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Abstract. To advance in the fire discipline as well as in the study of CO2 emissions it is of great interest to develop a global 

database with estimators of the degree of biomass consumed by fire, which is defined as burn severity. In this work we 

present the first global burn severity database (MOSEV database), which is based on Moderate Resolution Imaging 

Spectroradiometer (MODIS) surface reflectance and burned area (BA) products since November 2000 to near real time. To 

build the database we combined Terra MOD09A1 and Aqua MYD09A1 surface reflectance products to obtain dense time 10 

series of the Normalized Burn Ratio (NBR) spectral index, and we used the MCD64A1 product to identify BA and the date 

of burning. Then, we calculated for each burned pixel the difference of the NBR (dNBR), and its relativized version 

(RdNBR), as well as the post-burn NBR which are the most commonly used burn severity spectral indices. The database also 

includes the pre-burn NBR used for calculations, the date of the pre- and post-burn NBR and the date of burning. Moreover, 

in this work we have compared the burn severity metrics included in MOSEV (dNBR, RdNBR and post-burn NBR) with the 15 

same ones obtained from Landsat-8 scenes, which have an original resolution of 30 m. We calculated the Pearson´s 

correlation coefficients and the significance of the relationships using 13 pairs of Landsat scenes randomly distributed across 

the globe, with a total BA of 6,904 km2 (n = 32,163). Results showed that MOSEV and Landsat-8 burn severity indices are 

highly correlated, particularly the post-burn NBR (R= 0.88; P < 0.001). dNBR (R= 0.74; P < 0.001) showed stronger 

relationships than RdNBR (R= 0.42; P < 0.001). Differences between MOSEV and Landsat-8 indices are attributable to 20 

variability in reflectance values and to the different temporal resolution of both satellites (MODIS: 1-2 days, Landsat-: 16 

days). The database is structured according to the MODIS tiling system and is freely downloadable in 

https://doi.org/10.5281/zenodo.4265209 (Alonso-González and Fernández-García, 2020). 

1 Introduction 

More than half of the land surface on Earth can be affected by fire, being an area about the size of the European Union 25 

burned annually (Keeley et al., 2011; Moritz et al., 2012; Andela et al., 2019). Thus, fire is a phenomenon of great interest 

because its relevance worldwide but also because of expected changes in fire regimes as consequence of global warming and 

land use change (Moreira et al., 2020). Among these changes, previous work has reported that fire weather seasons have 

recently increased (18.7% from 1979 to 2013) (Jolly et al., 2015) whereas burned area (BA) has decreased globally (24,3% 
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from 1996 to 2015) (Andela et al., 2017; Forkel et al., 2019) mainly because the agricultural expansion in fire-dependent 30 

savannas (Andela et al., 2017). 

The availability of satellite imagery with moderate spatial resolution (250-500 m) and daily or near-daily temporal resolution 

has enabled the production of several global BA products. Among the most accepted are those based on the Moderate 

Resolution Imaging Spectrometer (MODIS) (Chuvieco et al., 2016), which retrieves information of the entire Earth in 36 

spectral bands every 1 to 2 days. The MODIS MCD64A1 C6 product (Giglio et al., 2018) is the standard NASA BA product, 35 

and probably the most used by the scientific community (Boschetti et al., 2019; Humber et al., 2019). MCD64A1 BA 

product is calculated with surface reflectance time series and fire active masks (Giglio et al., 2018), and was recently 

validated with Landsat imagery across the globe (stage-3 validation), reaching coefficients of determination above 0.70 

despite an underestimation of small fires as consequence of its moderate spatial resolution (~500 m) (Boschetti et al., 2019). 

Global BA products are essential to know the patterns of fire occurrence, fire extent, fire propagation (Rodrigues and Febrer, 40 

2018) and fire frequency (Andela et al., 2019). Thus, BA products may be useful to provide an estimation of the global 

carbon emissions from biomass consumption (Veraverbeke et al., 2015; van der Werf et al., 2017). However, to go one step 

further in determining fire impacts on ecosystems as well as global carbon emissions it is necessary to characterize burned 

areas according to the degree of biomass consumption (Keeley, 2009; van der Werf et al., 2017). 

