is independent of 

WEPP, it can be used to provide simulated climate series for other surface process models as well (Flanagan et al., 2014; Yu, 

2002). 50 

Table 1 

Thirteen groups of input parameters related to temperature, solar radiation and precipitation as listed in Table 1 are 

all parameters needed by CLIGEN to generate the aforementioned seven climate elements. As a site-specific weather generator, 

input parameters for CLIGEN can be directly prepared for stations with observed data. CLIGEN was initially released in the 

United States with a set of 2600 weather station parameter files (Flanagan et al., 2001). Parameters for the daily temperature 55 

and daily precipitation were calculated directly based on the observations of temperature and precipitation from each station. 

Parameters for daily solar radiation and storm pattern were based on 142 weather stations with daily solar radiation and sub-

daily rainfall observations first, and then extended to other 2000 more stations using the triangulation interpolation method 

(Scheele and Hall, 2000).  

Parameter regionalization, which extends model parameter values from stations with observations to areas/regions 60 

without observations, is required when the model is going to be used in these areas/regions. Commonly used parameter 

regionalization methods can be categorized as follows: (1) the parametric transplantation method, where a reference area that 

is spatially near or has similar climate characteristics to the target area is first selected, then the parameters of the reference 
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area are extended to the target area (Cheng et al., 2016); (2) spatial interpolation method such as Thiessen polygon, inverse 

distance weighted, or ordinary Kriging, that interpolate parameter values based on spatial correlations of parameters among 65 

multiple stations (Hutchinson, 1995); (3) parameter transfer as a function of regional properties such as multiple regression, 

based on correlations between parameters and regional characteristics (Cowpertwait et al., 1996); (4) regionalization 

considering both the spatial correlation of parameters and the correlation between parameters and regional characteristics, 

including external drift Kriging and universal Kriging that can be treated as combination methods to take advantage of method 

(2) and (3) (Haberlandt, 1998; Semenov and Brooks, 1999).  70 

Accuracy of parameter regionalization is known to be influenced by several factors. Firstly, regionalization of climate 

variables with lower or regular spatial variability generally performs better than highly heterogeneous and discontinuous 

variables. Secondly, for the same climate variable, temporal resolution plays an important role. The climate variable at a 

monthly or annual scale tends to perform better than variables at a daily or hourly scale because data with finer resolutions 

possess greater spatial variability. Thirdly, adopted approaches affect the efficiency of regionalization. For example, Wilks 75 

(2008) compared and evaluated the interpolation accuracy of four spatial interpolation methods for parameters of WGEN 

(Weather GENerator), a weather generator developed by Richardson and Wright (1984), and results showed that locally 

weighted regressions outperformed Thiessen polygons and domain-wide (‘global’) regressions. The accuracy of interpolation 

can be improved by adopting auxiliary covariables that are correlated with the regionalized climate variables into the 

regionalization process (Hengl et al., 2007). For example, elevation is frequently used as an auxiliary covariable and has been 80 

found to improve the interpolation of temperature and precipitation (Carrera-Hernández and Gaskin, 2007; Ly et al., 2013; 

Verworn and Haberlandt, 2011), especially in mountainous regions with complex terrains (Xu et al., 2018).  

Several studies have been attempted at regionalization of CLIGEN input parameters. Regionalization of CLIGEN 

input parameters for WEPP have combined the parametric transplantation and spatial interpolation. When CLIGEN was 

developed in the U.S. to provide climate input to WEPP, parameter values for 2600 stations were regionalized based on inverse 85 

distance weighting (IDW). In the WEPP application, users identify the targeted location, for which daily weather sequences 

using parameters from the nearest stations will be automatically generated directly or by interpolation from surrounding 

stations (up to 20 stations within a distance of one degree of latitude/longitude). The parameter files and the internally installed 

interpolation in the WEPP application has facilitated application of CLIGEN/WEPP in the US. However, the accuracy of 

regionalized parameters has not been evaluated and the effect on generated weather sequences using the interpolated 90 

parameters are largely unknown.  

Chen (2008) explored four spatial interpolation methods, inverse distance weighting (IDW), ordinary Kriging (OK), 

global polynomial interpolation (GPI), and local polynomial interpolation (LPI), to regionalize the daily temperature and 

precipitation related input parameters of CLIGEN for 12 stations in the Loess Plateau of China. Paired t-tests showed that the 

temperature and precipitation series generated using interpolated input parameters were not significantly different from those 95 
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generated using input parameters computed using observations for the 12 stations considered (Chen, 2008). However, solar 

radiation and storm pattern-related parameters used to generate daily solar radiation and storm characteristics were not 

considered in Chen’s study (Chen, 2008). Input parameters for simulating the 7 weather variables mentioned above, listed in 

Table 1, meet the minimum data requirements for WEPP at a specific station. Without solar radiation and storm pattern-related 

parameter values, CLIGEN cannot be used to generate the required weather sequences for WEPP.  100 

The overall aim of this study was to enable widespread use of CLIGEN to generate daily temperature, solar radiation, 

precipitation and sub-daily precipitation variables anywhere in mainland China and to gain better understanding of the 

performance of various spatial interpretation techniques. Specific objectives of this study were to (1) assemble CLIGEN input 

parameter values for 2405 stations in mainland China based on meteorological observations; (2) evaluate spatial interpolation 

techniques for regionalizing CLIGEN parameters; (3) produce grid-based CLIGEN temperature, solar radiation and 105 

precipitation parameter values at 10 km resolution for mainland China. 

