1 Long term variations of actual evapotranspiration over the Tibetan

- 2 Plateau
- 3 Cunbo Han ^{1,2,3}, Yaoming Ma^{1,4,5,6}, Binbin Wang^{1,2}, Lei Zhong⁷, Weiqiang
- 4 Ma^{1,2,4}, Xuelong Chen^{1,2,4}, Zhongbo Su⁸
- 5 1. Key Laboratory of Tibetan Environment Changes and Land Surface
- 6 Processes, Institute of Tibetan Plateau Research, Chinese Academy of
- 7 Sciences, Beijing, China
- 8 2. Land-Air Interaction and Climate Effect Group, State Key Laboratory of
- 9 Tibetan Plateau Earth System Science, Institute of Tibetan Plateau
- 10 Research, Chinese Academy of Sciences, Beijing, China
- 11 3. Institute for Meteorology and Climate Research, Karlsruhe Institute of
- 12 Technology, Karlsruhe, Germany
- 13 4. CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese
- 14 Academy of Sciences, Beijing, China
- 15 5. University of Chinese Academy of Sciences, Beijing, China
- 16 6. Lanzhou University, Lanzhou, China
- 17 7. Laboratory for Atmospheric Observation and Climate Environment
- 18 Research, School of Earth and Space Sciences, University of Science
- and Technology of China, Hefei, China
- 20 8. Faculty of Geo-Information Science and Earth Observation, University of
- Twente, Enschede, The Netherlands

22

23 Correspondence to:

- 24 Prof. Dr. Yaoming Ma
- 25 Institute of Tibetan Plateau Research, Chinese Academy of Sciences
- 26 16-3 Lincui Road, Chaoyang District, Beijing, 100101, China
- 27 Tel: +86 010 84097079
- 28 Email: ymma@itpcas.ac.cn

Abstract

30	Terrestrial actual evapotranspiration (ET_a) is a key parameter controlling land-
31	atmosphere interaction processes and the water cycle. However, spatial
32	distribution and temporal changes of ET_a over the Tibetan Plateau (TP)
33	remain very uncertain. Here we estimate the multiyear (2001-2018) monthly
34	\textit{ET}_{a} and its spatial distribution on the TP by a combination of meteorological
35	data and satellite products. Validation against data from six eddy-covariance
36	monitoring sites yielded root-mean-square errors ranging from 9.3 to 14.5 mm
37	mo ⁻¹ , and correlation coefficients exceeding 0.9. The domain mean of annual
38	ET_a on the TP decreased slightly (-1.45 mm yr ⁻¹ , p < 0.05) from 2001 to 2018.
39	The annual ET_a increased significantly at a rate of 2.62 mm yr ⁻¹ ($p < 0.05$) in
40	the eastern sector of the TP (lon > 90° E), but decreased significantly at a rate
41	of -5.52 mm yr ⁻¹ (p < 0.05) in the western sector of the TP (lon < 90° E). In
42	addition, the decreases in annual \textit{ET}_{a} were pronounced in spring and summer
43	seasons, while almost no trends were detected in the autumn and winter
44	seasons. The mean annual ET_a during 2001-2018 and over the whole TP was
45	496 \pm 23 mm. Thus, the total evapotranspiration from the terrestrial surface of
46	the TP was 1238.3 \pm 57.6 km $^{\!3}$ yr $^{\!1}.$ The estimated \textit{ET}_{a} product presented in
47	this study is useful for an improved understanding of changes in energy and
48	water cycle on the TP. The dataset is freely available at the Science Data
49	Bank (http://www.dx.doi.org/10.11922/sciencedb.t00000.00010, (Han et al.,
50	2020)) and at the National Tibetan Plateau Data Center
51	(<u>https://data.tpdc.ac.cn/en/data/5a0d2e28-ebc6-4ea4-8ce4-a7f2897c8ee6/</u>).
52	
53 54	Key words: Actual evapotranspiration; SEBS; Tibetan Plateau; Trend.

56	Key	points
	-	-

61

62

63

- The SEBS-estimated monthly ET_a during 2001-2018 has been
 validated against 6 flux towers on the TP.
- Annual ET_a over the entire TP and in the western TP decrease
 significantly, while it increases in the eastern TP.
 - Decrease of annual ET_a is pronounced in spring and summer, while almost no trends are detected in autumn and winter.

1 Introduction

65

66 As the birthplace of Asia's major rivers, the Tibetan Plateau (TP), famous as 67 the "Water Tower of Asia", is essential to the Asian energy and water cycles 68 (Immerzeel et al., 2010; Yao et al., 2012). Along with increasing air 69 temperature, evidence from the changes of precipitation, runoff, and soil 70 moisture indicates that the hydrological cycle of the TP has been intensified 71 during the past century (Yang et al., 2014). Consuming around two-thirds of 72 global terrestrial precipitation, evapotranspiration (ET) is a crucial component 73 that affects the exchange of water and energy between the land surface and 74 the atmosphere (Oki and Kanae, 2006; Fisher et al., 2017). ET is also a key 75 factor modulating regional and global weather and climate. As one essential 76 connecting component between the energy budget and the water cycle in the 77 terrestrial ecosystems (Xu and Singh, 2005), ET and its variations have been 78 drawing more attention worldwide (Xu and Singh, 2005; Li et al., 2014; Zhang 79 et al., 2018b; Yao et al., 2019; Wang et al., 2020b). Total evaporation from 80 large lakes of the TP has been quantitatively estimated recently (Wang et al., 81 2020a), however, the terrestrial ET on the TP and its spatial and temporal 82 changes remain very uncertain. 83 84 Many studies have tried to evaluate *ET*'s temporal and spatial variability 85 across the TP using various methods. The pan evaporation (E_{pan}), that 86 represents the amount of water evaporated from an open circular pan, is the most popular observational data source of ET. Long time series of E_{pan} are 87 88 often available with good comparability among various regional 89 measurements. Thus, it has been widely used in various disciplines, e.g., 90 meteorology, hydrology, and ecology. Several studies have revealed the trend 91 of E_{pan} on the TP (Zhang et al., 2007; Liu et al., 2011; Shi et al., 2017; Zhang 92 et al., 2018a; Yao et al., 2019). Although Epan and potential ET suggest the