The term used to define the degree of biomass consumption and the overall impact caused by fire on ecosystems is fire 45 

severity (preferred for field measurements) or burn severity (preferred for remote sensing measurements) (Keeley, 2009). 

Traditionally, burn severity has been quantified from Landsat sensors through different methods, including those based on 

radiative transfer models (Chuvieco et al., 2006, De Santis et al., 2009), spectral unmixing (Fernández-Manso et al., 2009, 

Quintano et al., 2017), or spectral indices (Chu and Guo, 2014, Fernández-García et al., 2018a). Among them, the standard 

method to quantify burn severity is through the delta Normalized Burn Ratio (dNBR) (Key and Benson, 2006) spectral 50 

index, and its relativized version (RdNBR) (Miller and Thode, 2007), which is less dependent on the pre-fire vegetation, and 

potentially more suitable than dNBR for comparisons among zones with different environmental conditions (Miller and 

Thode, 2007; Rahman et al., 2018). Both spectral indices are based on the change caused by fire in near infrared (NIR) and 

shortwave infrared (SWIR) reflectance, which are highly sensitive to canopy density and moisture content respectively 

(Chuvieco, 2010). dNBR and RdNBR indices have shown a high capacity (R2 about 0.75) to correlate field measurements of 55 

biomass consumption and plant mortality in mediterranean (Fernández-García et al.., 2018a), temperate (Parks et al., 2014), 

boreal (Soverel et al., 2011) and tropical ecosystems (Rozario et al., 2018). Despite the possibility of calculating burn 

severity indices with satellites allowing planetary coverage such as MODIS (Veraverbeke et al., 2011; Rahman et al., 2018), 

there are not yet available products of burn severity at the global scale, which would be useful to advance in fire and CO2 

sciences. 60 

In this work we present a new burn severity database based on MODIS Terra and Aqua satellites. The presented database 

(MOdis burn SEVerity: MOSEV) provides monthly burn severity data (dNBR, RdNBR and post-burn NBR) with global 

https://doi.org/10.5194/essd-2020-341

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 19 November 2020
c© Author(s) 2020. CC BY 4.0 License.



3 

 

coverage since 2000 at 500 m spatial resolution. Additionally, this work describes the algorithm to develop the database and 

we compared the MOSEV burn severity data with their Landsat-8 equivalents. 

2 MOSEV database 65 

2.1 Input data 

The MOSEV database was built using the following remote sensing data available since November 2000 as input (Fig. 1): 

- All scenes of MODIS Terra MOD09A1 and Aqua MYD09A1 version 6: Terra MOD09A1 and Aqua MYD09A1 scenes are 

8-day composites with 7 surface reflectance bands and quality information at spatial resolution of 500 m and global 

coverage. The reflectance value of each pixel is the best possible observation in the 8-day period, selected according to 70 

quality criteria including cloud cover, cloud shadow, solar zenith and aerosol loading. 

- All scenes of MCD64A1 version 6 product: MCD64A1 is a monthly 500 m-pixel product that contains daily global 

information on burn date, uncertainty in burn date, quality assurance indicators and first and last day of the year of reliable 

change detection. 

MOD09A1, MYD09A1 and MCD64A1 data was downloaded from the Land Processes Distributed Active Archive Center - 75 

(LP-DAAC): https://lpdaac.usgs.gov/ (last access: 1 November 2020). 

2.2 Pre-processing 

Terra MOD09A1 and Aqua MYD09A1 scenes were masked to remove water bodies, glaciers, clouds and snow. Masks were 

obtained directly from the MOD09A1 and MYD09A1 quality bands (surface reflectance 500 m band quality control flags). 