2 Data and methods 

2.1 Data collection 

Four datasets consisting of daily temperature, daily rainfall, and hourly rainfall from 2405 meteorological stations, 

and solar radiation data from 130 stations distributed across mainland China were collected (Fig. 1) from the National 110 

Meteorological Information Center (NMIC) of the China Meteorological Administration (CMA) and had been quality 

controlled by NMIC. Data lengths were different for these four datasets (Table 2). Daily temperature and daily rainfall data 

were characterized by longer periods of observation for most stations compared with hourly rainfall data, especially for stations 

located in the northwest arid area and the Qinghai-Tibet plateau where gauges for observing hourly rainfall for some stations 

were installed very late (Zhao, 1983; Wang and Zuo, 2009). Based on these four data sets, a total of 156 parameter values were 115 

calculated for each station. It should be noted that the 12th value of TimePk is equal to 1 by definition and 155 parameters were 

involved in the calculation and interpolation. The siphon rain gauges used to record hourly rainfall were stopped in winter to 

avoid freezing failures; therefore, hourly rainfall was only available for the warm rainy season for some northern and western 

stations. Nine stations distributed in North China (Miyun, Zhengzhou, Ha’erbin), Northwest China (Lanzhou, Wulumuqi), the 

Tibet Plateau (Lasa), and South China (Fuzhou, Changsha, Haikou) were selected to further display the regional differences 120 

and monthly variability of input parameters (Fig. 1). 

Fig. 1. 

Table 2.  
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2.2 Site-based input parameters and simulation 

CLIGEN requires 13 groups of input parameters and 12 values for each group to stochastically simulate temperature, 125 

solar radiation and precipitation (Table 1). Temperature-related input parameters, TMAX AV, SD TMAX, TMIN AV, and SD 

TMIN are used to simulate the daily maximum and minimum temperature for each simulated day and to decide whether the 

simulated precipitation occurred as snowfall or rainfall (Table 1). These four values can be calculated using daily maximum 

and minimum temperature data for each month directly. Solar radiation related inputs SOL.RAD and SD SOL are used to 

generate daily solar radiation and can be directly obtained from observed daily solar radiation.  130 

The wet-following-wet and wet-following-dry day transition probabilities, P(W|D) and P(W|W) are used to determine 

the occurrence of rainy days with a first-order two-states Markov chain prepared as follows:  

P(𝑊|𝑊) =  
𝑁𝑤𝑤

𝑁𝑤𝑑+𝑁𝑤𝑤
                                                                            (1) 

  P(𝑊|𝐷) =  
𝑁𝑑𝑤

𝑁𝑑𝑤+𝑁𝑑𝑑
                                                                             (2) 

in which, 𝑁𝑤𝑤 , 𝑁𝑤𝑑, 𝑁𝑑𝑤, 𝑁𝑑𝑑 represent the number of days in a month that a wet day followed a wet day, a wet day followed 135 

a dry day, a dry day followed a wet day, and a dry day followed a dry day, respectively. For each simulated wet day, MEAN 

P, S DEV P, and SKEW P are used to simulate the daily precipitation amount using a skewness normal distribution. These 

three parameters can be computed directly from daily precipitation month by month. As CLIGEN assumes there is only one 

storm occurring on a wet day, daily precipitation depths in CLIGEN are equal to storm precipitation amount.  

MX.5P and TimePk are used to simulate inter-storm variables, including storm duration (D, h) and two normalized 140 

dimensionless variables, the ratio of peak intensity to average intensity (ip), and the ratio of time to the peak intensity to storm 

duration (tp) (Nicks et al., 1995; Yu, 2002; Yu, 2003; Zhang and Garbrecht, 2003). MX.5P represents the average maximum 

30-min intensity for each month. The maximum 30-min intensity for a wet day is denoted as I30. If a month has n wet days, the 

maximum I30 among n wet days can be denoted by maxI30; and for a specific month in a data series of k years, the MX.5P is 

given by: 145 

MX. 5P =  
1

𝑘
∑ 𝑚𝑎𝑥𝐼30                                                                             (3) 

Ideally, MX.5P values should be prepared using rainfall data with a resolution of 30 min or less. Depending on the 

temporal resolution, I30 can be calculated directly from moving averages of the original data over successive 30 minutes. Given 

the limited availability of high-resolution rainfall observations for this study, MX.5P was estimated using hourly data described 

in detail elsewhere (Wang et al., 2018). 150 

 In CLIGEN (Nicks et al., 1995), as in Arnold and Williams (1989), it is assumed that the magnitude of precipitation 

intensity decreases exponentially from the maximum rate when time distribution of precipitation intensities is discarded. 

Therefore, the precipitation depth 𝑃∆𝑡  in any given interval ∆𝑡 can be described by: 
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𝑃∆𝑡 = 𝑖𝑝 ∫ 𝑒−𝑡/𝜏𝑑𝑡 = 𝜏𝑖𝑝(1 − 𝑒−∆𝑡/𝜏)
∆𝑡

0
                                 (4)  

For hourly data, the interval ∆𝑡 = 1 h, and the maximum 1 h precipitation 𝑃1ℎ and maximum 2 h precipitation 𝑃2ℎ were known:  155 

𝑃1ℎ

𝑃2ℎ
=

1−𝑒−1/𝜏

1−𝑒−2/𝜏                                                                              (5) 

where τ can be solved and then ip can be readily obtained as, 

𝑖𝑝 =
𝑃1ℎ

𝜏(1−𝑒
−

1
𝜏)

                                                                              (6) 

Once τ and ip are known, the maximum 30-min precipitation 𝑃0.5 can be determined as, 

𝑃0.5ℎ = 𝜏 𝑖𝑝(1 − 𝑒−
1

2𝜏)                                                                      (7) 160 

The maximum 30-min rainfall intensity is given simply as, 

𝐼30𝑚𝑖𝑛 = 2𝑃0.5ℎ                                                                          (8) 

In reference to Wang et al. (2018), MX.5P can be directly prepared using hourly rainfall data. 

