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Abstract. A better understanding of the hydrological functioning of irrigated crops using remote sensing observations is of 13 

prime importance in the semi-arid areas where the water resources are limited. Radar observations, available at high 14 

resolution and revisit time since the launch of Sentinel-1 in 2014, have shown great potential for the monitoring of the water 15 

content of the upper soil and of the canopy. In this paper, a complete set of data for radar signal analysis is shared to the 16 

scientific community for the first time to our knowledge. The data set is composed of Sentinel-1 products and in situ 17 

measurements of soil and vegetation variables collected during three agricultural seasons over drip-irrigated winter wheat in 18 

the Haouz plain in Morocco. The in situ data gathers soil measurements (time series of half-hourly surface soil moisture, 19 

surface roughness and agricultural practices) and vegetation measurements collected every week/two weeks including above-20 

ground fresh and dry biomasses, vegetation water content based on destructive measurements, cover fraction, leaf area index 21 

and plant height. Radar data are the backscattering coefficient and the interferometric coherence derived from Sentinel-1 22 

GRDH (Ground Range Detected High resolution) and SLC (Single Look Complex) products, respectively. The normalized 23 

difference vegetation index derived from Sentinel-2 data based on Level-2A (surface reflectance and cloud mask) 24 

atmospheric effects-corrected products is also provided. This database, which is the first of its kind made available in open 25 

access, is described here comprehensively in order to help the scientific community to evaluate and to develop new or 26 

existing remote sensing algorithms for monitoring wheat canopy under semi-arid conditions. The data set is particularly 27 

relevant for the development of radar applications including surface soil moisture and vegetation parameters retrieval using 28 

either physically based or empirical approaches such as machine and deep learning algorithms. 29 

The database is archived in the DataSuds repository and is freely-accessible via the DOI: https://doi.org/10.23708/8D6WQC 30 

(Ouaadi et al., 2020a). 31 

https://www.researchgate.net/profile/Mohamed_Kasbani?_sg=jWE1oidHqTg37phYXExygr16TvuzJ15R08qyl--1E05Yhjm3d46X-1uKuW0_CjfNKYkDCJI46_I7B1TCe0A0do4mCo8EXwoCIr1c5NFD1WB737uC45WOJQ
https://doi.org/10.23708/8D6WQC
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1   Introduction 32 

The south-Mediterranean region has been identified  as a hot spot of climate change (Giorgi, 2006; Giorgi and Lionello, 33 

2008; IPCC, 2014) that may worsen the water shortage already affecting the region. Up to 90% of available water is 34 

dedicated to irrigation (Ministre de l’agriculture et peche maritime du develpement rurale et des eaux et forets, 2018). 35 

Indeed, the predicted temperature rise that could reach 3°C by 2050 combined to precipitation decrease and increased 36 

evapotranspiration could drastically increase the irrigation requirements. The demand for water is also already increasing in 37 

response to an ever-growing population and to changes of agricultural practices-intensification, conversion to cash crops, 38 

rise of irrigated areas (Ducrot et al., 2004; Fader et al., 2016; Jarlan et al., 2016). The monitoring of irrigated crops and the 39 

optimization of water use is therefore of prime importance for the sustainability of the water resources in the Mediterranean 40 

region. This requires the implementation of methods to monitor the crop water status and the underlying soil moisture (Wang 41 

et al., 2012). 42 

Within this context, the observations from active spaceborne sensors in the microwave domain (radar) have shown great 43 

potential for the monitoring of crops (Mattia et al., 2003; Ouaadi et al., 2020b; Picard et al., 2003). The potential of radar 44 

data for monitoring irrigated crops originates from their high sensitivity to the water status of the surface including the water 45 

content of the above ground biomass and the moisture of the upper soil layer (Ulaby and Dobson, 1986). It is also sensitive 46 

to the structural properties of the observed target including the size and orientation of the canopy elements (leaves, steams, 47 

trunks) and the soil roughness. A key advantage of radar observations for monitoring crops, especially those crops growing 48 

during the rainy season such as wheat, is also that it is not prone to atmospheric perturbations. Sentinel-1 provides for the 49 

first time since 2014 backscattering coefficients at a resolution of 10 m and a revisit time of 6 days compatible with the high 50 

dynamic of annual crops at the field scale paving the way to an operational use of C-band radar data for crop monitoring.  51 

Nevertheless, radar signal is a complex mix of backscattering from the soil and from the canopy that are often difficult to 52 

disentangle. The impact of any changes of the canopy structure such as the appearance of the heads during the heading stage 53 

of wheat (Brown et al., 2003; El Hajj et al., 2019; Ulaby et al., 1986) or of the soil roughness may also drastically impact the 54 

backscattering response. These processes are not fully understood and not always properly reproduced by the backscattering 55 

models.  56 

The sensitivity of the backscattering coefficient to the surface soil moisture (SSM) is widely documented in the literature for 57 

bare or covered soils (Ezzahar et al., 2020; Ouaadi et al., 2020c, 2020b; Ulaby and Dobson, 1986; Zribi et al., 2014). Several 58 

retrieval approaches based on the inversion of a radiative transfer models  (Bai et al., 2017; Gherboudj et al., 2011; El Hajj et 59 

al., 2016; Li and Wang, 2018; Ouaadi et al., 2020b) or based on linear or non-linear empirical regression (Gorrab et al., 60 

2015; Ouaadi et al., 2020b) have been developed. The SSM derived from radar observations are also used to estimate RZSM 61 

(root zone soil moisture), a key variable in agronomy, through the combination with a land surface model (Cho et al., 2015; 62 

Das et al., 2008; Dumedah et al., 2015; Ford et al., 2014; Rodell et al., 2004; Sabater et al., 2006; Sure and Dikshit, 2019). 63 
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The presence of a canopy above the soil results in two more contributions to the backscattered signal: the volume scattering 64 

and the attenuated signal by the canopy. The water content of vegetation influences the dielectric properties, that in turn 65 

influence the radar backscatter from the vegetation (Ulaby et al., 1982). Based on these findings, some studies are focused on 66 

the retrieval of vegetation parameters from SAR (Synthetic Aperture Radar) data such as above-ground biomass (Hosseini 67 

and McNairn, 2017; Periasamy, 2018; Taconet et al., 1994) or even grain yield (Fieuzal et al., 2013; Patel et al., 2006). In 68 

addition to the backscattering coefficient, the polarization ratio and the interferometric coherence have demonstrated 69 

potentialities for the characterization of the vegetation including height (Blaes and Defourny, 2003; Engdahl et al., 2001), 70 

vegetation cover fraction (Wegmuller and Werner, 1997), fresh above-ground biomass (Mattia et al., 2003; Veloso et al., 71 

2017), above-ground biomass (Ouaadi et al., 2020b) and vegetation water content (Ouaadi et al., 2020b). Other studies 72 

acknowledge the sensitivity of coherence to soil moisture (De Zan et al., 2014; Scott et al., 2017). Recent research suggests 73 

that radar observations could also provide valuable information on the canopy water status (Van Emmerik et al., 2015; 74 