Likewise, MOD09A1 and MYD09A1 scenes not registering land surface were removed for subsequent analysis. 80 

2.3 Algorithm overview 

The method to obtain burn severity indices was structured in two steps (Fig. 1): (i) calculation of dense time series of the 

Normalized Burn Ratio (NBR) from merged Terra MOD09A1 and Aqua MYD09A1 scenes; (ii) selection of the pre- and 

post-fire NBR for each burned pixel and calculation of differenced burn severity indices (dNBR and RdNBR). 
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 85 

Figure 1. Methodology flowchart used for building the MOSEV database (2000-present). MOD09A1 and MYD09A1 are 8-day 

reflectance products at 500 m from MODIS Terra and Aqua respectively. MCD64A1 is the monthly MODIS burned area product 

at 500 m spatial resolution. NBR, dNBR and RdNBR are burn severity spectral indices (Normalized Burn Ratio, difference of the 

NBR and Relativized dNBR respectively). 

2.3.1 Calculation of dense time series of the Normalized Burn Ratio (NBR) 90 

The Normalized Burn Ratio (NBR) spectral index was calculated for each Terra MOD09A1 and Aqua MYD09A1 scenes 

according to the formula proposed by López-García and Caselles (1991) (Eq. 1). Terra NBR gaps (masked areas) were re-

filled with the synchronous Aqua NBR values, when available. The combination of Terra and Aqua imagery is useful to 

reduce cloud contamination and therefore increase the data availability and decrease uncertainty (Yu et al., 2015; 

Muhammad and Thapa, 2020). Thus, we obtained Terra/Aqua NBR composites with global coverage and a temporal 95 

resolution of 8 days since November 2000. 
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Eq.1. 𝑁𝐵𝑅𝑀𝑂𝐷𝐼𝑆 =
(𝜌2 − 𝜌7)

(𝜌2 + 𝜌7)
 × 1000  

where ρ2 and ρ7 are the land surface reflectance values of bands 2 (841-876 nm) and 7 (2105-2155 nm) from Terra 

MOD09A1 and Aqua MYD09A1 scenes. 

2.3.2 Selection of the pre- and post-burn NBR and calculation of burn severity indices 100 

BA locations and dates were obtained from the MCD64A1 product. With the burn date and uncertainty in days, and 

considering the 8-day nature of our Terra-Aqua NBR, we have selected the immediate pre-burn (Eq. 2) and post-burn (Eq. 3) 

Terra/Aqua NBR dates for each MCD64A1 burned pixel. 

Eq. 2. 𝑝𝑟𝑒𝑁𝐵𝑅 𝑑𝑎𝑡𝑒 < 𝑀𝐶𝐷64𝐴1 𝑏𝑢𝑟𝑛 𝑑𝑎𝑦 − 𝑀𝐶𝐷64𝐴1 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 𝑖𝑛 𝑑𝑎𝑦𝑠 

Eq. 3. 𝑝𝑜𝑠𝑡𝑁𝐵𝑅 𝑑𝑎𝑡𝑒 > 𝑀𝐶𝐷64𝐴1 𝑏𝑢𝑟𝑛 𝑑𝑎𝑦 + 𝑀𝐶𝐷64𝐴1 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 𝑖𝑛 𝑑𝑎𝑦𝑠 + 8 𝑑𝑎𝑦𝑠 105 

When NBR values for the immediate pre-burn NBR date were not available (see 2.2 section) the previous NBR image was 

selected. On the contrary, when NBR values for the immediate post-burn date were not available the next NBR image was 

selected. These processes were repeated until pre- and post-burn NBR values were detected for each burned pixel in a cell by 

cell basis. 

We have obtained the pre-burn NBR value and the post-burn NBR value from the pre- and post-fire Terra/Aqua NBR dates, 110 

which were used to calculate the dNBR and RdNBR value for each burned pixel of the MCD64A1 product. Both, dNBR and 

RdNBR are bi-temporal spectral indices that account for the change caused by fire in NIR and SWIR reflectance.  

dNBR is the reference burn severity spectral index used by the European Forest Fire Information System 

(https://effis.jrc.ec.europa.eu/about-effis/) and by the Monitoring Trends in Burn Severity program of the US 

(https://www.mtbs.gov/), and was calculated according to Key and Benson (2006) (Eq. 4), dNBR values increasing with 115 

burn severity. 