There are 12 discrete values of TimePk for each station, describing an empirical cumulative probability distribution of 

time to peak (Nicks et al., 1995). The observed interval is ∆𝑡 and the storm duration, D, consists of n intervals. If the peak 165 

intensity occurs in the 𝑖th interval, time to peak intensity, Tp is estimated as,   

𝑇𝑝 = (𝑖 −
1

2
)∆𝑡                                                                         (9) 

and time to peak as a fraction of duration is, 

𝑡𝑝 =
𝑇𝑝

𝐷
=  

(𝑖−0.5)

𝑛
                                                                    (10) 

If 𝑁𝑡𝑝(𝑖) is the number of wet days from all data records with 𝑡𝑝 ≤ i/12 for 𝑖 = 1, 2, …12, then 170 

𝑇𝑖𝑚𝑒𝑃𝑘(𝑖) =
𝑁𝑡𝑝(𝑖)

𝑁𝑡𝑝(12)
                                                               (11) 

TimePk computed using 1-min rainfall data and hourly rainfall data differs slightly, and it has some small influence on 

CLIGEN-simulated intensity and duration (Wang et al., 2018). Therefore, TimePk was prepared directly using hourly data in 

this study for consistence. Given the time increment (∆𝑡) of 1 hour, and known storm duration (D) for each wet day, TimePk 

can be computed using equations (9) to (11). It is worth noting that the 12th parameter value of TimePk for all stations equals 175 

to 1 (equation 11).  

2.3 Spatial interpolation by Kriging 

Kriging is a spatial interpolation method that gives the best linear unbiased prediction of intermediate values, assuming 

a Gaussian process governed by prior covariance. For a research region with n samples at spatial locations xi (i = 1, 2, …, n), 

𝑍(𝒙𝑖) are the sample values at xi. At an unknown target point x0, the estimated value 𝑍̂(𝒙0) can be expressed as a weighted 180 

average of the known observations 𝑍(𝒙𝑖) (Wackernagel, 2013): 



7 

 

 

 

𝑍̂(𝒙0) =  ∑ 𝜆𝑖𝑍(𝒙𝑖)
𝑛
𝑖=1                                                                    (12) 

where 𝜆𝑖  are the weighting coefficients of the known sample values Z(𝒙𝑖), which depend on the spatial autocorrelation 

structure of the sample values and should minimize the prediction error variance. Assuming the variable value Z(𝒙) can be 

modeled as a combination of a deterministic trend μ(𝒙) and an auto-correlated random error ε(𝒙), Z(𝒙)= μ(𝒙) + ε(𝒙), then 185 

the best linear unbiased prediction requires E[𝑍̂(𝒙0) − Z(𝒙0)]=0 and Var[𝑍̂(𝒙0) − Z(𝒙0)] is minimized. Ordinary Kriging 

(OK) assumes that the trend is constant but unknown, μ(𝒙) = 𝑚, while in universal Kriging (UK), the trend is assumed to be 

a linear combination of some known covariables 𝑓𝑙 , μ(𝒙) = ∑ 𝛽𝑙𝑓𝑙
𝑘
𝑙=1 . Universal Kriging (UK) considers the relationship 

between the target variable and the auxiliary covariables. Soil, elevation, temperature, and remote sensing images are 

commonly used auxiliary covariables (Haberlandt, 1998; Li et al., 2014; McKenzie and Ryan, 1999; Semenov and Brooks, 190 

1999). 

Both OK and UK were used to interpolate the CLIGEN input parameters in this study. Stepwise regression was conducted 

to select appropriate covariables for UK. The longitude, latitude, elevation, and annual rainfall amount were found correlated 

with the parameters one for each month for CLIGEN with the exception of the SKEW P (Table 1), therefore, all these four 

variables were adopted as auxiliary covariables when UK was conducted to interpolate these twelve groups of parameters. 195 

SKEW P had low correlations with all four of these covariates but good correlation with parameters MEAN P and SDEV P. 

Therefore, MEAN P and SDEV P were selected as covariables during the interpolation of SKEW P. 

2.4 Assessment of interpolation accuracy 

A leave-one-out cross-validation method was used to evaluate the interpolation accuracy of OK and UK. First, one of the 

2405 stations was excluded from data analysis and treated as unknown, data for the remaining 2404 stations were then used to 200 

predict parameter values for the excluded station using OK or UK. This leave-one-out procedure was repeated for 155 

parameters for each of the 2405 stations (13 groups × 12 input parameters -1, as the value of 12th parameter of TimePk is 

always 1, Table 1). Denoting CLIGEN parameters based on observations as PO and the corresponding predicted CLIGEN 

parameters obtained using OK or UK as PK, three indicators, root mean square error (RMSE), Nash-Sutcliffe efficiency 

coefficient (NSE), and percent bias (PBIAS) were selected to evaluate and compare the performances of OK and UK as follows 205 

(Yin et al., 2019):  

RMSE = √
1

𝑛
∑ (𝑃𝑂 − 𝑃𝐾)2

𝑛                                                                  (13) 

NSE = 1 −
∑ (𝑃𝑂−𝑃𝐾)2

𝑛

∑ (𝑃𝑂−𝑃𝑂̅̅ ̅̅ )2
𝑛

                                                                    (14) 

PBIAS =
∑ (𝑃𝑂−𝑃𝐾)𝑛

∑ 𝑃𝑂𝑛
∗ 100                                                                 (15) 
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As NSE and PBIAS are inappropriate for temperature-related parameters which are in interval scales, and the same is 210 

true of probabilities. NSE and PBIAS were computed for parameters in ratio scales only, i.e. MEAN P, S DEV P, SKEW P, 

SOL.RAD, and SD SOL. By calculating the above three indicators, the better of the two interpolation techniques, OK and UK, 

was determined and applied to calculate the regionalization of CLIGEN input parameters for mainland China. A two-

dimensional grid database was established at a spatial resolution of 10 km × 10 km based on the 155 sets of interpolated 

parameters.   215 

Input parameters based on observed data and interpolated data using the better interpolation technique were input into 

CLIGEN to evaluate the influence of regionalized parameters on the simulation. For each station, 100 years of continuous 

climate series were generated using the default CLIGEN stochastic seed without interpolation between months, and the 

simulated data predicted by PO and PK were denoted as GO and GK, respectively. The maximum and minimum temperature 

(℃), daily solar radiation (Langley), daily rainfall amount (mm), storm duration (h), ip and tp of each simulation day were 220 

derived from GO and GK for each station, and the maximum 30-min intensity (I30, mm/h) was calculated based on an assumed 

bi-exponential storm pattern (Yu, 2002). CLIGEN input parameter values are required to have US customary unit as shown in 

Table 1, while CLIGEN output is produced in SI as input to WEPP. 

