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Abstract. Stochastic weather generator CLIGEN can simulate long-term weather sequences as input to WEPP for erosion 

predictions. Its use, however, has been somewhat restricted by limited observations at high spatial-temporal resolutions. Long-10 

term daily temperature, daily and hourly precipitation data from 2405 stations and daily solar radiation from 130 stations 

distributed across mainland China were collected to develop the most critical set of site-specific parameter values for CLIGEN. 

Ordinary Kriging (OK) and Universal Kriging (UK) with auxiliary covariables, i.e. longitude, latitude, elevation, and the mean 

annual rainfall wereas used to interpolate parameter values into a 10 km × 10 km grid and parameterthe interpolation accuracy 

was evaluated based on the leave-one-out cross-validation. The rResults showed that demonstrated UK generally outperformed 15 

OK. The  root mean square error between UK-interpolated and observed temperature related parameters was < 1.63℃ (2.94℉). 

and that The Nash-Sutcliffe efficiency coefficients (NSEs) between UK-interpolated and observed parameters for precipitation 

and solar radiation related parameters wereas ≥ greater than 0.87, apart from that for the skewness coefficient of daily 

precipitation, which was 0.78. tTvalues Nash-Sutcliffe efficiency coefficients (NSEs) between UK interpolated and observed 

parameters werewere greater than 0.85 for all parameters apart from the standard deviation of solar radiation, skewness 20 

coefficient of daily precipitation,NSEs for precipitation and solar radiation related parameters were greater 0.87, apart from 

skewness coefficient of daily precipitation, which was 0.78 and cumulative distribution of relative time to peak intensity, with 

relatively lower interpolation accuracy (NSE > 0.66). In addition, CLIGEN- simulated daily weather sequences using UK-

interpolated and observed parameters inputs showed consistent statistics and frequency distributions. The mean absolute 

discrepancy between the two sequences in for the average and standard deviation of the temperature was was < less than 25 

0.51℃. , and The the mean absolute relative discrepancy for the same statistics for  the solar radiation, precipitation amount, 

duration and maximum 30-min intensity was < I30 were less than 5% in terms of the mean and standard deviation. These 

CLIGEN parameter values at the 10 km resolution would meet the minimum WEPP climatedata requirements for WEPP 

application throughout in mainland China. The dataset is availableavailability at   http://clicia.bnu.edu.cn/data/cligen.html and 

http://doi.org/10.12275/bnu.clicia.CLIGEN.CN.gridinput.001 (Wang et al., 2020).  30 
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1 Introduction 

Weather generators (WGs) are stochastic models that can generate arbitrarily long sequences of weather variables 

with statistical properties that are similar to observations for a specific location or area (Yin and Chen, 2020). Early WGs were 

originally developed to provide surrogate climate series for hydrological, soil erosion, and agricultural models when the 35 

observed data could not satisfy the application requirements due to missing data, limited record length or spatial coverage 

(Wilks and Wilby, 1999). Since the 1990s, WGs have received increased attention as a statistical downscaling tool for the 

assessment of climate change impact (Katz and Parlange, 1996; Maraun et al., 2010). While global climate models (GCMs) / 

regional climate models (RCMs) have been used for climate projections, outputs from these models were often too coarse to 

meet the requirements of earth surface process models in terms of spatial-temporal resolutions and were biased compared with 40 

observations. Statistical downscaling methods, mainly including perfect prognosis (PP), model output statistics (MOS) and 

WGs, can be used to downscale and bias-correct the output from GCM/RCMs prior to earth surface model applications 

(Maraun and Widmann, 2018; Yin and Chen, 2020).  

CLIGEN is a stochastic WG developed based on the generators used in the EPIC and SWRRB models (Williams et 

al., 1985; Williams et al., 1984) and was released in 1995 initially accompanying the process-based Water Erosion Prediction 45 

Project (WEPP) model from the United accompanied by the process-based soil erosion model Water Erosion Prediction Project 

(WEPP) by the United States Department of Agriculture (Nicks et al., 1995). CLIGEN can simulate a series of long-term 

climate data in daily scale, including maximum and minimum temperatures, precipitation, solar radiation, dew point, wind 

velocity and direction. In addition, CLIGEN can generate three inter-storm variables in sub-daily scale, including storm 

duration, time to peak intensity (tp) and the ratio of the peak intensity to the average intensity (ip), from which an unlimited 50 

length of high-resolution breakpoint data can be generated (Flanagan et al., 2001; Nicks et al., 1995; Yu, 2003).  

Of the ten CLIGEN-simulated weather elements, seven, namely daily maximum and minimum temperature, daily 

precipitation, duration, tp, ip, and daily solar radiation, are all that are required for predicting hydrological processes, soil 

erosion, and bio-production (Arnold et al., 1998; Flanagan et al., 2001; USDA-ARS, 2013Foster, 2005; Wallis and Griffiths, 

1995). These seven climate elements are considered to meet the minimum data requirements for WEPP if modeling wind-55 

induced snow drift is not needed (Flanagan and Livingston, 1995). As CLIGEN is independent of WEPP, it can be used to 

provide simulated climate series for other surface process models as well (Flanagan et al., 2014; Yu, 2002). 

Table 1 

Thirteen groups of input parameters related to temperature, solar radiation and precipitation as listed in Table 1 are 

all parameters needed by CLIGEN to generate the aforementioned seven climate elements. As a site-specific weather generator, 60 

input parameters for CLIGEN can be directly prepared for sitestationss with observed data. CLIGEN was initially released in 

the United States with a set of 2600 weather station parameter files (Flanagan et al., 2001). Parameters for the daily temperature 

and daily precipitation were calculated directly based on the observations of temperature and precipitation from each station. 
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Parameters for daily solar radiation and storm pattern were based on 142 weather stations with daily solar radiation and sub-

daily rainfall observations first, and then extended to other 2000 more stations using the triangulation interpolation method 65 

(Scheele and Hall, 2000).  

Parameter regionalization, which extends model parameter values from stations with observations to areas/regions 

without observations, is required when the model is going to be used in these areas/regions. Commonly used parameter 

regionalization methods can be categorized as follows: (1) the parametric transplantation method, where a reference area that 

is spatially near or has similar climate characteristics to the target area is first selected, then the parameters of the reference 70 

area are extended to the target area (Cheng et al., 2016); (2) spatial interpolation method such as Thiessen polygon, inverse 

distance weighted, or ordinary Kriging, that interpolate parameter values based on spatial correlations of parameters among 

multiple sites stations (Hutchinson, 1995); (3) parameter transfer as a function of regional properties such as multiple 

regression, based on correlations between parameters and regional characteristics (Cowpertwait et al., 1996); (4) 

regionalization considering both the spatial correlation of parameters and the correlation between parameters and regional 75 

characteristics, including external drift Kriging, and universal Kriging, that can be treated as combination methods to take 

advantage of method (2) and (3) (Haberlandt, 1998; Semenov and Brooks, 1999).  