Eq. 4. 𝑑𝑁𝐵𝑅 = 𝑝𝑟𝑒𝑁𝐵𝑅 − 𝑝𝑜𝑠𝑡𝑁𝐵𝑅 

Likewise, RdNBR is also an outspread burn severity spectral index, used by the Monitoring Trends in Burn Severity 

program of the USA (https://www.mtbs.gov/). RdNBR was calculated according to Miller and Thode (2007) (Eq. 5), higher 

RdNBR values indicating higher burn severity. 120 

Eq. 5. 𝑅𝑑𝑁𝐵𝑅 =
𝑑𝑁𝐵𝑅 

√
|𝑝𝑟𝑒𝑁𝐵𝑅|

1000

 

2.4 Implementation 

Burn date from MCD64A1, pre-burn NBR date, post-burn NBR date, pre-burn NBR, post-burn NBR, dNBR and RdNBR 

were written in monthly scenes since November 2000 at spatial resolution of 500 m (MOSEV database). All operations to 

calculate and write the database were carried in R programming language using the rspatial/luna (Ghosh et al., 2020) and 125 
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terra (Hijmans et al., 2020) libraries and Bash Unix shell command language. All the calculations and data manipulation 

were performed in the supercomputing facilities of the Spanish Research Council (CSIC). 

2.5 Comparison with Landsat burn severity indices 

In order to evaluate the MOSEV database, we have compared MOSEV burn severity indices (dNBR, RdNBR and post-burn 

NBR) with the same indices manually obtained from higher spatial resolution imagery. To perform the comparison, we have 130 

selected Landsat scenes, which have 30 m spatial resolution and have been the most used imagery for burn severity 

assessments (Key and Benson, 2006; Fernández-García et al., 2018a). We selected 13 regions of 185 km x 180 km (Landsat-

8 tile dimension) with a large extent of BA, and randomly distributed across the globe (See Table A1 in the Appendix A). 

Pre- and post-burn consecutive scenes (16 days span) with low cloud cover (< 25%) of the Landsat-8 Collection 1 Level-2 

product were selected for each region and downloaded from the USGS Earth Explorer (https://earthexplorer.usgs.gov/ last 135 

access: 1 November 2020). Landsat-8 Collection 1 Level-2 scenes are composed of 7 land surface reflectance bands at a 

spatial resolution of 30 m, and a quality band which was used to mask cloud covered areas. Bands 5 (850-880 nm) and 7 

(2110-2290 nm), which are comparable to MODIS bands 2 (841-876 nm) and 7 (2105-2155 nm), were aggregated and 

resampled averaging the Landsat values to the MODIS grid, in order to match the spatial resolution of the MOSEV products 

(500 m). Landsat-8 resampled bands were used to calculate the pre-burn NBR and the post-burn NBR (Eq. 6) as well as the 140 

dNBR (Eq. 4) and RdNBR (Eq. 5) spectral indices. 

Eq.6. 𝑁𝐵𝑅𝑂𝐿𝐼 =
(𝜌5 − 𝜌7)

(𝜌5 + 𝜌7)
 × 1000  

where ρ5 and ρ7 are the land surface reflectance values of Landsat 8 OLI/TIRS bands 5 (850-880 nm) and 7 (2110-2290 nm) 

resampled to the spatial resolution of MOSEV products. 

To assess the relationships between the burn severity indices included in the MOSEV database with the same ones derived 145 

from Landsat-8, we sampled all available burned pixels (n = 32,163) of the 13 study regions from both, MOSEV and 

Landsat-8 dNBR, RdNBR and post-burn NBR layers (Table A1). Then, we performed scatterplots and we calculated the 

Pearson´s correlation coefficients (R) and the significance of the correlations (P).  

https://doi.org/10.5194/essd-2020-341

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 19 November 2020
c© Author(s) 2020. CC BY 4.0 License.