Three basic statistics, the average, standard deviation and skewness coefficient were calculated for each CLIGEN-

generated variable. The absolute error (AE) and mean absolute error (MAE) were calculated to examine the differences 225 

between the two sets of statistics for generated temperatures. Relative error (RE) and mean absolute relative error (MARE) 

were calculated to examine the differences between the two sets of statistics for generated daily solar radiation, daily 

precipitation and sub-daily storm pattern: 

|𝐴𝐸|  = |𝐺𝑂 − 𝐺𝐾|                                                                     (16) 

MAE = 
1

2405
∑|(𝐺𝑂 − 𝐺𝐾)|                                                               (17) 230 

|𝑅𝐸|  = 100% |(𝐺𝑂 − 𝐺𝐾) 𝐺𝑂|⁄                                                           (18) 

MARE =
100%

2405
∑|(𝐺𝑂 − 𝐺𝐾) 𝐺𝑂⁄ |                                                         (19) 

3 Results 

3.1 Spatial-temporal distribution of CLIGEN input parameters 

Thirteen groups of CLIGEN temperature and precipitation parameters from 2405 stations and solar radiation parameters 235 

from 130 stations were plotted to examine the inter-annual variation and the differences among parameters (Fig. 2). The 

average max-temperature and min-temperature, TMAX AV and TMIN AV (in unit of ℉, 1℉ = 1℃/1.8+32), and the average 

and standard deviation of solar radiation, SOL.RAD and SD SOL (in unit of Langley, 1Ly = 4.184*10-2MJ/m2) showed strong 
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seasonality and the spatial variance became smaller from the cold season to the warm one (Fig. 2a, 2c, 2e-f). The spatial 

distribution of CLIGEN temperatures and solar radiation related inputs in August based on the UK-interpolated results were 240 

depicted as examples (Fig. 3), from which we can find a differentiation rule for latitude and vertical zonality for TMAX AV, 

TMIN AV (Fig. 3a-b). SD TMAX and SD TMIN varied with season with a similar pattern and with generally higher values 

in spring and autumn (Fig. 3c-d), because these two seasons are transitional periods between warm and cold seasons when 

temperature fluctuations are larger.   

Fig. 2. 245 

Fig. 3. 

The average and standard deviation of daily precipitation, MEAN P, S DEV P (in unit of inch, 1 inch = 25.4 mm), and 

the average monthly maximum 30-min intensity, MX.5P (in unit of inch/h, 1 inch/h = 25.4 mm/h), showed a similar seasonal 

pattern with the parameter values becoming gradually higher from the cold season to the warm (Fig. 2g-h). Precipitation in 

China is influenced by the East Asian summer monsoon and the location relative to land and sea. From the spatial distribution 250 

of daily precipitation in August we found a general decreasing trend from southeast to southwest (Fig. 4a-b). The August rain 

belt is located in North and Northeast China, while the South China region is controlled by the subtropical high-pressure belt 

and experiences a summer drought. Therefore, MEAN P and MX.5P in North China were apparently greater than in South 

China. In comparison, skewness of daily precipitation, SKEW P, showed imperceptible differences among months and no 

apparent latitudinal or longitudinal zonality (Fig. 4c). This may be one of the reasons leading to the low spatial interpolation 255 

accuracy of SKEW P.  

Fig. 4. 

The wet-following-dry transition probability P(W|D) showed a clear inter-annual variability in that the probability 

increased from cold season to warm (Fig. 2j), while the wet-following-wet transition probability P(W|W) was characterized 

by greater regional differences but smaller monthly variability for most stations compared with P(W|D) (Fig. 2k). The spatial-260 

temporal variation in these two transition probabilities revealed the stepwise northward progress of the East Asian monsoon 

and the North-South advance of the Frontal cyclone (Liao et al., 2004). Due to the pre-monsoon rainy season before June, 

strong convection in summer, and the retreating monsoon rain belt after August, the southern region was characterized by a 

longer rainy season than North China (Yu and Zhou, 2007). Therefore, P(W|W) of the southern region was generally higher 

than other regions and its seasonal variations were relatively insignificant (Fig. 5b).   265 

Fig. 5. 

MX.5P of nine example stations showed the regional differences more clearly in that the parameters of southern stations 

were relatively higher (Fig. 5c). Differences among southern and northern stations became gradually smaller in the warm 

season. It should be noted that the narrower range of MX.5P in winter was partially related to the limited availability of hourly 
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data. Due to the restriction of low temperatures on siphon rain gauge observations, MX.5P in cold seasons were available for 270 

fewer stations than in warm seasons. 

TimePk consists of 12 discrete values representing the cumulative distribution of time to peak intensity ranging from 0 

to 1 for a specific location. The sixth value for TimePk represents the cumulative ratio of storms with peak intensity occurring 

before 1/2 duration, and related ratios for 2405 stations ranging from 60% to 80% (Fig. 2m). TimePk for nine example stations 

shows the cumulative ratio of time to peak intensity in different regions, consistently indicating that most peak intensities tend 275 

to occur earlier during the storms, with no obvious regional differences found for this parameter (Fig. 5d).   