long-term variability of ET according to the complementary relationship (CR) between E_{pan} and actual ET (ET_a) ($\underline{Zhang\ et\ al.,\ 2007}$), these measures cannot precisely depict the spatial pattern of trends in ETa. Recently, several studies applied revised models, which are based on the CR of ET, to estimate ET_a on the TP (Zhang et al., 2018b; Ma et al., 2019; Wang et al., 2020b). Employing only routine meteorological observations without requiring any vegetation and soil information is the most significant advantage of CR models (Szilagyi et al., 2017). However, numerous assumptions and requirements of validations of key parameters limit the application and performance of CR models over different climate conditions. The application of eddy-covariance (EC) technologies in the past decade has dramatically advanced our understanding of the terrestrial energy balance and ET_a over various ecosystems across the TP. However, the fetch of the EC observation is on the order of hundreds of meters, thus impeding the ability to capture the plateau-scale variations of ET_a. Therefore, finding an effective way to advance the estimation of ET_a on the TP is of great importance. Satellite remote sensing (RS) provides temporally frequent and spatially contiguous measurements of land surface characteristics that affect ET, for example, land surface temperature, albedo, vegetation index. Satellite RS also offers the opportunity to retrieve ET over a heterogeneous surface (Zhang et al., 2010). Multiple RS-based algorithms have been proposed. Among these algorithms, the surface energy balance system (SEBS) proposed by Su (2002) has been widely applied to retrieve land surface turbulent fluxes on the TP (Chen et al., 2013b; Ma et al., 2014; Han et al., 2016; Han et al., 2017; Zou et al., 2018; Zhong et al., 2019). Chen et al. (2013b) improved the roughness length parameterization scheme for heat transfer in SEBS to expand its modeling applicability over bare ground, sparse

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

canopy, dense canopy, and snow surfaces in the TP. An algorithm for ellective
aerodynamic roughness length had been introduced into the SEBS model to
parameterize subgrid-scale topographical form drag (Han et al., 2015; Han et
al., 2017). This scheme improved the skill of the SEBS model in estimating
the surface energy budget over mountainous regions of the TP. A recent
advance by Chen et al. (2019) optimized five critical parameters in SEBS
using observations collected from 27 sites globally, including 6 sites on the TP,
and suggested that the overestimation of the global ET was substantially
improved with the use of optimal parameters.
While the spatial and temporal pattern of the ET_a in the TP had been
investigated in many studies (Zhang et al., 2007; Zhang et al., 2018b; Wang
et al., 2020b), considerable inconsistencies for both trends and magnitudes of
ET _a exist due to uncertainties in forcing and parameters used by various
models. Thus, in this study, with full consideration of the recent developments
in the SEBS model over the TP, we aim to (1) develop an 18-year (2001-2018)
${\it ET}_{\it a}$ product of the TP, along with independent validations against EC
observations; (2) quantify the spatiotemporal variability of the ET_a in the TP,
and (3) uncover the main factors dominating the changes in $ET_{\rm a}$, using the
estimated product.
2 Methodology and data
2.1 Model description
The SEBS model (Su, 2002) was used to derive land surface energy flux
components in the present study. The remote-sensed land surface energy

balance equation is given by

$$R_n = H + LE + G_0. {1}$$

148 R_n is net radiation flux (W m⁻²), H is sensible heat flux (W m⁻²), LE is latent

heat flux (W m⁻²), and G_0 is ground heat flux (W m⁻²). Note that this equation

neglected energy stored in the canopy, energy consumption related to freeze-

thaw processes of permafrost and glacier, etc. Thus, this equation is

applicable without considering the phase change of water.

153

154 The land surface net radiation flux was computed as

155
$$R_n = (1 - \alpha) \times SWD + LWD - \varepsilon \times \sigma \times T_s^4$$
 (2)

156 where α is the land surface albedo derived from the Moderate Resolution

157 Imaging Spectroradiometer (MODIS) products. Downward shortwave (SWD)

and longwave (*LWD*) radiation were obtained from the China Meteorological

159 Forcing Dataset (CMFD). Land surface temperature (T_s) and emissivity (ϵ)

values were also obtained from MODIS products.

161

In vegetated areas the soil heat flux, G_0 , was calculated from the net radiation

163 flux and vegetation cover

164
$$G_0 = R_n \times (r_c \times f_c + r_s \times (1 - f_c)). \tag{3}$$

165 r_s and r_c are ratios of ground heat flux and net radiation for surfaces with bare

soil and full vegetation, respectively. Fractional vegetation cover (fc) was

derived from the normalized difference vegetation index (NDVI). Over water

168 surfaces (NDVI < 0 and α < 0.47), G_0 = 0.5 R_n was used (Gao et al., 2011;

169 Chen et al., 2013a). On glaciers, G_0 is negligible (Yang et al., 2011) and G_0 =

170 $0.05R_n$.

171

172 In the atmospheric surface layer, sensible heat flux and friction velocity were

173 calculated based on the Monin-Obukhov similarity (Stull, 1988),

$$U = \frac{u_*}{\kappa} \left[ln \left(\frac{z - d_0}{z_{0m}^{eff}} \right) - \psi_m \left(\frac{z - d_0}{L} \right) + \psi_m \left(\frac{z_{0m}^{eff}}{L} \right) \right] \tag{4}$$

175
$$\theta_0 - \theta_a = \frac{H}{\kappa u_* \rho C_p} \left[ln \left(\frac{z - d_0}{z_{oh}^{eff}} \right) - \psi_h \left(\frac{z - d_0}{L} \right) + \psi_h \left(\frac{z_{oh}^{eff}}{L} \right) \right] \tag{5}$$

$$L = \frac{\rho C_p u_*^3 \theta_v}{\kappa g H}.$$
 (6)

U is the horizontal wind velocity at a reference height z (m) above the ground surface, θ_0 is the potential temperature at the land surface (K), θ_a is the potential temperature (K) at the reference height z, d_0 is the zero-plane displacement height (m), ρ is the air density (kg m⁻³), C_p is the specific heat for moist air (J kg⁻¹ °C⁻¹), $\kappa = 0.4$ is the von Kármán's constant, u- is the friction velocity, L is the Monin-Obukhov length (m), θ_V is the potential virtual temperature (K) at the reference height z, ψ_m and ψ_h are the stability correction functions for momentum and sensible heat transfer respectively, and g is the gravity acceleration (m s⁻²). To account for the form drag caused by subgrid-scale topographical obstacles, effective roughness lengths for momentum (z_{0m}^{eff} , m) and sensible heat (z_{0h}^{eff} , m) transfer were introduced into the SEBS model by Han et al. (2017). These modifications are parameterized as follows (Grant and Mason, 1990; Han et al., 2015),

190
$$ln^{2}(h/2z_{0m}^{eff}) = \frac{\kappa^{2}}{0.5D\lambda + \kappa^{2}/ln^{2}(h/2z_{0m})}$$
 (7)

191
$$ln(h/2z_{0h}^{eff}+1) = ln(h/2z_{0h}+1) \frac{ln(h/2z_{0m}+1)}{ln(h/z_{0m}^{eff}+1)}$$
 (8)

where h is the average height of the subgrid-scale roughness obstacles, λ is the average density of the subgrid-scale roughness elements calculated from digital elevation models, D is the form drag coefficient and D=0.4 is used for the mountainous areas of the TP as suggested by Han et al. (2015), z_{0m} and z_{0h} are the local-scale roughness lengths for momentum (m) and heat transfer (m), respectively. Detailed calculations can be found in Su (2002). A revised algorithm for z_{0h} developed by Chen et al. (2013b) was applied as this algorithm outperforms the original scheme of the SEBS model on the TP.