Accuracy of parameter regionalization is known to be influenced by several factors. Firstly, regionalization of climate 

variables with lower or regular spatial variability generally performs better than highly heterogeneous and discontinuous 

variables. Xu et al. (2018) attempted to regionalize monthly temperature and precipitation in the Kangdian region of China 80 

and noted that the accuracy of interpolation for the temperature was higher than that for the precipitationthe root mean square 

error (RMSE) of the temperature was less than that of the precipitation. Secondly, for the same climate variable, temporal 

resolution plays an important role. The climate variable at a monthly or annual scale tends to perform better than variables at 

a daily or hourly scale because data with finer resolutions possess greater spatial variability. Thirdly, adopted approaches affect 

the efficiency of regionalization. For example, Wilks (2008) compared and evaluated the interpolation accuracy of four spatial 85 

interpolation methods for parameters of WGEN (Weather GENerator), a weather generator developed by Richardson and 

Wright (1984), parameters and  and results showed that locally weighted regressions outperformed Thiessen polygons and 

domain-wide (‘global’) regressions. The accuracy of interpolation can be improved by adopting auxiliary covariables that are 

correlated with the regionalized climate variables into the regionalization process (Hengl et al., 2007). For example, elevation 

is frequently used as an auxiliary covariable and has been found to improve the interpolation of temperature and precipitation 90 

(Carrera-Hernández and Gaskin, 2007; Ly et al., 2013; Verworn and Haberlandt, 2011), especially in mountainous regions 

with complex terrains (Xu et al., 2018).  

Several studies have been attempted at regionalization of CLIGEN input parameters. Regionalization of CLIGEN 

input parameters for WEPP have combined the parametric transplantationparameter transport and spatial interpolation. When 

CLIGEN was developed in the U.S. to provide climate input to WEPP, parameter values for 2600 stations were regionalized 95 
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based on inverse distance weighting (IDW). In the WEPP application, users identify the targeted location, for which daily 

weather sequences using parameters from the nearest stations will be automatically generated directly or by interpolation from 

surrounding stations (up to 20 stations within a distance of one degree of latitude/longitude). The parameter files and the 

internally installed interpolation in the WEPP application has facilitated application of CLIGEN/WEPP in the US. However, 

the accuracy of regionalized parameters has not been evaluated and the effect on generated weather sequences using the 100 

interpolated parameters are largely unknown.  

Chen (2008) explored four spatial interpolation methods, inverse distance weighting (IDW), ordinary Kriging (OK), 

global polynomial interpolation (GPI), and local polynomial interpolation (LPI), to regionalize the daily temperature and 

precipitation related input parameters of CLIGEN for 12 stations in the Loess Plateau of China. Paired t-tests showed that the 

temperature and precipitation series generated using interpolated input parameters weare not significantly different from those 105 

generated using input parameters computed using observations for the 12 sites stations considered (Chen, 2008). However, 

solar radiation and storm pattern-related parameters used to generate daily solar radiation and storm characteristics were not 

considered in Chen’s study (Chen, 2008). Input parameters for simulating the 7 weather variables mentioned above, listed in 

Table 1, meet the minimum data requirements for WEPP at a specific sitestation. Without temperature, solar radiation and 

storm pattern-related parameter values, CLIGEN cannot be used to generate the required weather sequences for WEPP.  110 

The overall aim of this study was to enable widespread use of CLIGEN to generate daily precipitation, temperature, 

and solar radiation, precipitation and sub-daily precipitation variables anywhere in mainland China and to gain better 

understanding of the performance of various spatial interpretation techniques. Specific objectives of this study were to (1) 

assemble CLIGEN input parameter values for 2405 sites stations in mainland China based on meteorological observations; (2) 

evaluate spatial interpolation techniques for regionalizing CLIGEN parameters; (3) produce grid-based CLIGEN temperature, 115 

solar radiation and precipitation parameter values at 10 km resolution for mainland China. 

2 Data and methods 

2.1 Data collection 

Four datasets consisting of daily temperature, daily rainfall, and hourly rainfall from 2405 meteorological stations, 

and solar radiation data from 130 stations distributed across mainland China were collected (Fig. 1) from the National 120 

Meteorological Information Center (NMIC) of the China Meteorological Administration (CMA) and hadve been quality 

controlled by NMIC. Data lengths were different for these four datasets (Table 2). Daily temperature and daily rainfall data 

were characterized by longer periods of observation for most stations compared with hourly rainfall data, especially for stations 

located in the northwest arid area and the Qinghai-Tibet plateau where gauges for observing hourly rainfall for some stations 

were installed very late (Zhao, 1983; Wang and Zuo, 2009). Based on these four data sets, a total of 156 parameter values were 125 
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calculated for each station. It should be noted that the 12th value of TimePk is equal to 1 by definition and 155 parameters were 

involved in the calculation and interpolation. The siphon rain gauges used to record hourly rainfall were stopped in winter to 

avoid freezing failures; therefore, hourly rainfall was only available for the warm rainy season for some northern and western 

stations. Nine stations distributed in the North China (Miyun, Zhengzhou, Ha’erbin), Northwest China (Lanzhou, Wulumuqi), 

the Tibet Plateau (Lasa), and South China (Fuzhou, Changsha, Haikou) were selected to further display the regional differences 130 

and monthly variability of input parameters (Fig. 1). 

Fig. 1. 

Table 2.  

2.2 Site-based input parameters and simulation 

CLIGEN requires 13 groups of input parameters and 12 values for each group to stochastically simulate temperature, 135 

solar radiation and precipitation (Table 1). Temperature-related input parameters, TMAX AV, SD TMAX, TMIN AV, and SD 

TMIN are used to simulate the daily maximum and minimum temperature for each simulated day and to decide whether the 

simulated precipitation occurred as snowfall or rainfall (Table 1). These four values can be calculated using daily maximum 

and minimum temperature data for each month directly. Solar radiation related inputs SOL.RAD and SD SOL are used to 

generate daily solar radiation and can be directly obtained from observed daily solar radiation.  140 

The wet-following-wet and wet-following-dry day transition probabilities, P(W|D) and P(W|W) are used to determine 

the occurrence of rainy days with a first-order two-states Markov chain prepared as follows:  

P(𝑊|𝑊) =  
𝑁𝑤𝑤

𝑁𝑤𝑑+𝑁𝑤𝑤
,                                                                             (1) 

  P(𝑊|𝐷) =  
𝑁𝑑𝑤

𝑁𝑑𝑤+𝑁𝑑𝑑
,                                                                              (2) 

in which, 𝑁𝑤𝑤 , 𝑁𝑤𝑑, 𝑁𝑑𝑤, 𝑁𝑑𝑑 represent the number of days in a month that a wet day followed a wet day, a wet day followed 145 

a dry day, a dry day followed a wet day, and a dry day followed a dry day, respectively. For each simulated wet day, MEAN 

P, S DEV P, and SKEW P are used to simulate the daily precipitation amount using a skewness normal distribution. These 

three parameters can be computed directly from daily precipitation month by month. As CLIGEN assumes there is only one 

storm occurring on a wet day, daily precipitation amount depths in CLIGEN are equal to storm precipitation amount.  

MX.5P and TimePk are used to simulate inter-storm variables, including storm duration (D, h) and two normalized 150 

dimensionless variables, the ratio of peak intensity to average intensity (ip), and the ratio of time to the peak intensity to storm 

duration (tp) (Nicks et al., 1995; Yu, 2002; Yu, 2003; Zhang and Garbrecht, 2003). MX.5P represents the average maximum 

30-min intensity for each month. The maximum 30-min intensity for a wet day is denoted as I30. If a month has n wet days, the 

maximum I30 among n wet days can be denoted by maxI30; and for a specific month in a data series of k years, the MX.5P is 

given by: 155 
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MX. 5P =  
1

𝑘
∑ 𝑚𝑎𝑥𝐼30.                                                                              (3) 

TheoreticallyIdeally, MX.5P values are expected toshould be prepared using rainfall data with an a resolution of observed 

i 30 min or less. Depending on the temporal resolution, I30 can be calculated directly from moving averages of the original data 

over successive 30 -minutes.  Considering Given the limited availability of aforementioned high-resolution rainfall 

observations for this study, MX.5P was calculated estimated in this study using hourly data described in detail elsewherein 160 

reference to methods developed by (Wang et al. (, 2018b)). 