7 

 

3 Data description 

The MOSEV database (https://doi.org/10.5281/zenodo.4265209 Alonso-González and Fernández-García, 2020) is composed 150 

of monthly scenes since November 2000 with a spatial resolution of 500 m. The scenes are organized following the tiling 

system of MODIS (sinusoidal tile grid). In total, the database is structured in 246 non-overlapping tiles that cover an area of 

10 degrees by 10 degrees in the equator (Fig. 2). The name of each MOSEV scene encodes the year, Julian day indicating 

the month, and MODIS tile. For instance, the MOSEV. A2019305.h31v11 scene corresponds to the year 2019, month of 

November (month ended in the Julian day 305) and h31v11 MODIS tile. 155 

 

Figure 2. MODIS sinusoidal tiling system and available MOSEV tiles. 

 

Each MOSEV scene is composed of 7 layers (Table 1; Fig. 3): dNBR, RdNBR, pre-burn NBR, post-burn NBR, pre-burn 

selected date, post-burn selected date and the burn date from MCD64A1. In all layers we assigned the values of -32767 to 160 

unburned land, 32767 to water bodies, and a value of -18000 was assigned to those areas where was not possible to fill with 

a severity value or the severity value was out of the allowed range. 

- dNBR: the valid range in the MOSEV database corresponds to their mathematical feasible range (-2000 to 2000) (see Eq. 

4), although values above 1200 are not usual (Key and Benson, 2006). 
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- RdNBR: the valid range in the MOSEV database was bounded from -4000 to 4000 since values outside these limits are 165 

feasible (see Eq. 5) but anomalous (Miller and Thode, 2007; Miller et al., 2009). 

- Pre- and post-burn NBR: both spectral indices are the Terra/Aqua composites used in the calculation of dNBR and RdNBR. 

Likewise, the post-burn NBR is the most common mono-temporal burn severity spectral index, decreasing its value as burn 

severity increases. The pre- and post-burn NBR valid range in the MOSEV database corresponds to their mathematical 

feasible range (-1000 to 1000) (see Eq. 1). 170 

- Pre- and post-burn selected dates: they are estimators of the pre- and post-burn NBR dates and represent the number of 

iterations necessary to find available pre- and post-burn NBR values. Specifically, a value of 0 in the selected date indicates 

that the NBR date is the immediate NBR according to the equations 2 (pre-burn) and 3 (post-burn). A value of 1 indicates 

that the immediate NBR value was not available, and the previous (in the case of the pre-fire) or the next (in the case of post-

fire) NBR value was used instead. 175 

- Burn date from MCD64A1: is the date of burning in Julian days registered in the MCD64A1 BA product. It was used as 

basis to identify the pre- and post-burn selected dates and pre- and post-burn NBR values. 

In order to reduce the overall size of the database, the MOSEV scenes where no fires were detected are composed by a single 

empty layer entitled “burndate_from_MCD64A1”. We did it in this way, in order to maintain the same number of MOSEV 

files per tile, even in the unburned scenarios, similarly to the original MCD64A1 product. Each MOSEV file is a multi or 180 

single band GeoTIFF in 16 bit integer, compressed using the lossless compression algorithm Lempel–Ziv–Welch (LZW). 

The MOSEV scenes are distributed as a zipped file, constituted by all the scenes of each tile. The complete dataset can be 

freely downloaded at https://doi.org/10.5281/zenodo.4265209 (Alonso-González and Fernández-García, 2020).  
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Table 1. Layers of the MOSEV product. 

Layer Units Type Valid range Unburned land Water No data 

dNBR unitless 16 bit  -2000 to 2000 -32767 32767 -18000 

RdNBR unitless 16 bit -4000 to 4000 -32767 32767 -18000 

preNBR unitless 16 bit -1000 to 1000 -32767 32767 -18000 

postNBR unitless 16 bit -1000 to 1000 -32767 32767 -18000 

preburn_selected_date cycles 16 bit ≥ 0 -32767 32767 -18000 

postburn_selected_date cycles 16 bit ≥ 0 -32767 32767 -18000 

burndate_from_MCD64A1 days 16 bit 1 to 366 -32767 32767 -18000 

 185 
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Figure 3. Example of the layers included in a MOSEV scene (A2019305.h31v11) representing some of the 2019 wildfires in 