To constraint the actual evapotranspiration, the evaporative fraction was

applied in the SEBS model, which is determined by taking energy balance considerations at dry and wet limiting cases. Under the dry-limit condition, the evaporation becomes zero due to the limited supply of available soil moisture, while water vapor evaporates at the potential rate under the wet-limit condition (Su, 2002). The evaporative fraction (Λ) is defined as,

$$\Lambda = \frac{LE}{R_{n-G_0}} \tag{9}$$

After calculating evaporative fraction based on the assumption of dry and wet limits, latent heat flux was calculated by inverting Equation (9). Finally, latent heat flux was converted to ET_a . Details are available in <u>Su (2002) and (Chenet al., 2013a)</u>.

2.2 Data

202

203

204

205

206

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

In-situ observations, satellite-based products, and meteorological forcing data were used in this study to estimate monthly ET_a over the TP area. The CMFD, that was developed based on the released China Meteorological Administration (CMA) data (He et al., 2020), was used as model input. The CMFD covers the whole landmass of China at a spatial resolution of 0.1° and a temporal resolution of three hours. The CMFD dataset was established through the fusion of in-situ observations, remote sensing products, and reanalysis datasets. In particular, the dataset benefits from the merging of the observations at about 700 CMA's weather stations, and by using the Global Energy and Water Cycle Experiment – Surface Radiation Budget (GEWEX-SRB) shortwave radiation dataset (Pinker and Laszlo, 1992). The GEWEX-SRB data has not been used in any other reanalysis dataset. In addition, independent datasets observed in western China where weather stations are scarce were used to evaluate the CMFD. This includes data collected through the Heihe Watershed Allied Telemetry Experimental Research (HiWATER) (Li et al., 2013) and the Coordinated Enhanced Observing Period (CEOP) Asia229 Australia Monsoon Project (CAMP) (Ma et al., 2003). CMFD dataset has been 230 validated against in situ meteorological observations and compared with other 231 reanalysis datasets on the TP, demonstrating that it is one of the best 232 meteorological forcing datasets over the TP area (Zhou et al., 2016; Xie et al., 233 2017; Wang et al., 2020a). Therefore, it is suitable for this study to drive the 234 SEBS model. Detailed information for the CMFD dataset is listed in Table 1. 235 236 MODIS monthly land surface products, including land surface temperature 237 and emissivity, land surface albedo, and vegetation index, provide land 238 surface conditions for the SEBS model. Detailed information on MODIS land 239 surface variables are listed in Table 1. The values of land surface variables in 240 the MODIS monthly products are derived by compositing and averaging the values from the corresponding month of MODIS daily files. Validations of 241 242 MODIS land surface temperature and albedo against in-situ observations on 243 the TP suggesting a high quality of MODIS land surface products with low 244 biases and small root-mean-square errors (Wang et al., 2004; Ma et al., 2011; 245 Chen et al., 2014). 246 247 In-situ EC data observed at six flux stations on the TP were used to validate 248 model results. Locations of the six observation sites are illustrated in Figure 1 249 and detailed descriptions for these six sites are shown in Table 2. The 250 instrumental setup at each site consists of: an EC system comprising a sonic 251 anemometer (CSAT3, Campbell Scientific Inc) and an open-path gas analyzer 252 (LI-7500, Li-COR); a four-component radiation flux system (CNR-1, Kipp & 253 Zonen), installed at a height of 1.5 m; a soil heat flux plate (Hukseflux, 254 HFP01), buried in the soil to a depth of 0.1 m; soil moisture and temperature 255 probes, buried at a depth of 0.05, 0.10, and 0.15 m, respectively (Han et al., 256 2017). The EC data were processed with the EC software package TK3

(Mauder and Foken, 2015). The main post-processing procedures of the EC raw data were as follows: spike detection, coordinate rotation, spectral loss correction, frequency response corrections (Moore, 1986), and corrections for density fluctuations (Webb et al., 1980). The ground heat flux was obtained by summing the flux value observed by the heat flux plate and the energy storage in the layer above the heat flux plate (Han et al., 2016). A more comprehensive dataset including the EC data used in this work has been published and is freely available (Ma et al., 2020).

3-hourly CMFD data was averaged into daily and then into monthly data to be consistent with MODIS products in terms of temporal resolution. Daily land surface albedo has been averaged into monthly variable. MODIS land surface products and canopy height data were remapped onto CMFD's grid. Monthly EC data and in situ meteorological observations, which are used for model validation, were generated from half-hourly variables.

2.3 Model evaluation metrics and data analysis methods

The model performance was assessed using the Pearson correlation coefficient (R), the root-mean-square error (RMSE), and the mean bias (MB) between the estimated and observed monthly ET_a at the six stations on the TP.

The least-square regression technique was used to detect the long-term linear annual trends in ET_a values. The linear model to simulate ET_a values (Y_t) against time (t) is defined as below and the slope of the linear equation (b) is taken as the changing trend,

$$Y_t = Y_0 + bt + \varepsilon_t \tag{10}$$

The Student's *t*-test, having an *n*-2 degree of freedom (*n* is the number of samples), was used to evaluated the statistical significance of the linear trends, and only tests with a *p*-value less than 0.05 were selected as having passed the significance test.

3 Results and discussion

3.1 Validation against flux tower observations

The SEBS-estimated ET_a was validated against EC observations at six flux stations on the TP at a monthly scale (Figure 2). The SEBS model is capable of capturing both the magnitude and seasonal variation of the monthly ET_a signal at all the six stations. The correlation coefficients are all larger than 0.9 and have passed the significance test at the p = 0.01 level. RMSE values range from 9.3 to 14.5 mm mo⁻¹ with the minimum at the BJ station and the maximum at the SETORS station. The MB values are all negative except at the NADORS station, which means the SEBS model slightly underestimated ET_a values on the TP.

Specifically, the SEBS model performed particularly well at the short grass sites (BJ and NAMORS), with correlation coefficients as high as 0.98 and MB values below 5.0 mm mo⁻¹. At the high grass site (SETORS) and the gravel site (QOMS), the SEBS model is capable of reproducing the EC-observed monthly ET_a with RMSE values of 14.5 and 13.2 mm mo⁻¹, respectively. In addition, the underestimates of ET_a by SEBS are mostly in the dry season, when the canopy is withered. The validation at the site-scale indicates that the SEBS model used in this work can be applied to a wide range of ecosystems over the TP.