 In CLIGEN (Nicks et al., 1995), as in Arnold and Williams (1989), it is assumed that the magnitude of precipitation 

intensity decreases exponentially from the maximum rate when time distribution of precipitation intensities is discarded. 

Rainfall intensity is basically assumed to be ranked from high to low in CLIGEN (Nicks et al., 1995); Ttherefore, the 

precipitation depth 𝑃∆𝑡  in any given interval ∆𝑡 can be described by:         165 

𝑃∆𝑡 = 𝑖𝑝 ∫ 𝑒−𝑡/𝜏𝑑𝑡 = 𝜏𝑖𝑝(1 − 𝑒−∆𝑡/𝜏)
∆𝑡

0
.                                 (4)  

For hourly data, the interval ∆𝑡 = 1 h, and the maximum 1 h precipitation 𝑃1ℎ and maximum 2 h precipitation 𝑃2ℎ were known:  

𝑃1ℎ

𝑃2ℎ
=

1−𝑒−1/𝜏

1−𝑒−2/𝜏,                                                                              (5) 

where τ can be solved and then ip can be readily obtained as, 

𝑖𝑝 =
𝑃1ℎ

𝜏(1−𝑒
−

1
𝜏)

.                                                                              (6) 170 

Once τ and ip  are known, the maximum 30-min precipitation 𝑃0.5 can be determined as, 

𝑃0.5ℎ = 𝜏 𝑖𝑝(1 − 𝑒−
1

2𝜏).                                                                      (7) 

The maximum 30-min rainfall intensity is given simply as, 

𝐼30𝑚𝑖𝑛 = 2𝑃0.5ℎ.                                                                          (8) 

In reference to Wang et al. (2018b), TimePk MX.5P can be directly prepared using hourly rainfall data. 175 

There are 12 discrete values of TimePk for each sitestation, describing an empirical cumulative probability distribution 

of time to peak (Nicks et al., 1995). The observed interval is ∆𝑡 and the storm duration, D, consists of n intervals. If the peak 

intensity occurs in the 𝑖th interval, time to peak intensity, Tp is estimated as,   

𝑇𝑝 = (𝑖 −
1

2
)∆𝑡,                                                                          (9) 

and time to peak as a fraction of duration is, 180 

𝑡𝑝 =
𝑇𝑝

𝐷
=  

(𝑖−0.5)

𝑛
.                                                                     (10) 

If 𝑁𝑡𝑝(𝑖) is the number of wet days from all data records with 𝑡𝑝 ≤ i/12 for 𝑖 = 1, 2, …12, then 

𝑇𝑖𝑚𝑒𝑃𝑘(𝑖) =
𝑁𝑡𝑝(𝑖)

𝑁𝑡𝑝(12)
.                                                                (11) 
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TimePk computed using 1-min rainfall data and hourly rainfall data differs slightly, and it has some small influence on 

CLIGEN- simulated intensity and duration (Wang et al., 2018). Therefore, In reference to Wang et al. (2018b), TimePk was 185 

prepared directly using hourly data in this study for consistence. as well as MX.5P.  Given the time increment (∆𝑡) of 1 hour, 

and known storm duration (D) for each wet day, TimePk can be computed using equations (9) to (11). It is worth noting that 

the 12th parameter value of TimePk for all stations equals to 1 (equation 11).  

2.3 Spatial interpolation by Kriging 

Kriging interpolation is a spatial interpolation method that gives the best linear unbiased prediction of intermediate values, 190 

assuming a Gaussian process governed by prior covariance. For a research region with n samples at spatial locations xi (i = 1, 

2, …, n), 𝑍(𝒙𝑖) are the sample values at xi. At an unknown target point x0, the estimated value �̂�(𝒙0) can be expressed as a 

weighted average of the known observations 𝑍(𝒙𝑖) (Wackernagel, 2013): 

�̂�(𝒙0) =  ∑ 𝜆𝑖𝑍(𝒙𝑖)
𝑛
𝑖=1 ,                                                                   (12) 

where 𝜆𝑖  are the weighting coefficients of the known sample values Z(𝒙𝑖), which depend on the spatial autocorrelation 195 

structure of the sample values and should minimize the prediction error variance. Assuming the variable value Z(𝒙) can be 

modeled as a combination of a deterministic trend μ(𝒙) and an auto-correlated random error ε(𝒙), Z(𝒙)= μ(𝒙) + ε(𝒙), then 

the best linear unbiased prediction requires E[�̂�(𝒙0) − Z(𝒙0)]=0 and Var[�̂�(𝒙0) − Z(𝒙0)] is minimized. Ordinary Kriging 

(OK) assumes that the trend is constant but unknown, μ(𝒙) = 𝑚, while in universal Kriging (UK), the trend is assumed to be 

a linear combination of some known covariables 𝑓𝑙, μ(𝒙) = ∑ 𝛽𝑙𝑓𝑙
𝑘
𝑙=1 . Universal Kriging (UK) takes into accountconsiders the 200 

relationship between the target variable and the auxiliary covariables. Soil, elevation, temperature, and remote sensing images 

were are commonly used auxiliary covariables (Haberlandt, 1998; Li et al., 2014; McKenzie and Ryan, 1999; Semenov and 

Brooks, 1999). 

Both OK and UK were adopted used to interpolate the CLIGEN input parameters in this study. Stepwise regression was 

conducted to select appropriate covariables for UK. The longitude, latitude, elevation, and annual rainfall amount were found 205 

correlated with the twelve groups of parameters CLIGEN parameters one for each month for CLIGEN with the exception of 

the SKEW P (Table 1), and were selected as auxiliary covariables for these twelve groups of parameterstherefore, all these 

four variables were adopted as auxiliary covariables when UK was conducted to interpolate these twelve groups of parameters.. 

SKEW P had low correlations with all four of these covariates but good correlation with parameters MEAN P and SDEV P. 

Therefore, MEAN P and SDEV P were selected as covariables during the interpolation of SKEW P. 210 

2.4 Assessment of interpolation accuracy 

A leave-one-out cross-validation method was applied used to evaluate the interpolation accuracy of OK and UK. First, 

one of the 2405 stations was excluded from data analysis and treated as unknown, data for the remaining 2404 stations were 
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then used to predict parameter values for the excluded station using OK or UK. This leave-one-out procedure was repeated for 

155 parameters for each of the 2405 stations (13 groups × 12 input parameters -1, as the value of 12th parameter of TimePk is 215 

always 1, Table 1). Denoting CLIGEN parameters based on observations as PO and the corresponding predicted CLIGEN 

parameters obtained using OK or UK as PK, three indicators, root mean square error (RMSE), Nash-Sutcliffe efficiency 

coefficient (NSE), and percent bias (PBIAS) were selected to evaluate and compare the performances of OK and UK as follows 

(Yin et al., 2019):  The input parameters prepared using observation were denoted as 𝑃𝑖𝑗
𝑜𝑏𝑠 (i = 1, 2, …, 2405 stations; j = 1, 

2, … 131 input parameter values), and the corresponding inputs interpolated using OK (UK) as 𝑃𝑖𝑗
𝑂𝐾  (𝑃𝑖𝑗

𝑈𝐾). For a specific 220 

parameter value 𝑗𝑡ℎ, assumed the value for the 𝑖𝑡ℎ station was unknown and removed 𝑃𝑖𝑗
𝑜𝑏𝑠 from all stations. Use the remaining 

stations to predict 𝑃𝑖𝑗
𝑂𝐾  (𝑃𝑖𝑗

𝑈𝐾) of xi using OK (UK), respectively. Following this procedure, two sets of input parameters for 

2405 stations predicted by OK and UK were obtained and compared with parameters determined from observations to evaluate 

two interpolation methods.   