Australia (New South Wales). Spectral indices dNBR, RdNBR, Pre-NBR and Post-NBR are unitless. The pre-burn and post-burn 

dates indicate the number of cycles or iterations necessary to find available NBR values (each cycle added to 0 corresponds with a 

difference of 8 days). The burn date is expressed in Julian days. White areas are water bodies (value of 32767) and black areas are 190 

unburned land (value of -32767). 
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4 Results and discussion 

In this work we have developed the MOSEV product, which is a global burn severity database based on MODIS Terra and 

Aqua surface reflectance and MODIS BA products. The database includes dNBR, RdNBR and NBR burn severity indices at 

500 m pixel size, which are usually calculated at local scale using higher resolution imagery, traditionally with Landsat 195 

scenes (Chuvieco, 2010; Key and Benson, 2006; Miller and Thode, 2007; Fernández-García et al., 2018a) and more recently 

with Sentinel-2 scenes (Fernández-Manso et al., 2016). 

4.1 Comparison with Landsat burn severity indices 

The relationships between MOSEV and Landsat burn severity indices (dNBR, RdNBR and post-burn NBR) are shown in 

Fig. 4. MOSEV and Landsat burn severity indices were highly correlated (P < 0.001) for the three burn severity indices. 200 

Specifically, the post-burn NBR showed higher correlation coefficient (R = 0.88) than dNBR (R= 0.74) and RdNBR (R = 

0.42). Fig. 4 also shows a positive bias for the three spectral indices, as MOSEV values tended to be higher than Landsat 

data, particularly at high values. 

Previous research has found a bias in surface reflectance when comparing both, MODIS and Landsat satellites (Feng et al., 

2013; Veraverbeke et al., 2011; Ke et al., 2015; Potapov et al., 2020). These differences could be explained by several 205 

reasons: (i) the higher temporal resolution of MODIS imagery used to build the database enables to use post-fire information 

very close to the burning event, thus potentially allowing a better assessment of burn severity compared with the much lower 

revisiting times of the Landsat constellation. This fact has a large influence in spectral indices values, because dNBR and 

RdNBR values gradually decrease the following weeks after fire, as NBR increases (Veraverbeke et al., 2010). (ii) Potential 

errors in radiometric gains from Landsat imagery, which are used for rescaling digital numbers to radiance values (Chander 210 

et al., 2009). (iii) Saturation problems in bright surfaces have been detected by Feng et al. (2013) in Landsat imagery but not 

for MODIS. This effect may influence the quality of the pre-fire NIR and the post-fire SWIR reflectance, which have high 

values in severely burned areas (Key and Benson, 2006). (iv) Differences in imagery pre-processing may affect the final 

reflectance values. In this sense, Landsat imagery is resampled using a cubic convolution method (uses 16 nearest-neighbor 

data points) in the geometric correction stage (Landsat 8 Data Users Handbook Version 5.0, 2019), whereas MODIS 215 

reflectance products are resampled using bilinear interpolation (4 nearest-neighbor data points) (MODIS Science Data 

Support Team, 1997). The use of cubic convolution method smooths reflectance values more than bilinear interpolation, 

contributing to moderate extreme values, which in this study correspond to high severity BA. Similarly, it was necessary to 

resample the Landsat products to the MODIS grid to make it comparable considering the big resolution shift, introducing 

some obvious and unavoidable uncertainty. 220 
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Figure 4. Scatterplots showing the relationships between the burn severity data included in the MOSEV database (dNBR, RdNBR 

and post-burn NBR spectral indices) and the equivalent obtained from 13 Landsat-8 scenes randomly distributed across the globe 

(n = 32,163). R: Pearson´s correlation coefficient. Dens. = density of points. See table A1 for further information. 
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Likewise, we detected variability in the correlations between MOSEV and Landsat among the three studied burn severity 225 

indices. The higher correspondence of the NBR spectral index suggests that the mono-temporal approach contribute to 

achieve higher correlations. On the contrary, combining the information of two scenes (bi-temporal approach) the higher 

differences in satellite reflectance’s augmented differences in bi-temporal spectral indices (dNBR and RdNBR). Focusing on 

dNBR and RdNBR, we found higher correlations between MOSEV and LANDSAT dNBR than RdNBR, which can be 

direct consequence of the RdNBR algorithm (see Eq. 5), as low pre-burn NBR absolute values may cause really high and 230 

even anomalous RdNBR values, generating heteroscedasticity (see Fig. 4). However, in general both burn severity products 

showed good levels of agreement, considering the unavoidable uncertainties associated with the very different nature of 

