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Abstract. Water resources and associated ecosystems are becoming highly endangered due to 56 

ongoing global environmental changes. Spatial ecological modelling is a promising toolbox for 57 

understanding the past, present and future distribution and diversity patterns in groundwater-58 

dependent ecosystems, such as fens, springs, streams, reed beds or wet grasslands. Still, the lack 59 

of detailed water chemistry maps prevents the use of reasonable models to be applied on 60 

continental and global scales. Being major determinants of biological composition and diversity 61 
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of groundwater-dependent ecosystems, groundwater pH and calcium are of utmost importance. 62 

Here we developed the up-to-date European map of groundwater pH and Ca, based on 7,577 63 

measurements of near-surface groundwater pH and calcium distributed across Europe.  In 64 

comparison to the existing European groundwater maps, we included a several times larger 65 

number of sites, especially in the regions rich in spring and fen habitats, and filled the apparent 66 

gaps in Eastern and Southeastern Europe. We used Random Forest models and regression 67 

kriging to create continuous maps of water pH and calcium at the continental scale, which is 68 

freely available also as a raster map (Hájek et al. 2020; 10.5281/zenodo.4139912). Lithology had 69 

higher importance than climate for both pH and calcium. The previously recognised latitudinal 70 

and altitudinal gradients were rediscovered with much refined regional patterns, as associated 71 

with bedrock variation. For ecological models of distribution and diversity of many terrestrial 72 

ecosystems, our new map based on field ground water measurements is more suitable than maps 73 

of soil pH, which mirror not only bedrock chemistry, but also vegetation-dependent soil 74 

processes. 75 

 76 

Copyright statement 77 

No copyright statement is needed. 78 

 79 

1. Introduction 80 

The Earth system is currently undergoing unprecedented changes in climate, global 81 

biogeochemical cycles, and land use, resulting in biodiversity loss (Ceballos et al. 2017, Song et 82 

al. 2018, Blowes et al. 2019, Brondizio et al. 2019). Freshwater systems belong to the most 83 
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endangered habitats (Cantonati et al. 2020a, Tickner et al. 2020) and, among them, groundwater-84 

dependent ecosystems, such as fens and springs, hold primacy (Janssen et al. 2016, Chytrý et al. 85 

2019, Hájek et al. 2020, Stevens et al. 2020). Species composition and richness of spring systems 86 

are generally governed by water pH and calcium concentration (Ca2+), which are highly variable 87 

at different spatial scales (Malmer 1986; Rydin and Jeglum 2013; Peterka et al. 2017; Horsáková 88 

et al. 2018; Cantonati et al. 2020a,b). Therefore, understanding the spatial patterns in 89 

groundwater pH and Ca2+ is important not only for general geochemical knowledge and for water 90 

resource management, but to the same extent for the conservation of freshwater systems and 91 

associated biodiversity.  92 

In Earth and biodiversity sciences, ecological modelling is a widely used tool for 93 

understanding the distribution and diversity patterns of ecosystems and habitats, and for 94 

predicting their future development under global change. Ecological models usually incorporate 95 

environmental or historical predictors extracted from thematic maps (Jiménez-Alfaro et al. 96 

2018a, Večeřa et al. 2019, Divíšek et al. 2020), including soil properties for terrestrial 97 

ecosystems (Hengl et al. 2017). However, soil parameters as soil pH contribute negligibly to the 98 

models for groundwater-dependent habitats, even for those strongly controlled by pH and Ca2+, 99 

such as base-rich fens (Jiménez-Alfaro et al. 2018b). This is due to a poor correlation between 100 

groundwater chemistry and pH or Ca2+ in soil, disrupted mainly by mineral leaching or 101 

accumulation of organic matter in soil. For this reason, there is a strong need to produce maps for 102 

groundwater pH and Ca2+ concentration at the European scale that would allow producing the 103 

continental-scale ecological models useful for enforcing conservation strategies in groundwater-104 

dependent habitats. Ideally, such models should include lithology as a dominant factor 105 
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determining groundwater pH and Ca2+ concentration (Hem 1985, Chapelle 2003, Tahvanainen 106 

2004, Stevens et al. 2020). 107 

In spite of important mapping efforts of groundwater (Duscher et al. 2015) and karst 108 

aquifers (Chen et al. 2017) at the European and global level, the only available European-scale 109 

maps of groundwater pH and Ca2+ concentration are those included in the FOREGS Geochemical 110 

Atlas of Europe (Salminen et al. 2006). These maps are based on 808 stream-water 111 

measurements distributed relatively equally across Europe. However, they show a large gap in 112 