Four indicators, Nash-Sutcliffe efficiency coefficient (NSE), percent bias (PBIAS), root mean square error (RMSE), and 225 

RMSE-observations standard deviation ratio (RSR), were selected to evaluate and compare the performances of OK and UK 

as follows (Yin et al., 2019): 

RMSE = √
1

𝑛
∑ (𝑃𝑂 − 𝑃𝐾)2

𝑛 ∑ (𝑃𝑖𝑗
𝑜𝑏𝑠 − 𝑃𝑖𝑗

𝐾)2𝑛
𝑖=1 ,                                                                 (13) 

NSE = 1 −
∑ (𝑃𝑂−𝑃𝐾)2

𝑛 ∑ (𝑃𝑖𝑗
𝑜𝑏𝑠−𝑃𝑖𝑗

𝐾)2𝑛
𝑖=1

∑ (𝑃𝑂−𝑃𝑂̅̅ ̅̅ )2
𝑛 ∑ (𝑃𝑖𝑗

𝑜𝑏𝑠−𝑃𝑜𝑏𝑠̅̅ ̅̅ ̅̅ ̅)2𝑛
𝑖=1

,                                                                    (1314) 

PBIAS =
∑ (𝑃𝑂−𝑃𝐾)𝑛 ∑ (𝑃𝑖𝑗

𝑜𝑏𝑠−𝑃𝑖𝑗
𝐾)𝑛

𝑖=1

∑ 𝑃𝑂𝑛 ∑ 𝑃𝑖𝑗
𝑜𝑏𝑠𝑛

𝑖=1

∗ 100,                                                                 (1415) 230 

RMSE = √
1

𝑛
∑ (𝑃𝑖𝑗

𝑜𝑏𝑠 − 𝑃𝑖𝑗
𝐾)2𝑛

𝑖=1 ,                                                              (15)As  

RSR =
𝑅𝑀𝑆𝐸

√1
𝑛

∑ (𝑃𝑖𝑗
𝑜𝑏𝑠 − �̅�)2𝑛

𝑖=1

=
√1

𝑛
∑ (𝑃𝑖𝑗

𝑜𝑏𝑠 − 𝑃𝑖𝑗
𝐾)2𝑛

𝑖=1

√
. 

                                                 (16) 

NSE and PBIAS are inappropriate for temperature-related parameters which are in interval scales, and the same is true 

of probabilities. NSE and PBIAS were computed for parameters in ratio scales only, i.e. MEAN P, S DEV P, SKEW P, 235 

SOL.RAD, and SD SOL. By calculating of the above four three indicators, for each input parameter values, the better of the 

two interpolation techniques, OK and UK, was determined and applied to calculate the regionalization of CLIGEN input 

parameters for mainland China. A two-dimensional grid database was established at a spatial resolution of 10 km × 10 km 

based on the 155 sets of 156 parameter layersinterpolated parameters in total.   
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Input parameters based on observed data and interpolated data using the better interpolation technique were input into 240 

CLIGEN to evaluate the influence of regionalized parameters on the simulation. For each station, 100 years of continuous 

climate series were generated using the default CLIGEN stochastic seed without interpolation between months, and the 

simulated data predicted by  𝑃𝑜𝑏𝑠and 𝑃𝐾  were denoted as 𝐺𝑜𝑏𝑠 and 𝐺𝐾 , by PO and PK were denoted as GO and GK, respectively. 

The maximum and minimum temperature (℃), daily solar radiation (Langley), daily rainfall amount (mm), storm duration (h), 

ip and tp of each simulation day were derived from 𝐺𝑖
𝑜𝑏𝑠  and 𝐺𝑖

𝑘   GO and GK ffor each station, and the maximum 30-min 245 

intensity (I30, mm/h) was calculated based on an assumed bi-exponential storm pattern (Yu, 2002). CLIGEN input parameter 

values are required to have US customary unit as shown in Table 1, while CLIGEN output is produced in SI as input to WEPP. 

Three basic statistics, the average, standard deviation and skewness coefficient were calculated for each CLIGEN-

generated variable. The Absolute absolute error (AE) and mean absolute errors (MAE) were calculated to examine the 

differences between the two sets of statistics for generated temperatures. Relative error (RE) and mean absolute relative errors 250 

(MARE) were calculated to examine the differences between the two sets of statistics for generated daily  solar radiation, daily 

precipitation and sub-daily storm pattern: 

|AE𝑖|𝐴𝐸||  = |𝐺𝑂𝐺𝑖
𝑜𝑏𝑠 − 𝐺𝐾𝐺𝑖

𝑘|,                                                                     (1716) 

MAE = 
1

2405
∑|(𝐺𝑂 − 𝐺𝐾)| ∑ |(𝐺𝑖

𝑜𝑏𝑠 − 𝐺𝑖
𝑘)|2405

𝑖=1 ,                                                               (1817) 

|RE𝑖𝑅𝐸|  = 100% |(𝐺𝑂 − 𝐺𝐾𝐺𝑖
𝑜𝑏𝑠 − 𝐺𝑖

𝑘) 𝐺𝑂|𝐺𝑖
𝑜𝑏𝑠⁄ ,                                                             (1918) 255 

MARE =
100%100%

2405
∑|(𝐺𝑂 − 𝐺𝐾) 𝐺𝑂⁄ | ∑ |(𝐺𝑖

𝑜𝑏𝑠 − 𝐺𝑖
𝑘) 𝐺𝑖

𝑜𝑏𝑠⁄ |2405
𝑖=1 .                                                                (2019) 

 

3 Results 

3.1 Spatial-temporal distribution of CLIGEN input parameters 

Thirteen groups of CLIGEN temperature and precipitation parameters from 2405 stations and solar radiation parameters 260 

from 130 stations were plotted to exhibit examine the inter-annual variation and the differences among parameters (Fig. 2). 

The average max-temperature and min-temperature, TMAX AV and TMIN AV (in unit of ℉ ℉, 1℉ = 1℃/1.8+32)℉ =

1℃/1.8 + 32), and the average and standard deviation of solar radiation, SOL.RAD and SD SOL (in unit of Langley, 1Ly = 

4.184*10-2MJ/m2) 1 Ly = 4.184 ∗ 10−2𝑀𝐽/𝑚2) showed strong seasonality and the  spatial variance value became smaller 

convergent from the cold season to the warm one (Fig. 2a, 2c, 2e-f). The spatial distribution of CLIGEN temperatures and 265 

solar radiation related inputs in August based on the UK-interpolated results were depicted as examples (Fig. 3), from which 

we can find a differentiation rule for latitude and vertical zonality for TMAX AV, TMIN AV (Fig. 3a-b). SD TMAX and SD 
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TMIN varied with season with a similar pattern and with generally higher values in spring and autumn (Fig. 3c-d), because 

these two seasons are transitional periods between warm and cold seasons when temperature fluctuations are larger.   

Fig. 2. 270 

Fig. 3. 