Landsat and MODIS. Thus, the comparison of MOSEV and Landsat burn severity prove the consistency of the developed 

algorithm, being the dNBR relationships similar (Veraverbeke et al., 2011) or even better (Rahman et al., 2018) than those 

found in previous studies that compared retrieved burn severity information from both products. 235 

4.2 Advancements and limitations 

The main asset of MOSEV database is that it is the first global burn severity database, which complement the existing global 

BA data such as the FireCCI50 (Chuvieco et al., 2018) or the MCD64A1 C6 product (Giglio et al., 2018). One of the most 

important strengths of MOSEV is consequence of MODIS revisit time (1 to 2 days), which is shorter than Landsat-8 (16 

days) and Sentinels-2 (5 days). This high temporal resolution allowed us to obtain dense free-cloud NBR time series that can 240 

be indispensable to calculate burn severity indices in regions of persistent cloud cover. In fact, Ju and Roy (2008) show that 

the probability of finding two consecutive Landsat scenes within a month is 0.63 globally, but near 0 in many regions such 

Russia and Canada, and many areas of Central Africa among others. Likewise, another improvement of MOSEV burn 

severity indices over indices calculated from other satellites such as Landsat or Sentinel is the higher temporal consistency of 

the data, as Terra and Aqua satellites use the same MODIS sensor since 2000. 245 

The main limitation of MOSEV database is related to its spatial resolution of 500 m, which impedes to account for fine-grain 

spatial heterogeneity. However, this spatial resolution enables the study of burn severity at regional and planetary scale with 

low computational costs. Another fact to consider is the error in the classification of burned areas in the MCD64A1 BA 

product in which MOSEV is based.  In this sense, Giglio et al. (2018) reported a global Commission Error (CE) of 24% and 

an Omission Error (OE) of 37%, whereas Boschetti et al. (2019) in a Stage-3 validation indicated a global CE of 40% and an 250 

OE of 73%. The lowest errors were detected in regions where fires are larger, and fire scars persistent, such as in boreal 

forests. 

4.3 Potential applications 

Burn severity metrics from the MOSEV database can be useful to analyze temporal trends in burn severity, to study the 

global spatial patterns of burn severity, to identify areas where the post-fire recovery of soil and vegetation can be 255 

endangered, and to enhance global models of carbon emissions among other applications. In addition, it will constitute a 
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cost-effective way of monitoring the global burn severity in a close to real time way, as MOSEV could be upgraded with the 

same temporal frequency of the MCD64A1 product. 

 In relation to the temporal trends of burn severity, it is common in the fire ecology literature to assume increases in burn 

severity owing to climate change (e.g. García-Llamas et al., 2019; Moreira et al., 2020). However, there is little evidence of 260 

that at the planetary scale since there was not global burn severity data. Previous studies in that line have analysed temporal 

trends in burn severity at the regional scale, mainly in the USA and Europe (Fried et al., 2004; Parks et al., 2016; Picotte et 

al., 2016). With the MOSEV database it is possible to study global trends in burn severity and study relationships between 

burn severity and global change. 

Spatial patterns of fire occurrence and burn severity have also captured the interest of several researchers (e.g. Duffy et al., 265 

2007; Kennedy and Johnson, 2014; Stevens et al., 2017), but research at the global scale is limited to the study of BA 

(Andela et al., 2017). Thus, the MOSEV database opens the possibility of expanding the study of fire patterns to the 

planetary scale including the variable burn severity. 