Ouaadi et al., 2020d) for crop stress detection.  75 

In situ measurements of vegetation and soil characteristics are always needed to improve our understanding of the radar 76 

response, to develop and calibrate radiative transfer models and to propose generic retrieval methods for the inversion of soil 77 

or vegetation variables. Nevertheless, in situ data set dedicated to these objectives are really specific in the sense that, for 78 

instance, soil roughness is only of interest for understanding the physical principle of observations in the microwave domain. 79 

Likewise, above-ground biomass is often measured by agronomist for crop modeling for instance but the partition between 80 

dry and wet matter, a key variable for radar acquisition, is hardly ever done. Indeed, the latter relies on heavy destructive 81 

measurements consisting in cutting all the vegetation elements within squares sample in the field and a double weighting 82 

before and after drying the samples in an oven. In this paper, a recent, multi-year and complete database composed of 83 

processed Sentinel-1 SAR data (the backscattering coefficient and the interferometric coherence), Sentinel-2 NDVI and 84 

measured variables on the soil, on the vegetation and on the agricultural practices are made available. The in situ data 85 

include automatic measurements as well as observations carried out during measurement campaigns once or twice every 15 86 

days throughout the growing season. This database covers 3 wheat seasons (2016-2017 to 2018-2019) of 3 different irrigated 87 

fields (Ouaadi et al., 2020b). It is a unique and valuable data set that can be used for vegetation and soil moisture monitoring 88 

applications including from radar observations. In addition, the multiyear database can be useful for multiyear time series 89 

analysis. In the next section, an overview of the field-location and a detailed description of the variables, including field 90 

measurements and remote sensing data processing, are presented. In Section 3, the variables are experimentally and 91 

physically analyzed to assess the consistency of the dataset. Conclusions are provided in Section 4. 92 
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2   Study area and experimental sites  93 

2.1 Study area  94 

The database described in this paper is collected in the Haouz plain in the Tensift watershed, center of Morocco (Fig. 1). 95 

This plain is one of the most important plains in Morocco located at 550 m above sea level and covers about 6000 km2 of 96 

which 2000 km2 are irrigated. The climate in the region is Mediterranean semi-arid, with an annual average precipitation of 97 

about 250 mm. The distribution of precipitations highlights a wet season with around 85% of annual precipitations between 98 

October and April, and a dry season from May to September. The maximum average of temperature occurs during summer 99 

in July-August (about 35°C) and the minimum in January (about 5°C) (Abourida et al., 2008). The average air humidity is 100 

about 50% and the reference evapotranspiration ET0 is around 1600 mm/year (Jarlan et al., 2015), which is greatly 101 

exceeding the annual rainfall. The agricultural production in the plain is not very diverse, focusing on cereals (51% of the 102 

irrigated areas), olive trees (30% of the irrigated area), 9% of fodder production and 2% of market gardening for cattle 103 

breeding while the non-irrigated part of the plain is cropped with rainfed wheat (Abourida et al., 2008). Wheat is usually 104 

sown between November and January depending on precipitation distribution, even for irrigated field, and on cultivar. 105 

Harvest usually occurs in May or June. 106 

2.2 Experimental sites 107 

The database concerns three irrigated fields (F1, F2 and F3) located within a private farm in the province of Chichaoua 108 

located 65 Km west of Marrakech city (Fig. 1). F1 and F2 are monitored during two successive growing seasons (2016-2017 109 

and 2017-2018) while F3 is monitored during the season 2018-2019. The fields are sown using an automatic seed drill. They 110 

are irrigated using the drip technique. For all the fields, the wheat is cropped once a year during winter-spring (see Table 1 111 

for sowing and harvest dates). After harvest, the fields are generally used for cattle grazing until mid-July when the plowing 112 

works started. Table 1 summarizes some general information about the fields. Please note that during the 2017-2018 season, 113 

wheat in F2 is affected by specific growing conditions: i) the development of adventices belonging to the wild thistles family 114 

characterized by a horizontal structure, ii) the seeding density is higher than in F1, and iii) the seeding is a mixture of barley 115 

and wheat within F2. This resulted in very long stems: 146 cm in F2 compared to 110 cm in F1 in April 2018. Finally, these 116 

long stems in F2 are laid down by the wind from April 12, 2018. A picture of F2 during 2017-2018 is provided in appendix 117 

A (Fig. A1). Although such exceptional growing conditions are not very likely, it has been chosen to include this crop season 118 

in the data set to cover different conditions of growth. 119 
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 120 

121 
Figure 1. Location of the study fields: F1, F2 and F3 are drip-irrigated wheat plots in a private farm (“Domaine Rafi”) near 122 

Chichaoua city in the Haouz plain, center of Morocco. 123 

Table 1. General information about the three fields 124 

Field Area  (ha) Season Sowing date Harvest date Irrigation Sand (%) Clay(%) 

F1 1.5 
2016-2017 & 

2017-2018 

Nov 25, 2016 

Nov 27, 2017 

May 16, 2017 

June 08, 2018 
Drip 

technique 32.5 37.5 F2 1.5 

F3 12 2018-2019 Nov 04, 2018 June 06, 2019 

3   Database 125 

3.1 Field datasets 126 

The field datasets consist of automatic measurements of soil moisture and weather data in addition to punctual surveys for 127 

surface roughness, biomass, vegetation water content, canopy height, green leaf area index and cover fraction. Table A1 in 128 
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the appendix summarizes the details of the 26, 18 and 16 field campaigns carried out during 2016-2017, 2017-2018 and 129 

2018-2019 seasons, respectively.  130 

3.1.1 Soil moisture 131 

SSM is automatically measured every 30 min using Time Domain Reflectometry sensors (TDR), (Campbell Scientific 132 

CS616) using two sensors buried at a depth of 5 cm: one under the drippers and another one between. The average is 133 

computed in order to get a representative SSM value of the field. In addition, similar sensors are buried for RZSM measuring 134 

at 25 and 35 cm of depth over F1 and F3 while one sensor is buried at 30 cm over F2 by lack of additional sensor. Figure 2a 135 

illustrates an example of TDR sensors at different depths. 136 

 137 

Figure 2. Examples of (a) TDR sensors installed at different depths and b) a pin profiler picture taken over one of the ploughed 138 
field with drip irrigation tubes installed. 139 

TDR sensors are calibrated using the gravimetric technique. The calibration is done during 2016-2017 season using samples 140 

taken from the first 5 cm from both fields F1 and F2 and then the calibrated equation is applied to F1, F2 and F3 data as the 141 

soil characteristics are similar and the same sensors are used. For that purpose, an aluminum core of 392.5 cm3 is used to 142 

collect samples at the TDR installation depths. Three samples are collected per day and per field during five days chosen 143 

with different soil moisture conditions in order to cover a wide range of values (0.08 to 0.33 m3/m3). A linear regression is 144 

established between the volumetric water content and the square root of the TDR time response (named  in second) as 145 

follow: 146 

         √                                                                                         (1) 147 

The calibrated values using data of both fields are  and . Figure 3 148 

illustrates the calibration results with all the samples displayed. The statistical metrics are: correlation coefficient R = 0.97, 149 