The average and standard deviation of daily precipitation, MEAN P, S DEV P (in unit of inch, 1 inch = 25.4 mm), and 

the average monthly maximum 30-min intensity, MX.5P (in unit of inch/h, 1 inch/h = 25.4 mm/h), showed a similar seasonal 

pattern with the parameter values becoming gradually higher from the cold season to the warm (Fig. 2g-h). Precipitation in 

China is influenced by the East Asian summer monsoon and the location relative to land and sea. From the spatial distribution 275 

of daily precipitation in August we found a general decreasing trend from southeast to southwest (Fig. 4a-b). The August rain 

belt is located in North and Northeast China, while the South China region is controlled by the subtropical high-pressure belt 

and experiences a summer drought. Therefore, MEAN P and MX.5P in North China was were apparently greater than in South 

China. In comparison, skewness of daily precipitation, SKEW P, showed imperceptible differences among months and no 

apparent latitudinal or longitudinal zonality (Fig. 4c). This may be one of the reasons leading to the low spatial interpolation 280 

accuracy of SKEW P.  

Fig. 4. 

The wet-following-dry transition probability P(W/|D) showed a clear inter-annual variability in that the probability 

increased from cold season to warm (Fig. 2j), while the wet-following-wet transition probability P(W|/W) was characterized 

by greater regional differences but smaller monthly variability for most stations compared with P(W|/D) (Fig. 2k). The spatial-285 

temporal variation in these two transition probabilities revealed the stepwise northward progress of the East Asian monsoon 

and the North-South advance of the Frontal cyclone (Liao et al., 2004). Due to the pre-monsoon rainy season before June, 

strong convection in summer, and the retreating monsoon rain belt after August, the southern region was characterized by a 

longer rainy season than North China (Yu and Zhou, 2007). Therefore, P(W|/W) of the southern region was generally higher 

than other regions and its seasonal variations were relatively insignificant (Fig. 5b).   290 

Fig. 5. 

MX.5P of nine example stations showed the regional differences more clearly in that the parameters of southern stations 

were relatively higher (Fig. 5c). Differences among southern and northern stations became gradually smaller in the warm 

season. It should be noted that the narrower range of MX.5P in winter was partially related to the limited availability of hourly 

data. Due to the restriction of low temperatures on siphon rain gauge observations, MX.5P in cold seasons were available for 295 

fewer stations than in warm seasons. 

TimePk consists of 12 discrete values representing the cumulative distribution of time to peak intensity ranging from 0 

to 1 for a specific location. The sixth value for TimePk represents the cumulative ratio of storms with peak intensity occurring 

before 1/2 duration, and related ratios for 2405 stations ranging from 60% to 80% (Fig. 2m). TimePk for nine example stations 
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shows the cumulative ratio of time to peak intensity in different regions, consistently indicating that most storms peak 300 

intensities tend to occur earlier during the storms, with no obvious regional differences found for this parameter (Fig. 5d).   

3.2 Evaluation of interpolated parameters using OK and UK 

3.2.1 Parameters at thea daily scale 

The leave-one-out cross-validation showed that four groups of temperature parameters, TMAX AV, SD TMAX, TMIN 

AV, SD TMIN, two groups of solar radiation, SOL.RAD, SD SOL, and four groups of precipitation parameters at daily scale, 305 

MEAN P, S DEV P, P(W/|D) and P(W/|W), were well predicted by ordinary Kriging (OK) and universal Kriging (UK). RMSE 

for all these parameters were relatively low compared with the average of observed inputs (Table 3). For all these four groups 

of temperature related parameters, RMSE between the UK-interpolated and observed were less than 2.94℉ (1.63℃). The 

average NSE over 12 months  wereas greater than 0.88 87 for all these 8parameters of MEAN P, S DEV P, SOL.RAD, and 

SD SOL groups of parameters in ratio scales. The PBIAS were all smaller than 1%, suggesting that parameters based on 310 

observation and interpolation have a very close average trend and showed no obvious bias. In contrast, the interpolated 

accuracy of two groups of solar radiation parameters, SOL.RAD, SD SOL, and the skewness coefficient of daily precipitation, 

SKEW P, were not very satisfactory (Table 3), with NSE being 0.46-0.800.48 using OK and 0.0.66-0.8578 using UK. The 

relatively lower interpolation accuracy of solar radiation related parameters was partially related to the sparsity of stations 

involved in the interpolation. Parameters related to daily average (TMAX AV, TMIN AV, SOL.RAD and MEAN P) were 315 

generally better predicted than corresponding parameters related to standard deviation (SD TMAX, SD TMIN, SD SOL and 

S DEV P), and the skewness coefficient was the least accurately simulated. In addition, the interpolation accuracy tended to 

be lower in the warm season (May to Sept.) compared with the yearly rest period (Fig. 6a-f).  

Table 3. 

In comparison with OK, the overall and monthly predicted accuracy using UK with auxiliary covariables obviously 320 

improved TMAX AV and,  TMIN AV in the warm season, SOL.RAD, MEAN P, SOL.RADSKEW P, P(W|W), and P(W|D) 

in the cold season and SD SOL in March (Fig. 6). . The predicted quality for SD TMAX, MEAN P, S DEV P, P(W|W), and 

P(W|D) was somewhat improved by UK, as these groups of parameters already had high accuracy when using OK to interpolate, 

resulting in a small range of improvement. The predicted accuracy for the minimum temperature (SD TMINTMAX and ) S 

DEV P using the two techniques showed no evident difference. For SD TMIN and SD SOL, using the two techniques showed 325 

no evident differencethe predicted accuracies were approximate , except for July, when the NSE RMSE of UK was were 

obviously lower larger than OK and the reason was unclear. Although the prediction of SKEW P using UK was not as good 

as other parameters at a daily scale, the improvement compared with OK was quite obvious, as the  average NSE over 12 

months increased from 0.458 48 for OK to 0.769 78 for UK, and the RMSE decreased from 0.73 mm to 0.47 mm (Table 3). 
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Predicted inputs using OK and UK versus inputs based on observations from August were plotted to show the difference 330 

between two methods as examples (Fig. 7a-7k).  

Fig. 6. 

3.2.2 Parameters at a the sub-daily scale 

Cross-validation results showed that the interpolation accuracies of the two storm pattern related parameters related to 

storm patterns, i.e. MX.5P and TimePk were performed not as good as precipitation related parameters on a daily scalewell. 335 

ThreeFour cross-validation statistics for these two parameters using two methods were numerically close similar (Table 3) for 

both parameters(Table 3). NSE over 12 months for MX.5P interpolated with OK and UK were both equal to 0.95. After taking 

auxiliary covariates for interpolation using UK, the prediction improved only slightly. The seasonal annual variancetion of in 

NSE RMSE based on OK and UK varied follows in a similar pattern within the year (Fig. 6l-m). For the parameter of TimePk, 

the NSE RMSE of using OK were slightly higher lower than thoseat from using UK fromfor  the 3th, 4th, and 5thJane to May 340 

parameters, , but reversed slightly higher during the for the othersrest period. In comparison, MX.5P performed better than 

TimePk. The interpolation accuracy of TimePk was the lowest among all 13 groups of input parameters (Table 3).  

Fig. 7. 

Interpolation accuracy has been adequately estimated through cross-validation, and these results agreed indicated that the 

accuracy of interpolation results based on UK was generally higher than those based on OK. Therefore, two sets of CLIGEN-345 

simulated climate series using observed inputs and UK-interpolated inputs were generated and compared to further evaluate 

the regionalized parameters using UK for the simulation of CLIGEN. 