Burn severity is a variable of high interest to predict ecosystem responses (Keeley, 2009). Among the most relevant 

ecosystem responses for forest managers is soil erosion (De Luis et al., 2003) and vegetation recovery (Fernández-García et 270 

al., 2018b; 2019; 2020). Thus, MOSEV burn severity indices may serve as a tool for land managers to roughly identify target 

areas for post-fire forest management, as well as to study predictors of burn severity which could be useful for pre-fire 

management (García-Llamas et al., 2019).  

Moreover, previous work has shown the importance of including burn severity metrics as predictors of CO2 emissions 

caused by fires (e.g. Veraverbeke et al., 2015; van der Werf et al., 2017). The MOSEV database will be useful for the 275 

enhancement of global CO2 emission models. 

5 Data availability 

The MOSEV database is freely downloadable in https://doi.org/10.5281/zenodo.4265209 (Alonso-González and Fernández-

García, 2020). 

6 Conclusions 280 

We have introduced the newly developed MOSEV database, which is the first burn severity database with global coverage, 

available since November 2000. The algorithm used to build the database is based on MODIS Terra and Aqua surface 

reflectance imagery, as well as on the MCD64A1 BA product. MOSEV data includes seven layers at 500 m pixel size with 

the most commonly used burn severity spectral indices (dNBR, RdNBR and post-burn NBR), the pre-burn NBR, estimators 

of the date of the pre- and post-burn MODIS surface reflectance scenes used for calculations and the date of burning. The 285 

burn severity indices from MOSEV showed consistent relationships with Landsat-derived burn severity indices, which have 
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been the most used for burn severity assessments. Thus, this database could be the base to accomplish future studies of burn 

severity at the global scale, in a computational cost-effective way, as well as research where burn severity could be a relevant 

factor such as in forest management and CO2 emissions research.  
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Appendix A 290 

Table A1. Scenes and number of pixels (n) used to compare MOSEV and Landsat-8 (L8)-derived burn severity indices (dNBR, 

RdNBR and post-burn NBR). 

Location n MOSEV scene Pre-burn L8 scene Post-burn L8 scene 

Brazil 450 MOSEV.A2019213.h11v09 LC082320652019081201T1-

SC20200607111702 

LC082320652019082801T1-

SC20200607111630 

Nepal 1,082 MOSEV.A2019121.h25v06 LC081430402019050901T1- 

SC20200607111858 

LC081430402019052501T1-

SC20200607111838 

USA 133 MOSEV.A2019274.h08v05 LC080370362019100901T1-

SC20200607111820 

LC080370362019102501T1-

SC20200607111815 

Russia 2,188 MOSEV.A2019182.h24v02 LC081170172019072201T1-

SC20200607111752 

LC081170172019080701T1-

SC20200607111749 

Senegal 9,245 MOSEV.A2019032.h16v07 LC082040512019021301T1- 

SC20200607111948 

LC082040512019021301T1--

SC20200607111808 

Kazakhstan 2,091 MOSEV.A019244.h22v03 LC081510252019092201T1-

SC20200607111850 

LC081510252019100801T1- 

SC20200607111857 

Zambia 8,863 MOSEV.A2019182.h20v10 LC081730702019071401T1-

SC20200607111924 

LC081730702019073001T1-

SC20200607111814 

Bolivia 83 MOSEV.A2019182.h11v10 LC080010712019070901T1-

SC20200607111740 

LC080010712019072501T1-

SC20200607111831 

Canada 17 MOSEV.A019182.h12v02 LC080610152019062701T1- 

SC20200607111838 

LC080610152019071301T1- 

SC20200607111857 

South Africa 371 MOSEV.A2019001.h19v12 LC081750842019010101T1-

SC20200607111855 

LC081750842019011701T1-

SC20200607111857 

Kazakhstan 5,130 MOSEV.A2019182.h23v04 LC081520272019071101T1 -

SC20200607111844 

LC081520272019072701T1-

SC20200607111833 

Mozambique 1,103 MOSEV.A2019213.h21v10 LC081670742019080501T1-

SC20200607111843 

LC081670742019082101T1-

SC20200607111845 

Russia 1,407 MOSEV.A2019091.h19v03 LC081880222019040201T1-

SC20200607111738 

LC081880222019041801T1-

SC20200607111829 

Total 32,163    
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