Eastern and Southeastern Europe (Romania, Bulgaria, Belarus, Russian Federation, Ukraine, 113 

Moldova, Serbia, Kosovo, Montenegro, Bosnia and Herzegovina, Northern Macedonia). In 114 

addition, those maps are based on insufficient data density in some areas rich in groundwater-115 

dependent ecosystem types, but heterogeneous in terms of lithology (the Alps, the Carpathians, 116 

Bohemian Massif, the Cantabrian Mountains and the Pyrenees, and some regions of 117 

Fennoscandia). We therefore aimed at substantial improvement of the existing data by creating a 118 

database with field data measurements across the entire European continent, and at creating a 119 

model-based map representing major patterns of groundwater pH and Ca2+ concentration at local 120 

and continental scales. Our data will allow better understanding of the patterns and causes of 121 

groundwater conditions in freshwater systems, strongly improving the spatial information 122 

suitable for European-scale modelling of biodiversity in groundwater-dependent and related 123 

ecosystems.  124 

 125 

2. Methods 126 

Data collection 127 
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We assembled the data set of pH and Ca2+ (or electrical conductivity in µS.cm-1 at 20 °C; 128 

hereinafter abbreviated as EC) measurements in groundwater, covering the whole of Europe, 129 

with a greater density in the regions rich in endangered groundwater-dependent ecosystems such 130 

as springs and fens. We excluded most of Ukraine and European part of Russian Federation, 131 

because of large data gaps in these areas. We considered all types of shallow groundwater 132 

systems, especially spring, spring-fen, and stream water. The core of our data set is formed by 133 

unpublished pH and Ca2+ or EC data sets of co-authors (3,618 sites); some of them processed in 134 

ecological papers without presenting original pH and Ca2+ data (Hájková et al. 2006, 2008; Hájek 135 

et al. 2008; Sekulová et al. 2013; Plesková et al. 2016; Horsáková et al. 2018; Šímová et al. 136 

2019). The second most important source were vegetation databases registered in GIVD 137 

(Dengler et al. 2011; Table 1) and EVA (Chytrý et al. 2016), from where 1,160 measurements 138 

from freshwater habitats were obtained. Both unpublished data and data from vegetation 139 

databases were filtered using original information or metadata of the sources in a way that only 140 

data from spring-fed fens and springs were considered. The data from ombrotrophic bogs and 141 

clearly topogenic fens (mainly terrestrialised lakes) were omitted because their water chemistry 142 

is governed by the decomposition of organic matter, atmospheric humidity and deposition, algal 143 

photosynthesis (Kann and Smith 1999), and biotic processes such as cation exchange capacity of 144 

mosses (Clymo 1963, Soudzilovskaia et al. 2010, Vicherová et al. 2015), rather than by bedrock 145 

chemistry. We also obtained data from public data sets stored in national environmental and 146 

nature conservation agencies of Germany, Slovenia and Bulgaria (1081 sites; see Table 1), data 147 

from FOREGS Geochemical Atlas of Europe (Salminen et al. 2006; 808 sites) and literature data 148 

based on our gap-oriented excerption (883 sites; Table 1); most data came from Hinterlang 149 
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(1992), Tanneberger et al. (2011), Eades et al. (2018), Kadūnas et al. (2017) and Savić et al. 150 

(2017). 151 

 152 

Table 1. Data sources. The name abbreviations are explained in the team list or 153 

acknowledgements. 154 
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I. Vegetation databases. 

    

name n GIVD code custodian 

European Mire Vegetation Database 

(EMVD) 
510 

GIVD EU-00-022 T.P.  

National Vegetation Database of 

Denmark 
373 

EU-DK-002 J.E.M. 

Britain_nvcd  224 GIVD EU-GB-001 J.R. 

Balkan Vegetation Database  27 GIVD EU-00-019 K.V. 

Germany_vegmv  19 GIVD EU-DE-001 F.J. 

Basque country 7 EU-00-011 I.B. 

    

II. Unpublished data sets    

   

Regions n co-authors of the data set 

Central and Eastern Europe  1405 
Z.P., M.Há., P.H., T.P., D.D., L.S., M.L.,  J.N., P.P., P.S., A.Š., Y.S., 

C.B.-N. 

Spain 645 A.P-H., E.P-I., B.J-A. 

Bulgaria 428 P.H., M.Há., M.Hor. 

Fennoscandia  392 M.Há., T.P., D.D., M.Hor., V.H., P.H., T.K., T.T., J.Kap., D.-I.Ø. 

Apennines 285 M.T., M.Can., M.Car., S.S., A.P., L.B., R.G. 