3.3 Assessment of parameters’ regionalization on the CLIGEN outputs 

3.3.1 Simulated climate elements at a daily scale 

CLIGEN- simulated daily temperature and solar radiation based on UK-interpolated input parameters agreed well with 350 

those simulated based on observed parameters. The average, standard deviation and skewness coefficient of generated daily 

maximum temperature, minimum temperature, solar radiation and daily precipitation generated using observed and 

interpolated input parameters were calculated for each station, and the simulated accuracy of the average and standard deviation 

were found to be better than that of the skewness coefficient. The RMSEs The NSE of the average mean and standard deviation 

were all greater thanless than 0.79℃, 18 Ly/day (0.75 MJ/day), 0.97 for 0.71 mm, respectively, for generated daily climate 355 

elementstemperatures, solar radiation and precipitation at a daily scale (Table 4 & Table 5). The NSE of the skewness 

coefficient for temperature and solar radiation was ranged from 0.9456-0.95, obviously slightly lower than that for the mean 

corresponding average and standard deviation (Table 4). By contrastMeanwhile, the NSE of the skewness coefficient of daily 
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precipitation was low as low as 0.48 (Table 5). ), indicating a relatively low This may be attributed to the lower interpolation 

accuracy of SKEW P, . In fact, thewith the lowest accuracy of SKEW P was the lowest among all input parameters (Table 3).   360 

Table 4. 

The absolute error (AE) of the average, standard deviation and skewness coefficient between the simulated daily 

temperature of GO 𝐺𝑜𝑏𝑠 and GK  𝐺𝑈𝐾  were statistically similar (Table 4). The mean absolute errors (MAEs) over 2405 stations 

were all lower than 0.51℃℃. For daily solar radiation, the relative errors (REs) for three statisticsthe mean and standard 

deviation were all lower than 102% for more than 90% stations, and the mean absolute relative error (MARE) were lower 365 

than 40.1%.   

Table 5. 

For generated daily precipitation, 94.1% and 91.4% of stations yielded REs of the average and standard deviation below 

10%, and the MARE for 2405 stations were 3.72 % and 4.56%, respectively. Bias between annual rainy days of GO and GK 

𝐺𝑈𝐾  and 𝐺𝑜𝑏𝑠  was small as well. REs of 92.9% of stations were lesser than 10%. The frequency distribution of daily 370 

precipitation generated using two sets of inputs were well matched for most stations. Fig. 8a depicted the frequency 

distributions of simulated daily precipitation for Fuzhou station as an example, with RE slightly higher than MARE over 2405 

stations. Meanwhile, some stations do not satisfactorily simulate the frequency distribution. The frequency distribution of 

Tuokexun, whose simulation quality was approximately the worst among 2405 stations was offered as an example (Fig. 8d). 

It showed that the frequency of daily precipitation ranging from 0-1 mm was under-estimated, whereas that for values greater 375 

than 1 mm was over-estimated (Fig. 8d). 

Fig. 8. 

3.3.2 Simulated storm pattern related variables 

The average and standard deviation of storm duration and the maximum 30-min intensity (I30) generated using observed 

and UK-interpolated input parameters possessed a generally small bias. The NSE of the average and standard deviation for 380 

both duration and I30 were above 0.87. Compared with the average and standard deviation, the accuracy of skewness was the 

worst, with the NSE being 0.26 for the duration and 0.66 for the peak intensity index. Comparison of the frequency 

distribution of the duration and I30 for Fuzhou station showed that the frequency of simulated storm patterns wasere well 

preserved using data employing UK-interpolated parameters (Fig. 8b-c). The frequency distribution of the duration and I30 

for Tuokexun station showed that interpolated parameters seemed to underestimate low values and overestimate high values 385 

(Fig. 8e-f).  
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4 Discussion 

Both AE and RE indexes were adopted to evaluate the simulated results in this study. The RE index was applied for 

solar radiation and precipitation related outputs, while the AE index was applied for the assessment of temperature-related 

outputs. , asThis is because we find that RE was not an appropriate index indicator to evaluate the temperature which was in 390 

interval scale. for Ssome stations located in high latitude or high altitude areas where the mean annual temperature may be 

close to zero resulting in an extremely high derived RE. For example, the mean maximum temperature of Qian’an station (Fig. 

1) using observed inputs was -0.01 ℃℃ and that using interpolated inputs was -0.33℃, ℃, resulting in an RE between the 

two values of was 2912.7%, which was an extremely large error. However, the mean maximum temperature simulated using 

the two data sets were very similar, with an AE of 0.32℃ ℃. We’ve checked more than 100 stations with extremely high REs 395 

for maximum temperature, and all were in similar situation (Fig. 9). If RE was used to evaluate the simulated temperature, the 

actual simulation quality may be strongly underestimated. Therefore, AE were used to demonstrate errors between generated 

temperature based on observed and interpolated inputs.  

Fig. 9. 

The frequency distributions of CLIGEN- simulated daily precipitation, duration and peak intensity at Tuokexun 400 

station using observed inputs were all not well preserved by those simulated using UK-interpolated inputs (Fig. 8). The 

simulation quality for Tuokexun was almost the worst among 2405 stations, as REs for all these three precipitation related 

variables were greater than 99% of stations. This may be explained partially because Tuokexun is located in the northwest arid 

area of China (Fig. 1), with a station density of 0.97/104∙km2, much lower than that in the Eastern Monsoon Area (Table 76). 

Stations involved in the interpolation were separated by far distances, with a negative influence on the interpolation accuracy 405 

(Oliver and Webster, 2014). Other stations with extremely low simulated quality similar to Tuokexun are almost located in the 

northwest arid area or Qinghai-Tibet Plateau where the station density is lower. The MAE and MARE for generated 

temperature and precipitation in the eastern monsoon area were the lowest among three physical-geographical regions of China 

(Table 6). The standard error of the interpolation results for the two parameters, i.e. TMAX AV and MEAN P in August are 

shown as an an examples (Fig. 9). It can be seen from the figures that that  the errors are relatively high in the western part of 410 

China, especially in the north-western south-western part of Qinghai-Tibet Plateau, where there is a large area without stations 

and characterized with the highest standard errors for both parameters (Fig. 1 and Fig. 9). The MAE for generated temperature 

and the MARE for generated precipitation related variables in the eastern monsoon area were the lowest among three physical-

geographical regions of China (Table 7).  

Table 7.Fig. 9. 415 

 

The number and density of weather stations for solar radiation were considerably less than for those for temperature 

and precipitation (Table 67). However, the simulated mean and standard deviation of daily solar radiation using the UK-
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interpolated parameters was in good agreement with that simulated using observation-based parameter values (Table 4), and  

MARE of solar radiation was similar to that of daily precipitation.. MARE for solar radiation across all stations was the lowest 420 

among all simulated weathe r elements. MAREs were similar for the three geographical regions with the difference among 

them varying from 0.08% to 0.13%. SSolar radiation is characterized with much lower spatial variability in comparison to  that 

for the temperature and precipitation. As a result, solar radiation-related parameters were easier to regionalize and parameter 

values could readily be interpolated for regions without limited observations. 

Fig. 10.Table 6. 425 

CLIGEN-input parameters in the US is are regionalized from 2600 stations using the inverse distance weighted 

method (IDW), which was employed in the initial attempt to regionalize CLIGEN input parameters. In this study, UK was 

adopted to interpolate CLIGEN parameters for mainland China. Interpolated parameter values using IDW and UK were 

compared for four selected parameters in August as shown in Fig. 10. It can be seen that UK performed better than IDW for 

all four parameters selected. UK-interpolated parameter values were concentrated mostly along the 1:1 line. The NSEs RMSE 430 

of all four groups of parameters interpolated using UK were lowe larger than those predicted using IDW. Noticeable 

improvement was noted for SKEW P, with the NSE RMSE improvinged from 0.27 84 to 0.74 49 using UK instead of IDW. 