3.2 Spatial distribution

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

There was a clear spatial pattern to the multiyear average of annual ETa between 2001 and 2018 (Figure 3). In general, the SEBS-estimated ET_a decreases from the southeast to the northwest of the TP, with the maximum value above 1200 mm in the southeastern Tibet and Hengduan Mountains and the minimum value less than 100 mm in the northwestern edge of the TP. In the central TP, where there are several lakes, ET_a was typically from 500 to 1000 mm. ET_a was lower than 200 mm over the high, snow- and ice-bound, mountainous areas. For example, over the northern slopes of the Himalaya, Nyenchen Tanglha Mountains, and the eastern section of the Tanggula Mountains. The reason is that these snow- and ice-bound mountainous areas have a higher ability to reflect downward shortwave radiation and hence have less available energy to evaporate. On the whole, the domain averaged multiyear mean annual ET_a over the TP is 496±23 mm. The total amount of water evapotranspirated from the terrestrial surface of the TP are around 1238.3 \pm 57.6 km³ yr⁻¹, considering the area of the TP to be 2.5×10^6 km². Figure 4 shows the multi-year average spring (Marth, April, and May), summer (June, July, and August), autumn (September, October, and November), and winter (December, January, and February) ET_a on the TP. Generally, the distribution pattern of seasonal ET_a was comparable with that of the annual ET_a . Both seasonal and annual ET_a show a decreasing trend from the southeastern TP to the northwestern TP. Note that the spatial contrast of ETa almost faded out in winter season owing to a minimum in available energy and precipitation (Figure 4d). The ET_a in spring is higher than that in autumn, except for some high mountainous areas (e.g.: mountain ranges of Himalaya and Hengduan mountains). The spring ET_a ranges from 50 mm to 450 mm, while autumn ET_a ranges from 50 mm to 250 mm. In summer, the ET_a is

larger than 250 mm in most of the TP, while the ET_a is still below 100 mm in large areas of the northwestern TP. The multiyear seasonal ET_a averaged over the whole TP is 140 ± 10 mm, 256 ± 12 mm, 84 ± 5 mm, and 34 ± 4 mm, for spring, summer, autumn, and winter, respectively.

3.3 Trend analysis

The trend of annual ET_a during 2001-2018 is shown in Figure 5. Overall, an increasing trend of SEBS-simulated ET_a is dominant in the eastern TP (lon > 90° E) while a decreasing trend is dominant in the western TP (lon < 90° E). The trends pass the t-test (p < 0.05) in most part of the areas. The decreasing trend in the western TP is pronounced and passes the t-test (p < 0.05). This trend is larger than -7.5 mm yr $^{-1}$ in most parts of the area and even larger than -10 mm yr $^{-1}$ in a few parts. In the eastern TP, the increasing trend is mostly between 5 and 10 mm yr $^{-1}$ and passes the t-test (p < 0.05). The ET_a trend tends to be greater along the marginal region of the northern, eastern, and southeastern TP. Along the marginal region of the southwestern TP and in the western section of Himalaya Mountains this trend weakens.

The trends of seasonal ET_a between 2001 and 2018 are spatially heterogeneous over the TP (Figure 6). Decreasing trends in spring and summer are generally at a rate between -2.5 and -7.5 mm yr⁻¹, and increasing trends are generally at a rate below 5.0 mm yr⁻¹ and 7.5 mm yr⁻¹ in spring and summer, respectively. Areas showing decreasing ET_a tend to become larger in autumn and winter seasons. Both the decreasing and increasing trends are subdued in autumn and winter compared with that in spring and summer seasons. Decreasing rates of ET_a in autumn and winter are generally below - 2.5 mm yr⁻¹, and only a few areas have a rate larger than -2.5 mm yr⁻¹.

Due to the contrast in the trends in the eastern and western halves of the TP, we divided the TP into two regions: the eastern TP (lon > 90° E) and the western TP (lon < 90° E). Trends of the ET_a anomaly averaged over the entire TP, the western TP, and the eastern TP are shown in Figure 7a. The domain means of ET_a on the TP as a whole, and in the western TP decreased at rates of -1.45 mm yr⁻¹ and -5.52 mm yr⁻¹, respectively. However, the ET_a in the eastern TP increased at a rate of 2.62 mm yr⁻¹. The decreasing rate of ET_a in the entire TP is influenced mainly by the significant decrease of ET_a in the western TP. Seasonally, the rates of change of ET_a over the whole TP are - 0.82 mm yr^{-1} (p < 0.05) and -0.79 mm yr^{-1} (p < 0.05) in spring and summer, respectively (Figure 7b). However, in autumn and winter the ET_a changes at a rate of 0.10 mm yr⁻¹ and 0.06 mm yr⁻¹, respectively, and do not pass the *t*-test (p < 0.05). ET_a in spring and summer seasons account for 75.7% of the annual ETa. The variation in amplitude and changing rates in these two seasons are much larger than in the other seasons. Moreover, spatial distributions of spring and summer ET_a trends are close to that of the annual ET_a trend (Figure 6). Thus, changes of ET_a in the spring and summer dominate the variations of ET_a in the whole year.

The decrease of ET_a over the whole TP and in the western TP during 2001-2018 can be explained by the decrease of R_n in the same time period (Figure 8a). From 2001 to 2012, ET_a averaged over the entire TP increased slightly and then decreased dramatically from 2012, reaching a minimum in 2014. The significant decrease in ET_a between 2012 and 2014 was due to the rapid decline of the R_n (Figure 8a). In the eastern TP, ET_a increased during 2001-2018, while R_n decreased in the same period. Thus, R_n was not the dominant factor controlling the annual variations of ET_a . However, the increasing trends of both precipitation and air temperature can explain the increase of ET_a in the

eastern TP during the period 2001-2018 (Figure 8b and Figure 8c). The increasing precipitation increased the water resource available for ET_a . Moreover, the increasing air temperature accelerated the melting of permafrost and glaciers on the TP. Hence, the melting water replenished the ecosystem and increased the ET_a of the eastern TP.

Although the domain-averaged trend in ET_a has been decreasing across the entire TP from 2001 to 2018, ET_a values in some areas have increased. Moreover, the changing rates also depend on the time series of ET_a . For example, the ET_a increased slightly from 2001 to 2012, while decreased from 2001 to 2018. This demonstrates the necessity to evaluate the spatial distribution of changing trends in ET_a and utilize long time series to investigate the trends in ET_a over the TP.

4 Summary and conclusions

The SEBS-estimated ET_a is at a resolution of around 10 km, while the footprint of EC observed ET_a values ranges from a few dozen meters to a few hundreds of meters. SEBS-estimated ET_a compares very well with observations at the six flux towers, showing low RMSE and MB values. These estimates were able to capture annual and seasonal variations in ET_a , despite these two datasets being mismatched in their spatial representation.