Root Mean Square Error RMSE = 0.018 m3/m3 and no Bias. When considering both fields separately, the results for (F1, F2) 150 

are R = (0.90, 0.94), RMSE = (0.023, 0.01) m3/m3 and Bias = (-0.002, 0.003) m3/m3. 151 

(a) (b)
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The calibrated equation is also applied for the RZSMs assuming that the soil properties are the same at different depths. 152 

Figure A2 in appendix A illustrates an example of an RZSM time series over F1. 153 

 154 

Figure 3. Surface soil moisture measured by TDR versus gravimetric measurements using samples collected over both fields F1 155 

and F2 during 2016-2017 growing season. The blue solid line is the linear regression and the dashed line is Y=X. 156 

3.1.2 Surface roughness 157 

Surface roughness characterizes the micro variation of the ground surface elevation within a given area/field (Allmaras et al., 158 

1966). It affects particularly the SAR signal and to a lesser extent the visible and near infrared (Girard and Girard, 1989). 159 

The two parameters that characterize the surface roughness are the root mean square height (hrms) and the correlation length 160 

(L). hrms provides a vertical descriptor of ground roughness by measuring the elevation of the surface along one or more 161 

observation lines and calculating the standard deviation of the recorded values. The second parameter (L) corresponds to the 162 

distance between measurements from which the heights between points are statistically independent. This parameter 163 
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provides a horizontal description of the ground surface roughness, more specifically the organizational structure and spatial 164 

continuity of the microtopography (Nolin et al., 2005). Over the 3 studied fields, measurements of the surface roughness are 165 

taken during the first stage of wheat (from emergence to early tillering) when the ground is not totally covered by the 166 

canopy. We used a pin profiler of 1 m length, composed of a set of 53 metal needles of equal length every 2 cm (Fig. 2b). 16 167 

sample pictures are taken per field and per date including eight pictures parallel and eight pictures perpendicular to the rows 168 

direction. The pictures are taken using Canon 6EOS 600D equipped with TAMRON lens (Model A14).  169 

The images are processed in MATLAB based on the detection of the top position of each needle. hrms and L are computed 170 

from the auto-correlation function and then the average per direction, per field and per date is computed. For illustration, Fig. 171 

4 shows the time series of hrms and L parameters computed separately for each direction for F1 and F2 during the season 172 

2017-2018 while the average value per season are summarized in Table 2 for F1, F2 and F3. 173 

Table 2. Average values of the roughness parameters (8 samples are gathered per field and per direction). 174 

  
F1 F2 F3 

  
hrms (cm) L (cm) hrms (cm) L (cm) hrms (cm) L (cm) 

2016-2017 

Parallel  0.92 5.02 1.19 5.77 
  Perpendicular  1.34 5.88 1.19 5.8 
  Average  1.13 5.45 1.19 5.78 
  

2017-2018 

Parallel  0.89 5.44 1.1 5.88 
  Perpendicular  1.16 7.4 1.12 6.6 
  Average 1.02 6.42 1.11 6.24 
  

2018-2019 

Parallel 
    

0.83 6.54 

Perpendicular 
    

0.96 7.32 

Average 
    

0.89 6.93 
 175 

Based on the range of hrms measurements (0.83< hrms <1.35), it can be clearly seen that the fields are characterized by a 176 

slightly rough or smooth surface, which is the general case of disk tilling fields. After sowing, a slight change is observed at 177 

the start of the crop season (December 28, 2017, see Fig. 4). At that time, the soil has just been prepared for sowing and rows 178 

are directly exposed to rain. The fact that the rows are still visible in the field also explains the differences observed between 179 

both directions early in the season. This anisotropy disappeared quickly with irrigation, rainfall and plant growth. hrms and L 180 

are almost constant from early January onwards. Indeed, it has been shown that after sowing, roughness is affected by very 181 

limited temporal variations (Bousbih et al., 2017) as no soil works occur after sowing. It is usually kept constant during the 182 

crop season (El Hajj et al., 2016; Gherboudj et al., 2011; Gorrab et al., 2015; Ouaadi et al., 2020).  183 
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 184 

Figure 4. Time series of hrms and L computed from parallel and perpendicular measurements separately for F1 and F2 during the 185 
season 2017-2018. 186 

3.1.3 Biomass and water content 187 

Biomass and water content are two biophysical parameters of crucial importance in different agricultural applications 188 

including particularly plant stress monitoring, radar backscattering response, crop yield and evapotranspiration modeling. 189 

Within each field, eight samples are collected once a week/two weeks during the growing season. The samples are chosen 190 

randomly so that the average is representative of the plot. A quadrates of an area of 0.0625 m2 is used for the sampling (Fig. 191 

5). The samples are weighed first in the field to get fresh above-ground biomass (FAGB). The corresponding above ground 192 

biomass (AGB) expressed in kg of dry matter by m2 is determined at the laboratory by drying the samples in an electric oven 193 

at 105°C for 48 hours. The vegetation water content (VWC) is thus computed as the difference between FAGB and AGB 194 

(Gherboudj et al., 2011). 195 
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 196 

Figure 5. Photo taken during a measurement campaign illustrating a sample of above-ground biomass measurement. 197 

3.1.4 Canopy height, green leaf area index and cover fraction 198 

Canopy height (H), green leaf area index (GLAI) and cover fraction (FC) are measured every week during the growing 199 

season. Values from eleven different places are averaged and considered as a representative measure of the field. H is simply 200 

measured using a measuring tape while GLAI and Fc are computed by processing hemispherical photos (Fig. 6b) using 201 

MATLAB software following the method described in Duchemin et al. (2006) and Khabba et al. (2009). The eight photos 202 

per date and per field are taken using a camera Canon 6EOS 600D with SIGMA 4.5 mm F2.8 EXDC circular fisheye HSM 203 

(Fig. 6a). Photos are taken in optimal lighting conditions to avoid shadow effects and over-exposure phenomena which make 204 

classification more difficult. The algorithm is based on the binarization of the hemispherical images by thresholding a 205 

greenness index. Next, the useful part of the images is extracted by masking the operator and the high viewing angles (> 75°) 206 

(Fig. 6c). Finally, the ground-covered area is extracted on concentric rings associated with fixed viewing angles and the 207 

average of all pictures is the field GLAI. Using the same process, Fc is calculated as the ratio of the vegetation pixels number 208 

to the pixels total number. 209 
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 210 

Figure 6. (a) the 4.5 mm F2.8 EXDC circular fisheye HSM, (b) hemispherical photo and (c) result of the processing after 211 
binarization and after masking the operator and the high viewing angles (> 75°). 212 

3.1.5 Irrigation and weather data 213 

F1, F2 and F3 are irrigated using the drip technique. Irrigation quantities are determined by the farmer by estimating the 214 

daily evapotranspiration under standard conditions (ETc) in the region computed using the FAO-56 model simple approach 215 

(Allen et al., 1998). The cumulative ETc for a given period (usually one week) is applied during one or more events per week 216 

depending on the farmer's constraints (e.g. availability of workforce) and on the weather conditions (e.g. occurrence of rain). 217 