3.2 Evaluation of interpolated parameters using OK and UK 

3.2.1 Parameters at the daily scale 

The leave-one-out cross-validation showed that four groups of temperature parameters, TMAX AV, SD TMAX, TMIN 

AV, SD TMIN, two groups of solar radiation, SOL.RAD, SD SOL, and four groups of precipitation parameters at daily scale, 280 

MEAN P, S DEV P, P(W|D) and P(W|W), were well predicted by ordinary Kriging (OK) and universal Kriging (UK). RMSE 

for all these parameters were relatively low compared with the average of observed inputs (Table 3). For all these four groups 

of temperature related parameters, RMSE between the UK-interpolated and observed were less than 2.94℉ (1.63℃). NSE 

were greater than 0.87 for parameters of MEAN P, S DEV P, SOL.RAD, and SD SOL in ratio scales. The PBIAS were all 

smaller than 1%, suggesting that parameters based on observation and interpolation have a very close average trend and showed 285 

no obvious bias. In contrast, the interpolated accuracy of the skewness coefficient of daily precipitation, SKEW P, were not 

very satisfactory, with NSE being 0.48 using OK and 0.78 using UK. Parameters related to daily average (TMAX AV, TMIN 

AV, SOL.RAD and MEAN P) were generally better predicted than corresponding parameters related to standard deviation 

(SD TMAX, SD TMIN, SD SOL and S DEV P), and the skewness coefficient was the least accurately simulated.  

Table 3. 290 

In comparison with OK, the overall and monthly predicted accuracy using UK with auxiliary covariables obviously 

improved TMAX AV, TMIN AV, SOL.RAD, MEAN P, SKEW P, P(W|W), and P(W|D) (Fig. 6). The predicted accuracy for 

SD TMAX and S DEV P using the two techniques showed no evident difference. For SD TMIN and SD SOL, the predicted 

accuracies were approximate except for July, when the RMSE of UK were obviously larger than OK and the reason was 

unclear. Although the prediction of SKEW P using UK was not as good as other parameters at a daily scale, the improvement 295 

compared with OK was quite obvious, as the NSE over 12 months increased from 0.48 for OK to 0.78 for UK, and the RMSE 

decreased from 0.73 mm to 0.47 mm (Table 3). Predicted inputs using OK and UK versus inputs based on observations from 

August were plotted to show the difference between two methods as examples (Fig. 7a-7k).  

Fig. 6. 
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3.2.2 Parameters at the sub-daily scale 300 

Cross-validation results showed that the interpolation of the two parameters related to storm patterns, i.e. MX.5P and 

TimePk performed well. Three cross-validation statistics for these two parameters using two methods were numerically similar 

(Table 3). NSE over 12 months for MX.5P interpolated with OK and UK were both equal to 0.95. The seasonal variation in 

RMSE based on OK and UK follows a similar pattern (Fig. 6l-m). For TimePk, the RMSE using OK were slightly lower than 

those using UK for the 3th, 4th, and 5th parameters, but slightly higher for the others. 305 

Fig. 7. 

Interpolation accuracy has been adequately estimated through cross-validation, and these results indicated that the 

accuracy of interpolation results based on UK was generally higher than those based on OK. Therefore, two sets of CLIGEN-

simulated climate series using observed inputs and UK-interpolated inputs were generated and compared to further evaluate 

the regionalized parameters using UK for the simulation of CLIGEN. 310 

3.3 Assessment of parameters’ regionalization on the CLIGEN outputs 

3.3.1 Simulated climate elements at a daily scale 

CLIGEN-simulated daily temperature and solar radiation based on UK-interpolated input parameters agreed well with 

those simulated based on observed parameters. The average, standard deviation and skewness coefficient of generated daily 

maximum temperature, minimum temperature, solar radiation and daily precipitation generated using observed and 315 

interpolated input parameters were calculated for each station, and the simulated accuracy of the average and standard deviation 

were found to be better than that of the skewness coefficient. The RMSE of the mean and standard deviation were all less than 

0.79℃, 18 Ly/day (0.75 MJ/day), 0.71 mm, respectively, for daily temperatures, solar radiation and precipitation (Table 4 & 

Table 5). The NSE of the skewness coefficient for solar radiation was 0.56, obviously lower than that for the mean and standard 

deviation (Table 4). Meanwhile, the NSE of the skewness coefficient of daily precipitation was low (Table 5), indicating a 320 

relatively low interpolation accuracy of SKEW P. In fact, the accuracy of SKEW P was the lowest among all input parameters 

(Table 3).   

Table 4. 

The absolute error (AE) of the average, standard deviation and skewness coefficient between the simulated daily 

temperature of GO and GK were statistically similar (Table 4). The mean absolute error (MAE) over 2405 stations were all 325 

lower than 0.51℃. For daily solar radiation, the relative errors (REs) for the mean and standard deviation were lower than 

10% for more than 90% stations, and the mean absolute relative error (MARE) were lower than 4%.   

Table 5. 
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For generated daily precipitation, 94.1% and 91.4% of stations yielded RE of the average and standard deviation below 

10%, and the MARE for 2405 stations were 3.72% and 4.56%, respectively. Bias between annual rainy days of GO and GK was 330 

small as well. RE of 92.9% of stations were lesser than 10%. The frequency distribution of daily precipitation generated using 

two sets of inputs were well matched for most stations. Fig. 8a depicted the frequency distributions of simulated daily 

precipitation for Fuzhou station as an example, with RE slightly higher than MARE over 2405 stations. Meanwhile, some 

stations do not satisfactorily simulate the frequency distribution. The frequency distribution of Tuokexun, whose simulation 

quality was approximately the worst among 2405 stations was offered as an example (Fig. 8d). It showed that the frequency 335 

of daily precipitation ranging from 0-1 mm was underestimated, whereas that for values greater than 1 mm was overestimated 

(Fig. 8d). 