Heterogeneous land surface characteristics and nonlinear changes in atmospheric conditions resulted in heterogeneities in spatial distributions of ET_a and changes in ET_a . The SEBS-estimated multiyear (2001-2018) mean annual ET_a on the TP was 515±22 mm, resulting in approximately 1287.5±55.0 km³ yr¹ of total water evapotranspiration from the terrestrial surface. Annual ET_a generally decreased from the southeast to the northwest

419	of the TP. The maximum was over 1200 mm, in the southeastern Tibet and
420	Hengduan Mountains, while the minimum was less than 100 mm in the
421	northwest marginal area of the TP. Moreover, \textit{ET}_{a} was typically lower than 200
422	mm over snow- and ice-bound mountainous areas, as there was limited
423	available energy to evaporate the water.
424	
425	Averaged over the entire TP, annual \textit{ET}_a increased slightly from 2001 to 2012,
426	but decreased significantly after 2012 and reached a minimum in 2014.
427	Generally, there was a slight decreasing trend in the domain mean annual \textit{ET}_{a}
428	on the TP at the rate of -1.45 mm yr^{-1} ($p < 0.05$) from 2001 to 2018. However,
429	trends of annual ET_a were opposite in the western and eastern TP. The
430	annual ET_a decreased significantly in the western TP at a rate of -5.52 mm yr
431	1 (p < 0.05) from 2001 to 2018, while annual ET_{a} in the eastern TP increased
432	at a rate of 2.62 mm yr ⁻¹ ($p < 0.05$) in the same period.
433	
434	The spatial distributions of seasonal ET_a trends were also noticeably
435	heterogeneous during 2001-2018. The spatial patterns of ET_a trend in spring
436	and summer were similar to the annual changes in \textit{ET}_a . \textit{ET}_a decreased as
437	well in the spring and summer season but at slower rates compared with the
438	annual \textit{ET}_{a} , however, only very weak trends were found in the autumn and
439	winter seasons.
440	
441	5 Data availability
442	The dataset presented and analyzed in this article has been released and is
443	available for free download from the Science Data Bank
444	(http://www.dx.doi.org/10.11922/sciencedb.t00000.00010, (Han et al., 2020))
445	and from the National Tibetan Plateau Data Center

446 (https://data.tpdc.ac.cn/en/data/5a0d2e28-ebc6-4ea4-8ce4-a7f2897c8ee6/). 447 The dataset is published under the Creative Commons Attribution 4.0 448 International (CC BY 4.0) license. 449 450 **Acknowledgments** This study was funded by the Second Tibetan Plateau Scientific Expedition 451 452 and Research (STEP) program (grant no. 2019QZKK0103), the Strategic Priority Research Program of Chinese Academy of Sciences (XDA20060101), 453 454 the National Natural Science Foundation of China (91837208, 41705005, and 455 41830650). The CMFD data were obtained from the National Tibetan Plateau 456 Data Center (https://data.tpdc.ac.cn/en/data/8028b944-daaa-4511-8769-457 965612652c49/). MODIS data were obtained from the NASA Land Processes 458 Distributed Active Archive Center (https://lpdaac.usgs.gov/). Global 1 km 459 forest canopy height data were obtained from the Oak Ridge National 460 Laboratory Distributed Active Archive Center for Biogeochemical Dynamics 461 (https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds id=1271). The authors would like to thank all colleagues working at the observational stations on the TP for their 462 463 maintenance of the instruments. 464 465

466 References

- Chen, X., Z. Su, Y. Ma, S. Liu, Q. Yu, Z. Xu. 2014. Development of a 10-year (2001-2010) 0.1° data set
 of land-surface energy balance for mainland China. *Atmospheric Chemistry and Physics* 14(23):
 13097-13117.
- Chen, X., Z. Su, Y. Ma, E. M. Middleton. 2019. Optimization of a remote sensing energy balance method
 over different canopy applied at global scale. *Agricultural and Forest Meteorology* 279: 107633 107633.
- Chen, X., Z. Su, Y. Ma, K. Yang, B. Wang. 2013a. Estimation of surface energy fluxes under complex terrain of Mt. Qomolangma over the Tibetan Plateau. *Hydrol. Earth Syst. Sci.* 17(4): 1607-1618.
- Chen, X., Z. Su, Y. Ma, K. Yang, J. Wen, Y. Zhang. 2013b. An Improvement of Roughness Height
 Parameterization of the Surface Energy Balance System (SEBS) over the Tibetan Plateau. *Journal* of Applied Meteorology and Climatology 52(3): 607-622.
- Fisher, J. B., F. Melton, E. Middleton, C. Hain, M. Anderson, R. Allen, M. F. McCabe, S. Hook, D. Baldocchi, P. A. Townsend, A. Kilic, K. Tu, D. D. Miralles, J. Perret, J.-P. Lagouarde, D. Waliser, A. J. Purdy, A. French, D. Schimel, J. S. Famiglietti, G. Stephens, E. F. Wood. 2017. The future of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources. *Water Resources Research* 53(4): 2618-2626.
- Gao, Z. Q., C. S. Liu, W. Gao, N. B. Chang. 2011. A coupled remote sensing and the Surface Energy Balance with Topography Algorithm (SEBTA) to estimate actual evapotranspiration over heterogeneous terrain. *Hydrol. Earth Syst. Sci.* 15(1): 119-139.
- Grant, A. L. M., P. J. Mason. 1990. Observations of boundary-layer structure over complex terrain.
 Quarterly Journal of the Royal Meteorological Society 116(491): 159-186.
- Han, C., Y. Ma, X. Chen, Z. Su. 2016. Estimates of land surface heat fluxes of the Mt. Everest region over the Tibetan Plateau utilizing ASTER data. *Atmospheric Research* 168: 180-190.
- Han, C., Y. Ma, X. Chen, Z. Su. 2017. Trends of land surface heat fluxes on the Tibetan Plateau from
 2001 to 2012. *International Journal of Climatology* 37(14): 4757-4767.
- Han, C., Y. Ma, Z. Su, X. Chen, L. Zhang, M. Li, F. Sun. 2015. Estimates of effective aerodynamic
 roughness length over mountainous areas of the Tibetan Plateau. *Quarterly Journal of the Royal Meteorological Society* 141(689): 1457-1465.
- Han, C., Y. Ma, B. Wang, L. Zhong, W. Ma, X. Chen, Z. Su. 2020. The estimated actual
 evapotranspiration over the Tibetan Plateau from 2001 to 2018. V1. Science Data Bank.
 http://www.dx.doi.org/10.11922/sciencedb.t00000.00010.
- He, J., K. Yang, W. Tang, H. Lu, J. Qin, Y. Chen, X. Li. 2020. The first high-resolution meteorological forcing dataset for land process studies over China. *Scientific Data* 7(1): 25-25.
- Immerzeel, W. W., L. P. H. van Beek, M. F. P. Bierkens. 2010. Climate Change Will Affect the Asian
 Water Towers. *Science* 328(5984): 1382 LP-1385.
- Li, X., G. Cheng, S. Liu, Q. Xiao, M. Ma, R. Jin, T. Che, Q. Liu, W. Wang, Y. Qi, J. Wen, H. Li, G. Zhu,
 J. Guo, Y. Ran, S. Wang, Z. Zhu, J. Zhou, X. Hu, Z. Xu. 2013. Heihe Watershed Allied Telemetry
 Experimental Research (HiWATER): Scientific Objectives and Experimental Design. *Bulletin of the American Meteorological Society* 94(8): 1145-1160.
- Li, X., L. Wang, D. Chen, K. Yang, A. Wang. 2014. Seasonal evapotranspiration changes (1983–2006)