The irrigation pipes are spaced by 0.7 m while the distance between the drippers along the pipe is 0.4 m. Over F1 and F2, the 218 

flowrate of each dripper is 7.14 mm/hour. The irrigation takes place about 105 min (12.53 mm). A flowmeter mounted 219 

downstream of a valve allowed an accurate collection of irrigation volumes. F2 and F3 are irrigated according to FAO 220 

recommendations while F1 is stressed voluntarily. The stress involved in F1 is during the first season (2016-2017) only. By 221 

contrast, the 2017-2018 season was wet so that there is no clear stress observed on the field. The irrigation dates and 222 

amounts over F1 and F2 during both seasons are made available throughout this database while irrigation over F3 are not 223 

available. 224 

The weather data including precipitation, air temperature, relative humidity, solar radiation, wind speed and direction are 225 

collected by an automatic weather station installed over an alfalfa field near the studied fields (Fig. 7). The weather station 226 

provides continuously meteorological data every 30 min. The sensor Campbell CS215 is used to measure the air temperature 227 

and the relative humidity (Fig. 7). The global solar radiation and the wind direction and speed are measured using Campbell 228 

SKP215 and Campbell windsonic4, respectively. The precipitation are measured using the Rain Gauge (Campbell SBS500) 229 

shown in Fig. 7. 230 

(a) (b) (c)
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 231 

Figure 7. Automatic weather station installed over an alfalfa field near F1, F2 and F3. 232 

3.2 Remote sensing datasets 233 

3.2.1 Sentinel-1 234 

Sentinel S1A and S1B are earth observation satellites developed for the Copernicus initiative and launched by the European 235 

Space Agency on April 2014 and 2016, respectively. During full operation, S1A and S1B are maintained in the Near-polar 236 

Sun-synchronous orbit at 693 km altitude, phased 180°, providing a revisit time of six days (Torres et al., 2012). S1 is a 237 

synthetic aperture radar operating at C-band with a frequency of 5.33 GHz, mapping the entire world in 175 orbits per cycle. 238 

The main operational imaging mode is the Interferometric Wide-swath mode (IW). IW acquires data with a wide swath of 239 

250 km with high geometric (azimuth resolution 20 m and ground range resolution 5 m) and radiometric resolution (Mission 240 

and Services, 2012). IW mode supports operation in single and dual polarization (HH, VV, HH/HV and VV/VH) and covers 241 

a range of incidence angles between 31° and 46°. The product is composed of three Sub-Swath acquired in TOPSAR 242 

imaging technique which significantly reduces the scalloping effect (Zan and Guarnieri, 2006). 243 

CS215

windsonic4

SBS500

SKP215



13 

 

Level 1 products are systematically processed and available within 24 hours, free of charge from the Sentinel-1 Data Hub 244 

website (https://scihub.copernicus.eu). The website provides data under two types of products: GRDH (Ground Range 245 

Detected High resolution) and SLC (Single Look Complex).  246 

In this database, 561 GRDH and SLC products are processed (Table 3). Among them, 124 images are acquired over F3 247 

during 2018-2019 growing season and 437 over F1 and F2 from October 01, 2016, to July 31, 2018, along the ascending 248 

#118 (221 images) and descending #52 (216 images) relative orbits. This period includes two agricultural seasons in addition 249 

to the summer period. 250 

Table 3. Characteristics of the sentinel-1 products processed over the three fields for the monitored periods 251 

Field Season 
Relative Orbit 

Number 

Incidence 

angle 

Relative 

Orbit 

Overpass 

time 
Product 

Number 

of images 

F1 and F2 

October 

2016 - July 

2018 

118  45,6°  Ascending 18:30  
GRDH 112 

SLC 109 

52 35,2° Descending 06:30 
GRDH 110 

SLC 106 

F3 

November 

2018 - May 

2019 

118 45,6°  Ascending 18:30  
GRDH 32 

SLC 31 

52 35,2° Descending 06:30 
GRDH 31 

SLC 30 

Backscattering coefficient 252 

GRDH products are provided by ESA with a square pixel size and contains only the intensity information. The 253 

backscattering coefficients are extracted using the Orfeotoolbox (CNES, 2018). The processing procedure consists of three 254 

steps (Frison and Lardeux, 2018) :  255 

1. Thermal noise removal: SAR product contains not only the useful signal but also the unwanted noise disturbing the 256 

information contained in the intensity images, especially when the backscattered power is low. The thermal noise is 257 

an additive noise. The compensation of this noise can be performed by subtracting the scaled noise power using the 258 

calibrated noise vectors provided by ESA.  259 

2. Calibration: The ''calibration'' step aims to convert the digital accounts into a physically interpreted parameter: the 260 

backscattering coefficient. A calibration vector included in the GRDH products contains the necessary information 261 

to convert the digital values to the backscattering coefficient. 262 

3. Terrain correction: S1-SAR data are sensed with viewing angle greater than zero which induces distortion in the 263 

products because of the lateral viewing geometry. The ''Terrain corrections'' module is used to compensate these 264 

distortions and get as much possible images with the real geometric representation. The images are projected on the 265 
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Earth's surface using a Digital Elevation Model (DTM). The DTM SRTM (Shuttle Radar Topography Mission) of 266 

30 m of resolution is used according to the method described in Small and Schubert (2008).  267 

SAR images are affected by the speckle noise, which is mainly due to the relative phase of individual scatters within a 268 

resolution cell. Many filters have been developed to remove the speckle noise although the best filter is the spatial average. 269 

The presented database is generated using a simple average per field of 120, 121 and 1100 pixels for F1, F2 and F3, 270 

respectively with a mean standard deviation of around 1.55 dB. In order to visualise data dynamics, backscattering 271 

coefficients are converted into dB. 272 

Interferometric coherence 273 

Sentinel-1 SLC products are provided in slant-range geometry. It contains three sub-swath images IW1, IW2 and IW3. Each 274 

sub-swath is composed by nine bursts with black-fill demarcation. By contrast with GRD, both intensity and phase 275 

information are kept. The phase information is used for the computation of interferometric coherence. SAR interferometry 276 

consists of correlating two images acquired from two positions in space slightly separated from each other (with two radars 277 

mounted on the same platform) or at different times by exploiting repeated orbits of the same satellite such as for Sentinel-1. 278 

Thanks to its high temporal resolution (six days per orbit), the interferometric coherence is computed from two consecutive 279 

acquisitions of the same orbit. 280 

The interferometric coherence, given by the Eq. (2), for a local neighborhood of N pixels, is generated by cross multiplying, 281 

pixel by pixel, the first SAR image  with the complex conjugate of the second (Bamler and Hartl, 1998; Touzi et al., 282 

1999).  283 

 284 

∑

√∑ | | ∑ | |

                                                                                           (2) 285 

The interferometric coherence | |  varies between zero (incoherence) and one (perfect coherence). The interferometric 286 

coherence is related to the movements of the scatterers within a given canopy. It decreases (loss of coherence) in the case of 287 

dense vegetation while high values are obtained over bare soils. Loss of coherence could be caused by temporal interval 288 

between acquisitions, orbit errors, vegetation development/movement or processing errors. The random dislocation of 289 

scatters because of the weather (wind and rain) or the plants growth is the main cause of the temporal decorrelation. 290 