Fig. 8. 

3.3.2 Simulated storm pattern related variables 

The average and standard deviation of storm duration and the maximum 30-min intensity (I30) generated using observed 340 

and UK-interpolated input parameters possessed a generally small bias. The NSE of the average and standard deviation for 

both duration and I30 were above 0.87. Compared with the average and standard deviation, the accuracy of skewness was the 

worst, with the NSE being 0.26 for the duration and 0.66 for the peak intensity index. Comparison of the frequency 

distribution of the duration and I30 for Fuzhou station showed that the frequency of simulated storm patterns was well 

preserved using data employing UK-interpolated parameters (Fig. 8b-c). The frequency distribution of the duration and I30 345 

for Tuokexun station showed that interpolated parameters seemed to underestimate low values and overestimate high values 

(Fig. 8e-f).  

4 Discussion 

Both AE and RE indexes were adopted to evaluate the simulated results in this study. The RE index was applied for 

solar radiation and precipitation related outputs, while the AE index was applied for the assessment of temperature-related 350 

outputs, as RE was not an appropriate indicator to evaluate the temperature which was in interval scale. Stations located in 

high latitude or high altitude areas where the mean annual temperature may be close to zero resulting in an extremely high 

derived RE. For example, the mean maximum temperature of Qian’an station (Fig. 1) using observed inputs was -0.01℃ and 

that using interpolated inputs was -0.33℃, resulting in a RE between the two values of 2912.7%, which was an extremely 

large error. However, the mean maximum temperature simulated using the two data sets were very similar, with an AE of 355 

0.32℃. If RE was used to evaluate the simulated temperature, the actual simulation quality may be strongly underestimated. 

Therefore, AE were used to demonstrate errors between generated temperature based on observed and interpolated inputs.  
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The frequency distributions of CLIGEN-simulated daily precipitation, duration and peak intensity at Tuokexun station 

using observed inputs were all not well preserved by those simulated using UK-interpolated inputs (Fig. 8). The simulation 

quality for Tuokexun was almost the worst among 2405 stations, as RE for all these three precipitation related variables were 360 

greater than 99% of stations. This may be explained partially because Tuokexun is located in the northwest arid area of China 

(Fig. 1), with a station density of 0.97/104∙km2, much lower than that in the Eastern Monsoon Area (Table 6). Stations involved 

in the interpolation were separated by far distances, with a negative influence on the interpolation accuracy (Oliver and Webster, 

2014). Other stations with extremely low simulated quality similar to Tuokexun are almost located in the northwest arid area 

or Qinghai-Tibet Plateau where the station density is lower. The MAE and MARE for generated temperature and precipitation 365 

in the eastern monsoon area were the lowest among three physical-geographical regions of China (Table 6). The standard error 

of the interpolation results for the two parameters, i.e. TMAX AV and MEAN P in August are shown as an example (Fig. 9). 

It can be seen that  the errors are relatively high in the western part of China, especially in the north-western part of Qinghai-

Tibet Plateau, where there is a large area without stations and characterized with the highest standard errors for both parameters 

(Fig. 1 and Fig. 9).  370 

Fig. 9. 

The number and density of weather stations for solar radiation were considerably less than for those for temperature 

and precipitation (Table 6). However, the mean and standard deviation of daily solar radiation using the UK-interpolated 

parameters was in good agreement with that simulated using observation-based parameter values (Table 4), and  MARE of 

solar radiation was similar to that of daily precipitation. Solar radiation is characterized with much lower spatial variability in 375 

comparison to that for the temperature and precipitation. As a result, solar radiation-related parameters were easier to 

regionalize and parameter values could readily be interpolated for regions with limited observations. 

Table 6. 

CLIGEN-input parameters in the US are regionalized from 2600 stations using the inverse distance weighted method 

(IDW), which was employed in the initial attempt to regionalize CLIGEN input parameters. In this study, UK was adopted to 380 

interpolate CLIGEN parameters for mainland China. Interpolated parameter values using IDW and UK were compared for 

four selected parameters in August as shown in Fig. 10. It can be seen that UK performed better than IDW for all four 

parameters selected. UK-interpolated parameter values were concentrated mostly along the 1:1 line. The RMSE of all four 

groups of parameters interpolated using UK were lower than those predicted using IDW. Noticeable improvement was noted 

for SKEW P, with the RMSE improving from 0.84 to 0.49 using UK instead of IDW. Therefore, UK appears to be consistently 385 

superior to IDW when regionalizing CLIGEN input parameters based on the limited comparison for selected parameters.  

Fig. 10. 
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5 Data availability  

The gridded CLIGEN input parameter dataset of China at 10 km resolution is available at the homepage of CLImate 

Change Impact Assessment (CLICIA) group at http://clicia.bnu.edu.cn/data/cligen.html. Additional materials including the 390 

data manual and grid information are also available at the same website and can be downloaded.  

6 Summary and Conclusion 

The widely used stochastic weather generator CLIGEN can simulate long-term climate data to drive hydrological, soil 

erosion, and crop-yield models. Limitations in high spatial-temporal observations, especially at the sub-daily scale, have 

partially restricted its application. Daily temperature, daily precipitation, and hourly precipitation data for 2405 stations and 395 

daily solar radiation for 130 stations distributed across mainland China were collected to establish the CLIGEN input parameter 

files and to explore an appropriate method for regionalizing these parameters from stations to the entire region. The predicted 

quality using two interpolation techniques, OK and UK, were compared and fully assessed, yielding the following results:   

1) UK generally performed better than OK when interpolating CLIGEN parameters. Compared with OK the 

interpolation accuracy was markedly improved for parameters TMAX AV, TMIN AV, SOL.RAD, MEAN P, SKEW P, P(W|D) 400 

and P(W|W). For the rest parameters, the comparative interpolation accuracies were numerically approximate between the two 

techniques.  