- of four large basins on the Tibetan Plateau. *Journal of Geophysical Research: Atmospheres* 119(23):
 13,13-79,95.
- Liu, X., H. Zheng, M. Zhang, C. Liu. 2011. Identification of dominant climate factor for pan evaporation
 trend in the Tibetan Plateau. *Journal of Geographical Sciences* 21(4): 594-608.
- Ma, N., J. Szilagyi, Y. Zhang, W. Liu. 2019. Complementary-Relationship-Based Modeling of Terrestrial
 Evapotranspiration Across China During 1982–2012: Validations and Spatiotemporal Analyses.
 Journal of Geophysical Research: Atmospheres 124(8): 4326-4351.
- Ma, W., Y. Ma, H. Ishikawa. 2014. Evaluation of the SEBS for upscaling the evapotranspiration based on in-situ observations over the Tibetan Plateau. *Atmospheric Research* 138: 91-97.
- Ma, Y., Z. Hu, Z. Xie, W. Ma, B. Wang, X. Chen, M. Li, L. Zhong, F. Sun, L. Gu, C. Han, L. Zhang, X.
 Liu, Z. Ding, G. Sun, S. Wang, Y. Wang, Z. Wang. 2020. A long-term (2005–2016) dataset of hourly integrated land–atmosphere interaction observations on the Tibetan Plateau. *Earth Syst. Sci. Data* 12(4): 2937-2957.
- Ma, Y., Z. Su, T. Koike, T. Yao, H. Ishikawa, K. i. Ueno, M. Menenti. 2003. On measuring and remote sensing surface energy partitioning over the Tibetan Plateau—from GAME/Tibet to CAMP/Tibet.
 Physics and Chemistry of the Earth, Parts A/B/C 28(1): 63-74.
- Ma, Y., L. Zhong, B. Wang, W. Ma, X. Chen, M. Li. 2011. Determination of land surface heat fluxes over
 heterogeneous landscape of the Tibetan Plateau by using the MODIS and in situ data. *Atmos. Chem. Phys.* 11(20): 10461-10469.
- Mauder, M., T. Foken. 2015. Eddy-Covariance Software TK3.
- Moore, C. J. 1986. Frequency response corrections for eddy correlation systems. *Boundary-Layer Meteorology* 37(1): 17-35.
- Oki, T., S. Kanae. 2006. Global Hydrological Cycles and World Water Resources. *Science* 313(5790):
 1068 LP-1072.
- Pinker, R. T., I. Laszlo. 1992. Modeling Surface Solar Irradiance for Satellite Applications on a Global
 Scale. *Journal of Applied Meteorology* 31(2): 194-211.
- 533 Shi, H., T. Li, G. Wang. 2017. Temporal and spatial variations of potential evaporation and the driving mechanism over Tibet during 1961–2001. *Hydrological Sciences Journal* 62(9): 1469-1482.
- 535 Stull, R. B. (1988). An introduction to boundary layer meteorology. Dordrecht, Kluwer Academic Publishers.
- Su, Z. 2002. The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. *Hydrol. Earth Syst. Sci.* 6(1): 85-100.
- Szilagyi, J., R. Crago, R. Qualls. 2017. A calibration-free formulation of the complementary relationship
 of evaporation for continental-scale hydrology. *Journal of Geophysical Research: Atmospheres* 122(1): 264-278.
- Wang, B., Y. Ma, Z. Su, Y. Wang, W. Ma. 2020a. Quantifying the evaporation amounts of 75 highelevation large dimictic lakes on the Tibetan Plateau. *Science Advances* 6(26): eaay8558.
- Wang, G., S. Lin, Z. Hu, Y. Lu, X. Sun, K. Huang. 2020b. Improving Actual Evapotranspiration Estimation Integrating Energy Consumption for Ice Phase Change Across the Tibetan Plateau. Journal of Geophysical Research: Atmospheres 125(3): e2019JD031799-e032019JD031799.
- Wang, K., J. Liu, X. Zhou, M. Sparrow, M. Ma, Z. Sun, W. Jiang. 2004. Validation of the MODIS global land surface albedo product using ground measurements in a semidesert region on the Tibetan

- Plateau. *Journal of Geophysical Research: Atmospheres* 109(D5).
- Webb, E. K., G. I. Pearman, R. Leuning. 1980. Correction of flux measurements for density effects due
 to heat and water vapour transfer. *Quarterly Journal of the Royal Meteorological Society* 106(447):
 85-100.
- Xie, Z., Z. Hu, L. Gu, G. Sun, Y. Du, X. Yan. 2017. Meteorological Forcing Datasets for Blowing Snow
 Modeling on the Tibetan Plateau: Evaluation and Intercomparison. *Journal of Hydrometeorology* 18(10): 2761-2780.
- Xu, C. Y., V. P. Singh. 2005. Evaluation of three complementary relationship evapotranspiration models
 by water balance approach to estimate actual regional evapotranspiration in different climatic
 regions. *Journal of Hydrology* 308(1): 105-121.
- Yang, K., H. Wu, J. Qin, C. Lin, W. Tang, Y. Chen. 2014. Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review. *Global and Planetary Change* 112: 79-91.
- Yang, W., X. Guo, T. Yao, K. Yang, L. Zhao, S. Li, M. Zhu. 2011. Summertime surface energy budget
 and ablation modeling in the ablation zone of a maritime Tibetan glacier. *Journal of Geophysical Research: Atmospheres* 116(D14).
- Yao, T., H. Lu, W. Feng, Q. Yu. 2019. Evaporation abrupt changes in the Qinghai-Tibet Plateau during the last half-century. *Scientific Reports* 9(1): 20181-20181.
- Yao, T., L. Thompson, W. Yang, W. Yu, Y. Gao, X. Guo, X. Yang, K. Duan, H. Zhao, B. Xu, J. Pu, A. Lu,
 Y. Xiang, D. B. Kattel, D. Joswiak. 2012. Different glacier status with atmospheric circulations in
 Tibetan Plateau and surroundings. *Nature Climate Change* 2(9): 663-667.
- Zhang, C., F. Liu, Y. Shen. 2018a. Attribution analysis of changing pan evaporation in the Qinghai–
 Tibetan Plateau, China. *International Journal of Climatology* 38(S1): e1032-e1043.
- Zhang, K., J. S. Kimball, R. R. Nemani, S. W. Running. 2010. A continuous satellite-derived global
 record of land surface evapotranspiration from 1983 to 2006. *Water Resources Research* 46(9).
- Zhang, T., M. Gebremichael, X. Meng, J. Wen, M. Iqbal, D. Jia, Y. Yu, Z. Li. 2018b. Climate-related
 trends of actual evapotranspiration over the Tibetan Plateau (1961–2010). *International Journal of Climatology* 38(S1): e48-e56.
- Zhang, Y., C. Liu, Y. Tang, Y. Yang. 2007. Trends in pan evaporation and reference and actual
 evapotranspiration across the Tibetan Plateau. *Journal of Geophysical Research: Atmospheres* 112(D12).
- Zhong, L., Y. Ma, Z. Hu, Y. Fu, Y. Hu, X. Wang, M. Cheng, N. Ge. 2019. Estimation of hourly land surface heat fluxes over the Tibetan Plateau by the combined use of geostationary and polar-orbiting satellites. *Atmos. Chem. Phys.* 19(8): 5529-5541.
- Zhou, J., L. Wang, Y. Zhang, Y. Guo, D. He. 2016. Spatiotemporal variations of actual evapotranspiration
 over the Lake Selin Co and surrounding small lakes (Tibetan Plateau) during 2003–2012. Science
 China Earth Sciences 59(12): 2441-2453.
- Zou, M., L. Zhong, Y. Ma, Y. Hu, Z. Huang, K. Xu, L. Feng. 2018. Comparison of Two Satellite-Based
 Evapotranspiration Models of the Nagqu River Basin of the Tibetan Plateau. *Journal of Geophysical Research: Atmospheres* 123(8): 3961-3975.