Sentinel application platform SNAP is used to compute the interferometric coherence from S1-SLC products in five steps 291 

(Veci, 2015): 292 

1. Apply-Orbit-file: This module is applied for a better estimation of the position and speed of the satellite using the 293 

orbit state vector. Preliminary, a predicted orbit state vector is contained in the metadata but it is not accurate. The 294 

precise orbit is made available one month after data acquisition at the later. For this reason, the automatic download 295 

in SNAP is used in order to update the orbit state vectors. 296 
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2. Back-geocoding: The two images need to be co-registered. One of the images is the master and the other is the 297 

slave. This step ensures that each pixel of the slave image is aligned with the corresponding pixel in the master 298 

image so that both pixels contain contributions from the same target. The DEM is required for ''Back-geocoding'' 299 

step, SNAP allows either to enter it manually or to download it automatically. 300 

3. Coherence: This module in SNAP allows the computation of the interferometric coherence between the two images 301 

for a given local neighborhood. In order to get a square pixel of 13.95 m, azimuth* range are fixed to 3*15 in the 302 

processing. 303 

4. TOPSAR-Deburst: The black-fills in between bursts are deleted separately for both polarization images (VV and 304 

VH). 305 

5. Terrain-Correction: Finally, the processed images are projected on the earth surface using a DEM. 306 

3.2.2 Sentinel-2 NDVI 307 

Sentinel-2 optical satellites S2A and S2B are launched by ESA in June 2015 and March 2017, respectively. They are placed 308 

in opposition on the same orbit at an altitude of 800 km. Sentinel-2 provides data every 5 days with a width of 290 km and a 309 

resolution of 10 to 60 m according to spectral bands (13 bands) ranging from visible to the medium infrared. The National 310 

Centre for Space Studies (CNES) provides Level-2A products atmospherically corrected free of charge via the PEPS 311 

platform (https://peps.cnes.fr/) or the Theia website (https://theia.cnes.fr/). Data are corrected from atmospheric effects by 312 

the Center for the Study of the Biosphere from Space (CESBIO) using the MAJA chain (Hagolle et al., 2015). The 313 

atmospheric corrections are performed in three steps: 314 

1. The satellite top-of-atmosphere (TOA) reflectances are corrected from the absorption by the atmospheric gas 315 

molecules using the absorption part of the Simplified Model for Atmospheric Correction (SMAC) method by 316 

Rahman et al., 1994. The concentrations of the ozone, the oxygen and the water vapor are obtained from satellite 317 

data (ozone) and meteorological data (water vapor, pressure). 318 

2. The detection of the clouds (and cloud’s shadows) is based on the multi-temporal cloud detection method proposed 319 

by Hagolle et al., 2010 . 320 

3. The estimation of the aerosol optical thickness (AOT) relies on a hybrid method merging the criteria of a multi-321 

spectral method with the multi-temporal technique developed initially for the VENµS satellite mission by Hagolle 322 

et al., 2010. The AOT is used along with the surface altitude, the viewing geometry and the wavelength in the 323 

parameterization of look-up tables for the conversion of TOA reflectances already corrected in step ―1‖ into surface 324 

reflectances. The look-up tables are provided by the successive orders of scattering code (Lenobel et al., 2007) used 325 

in the modeling of molecular and aerosol scattering effects. A different look-up table is computed for each aerosol 326 

model. 327 

Data are downloaded from the Theia site. Among the available products, only the products non-covered with clouds are used 328 

corresponding to ten, twenty-five and twenty-six images for 2016-2017, 2017-2018 and 2018-2019 agricultural seasons, 329 

respectively. Please note that during the season 2016-2017, only S2A was in the orbit which explains the limited number of 330 

images (10). Next, the Normalized Difference Vegetation Index (NDVI) corresponding to each pixel is computed from band 331 

4 and 8. An average per field is used to compute the time series of each field. 332 

https://peps.cnes.fr/
https://theia.cnes.fr/


16 

 

4   Data analysis 333 

4.1 Vegetation variables  334 

In this section, the relationships between the different variables (GLAI, FAGB, AGB, VWC and H) that characterize the 335 

vegetation growth and development are firstly investigated. These relationships are extensively used for different 336 

applications such as the calibration of backscattering models and the development of retrieval approaches (Chauhan et al., 337 

2018). Several land surface or crop model relies on empirical relationships to predict Fc or H as well (Bigeard et al., 2017; 338 

Castelli et al., 2018). Other agricultural models compute AGB from GLAI using linear or polynomial relationships (Major et 339 

al., 1986; Petcu et al., 2003). Figure 8 displays the resulting relationships using data from F1 by selecting only the 2016-340 

2017 season for illustration purposes. These relationships are computed separately based on the data recorded before and 341 

after the peaks of GLAI and FAGB. 342 

The nature of the relationship changes depending on the structure (biomass variables) or on the greenness of the plant 343 

(GLAI). The biomass variables (FAGB, AGB and VWC) and H increase up to the biomass peak. Afterwards, a reverse 344 

evolution can be observed characterized in particular, by a decorrelation between FAGB/VWC and AGB. This is mainly 345 

related to the senescence process of the vegetation; the leaves begin to dry progressively with the start of the grain filling, so 346 

that the Sapflow (water, carbohydrates, proteins and mineral salts) migrates to the heads at the top of the plant (Farineau and 347 

Morot-Gaudry, 2018). Indeed, VWC and AGB are highly correlated until vegetation peak (the correlation coefficient R = 348 

0.94 before the peak and R = -0.20 afterwards) while FAGB being dominated by the plant water content is highly correlated 349 

with VWC during the whole crop season (R=0.99 before the peak and R = 0.98 afterwards). Likewise, H is highly correlated 350 

to FAGB, VWC and AGB until vegetation peak (R > 0.97) when H remains at its maximum value while AGB continue to 351 

increase with grain filling and VWC and FAGB decrease because of the vegetation drying. The relationship of these 352 

variables (FAGB, AGB, VWC and H) with GLAI and Fc is quite different. The curves are of a parabolic shape with a 353 

maximum reached around the GLAI peak. A timing shift between the peaks of GLAI and FAGB is observed. This is 354 

probably related to the senescence of the lower leaves, which leads to an earlier drop of GLAI than of FAGB. Between the 355 

peaks of GLAI and FAGB, GLAI decreases while i) AGB and H increase and ii) FAGB increases slightly while VWC is 356 

almost constant. After the FAGB peak, AGB goes on increasing due to grain filling while the VWC decreases due to drying 357 

of the plant. FAGB which is the sum of AGB and VWC is almost constant. 358 
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 359 

Figure 8. Scatterplots of the relationships between wheat measured variables: FAGB, AGB, VWC, H, GLAI and Fc. Data are 360 

presented separately using the maximum of GLAI and FAGB as thresholds: data <max GLAI are in black, data < max FAGB 361 

(and > max GLAI) are in grey and data > max FAGB (and > max GLAI) are in blue. 362 

4.2 Radar data 363 

The time series of the backscattering coefficient, the polarization ratio and the interferometric coherence are analyzed here 364 

for two agricultural seasons and a summer period on F1 and F2 and at two incidence angles (35.2° and 45.6°). 365 