2) UK can accurately predict temperature, solar radiation and precipitation input parameters for CLIGEN. RMSE in 

UK-interpolated parameter values for temperature were less than 1.63℃ (2.94℉), and NSE for precipitation and solar radiation 

parameters were all greater than 0.87, except for the skewness coefficient (SKEW P) with a relatively lower interpolation 405 

accuracy (NSE = 0.78).  

3) Basic statistics and frequency distributions for CLIGEN-simulated climate elements using UK-interpolated 

parameters agreed well with those simulated using observations. The mean absolute error (MAE) for the average, standard 

deviation and skewness coefficient for the two simulated series of temperature across 2405 stations were all less than 0.5℃. 

The mean absolute relative error (MARE) for same statistics for simulated solar radiation were less than 0.1%. MARE for the 410 

average and standard deviation for precipitation amount, duration and I30 were less than 5.0%, while errors for skewness 

coefficient for these three groups of parameters were less than 10.1%.  

The developed gridded input parameter database can be applied using CLIGEN, with an established and reliable 

simulation quality, to the stochastic simulation of temperature, solar radiation and precipitation at a daily scale and to 

precipitation at a sub-daily scale for any single point in China. CLIGEN can simulate the dew point and wind as well, not 415 

regionalized in this study. As a site-based weather generator, simulated climate series using CLIGEN are independent of each 

http://clicia.bnu.edu.cn/data/cligen.html
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other and are lack of spatial correlations among stations. Further research might focus on the rebuilding of correlations among 

climate elements and between nearby stations. 
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Table 1: Summary of CLIGEN input parameters and the data used for the calculation of parameters. 

Inputs Parameter description Unit1 Number of parameters Data used 

TMAX AV 
 Average of daily maximum 

temperature  
℉ Monthly, 12 in total 

Daily 

temperature 

SD TMAX 
Standard deviation of daily 

maximum temperature  
℉ Monthly, 12 in total 

Daily 

temperature 

TMIN AV 
Average of daily  

minimum temperature 
℉ Monthly, 12 in total 

Daily 

temperature 

SD TMIN 
Standard deviation of daily  

minimum temperature 
℉ Monthly, 12 in total 

Daily 

temperature 

SOL.RAD 
Average of daily solar 

radiation 
Langley Monthly, 12 in total 

Daily solar 

radiation 

SD SOL 
Standard deviation of daily 

solar radiation 
Langley Monthly, 12 in total 

Daily solar 

radiation 

MEAN P 
Mean precipitation  

 on rainy days 
inch Monthly, 12 in total 

Daily 

precipitation 

S DEV P 
Standard deviation of 

precipitation on rainy days 
inch Monthly, 12 in total 

Daily 

precipitation 

SKEW P 
The skewness coefficient of  

precipitation on rainy days 
 Monthly, 12 in total 

Daily 

precipitation 

P(W/D) 
The probability of a wet day  

following a dry day 

 
Monthly, 12 in total 

Daily 

precipitation 

P(W/W) 
The probability of a wet day  

following a wet day 

 
Monthly, 12 in total 

Daily 

precipitation 

MX.5P 

Maximum rainfall intensity 

per 30 min (0.5 hour) of a 

month 

 

inch/h Monthly, 12 in total 
Hourly 

precipitation 

TimePk2 
Relative time to the peak 

rainfall intensity  

 Cumulative frequency, 

12 in total 

Hourly 

precipitation 

1CLIGEN input parameter values are required to have US customary unit. 535 

2The 12th parameter of TimePk for all stations is equal to 1.  
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Table 2: Data lengths for daily temperature, daily and hourly precipitation and daily solar ration for stations used in 

this study. 

Data length 

 (years) 

Daily Temperature 

(1951-2014)   

Daily rainfall 

(1951-2015) 

Hourly rainfall 

(1951-2012) 

Daily solar radiation 

(1957-2017) 

<=10 19 16 215 5 

10~20 17 19 34 9 

20~30 20 20 94 44 

30~50 269 240 1302 16 

>50 2080 2110 760 56 

Sum 2405 2405 2405 130 

 

 540 
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Table 3: Comparison of the accuracy of OK and UK using the leave-one-out cross-validation.  

CLIGEN  

inputs 

Observations  RMSE3  NSE4  PBIAS4 (%) 

AV1 S DEV2  OK UK  OK UK  OK UK 

TMAX AV (℉) 67.54 18.02  2.94 1.34  - -  - - 

SD TMAX (℉) 7.58 1.91  0.36 0.35  - -  - - 

TMIN AV (℉) 48.91 19.84  2.67 1.58  - -  - - 

SD TMIN (℉) 6.05 1.94  0.45 0.46  - -  - - 

SOL.RAD (Langley) 347.46 116.18  30.59 27.11  0.93 0.95  0.14 0.24 

SD SOL (Langley) 138.70 41.33  14.34 15.14  0.88 0.87  -0.05 0.97 

MEAN P (inch) 0.26 0.16  0.03 0.02  0.97 0.98  -0.02 0.07 

S DEV P (inch) 0.40 0.27  0.05 0.05  0.96 0.97  -0.06 0.01 

SKEW P  3.12 1.01  0.73 0.47  0.48 0.78  0.08 0.09 

P(W/D)  0.23 0.12  0.03 0.02  - -  - - 

P(W/W) 0.53 0.15  0.04 0.03  - -  - - 

MX.5P (inch/h) 0.93 0.64  0.14 0.14  0.95 0.95  -0.05 0.04 

TimePk 0.58 0.32   0.01 0.01   - -   - - 
1Overall average (AV) and 2standard deviation (S DEV) for all months and stations, and the unit is identical with parameters; 

3The unit of RMSE is identical with the unit of each group of parameters; 

4NSE and PBIAS were only calculated for parameters in the ratio scale with true zero. 545 

 

 

 

 

  550 



22 

 

 

 

Table 4: Comparison of CLIGEN generated daily temperature and solar radiation based on observed input parameters 

and UK-interpolated ones. 