590	List of tables	
591	Table 1: Input datasets used in this study.	23
592	Table 2: Station information.	24
593		
594		

Table 1: Input datasets used in this study.

Variables	Data source	Availability	Temporal resolution	Spatial resolution
Downward Shortwave	CMFD	1979 – 2018	3 hours	0.1°
Downward longwave	CMFD	1979 – 2018	3 hours	0.1°
Air temperature	CMFD	1979 – 2018	3 hours	0.1°
Specific humidity	CMFD	1979 – 2018	3 hours	0.1°
Wind velocity	CMFD	1979 – 2018	3 hours	0.1°
Land surface temperature	MOD11C3	2001 – now	Monthly	0.05°
Land surface emissivity	MOD11C3	2001 – now	Monthly	0.05°
Height of canopy	GLAS & SPOT	2000 - now	Monthly	0.01°
Albedo	MOD09CMG	2001 - now	Daily	0.05°
NDVI	MOD13C2	2001 - now	Monthly	0.05°
DEM	ASTER GDEM	-	-	30 m

Table 2: Station information.

Station	Location	Elevation (m)	Land cover
QOMS	28.21°N, 86.56°E	4276	Gravel
NAMORS	30.46°N, 90.59°E	4730	Grassy marshland
SETORS	29.77°N, 94.73°E	3326	Grass land
NADORS	33.39°N, 79.70°E	4264	Sparse grass-Gobi
MAWORS	38.41°N, 75.05°E	3668	Sparse grass-Gobi
BJ	31.37°N, 91.90°E	4509	Sparseness meadow

604 List of figures

605	Figure 1: Locations of the six flux tower sites (marked by pentagrams) on the
606	TP. The legend of the color map is elevation above mean sea level in meters.
607	26
608	Figure 2: SEBS-estimated and EC-observed monthly ET_a at the six stations (a-
609	f) on the TP in years when the latter observations were available. RMSE is the
610	root-mean-square error, MB is the mean bias, and R is the correlation
611	coefficient27
612	Figure 3: Spatial distribution of the SEBS-estimated multiyear (2001-2018)
613	average annual <i>ET</i> _a
614	Figure 4: Spatial distributions of the SEBS-estimated multiyear (2001-2018)
615	average seasonal ET_a (mm/season) values over the TP. (a) spring, (b) summer,
616	(c) autumn, (d) winter
617	Figure 5: Spatial distribution of annual ET_a linear trend on the TP from 2001 to
618	2018. The stippling indicates the trends that pass the t-test ($p < 0.05$) 30
619	Figure 6: Spatial distributions of seasonal ET_a linear trends on the TP from 2001
620	to 2018: (a) annual, (b) spring, (c) summer, (d) autumn, (e) winter. The stippling
621	indicates the trends that pass the t -test ($p < 0.05$)
622	Figure 7: Anomalies of the domain-averaged annual ET_a of the entire TP, the
623	western TP (lon < 90° E), and the eastern TP (lon > 90° E), respectively (a).
624	Domain-averaged seasonal ET_a anomalies over the entire TP (b). The dashed
625	straight lines indicate linear trends during 2001-2018, and k is the slope of the
626	straight line32
627	Figure 8: Domain-averaged anomalies of annual R_n (a), precipitation (b), and
628	temperature (c) over the entire TP, the western TP (lon < 90° E), and the eastern
629	TP (lon > 90° E), respectively. The dashed straight lines indicate linear trends
630	during 2001-2018, and <i>k</i> is the slope of the straight line
631	

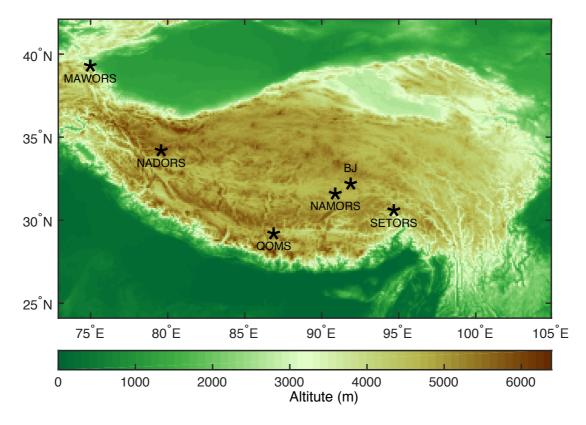


Figure 1: Locations of the six flux tower sites (marked by pentagrams) on the TP. The legend of the color map is elevation above mean sea level in meters.