4.2.1 The backscattering coefficient  366 

Figure 9 displays the time series at 45.6° over F2 for illustration purposes: a) backscattering coefficient at VV polarization 367 

( ); b) backscattering coefficient at VH polarization ( ) as well as wheat phenological stages; c) SSM, air temperature, 368 
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irrigation and rainfall. Figures A3- A5 in appendix A show the same time series over F1 and F2 at 35.2° and F1 at 45.6°, 369 

respectively. The backscattering coefficients reveal a strong seasonal signal with two cycles. The first cycle takes place from 370 

sowing to the heading stage and the second from heading to harvest with the minimum reached around the heading stage. 371 

The highest values at 35.2° are observed in the first cycle, while at 45.6°, σ˚ is higher on the second peak. The maximum 372 

values of  reached the same value for F1 and F2 while higher values are observed on F2 at VH.  is more sensitive to 373 

soil moisture variation until mid-January, corresponding to the tillering stage, when the soil is not yet fully covered by 374 

vegetation. Although it is agreed that the signal during this period is governed by the dynamics of soil moisture, its behavior 375 

differs from one site to another giving the difference in soil hydric conditions and surface roughness. After this period, the 376 

signal behavior is similar to the profiles obtained by Cookmartin et al. (2000), El Hajj et al. (2019), Nasrallah et al. (2019) 377 

and Veloso et al. (2017). It decreases gradually from the early tillering until the heading stage (around March 13) by about 378 

10 dB on F2 and 5 dB on F1 because of the attenuation by the canopy during the development of the stems (extension stage) 379 

(Cookmartin et al., 2000; Mattia et al., 2003; Picard et al., 2003; Wang et al., 2018). Obviously, the attenuation is more 380 

important at VV polarization because of the vertical structure of wheat (stems) in line with the results of (Fontanelli et al., 381 

2013; Picard et al., 2003; Wang et al., 2018). The response of  to SSM variation and canopy attenuation is lower than for 382 

. After the heading stage, the signal starts to increase again. This is clearer on F2 than F1 and at 45.6° than at 35.2°. The 383 

heading stage is the phenological stage of wheat when the spike or head starts emerging out from the leaf sheath. This 384 

change of the structure of the canopy shield the stems for the radar signal through the appearance of a thick, wet top layer 385 

composed of the heads. The C-band wavelength penetrates this layer only, resulting in increased volume scattering, while 386 

attenuation becomes low. This effect is stronger for F2 than for F1, at VH than at VV and at 45.6° than at 35.2°. This 387 

increase was first reported by Ulaby and Batlivala (1976). Subsequently, Ulaby et al. (1986) suggested that an additional 388 

term must be added to the traditional three-term model (vegetation volume diffusion, soil attenuation, and soil-vegetation 389 

interaction) to properly represent wheat backscattering after heading. Later on, similar behaviour has been observed and 390 

attributed to the appearance of the heads followed by the grain by numerous authors (Brown et al., 2003; El Hajj et al., 2019; 391 

Mattia et al., 2003; Patel et al., 2006; Veloso et al., 2017).  The exceptional growing conditions on F2 during S2 is at the 392 

origin of the observed plateau of the backscattering coefficient which remains quite stable until harvest. This is due to a 393 

significant contribution of volume scattering which is a behavior that characterize a crop developing a random canopy 394 

structure in relation to the numerous and dense adventices as already highlighted (cf. picture Fig.  A1 at appendix A). 395 

The low variation observed on F1 during the 2016-2017 season is mainly related to the limited development of vegetation 396 

because of the triggered water stress. Likewise, the difference between the two seasons over F2 is related to a higher density 397 

of grown seeds and wetter conditions in the 2017-2018 season compared to 2016-2017 (the amount of rainfall during the 398 

growing season-from sowing to harvest-reached 167.23 mm in 2017-20118 while only 69.94 mm is recorded in 2016-2017). 399 

With the drying of the head layer, the backscattering decreases again at the end of the season to reach the lower observed 400 

values. Indeed, as the head layer dries, the vegetation becomes transparent to the signal. The soil is also dry at the end of the 401 
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season because irrigation is stopped. These low values remained until the first deep ploughing on July 11, when a sharp 402 

increase is observed because of a drastic change of soil roughness. Hereafter, the signal is again stable until the seedling 403 

preparation work for the next 2017-2018 season (November 22). 404 

 405 

Figure 9. Time series of the backscattering coefficient at VV (a) and VH (b) polarizations on F2 at 45.6° of incidence angle during 406 

the period from October 01, 2016 to July 31, 2018. The tilling works and phenological stages of wheat are superimposed on 407 

subplots (a) and (b), respectively. The air temperature, surface soil moisture (SSM), irrigation and rainfall are displayed on 408 

subplot (c). 409 

4.2.2 The interferometric coherence and the polarization ratio  410 

Figure 10 displays the time series at 45.6° over F2 of: a) interferometric coherence at VV ( ) and VH ( ) polarizations 411 

together with sowing and tilling dates; b) polarization ratio (PR = ), as well as wheat phenological stages; c) 412 

Sentinel-2 NDVI and measured GLAI; d) Measured FAGB, AGB, VWC and H. Likewise, Fig. A6- Fig. A8 in appendix A 413 

display the time series over F1 and F2 at 35.2° and F1 at 45.6°, respectively. The time series of  and  follows a 414 

similar evolution. Before sowing, coherence is at its highest value corresponding to 0.9 for  and 0.7 for  (Fig. 10a). 415 

These values express a dominance of coherent scattering, corresponding to response of bare soils composed of big rocks. 416 

Indeed, during the summer, the plots are subjected to deep ploughing which yields big clods that resist any change in surface 417 
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structure caused by climatic factors such as wind or rain. The second tilling breaks up the clods for the next seeding. Soil 418 

works and farming activities induce a large decrease in coherence in line with the observation of Wegmuller and Werner 419 

(1997). The surface roughness is a main parameter that influences not only the amplitude at C-band but also the phase. 420 

Indeed, abrupt drops are observed around each sowing events and tilling works (brown vertical lines on Fig. 10a).  421 

After sowing, the evolution is similar to the profiles obtained by Blaes and Defourny (2003) and Engdahl et al. (2001). The 422 

interferometric coherence increases from 0.15 to 0.7 and then starts to decrease slightly from the emergence of wheat, 423 

becoming almost constant after stem extension with values < 0.3 corresponding to the noise level. Indeed, using the ERS–424 

Envisat Tandem mission, Santoro et al., (2010) demonstrated that coherence measurements of vegetated fields are always 425 

below the level of bare soils coherence. Actually, the interferometric coherence is known to decrease exponentially with 426 

wheat growth (Lee et al., 2012). Vegetation growth and random dislocation of scatters cause a degradation of coherence 427 

(Blaes and Defourny, 2003; Engdahl et al., 2001; Wegmuller and Werner, 1997), especially under wind and rain effects. 428 

Between sowing and emergence, the observed variation is assumed to be related to the installation of irrigation drippers that 429 

took place up to two weeks after sowing. The changes that occur between the harvest and the first tilling could be attributed 430 

to livestock grazing, a common practice in the region after wheat harvest, which could change the surface roughness. 431 