Estimation 

indicators  

Daily maximum 

temperature (℃) 
  

  

Daily maximum 

temperature (℃)  
  

  

Daily solar radiation  

(Langley/day ) 

AV1 S DEV2 SKEW3 AV S DEV SKEW AV S DEV SKEW 

RMSE  0.68 0.25 0.03  0.79 0.35 0.04  18.00 7.24 0.07 

NSE - - -  - - -  0.87 0.87 0.56 

PBIAS (%) - - -  - - -  0.39 0.39 -0.14 

|AE| (%)4 (%) (%)   (%) (%) (%) |RE| (%)5 (%) (%) 

< 1℃ 93.7 99 100  86.2 97.5 100 < 10% 93.3 91.7 60.8 

< 2℃ 98.5 99.8 100  97.4 99.6 100 < 20% 99.2 99.2 83.3 

< 5℃ 99.8 100 100  99.9 100 100 < 50% 100 100 93.3 

MAE (℃) 0.51 0.21 0.02   0.34 0.14 0.02 MARE (%) 3.81 4.00 16.75 

1The average (AV), 2the standard deviation (S DEV), and 3the skewness coefficient (SKEW) of daily maximum/minimum temperature and 

solar radiation simulated by CLIGEN.  

4Percent of stations with |AE| in a range.  555 

5Percent of stations with |RE| in a range.  
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Table 5: Comparison of CLIGEN-generated daily rainfall and annual rainy days based on observed input 

parameters and UK-interpolated ones.  

Estimation 

indicators 

Daily precipitation 

(mm) 

Annual 

rainy days 

Storm duration 

(h) 

I30  

(mm/h) 

AV1 S DEV2 SKEW3 AV AV S DEV SKEW AV S DEV SKEW 

RMSE 0.36 0.71 0.63 7.62 0.21 0.17 0.23 0.28 0.52 0.24 

NSE 0.98 0.97 0.48 0.97 0.92 0.87 0.26 0.99 0.98 0.66 

PBIAS  -0.06 0.27 0.94 -0.01 0.28 0.73 0.13 -0.34 -0.2 -0.15 

|RE| (%)4 (%) (%) (%) (%) (%) (%) (%) (%) (%) 

< 10% 94.1 91.4 61.2 92.9 94.7 90.8 74.1 97.7 96.7 88.6 

< 20% 98.6 98.6 87.4 98.4 98.8 97.9 93.5 99.7 99.4 98.3 

< 50% 100 99.9 99.6 99.7 99.9 99.8 99.7 100 99.9 100 

MARE (%) 3.72 4.56 10.07 4.09 3.47 4.61 7.71 2.36 3.07 5.08 

1The average (AV), 2the standard deviation (S DEV), and 3the skewness coefficient (SKEW) of daily precipitation, annual rainy days, storm 

duration and I30 by CLIGEN. 

 4Percent of stations with |RE| in a range.  565 
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Table 6: Station density and simulation quality of CLIGEN for three Chinese physical-geographical regions. 

 

Eastern Monsoon 

Area  

Northwest Arid  

Area 

Qinghai-Tibet  

Plateau 

Temperature and precipitation    

No. of stations 2044 233 128 

Density (n/104∙km2) 4.57 0.97 0.50 

MAE of Max Temperature (℃) 0.44 0.90 0.93 

MAE of Min Temperature (℃)  0.30 0.42 0.82 

MARE of Daily Precipitation (%) 3.13 6.92 7.25 

MARE of Duration (%) 2.95 5.93 7.31 

MARE of I30 (%) 2.00 4.50 4.11 

    

Solar radiation    

No. of stations 92 26 12 

Density (n/104∙km2) 0.21 0.11 0.05 

MARE of Daily Solar Radiation (%) 3.92 2.87 5.14 
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Figure 1: Locations of meteorological stations used in this study. 

  



26 

 

 

 

 575 

Figure 2: Boxplot of CLIGEN temperature, solar radiation, and precipitation parameters obtained from observations 

in mainland China. 

 

  



27 

 

 

 

 580 

 Figure 3: Spatial distribution of CLIGEN temperature-related parameters of mainland China in August. All 

parameters were regionalized using universal Kriging. 
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Figure 4: Spatial distribution of CLIGEN precipitation related parameters of mainland China in August. All 

parameters were regionalized using universal Kriging. 



29 

 

 

 

 590 
Figure 5: P(W/D), P(W/W), MX.5P and TimePk of nine stations determined by observed daily precipitation. 
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Figure 6: Comparison of the interpolation quality in terms of the root mean square error (RMSE) using ordinary Kriging 595 

(OK) and universal Kriging (UK) for temperature, solar radiation, and precipitation parameters.  
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Figure 7: Comparison of the interpolation quality using ordinary Kriging (OK) and universal Kriging (UK) for CLIGEN 600 

temperature, solar radiation, and precipitation parameters in August, and the 8th parameters of TimePk.  
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Figure 8. Frequency distribution of daily precipitation, duration, and maximum 30-min intensity (I30) generated by 605 

CLIGEN using inputs based on observations and interpolation predicted parameters: Fuzhou station (a-c) and 

Tuokexun station (d-f) as examples. 
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Figure 9. Spatial distribution of the standard error for interpolation results of TMAX AV (a) and MEAN P (b) using 610 

Universal Kriging. 
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Figure 10: Comparison of interpolation quality using universal Kriging (UK) and the inverse distance weighted method 615 

(IDW) for CLIGEN temperature and precipitation related parameters for 2405 stations in August. 
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