Therefore, UK appears to be consistently superior to IDW when regionalizing CLIGEN input parameters based on the limited 

comparison for selected parameters.  

Fig. 10. 435 

5 Data availability  

The giridded CLIGEN input parameter dataset of China at 10 km resolution is availableility at the homepage of 

CLIlimate Change Iimpact Aassessment (CLICIA) group  – at http://clicia.bnu.edu.cn/data/cligen.html. Additional materials 

including the data manual and grid information are also availableility at the same website and can be downloaded.  

6 Summary and Conclusion 440 

The widely used stochastic weather generator CLIGEN can simulate long-term climate data to drive hydrological, soil 

erosion, and crop-yield models. Limitations in high spatial-temporal observations, especially at the sub-daily scale, have 

partially restricted its application. Daily temperature, daily precipitation, and hourly precipitation data for 2405 stations and 

daily solar radiation for 130 stations distributed across mainland China were collected to establish the CLIGEN input parameter 

files and to explore an appropriate method for regionalizing these parameters from stations to the entire region. The predicted 445 

quality using two interpolation techniques, OK and UK, were compared and fully assessed, yielding the following results:   

1) UK generally performed better than OK when interpolating CLIGEN parameters. Compared with OK the 

http://clicia.bnu.edu.cn/data/cligen.html
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interpolation accuracy was markedly improved for parameters TMAX AV, TMIN AV, SOL.RAD, SD SOLMEAN P, SKEW 

P, P(W|/D) and P(W/|W), and slightly improved for parameters SD TMAX, MEAN P and S DEV P. For rest parameters, The 

the comparative interpolation accuracies were numerically approximate between the two techniques.  450 

2) UK can accurately predict the temperature, solar radiation and precipitation input parameters for CLIGEN. RMSE in 

UK-interpolated parameter values for temperature were less than 1.63℃ (2.94℉), and The Nash-Sutcliffe efficiency coefficient 

(NSE) values obtained using the observed parameters and UK-interpolated predicted parameters were all greater than 0.85 for 

most parameters expect for SD SOL, SKWE P and Time Pk. The interpolation accuracies for these final three parameters were 

relatively lower, with NSEs greater than 0.66.sNSEs for precipitation and solar radiation parameters were all greater than 0.87, 455 

except for the skewness coefficient (SKEW P) with a relatively lower interpolation accuracy (NSE = 0.78).  

3) Basic statistics and frequency distributions for CLIGEN-simulated climate elements using UK-interpolated 

parameters agreed well with those simulated using observations. The mean absolute errors (MAEs) for the average, standard 

deviation and skewness coefficient for the two simulated series of temperature across 2405 stations were all less than 0.5℃1℃. 

The mean absolute relative errors (MAREs) for same statistics for simulated solar radiation were less than 0.1%. MAREs for 460 

the average and standard deviation for precipitation amount, duration and I30 are were less than 5.0%, while errors for skewness 

coefficient for these three groups of parameters were less than 10.1%.  

The developed gridded input parameter database can be applied using CLIGEN, with an established and reliable 

simulation quality, to the stochastic simulation of temperature, solar radiation and precipitation at a daily scale and to 

precipitation at a sub-daily scale for any single point in China. CLIGEN can simulate the dew point and wind as well, not 465 

regionalized in this study. As a site-based weather generator, simulated climate series using CLIGEN are independent of each 

other and are lack of spatial correlations among stations. Further research might focus on the rebuilding of correlations among 

climate elements and between nearby sitesstations. 
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Table 1: Summary of CLIGEN input parameters and the data used for the calculation of parameters. 665 

Inputs Parameter description Unit1s Number of parameters Data used 

TMAX AV 
 Average of daily maximum 

temperature  
℉℉ Monthly, 12 in total 

Daily 

temperature 

SD TMAX 
Standard deviation of daily 

maximum temperature  
℉℉ Monthly, 12 in total 

Daily 

temperature 

TMIN AV 
Average of daily  

minimum temperature 
℉℉ Monthly, 12 in total 

Daily 

temperature 

SD TMIN 
Standard deviation of daily  

minimum temperature 
℉℉ Monthly, 12 in total 

Daily 

temperature 

SOL.RAD 
Average of daily solar 

radiation 
Langley Monthly, 12 in total 

Daily solar 

radiation 

SD SOL 
Standard deviation of daily 

solar radiation 
Langley Monthly, 12 in total 

Daily solar 

radiation 

MEAN P 
Mean precipitation  

 on rainy days 
inch Monthly, 12 in total 

Daily 

precipitation 

S DEV P 
Standard deviation of 

precipitation on rainy days 
inch Monthly, 12 in total 

Daily 

precipitation 

SKEW P 
The skewness coefficient of  

precipitation on rainy days 
inch Monthly, 12 in total 

Daily 

precipitation 

P(W/D) 
The probability to of a wet day  

from following a dry day 

 

 
Monthly, 12 in total 

Daily 

precipitation 

P(W/W) 
The probability to of a wet day  

from following a wet day 

 
Monthly, 12 in total 

Daily 

precipitation 

MX.5P 

Maximum rainfall intensity 

per 30 min (0.5 hour) of a 

month 

 

inch/h Monthly, 12 in total 
Hourly 

precipitation 

TimePk2 
Relative time to the peak 

rainfall intensity  

 Cumulative frequency, 

12 in total 

Hourly 

precipitation 

1CLIGEN input parameter values are required to have US customary unit. 

2The 12th parameter of TimePk for all stations is equal to 1.  
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 670 

Table 2: Data lengths for daily temperature, daily solar ration, daily and hourly precipitation and daily solar ration 

fromfor stations used in this study. 

Data length 

 (years) 

Daily Temperature 

(1951-2014)   

Daily rainfall 

(1951-2015) 

Hourly rainfall 

(1951-2012) 

Daily solar radiation 

(1957-2017) 

<=10 19 16 215 5 

10~20 17 19 34 9 

20~30 20 20 94 44 

30~50 269 240 1302 16 

>50 2080 2110 760 56 

Sum. 2405 2405 2405 130 

 

 

  675 
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Table 3: Comparison of the accuracy of OK and UK using the leave-one-out cross-validation.  

CLIGEN  

inputs 

Observations  RMSE2RMSE3  NSE3NSE4  PBIAS4 (%) 

AV1 S DEV2  OK UK  OK UK  OK UK 

TMAX AV (℉) 67.54 18.02  2.94 1.34  - -  - - 

SD TMAX (℉) 7.58 1.91  0.36 0.35  - -  - - 

TMIN AV (℉) 48.91 19.84  2.67 1.58  - -  - - 

SD TMIN (℉) 6.05 1.94  0.45 0.46  - -  - - 

SOL.RAD (Langley) 347.46 116.18  30.59 27.11  0.93 0.95  0.14 0.24 

SD SOL (Langley) 138.70 41.33  14.34 15.14  0.88 0.87  -0.05 0.97 

MEAN P (inch) 0.26 0.16  0.03 0.02  0.97 0.98  -0.02 0.07 

S DEV P (inch) 0.40 0.27  0.05 0.05  0.96 0.97  -0.06 0.01 

SKEW P  3.12 1.01  0.73 0.47  0.48 0.78  0.08 0.09 

P(W/D)  0.23 0.12  0.03 0.02  - -  - - 

P(W/W) 0.53 0.15  0.04 0.03  - -  - - 

MX.5P (inch/h) 0.93 0.64  0.14 0.14  0.95 0.95  -0.05 0.04 

TimePk 0.58 0.32   0.01 0.01   - -   - - 
1Overall average (AV) and 2standard deviation (S DEV) for all months and stationites, and the unit is identical with parameters; 

2The 3The unit of RMSE is identical with the unit of each group of parameters; 

3NSE 4NSE and PBIAS were only calculated for parameters in the ratio scale with true zero. 
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Table 4: Comparison of CLIGEN generated daily temperature and solar radiation based on observatedion input 

parameters and UK- interpolatedion parametersones simulation. 