The polarization ratio (PR) is closely related to the biomass dynamic. Both are increasing from emergence to heading and 432 

then start to decrease until harvest. The maximum timing is around middle of April. The significant differences in 433 

biophysical parameters between F1 and F2 is due to irrigation, as already highlighted for the backscattering coefficient time 434 

series. Likewise, the difference between the two seasons over F2 is related to a higher sowing density and wetter conditions 435 

in the 2017-2018 season compared to 2016-2017. As shown above (Fig. 8), the time series of FAGB and VWC are in line 436 

with AGB and H up to the peak of FAGB and then decrease together while AGB continues to increase and H remains at its 437 

maximum value. FAGB and VWC are dropping at the same time but 50 days after when compared to GLAI and NDVI and 438 

about 15 days before the backscattering coefficient. 439 
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 440 
Figure 10. Time series of the interferometric coherence at VV and VH polarizations (a) and the polarization ratio (b) on F2 at 441 
45.6° of incidence angle during the period from October 01, 2016 to July 31, 2018. The tilling works and phenological stages of 442 
wheat are superimposed on subplots (a) and (b), respectively. NDVI and measured GLAI are displayed in subplot (c). Measured 443 
H, FAGB, VWC and AGB are plotted in subplot (d). Time series are presented by mean values (solid lines) and standard 444 
deviations (filled fields surrounding the solid lines). 445 

4.3 Relationship between SAR data and vegetation variables 446 

The polarization ratio and the interferometric coherence have been shown to be related to vegetation growth. In this section, 447 

the relationships between PR,  and  and vegetation variables, including AGB, VWC, H, GLAI and NDVI are 448 

analyzed. Figure 11 displays the results at 35.2° of incidence angle and Fig. A9 in appendix A displays the results at 45.6°. H 449 

is used to illustrate the vegetation growth because its evolution is monotonic, so that data corresponding to before and after 450 

maximum development can be easily separated. The determination coefficient R2 and the Spearman rank correlation Rs are 451 

superimposed on the subplots together with the fitting equations using the whole database. Overall, a good correlation has 452 
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been found between SAR variables (PR,  and ) and AGB, VWC, GLAI and H. A hysteresis behavior is obviously 453 

observed for the vegetation variables with a non-monotonic dynamic (VWC, NDVI and GLAI). Using PR, the relationships 454 

are more scattered and characterized by lower saturation value. Although the range of variation of  is limited with 455 

regards to PR, the statistical metrics of the relationships between interferometric coherences and the vegetation variables are 456 

better than those obtained using PR.  exhibited better correlation to the vegetation variables than . With the exception 457 

of NDVI, Rs is always greater than 0.67. The best fit is obtained between  and H (Rs = 0.78 and R2 = 0.65) with higher 458 

saturation value than the other relationships (~55% of H range which is about 77 cm). By contrast, a visual inspection of the 459 

Fig. 11 (d, i and n) shows that relationships with NDVI are poorer when using data of the whole growing season. The 460 

dispersion is strong along the season. Data before and after the maximum development can be distinguished, particularly, 461 

using  and to a lesser extent . Figure 11 (i and n) shows that a linear relationship exists between NDVI and SAR data 462 

using data before maximum development only, i.e. when the vegetation is still green. During the beginning of the season, the 463 

slope of -NDVI and -NDVI is low compared to the other vegetation variables. This is because the NDVI increases 464 

faster around the emergence of wheat while  is steel high because of the low vegetation cover fraction at this time. The 465 

hysteresis effect observed after the maximum of vegetation development is due to the senescence of the leaves when NDVI 466 

starts decreasing while  and  are stable at low values.  467 

When considering SAR data at 45.6° of incidence angle (Fig. A9), a similar behavior to Fig. 11 is observed with AGB, 468 

VWC, H and NDVI. Same hysteresis and scattering are observed for NDVI although higher correlations are obtained. 469 

Similarly,  is better correlated to vegetation parameter than  and PR. By contrast, GLAI is better correlated with SAR 470 

variables than H. The PR-GLAI relationship is more scattered than at 35.2° while -GLAI has the best metrics (Rs = 0.82 471 

and R2 = 0.73) with a higher saturation value around 50% of the GLAI range (3 m2 m-2). 472 

Unlike PR, the metrics at both 35.2° and 45.6° are stable for the relationships between  with AGB, VWC and H. By 473 

contrast, PR-GLAI is more stable than -GLAI at both incidence angles. 474 
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 475 
Figure 11. Scatter plots of the relationships between PR,  and and AGB, VWC, H, NDVI and GLAI at 35.2° angle of 476 
incidence. The entire database is used from the three fields (F1, F2 and F3). H is used to monitor the evolution during the growing 477 
season. All the determination coefficient R

2
 and the Spearman rank correlation Rs are significant at 99%. 478 

4.4 Relationship between backscattering coefficient and SSM 479 

Figure 12 displays the relationships between  and SSM using the entire database at 45.6° and 35.2° of incidence angles. H 480 

is used as an indicator of vegetation growth. The correlation coefficient is computed separately for the entire database and 481 

for data corresponding to H lower than a threshold value (Htr) correspond to GLAI < 1.5. This value of GLAI correspond to 482 

wheat not fully covering the soil (Ouaadi et al., 2020b). Htr is about 23.5 cm, 23.5 cm, 32.9 cm and 26 cm for F1 and F2 483 

during 2017-2018, for F2 during 2016-2017 and for F3. Overall,  is obviously better correlated to SSM than  in line 484 

with the results of numerous studies (Holah et al., 2005; Li et al., 2014; Ulaby and Batlivala, 1976). Likewise, metrics at 485 

35.2° are better than those obtained at 45.6°. This is expected as the contribution of vegetation is dominant at higher 486 

incidence angles and at VH polarization. The relationships are scattered when using data from the whole season. This is 487 

attributed to the presence of vegetation and mainly to the attenuation of the soil signal backscattered by the wheat. The 488 

sensitivity of  to SSM decreases progressively during the growing season as shown by the decreasing slope of the 489 

relationships with the vegetation development. By considering the early season data only, when the soil is not yet covered by 490 
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vegetation, a better fitting is obtained between  and SSM. Indeed, the correlation coefficient using data with H < Htr is 491 

improved whatever the polarization and the incidence angle. Obviously, the highest correlation is obtained at VV 492 

polarization and 35.2° of incidence angle (R = 0.73) and to a lesser extent at VV at 45.6° and VH at 35.2° with R  0.66.  493 

 494 
Figure 12. Scatter plots of the relationships between  and  and SSM at 45.6° and 35.2 2° angles of incidence. The entire 495 

database is used from the three fields (F1, F2 and F3). H is used to monitor the evolution during the growing season. The 496 

significant correlation coefficients are in bold. The solid and the dashed lines correspond to all database and data with GLAI < 1.5, 497 

respectively. 498 
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5   Conclusion 499 