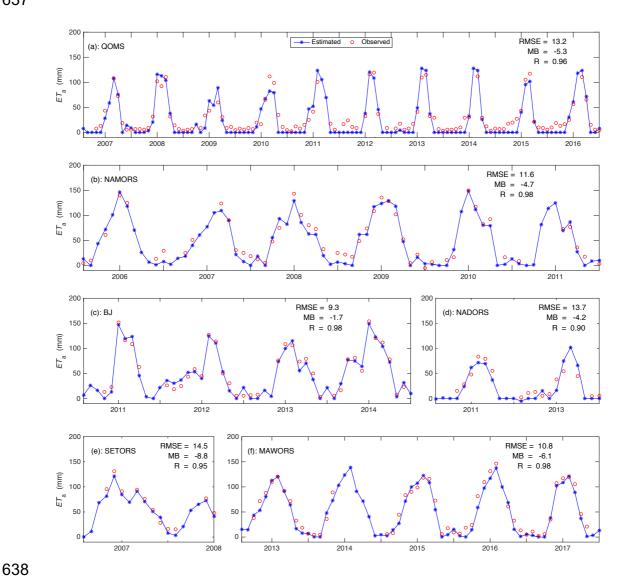


Figure 2: SEBS-estimated and EC-observed monthly ET_a at the six stations (a-f) on the TP in years when the latter observations were available. RMSE is the root-mean-square error, MB is the mean bias, and R is the correlation coefficient.

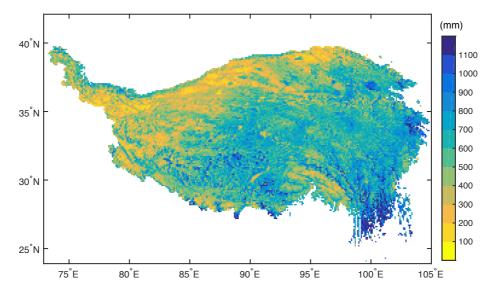


Figure 3: Spatial distribution of the SEBS-estimated multiyear (2001-2018) average annual ET_a .

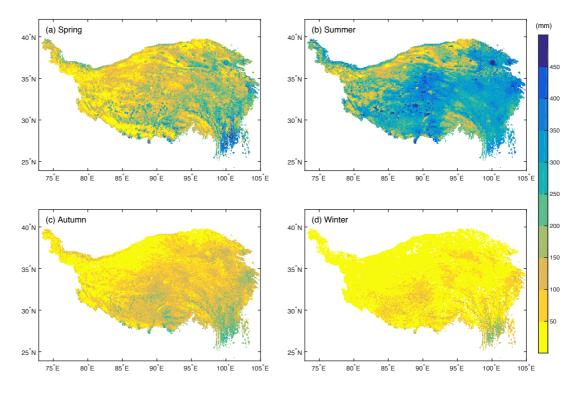


Figure 4: Spatial distributions of the SEBS-estimated multiyear (2001-2018) average seasonal ET_a (mm/season) values over the TP. (a) spring, (b) summer, (c) autumn, (d) winter.

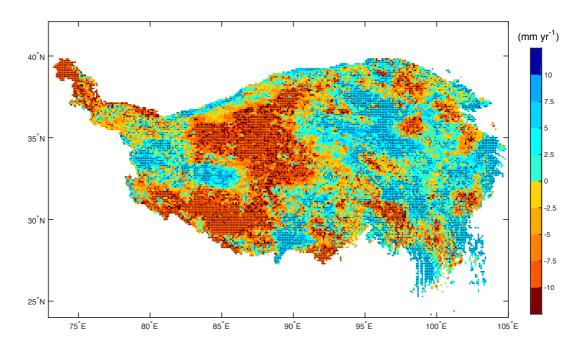


Figure 5: Spatial distribution of annual ET_a linear trend on the TP from 2001 to 2018. The stippling indicates the trends that pass the t-test (p < 0.05).

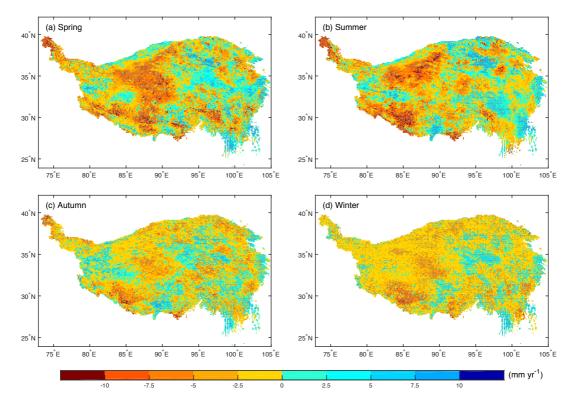


Figure 6: Spatial distributions of seasonal ET_a linear trends on the TP from 2001 to 2018: (a) annual, (b) spring, (c) summer, (d) autumn, (e) winter. The stippling indicates the trends that pass the t-test (p < 0.05).

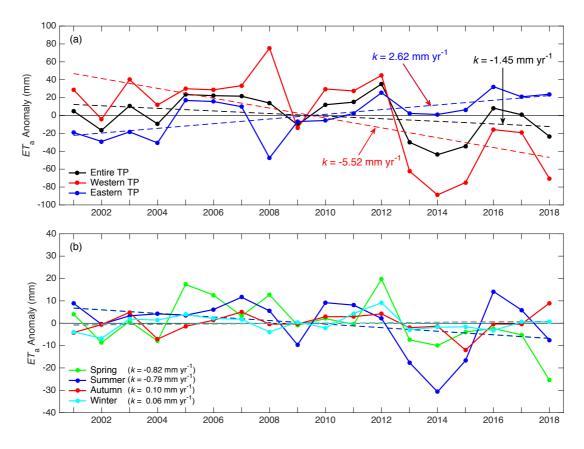


Figure 7: Anomalies of the domain-averaged annual ET_a of the entire TP, the western TP (lon < 90° E), and the eastern TP (lon > 90° E), respectively (a). Domain-averaged seasonal ET_a anomalies over the entire TP (b). The dashed straight lines indicate linear trends during 2001-2018, and k is the slope of the straight line.

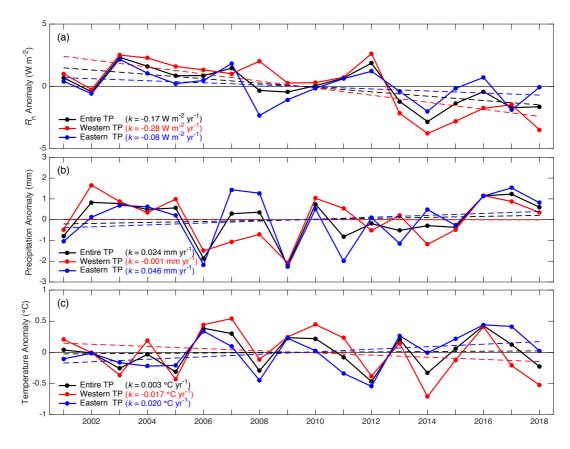


Figure 8: Domain-averaged anomalies of annual R_n (a), precipitation (b), and temperature (c) over the entire TP, the western TP (lon < 90° E), and the eastern TP (lon > 90° E), respectively. The dashed straight lines indicate linear trends during 2001-2018, and k is the slope of the straight line.