Estimation 

indicators 

Statistics 

 

Daily maximum 

temperature (℃) 
  

  

Daily maximum 

temperature (℃)    

  

Daily solar radiation  

 

(Langley/day Ly) 

AV1 S DEV2 SKEW3 AV S DEV SKEW AV S DEV SKEW 

RMSE (℉or 

Ly)NSE 
0.680.98 0.250.99 0.030.95 

 
0.790.99 0.350.98 0.040.94 

 
18.000.99 7.240.98 0.070.94 

PBIAS  -0.1 0.05 -0.33  0.01 0.05 -0.23  0.01 0.05 -0.23 

NSERMSE -0.68 -0.25 -0.03  -0.79 -0.35 -0.04  0.870.79 0.870.35 0.560.04 

PBIAS (%) - - -  - - -  0.39 0.39 -0.14 

RSR 0.14 0.1 0.22   0.12 0.14 0.25   0.12 0.14 0.25 

|AE|4 (%)4 (%) (%)   (%) (%) (%) |RE|5 (%)55 (%) (%) 

< 1℃℃ 93.7 99 100  86.2 97.5 100 < 10% 99.23.3 91.799.2 60.899.2 

< 2℃℃ 98.5 99.8 100  97.4 99.6 100 < 20% 99.2100 10099.2 10083.3 

< 5℃℃ 99.8 100 100  99.9 100 100 < 50% 100 100 93.3 

MAE (℃)(℃) 0.51 0.21 0.02   0.34 0.14 0.02 MARE (%) 3.810.08 4.000.05 16.750.09 

1The average (AV), 2the standard deviation (S DEV), and 3the skewness coefficient (SKEW) of daily maximum/minimum temperature and 

solar radiation simulated by CLIGEN.   690 

 

 

4Percent of stations with |AE| in a range.  

5Percent of stations with |RE| in a range.  

 695 

 

 

  



28 

 

 

 

Table 5: Comparison of CLIGEN-generated daily rainfall and annualyearly rainy days based on observedation input 

parameters and UK- interpolatedion onesparameters simulation.  700 

Estimation 

indicators 

Daily precipitation 

(mm) 

Annual 

rainy days 

Storm duration 

(h) 

I30  

(mm/h) 

AV1 S DEV2 SKEW3 AV AV S DEV SKEW AV S DEV SKEW 

RMSENSE 0.360.98 0.710.97 0.630.48 7.620.97 0.210.92 0.170.87 0.230.26 0.280.99 0.520.98 0.240.66 

PBIAS  -0.06 0.27 0.94 -0.01 0.28 0.73 0.13 -0.34 -0.2 -0.15 

NSERMSE 0.980.36 0.970.71 0.480.63 0.977.62 0.920.21 0.870.17 0.260.23 0.990.28 0.980.52 0.660.24 

PBIAS  -0.06 0.27 0.94 -0.01 0.28 0.73 0.13 -0.34 -0.2 -0.15 

RSR 0.15 0.16 0.72 0.18 0.28 0.36 0.86 0.11 0.12 0.58 

|RE| (%)4 (%) (%) (%) (%) (%) (%) (%) (%) (%) 

< 10% 94.1 91.4 61.2 92.9 94.7 90.8 74.1 97.7 96.7 88.6 

< 20% 98.6 98.6 87.4 98.4 98.8 97.9 93.5 99.7 99.4 98.3 

< 50% 100 99.9 99.6 99.7 99.9 99.8 99.7 100 99.9 100 

MARE (%) 3.72 4.56 10.07 4.09 3.47 4.61 7.71 2.36 3.07 5.08 

1The average (AV), 2the standard deviation (S DEV), and 3the skewness coefficient (SKEW) of daily precipitation, annual rainy days, storm 

duration and I30maximum/minimum temperature and solar radiation simulated by CLIGEN. 

 4Percent of stations with |RE| in a range.  
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Table 76: Station density and simulation quality of CLIGEN forof three Chinese physical-geographical regions. 

 

Eastern Monsoon 

Area  

Northwest Arid  

Area 

Qinghai-Tibet  

Plateau 

Temperature and precipitation    

No. of stations 2044 233 128 

Density (n/104∙km2) 4.57 0.97 0.50 

MAE of Min Max Temperature 

Temperature (℃)(℃) 0.44 0.90 0.93 

MAE of Max Min Temperature (℃) (℃

) 0.30 0.42 0.82 

MARE of Daily precipitation 

Precipitation (%) 3.13 6.92 7.25 

MARE of Duration (%) 2.95 5.93 7.31 

MARE of I30 (%) 2.00 4.50 4.11 

    

Solar radiation    

No. of stations 92 26 12 

Density (n/104∙km2) 0.21 0.11 0.05 

MARE of Daily solar Solar radiation 

Radiation (%) 3.920.08 0.072.87 5.140.13 
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 710 
Figure 1: Locations of meteorological stations used in this study. 
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Figure 2: Boxplot of CLIGEN temperature, solar radiation, and precipitation parameters obtained from observations 

in mainland China. 715 
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 Figure 3: Spatial distribution of CLIGEN temperature-related parameters of mainland China in August. All 

parameters were regionalized using universal Kriging. 720 
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Figure 4: Spatial distribution of CLIGEN precipitation related parameters of mainland China in August. All 725 

parameters were regionalized using universal Kriging. 
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Figure 5: P(W/D), P(W/W), MX.5P and TimePk of nine stations determined by observed daily precipitation. 
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Figure 6: Comparison of the interpolation quality in terms of the root mean square error (RMSE) Nash-Stucliffe 

coefficient of efficiency (NSE) using ordinary Kriging (OK) and universal Kriging (UK) for temperature, solar radiation, 735 

and precipitation parameters.  
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Figure 7: Comparison of the interpolation quality using ordinary Kriging (OK) and universal Kriging (UK) for CLIGEN 740 

temperature, solar radiation, and precipitation parameters in .August, and the 8th parameters of TimePk.  
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Figure 8. Frequency distribution of daily precipitation, duration, and maximum 30-min intensity (I30) generated by 745 

CLIGEN using inputs based on observations and interpolation predicted parameters: Fuzhou station (a-c) and 

Tuokexun station (d-f) as examples. 
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Figure 9. Comparison of the absolute error (AE, ℃) and relative error (RE, %) of the simulated average of maximum 750 

temperature based on observed and UK-interpolated inputs by CLIGEN for 102 stations with extremely large RE.  

 

Figure 9. Spatial distribution of the standard error for interpolation results of TMAX AV (a) and MEAN P (b) using 

Universal Kriging. 
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Figure 10: Comparison of interpolation quality using universal Kriging (UK) and the inverse distance weighted method 

(IDW) for CLIGEN temperature and precipitation related parameters for 2405 sites stations in summer (August). 760 

 

 

 

 