This paper presents a 3-year database of C-band radar data and all necessary ancillary ground measurements to improve our 500 

understanding of the radar signal and to develop inversion methods for land surface parameters retrieval. The data are 501 

collected from three heavily monitored wheat fields under semi-arid conditions in the center of Morocco. The database offers 502 

a complete set of data for radar applications on wheat monitoring. The measured parameters include fresh and dry above 503 

ground biomass, canopy height, leaf area index, cover fraction, surface soil moisture, root zone soil moisture and surface 504 

roughness, in addition to the normalized difference vegetation index and SAR data (the backscattering coefficient and the 505 

interferometric coherence). The irrigation and meteorological data are also provided. This database opens the opportunity to 506 

use remote sensing together with measured parameters to understand and investigate the behavior of wheat crops and 507 

thereafter for vegetation parameters and soil moisture retrieval. The database analysis presented in this paper demonstrates 508 

the potentialities of SAR data for wheat monitoring by addressing the well-known sensitivity of SAR to surface soil moisture 509 

and vegetation variables. The obtained relationships between SAR measurements including backscattering coefficient, 510 

polarization ratio and interferometric coherence can be used for the application of several backscattering models, the 511 

retrieval of biophysical variables and for yield prediction in crop models. They can also be useful for land surface models 512 

relying on accurate estimation of vegetation height such as the energy balance models (i.e. TSEB -Two Source Energy 513 

Balance- Norman et al., 1995). The dataset illustrates also the complex signal acquired by C-band radar over wheat crops 514 

that is not yet fully understood as it mix the responses from highly dynamic contributions of soil and vegetation elements. 515 

The unique dataset provided in this paper should contribute through future studies to improve our understanding of the 516 

response of C-band radar observations over annual crops. 517 

6   Database availability  518 

This database is archived in DtaSuds repository of the French National Research Institute for Sustainable Development 519 

(IRD). The database is accessible free of charge with "CC-BY" licence at https://doi.org/10.23708/8D6WQC (Ouaadi et al., 520 

2020a). It can be downloaded as xlsx files accompanied by a variable dictionary containing the variable names and units. 521 

The files are also accompanied by a metadata including a description of the database, time coverage, keywords and other 522 

general information. 523 

  524 

https://doi.org/10.23708/8D6WQC
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Appendix A: Complimentary figures 525 

 526 

Figure A1. Picture taken over F2 during 2017-2018 growing season (14/05/2018) illustrates the specific growing conditions 527 
(adventices and stems laid down by wind).  528 
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 529 

 530 

Figure A2. Time series of root zone soil moisture (RZSM) at 25 and 35 cm of depth measured over F1 from December 01, 2016 to  531 
December 31, 2017.  532 
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 533 
Figure A3. Time series of the backscattering coefficient at VV (a) and VH (b) polarizations on F1 at 35.2° of incidence angle during 534 
the period from October 01, 2016 to July 31, 2018. The tilling works and phenological stages of wheat are superimposed on 535 
subplots (a) and (b), respectively. The air temperature, Surface soil moisture (SSM), irrigation and rainfall are displayed on 536 
subplot (c).  537 
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 538 
Figure A4. Time series of the backscattering coefficient at VV (a) and VH (b) polarizations on F1 at 45.6° of incidence angle during 539 
the period from October 01, 2016 to July 31, 2018. The tilling works and phenological stages of wheat are superimposed on 540 
subplots (a) and (b), respectively. The air temperature, Surface soil moisture (SSM), irrigation and rainfall are displayed on 541 
subplot (c).  542 
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 543 
Figure A5. Time series of the backscattering coefficient at VV (a) and VH (b) polarizations on F2 at 35.2° of incidence angle during 544 
the period from October 01, 2016 to July 31, 2018. The tilling works and phenological stages of wheat are superimposed on 545 
subplots (a) and (b), respectively. The air temperature, Surface soil moisture (SSM), irrigation and rainfall are displayed on 546 
subplot (c).  547 
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 548 
Figure A6. Time series of the interferometric coherence at VV and VH polarizations (a) and the polarization ratio (b) on F1 at 549 
35.2° of incidence angle during the period from October 01, 2016 to July 31, 2018. The tilling works and phenological stages of 550 
wheat are superimposed on subplots (a) and (b), respectively. NDVI and measured GLAI are displayed in subplot (c). Measured 551 
H, FAGB, VWC and AGB are plotted in subplot (d). Time series are presented by mean values (solid lines) and standard 552 
deviations (filled fields surrounding the solid lines).  553 
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 554 
Figure A7. Time series of the interferometric coherence at VV and VH polarizations (a) and the polarization ratio (b) on F1 at 555 
45.6° of incidence angle during the period from October 01, 2016 to July 31, 2018. The tilling works and pheneological stages of 556 
wheat are superimposed on subplots (a) and (b), respectively. NDVI and measured GLAI are displayed in subplot (c). Measured 557 
H, FAGB, VWC and AGB are plotted in subplot (d). Time series are presented by mean values (solid lines) and standard 558 
deviations (filled fields surrounding the solid lines).  559 
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 560 
Figure A8. Time series of the interferometric coherence at VV and VH polarizations (a) and the polarization ratio (b) on F2 at 561 
35.2° of incidence angle during the period from October 01, 2016 to July 31, 2018. The tilling works and phenological stages of 562 
wheat are superimposed on subplots (a) and (b), respectively. NDVI and measured GLAI are displayed in subplot (c). Measured 563 
H, FAGB, VWC and AGB are plotted in subplot (d). Time series are presented by mean values (solid lines) and standard 564 
deviations (filled fields surrounding the solid lines).  565 
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 566 

Figure A9. Scatterplots of the relationships between PR,  and  and AGB, VWC, H, NDVI and GLAI at 45.6° angle of 567 
incidence. The entire database is used from the three fields (F1, F2 and F3). H is used to monitor the evolution during the growing 568 
season. All the determination coefficient R

2
 and the Spearman rank correlation Rs are significant at 99%. 569 

  570 
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Table A1. Details of the field campaigns during the 2016-2017, 2017-2018 and 2018-2019 agricultural seasons. 571 

2016-2017 saison 2017-2018 saison 2018-2019 saison 

Date 
hrms 
& L  

H Fc LAI AGB FAGB VWC Date 
hrms 
& L  

H Fc LAI AGB FAGB VWC Date 
hrms 
& L 

H Fc LAI AGB FAGB VWC 

29/11/2016 x 

      

21/12/2017 x 

      

29/11/2018 x 

 
x x 

   30/11/2016 x 

      

28/12/2017 x 

 
x x 

   

07/12/2018 
 

 
x x 

   09/12/2016 x 

      

04/01/2018 x 

 
x x 

   

12/12/2018 x 

      20/12/2016 x x x x 
   

16/01/2018 x x x x 
   

18/12/2018 
 

 
x x 

   03/01/2017 x 

 
x x 

   

25/01/2018 x x x x x x x 04/01/2019 x 

 
x x 

   09/01/2017 x x x x 
   

31/01/2018 x x x x 
   

15/01/2019 x x x x x x x 

31/01/2017 x x x x 
   

12/02/2018 

 
x x x x x x 01/02/2019 

 
x x x x x x 

07/02/2017 

    
x x x 19/02/2018 

 
x 

     

13/02/2019 

 
x x x x x x 

14/02/2017 x x x x x x x 08/03/2018 
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