Europe (cross-taxon research) 281 M.Há., P.H., D.D., M.Hor., V.H. 

Balkans except Bulgaria 134 A.D., E.M., J.Kam., P.L., T.P., M.Há., P.H. 

   

III. Public data sets   

   

area and agency n provided via 

North Rhine-Westphalia (LANUV 

agency; D) 463 Dr. Dirk Hinterlang, Dr. Sabine Bergmann 

Ministry of Environment and Water (BG) 442 Mrs. Rossitza Gorova 

Ministry of the Environment (SI) 176 http://www.arso.gov.si/, assessed 26 February 2019 

   

   

IV. Geochemical Atlas of 

Europe  
 

 

   

area n reference 

Europe 808 Salminen et al. 2006 

   

V.  Other literature data (gap-oriented excerption) 

   

region and context n reference 

West-Central European springs 340 Hinterlang 1992 

Lithuanian springs 194 Kadūnas et al. 2017 

NE England 111 Eades et al. 2018 

N Germany 58 Tanneberger et al. 2011 

Central Bosnia  50 Savić et al. 2017 

Western Bohemian mineral springs (CZ) 28 Laburdová and Hájek 2014 

Scotland 24 Gorham 1957 

Eastern Bosnia 20 Kamberović et al. 2019 

http://www.arso.gov.si/,%20assessed%2026%20February%202019
http://www.arso.gov.si/,%20assessed%2026%20February%202019
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 155 

In total, we collected 7,577 samples (Table 1). Some of these samples are repeated 156 

measurements conducted in the same site, especially in public data sets, while other samples 157 

(from vegetation databases, or literature data) share the same coordinates and site name or code, 158 

suggesting repeated measurements as well. We therefore averaged repeated measurements from 159 

the same sampling sites. We further deleted samples whose coordinates were obviously 160 

erroneous, such as those in oceans. These steps reduced the number of samples to 6,561, out of 161 

which 6,459 samples contained information on water pH value and 5,927 samples contained 162 

information about EC of water or Ca2+ concentration. Out of these 5,927 samples, 2,988 had 163 

directly measured both Ca2+ and EC (µS.cm-1 at 20 °C), and for the remaining 2,939 samples we 164 

estimated Ca2+ concentration by EC of water. 165 

 166 

Imputation of missing Ca2+ values by EC of water 167 

For imputation of Ca2+ values based on EC, we first aimed at constructing a simple imputation 168 

equation based on the well-known correlation between EC and Ca2+ concentration in springs and 169 

fens (Hem 1985, Sjörs ＆ Gunnarsson 2002, Plesková et al. 2016). In our data set of 2,988 170 

samples, as well as in its regional subsets, this relationship was strongly governed by EC values 171 

Switzerland (mires) 14 Lamentowicz et al. 2010 

British and French travertines 13 Pentecost and Zhaohui 2002 

NW Poland (mires) 8 Lamentowicz and Mitchell 2005 

Western Balkans 6 Ridl et al. 2018 

Kosovo 5 Kelmendi et al. 2018 

SE Croatia 4 Terzić et al. 2014 

Kosovo (Rugova) 3 Lajçi et al. 2017 

Serbia 3 Ćirić et al. 2018 

NE Croatia 1 Špoljar et al. 2011 

SE Croatia (Krčić) 1 Kolda et al. 2019 
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above ca 1,000 µS.cm-1, although they formed only a small part of the data set (4.7% of the data 172 

set; 139 samples). In the EC range 1,000-10,000  µS.cm-1 (an outlier of 17,000  µS.cm-1 was 173 

omitted), the correlation between water EC and Ca2+ concentration was not statistically 174 

significant (r = 0.15, P = 0.07). The problem of high EC values governing the regression model 175 

was the most apparent in the public data sets. In the data set of Bulgarian Ministry of 176 

Environment, weak correlation between EC and Ca2+ persisted even when EC values above 1000 177 

were omitted (Supplementary Figure 1). This database further contains many samples which are 178 

not near-surface samples that were measured in other datasets. We therefore finally decided (1) 179 

not to include the database of Bulgarian Ministry of Environment into the imputation model, and 180 

(2) limit the gradient of EC to 1,000 µS.cm-1. We further omitted a few samples from ophiolite 181 

(Kamberović et al. 2019) where high EC occurred despite low Ca2+. The resulting data set of 182 

2,319 samples nevertheless still showed some samples with suspiciously high or low Ca2+ 183 

concentration relative to EC (Supplementary Figure 2),  suggesting either the effect of other ions 184 

than Ca2+ or inconsistent analytical methodology. Because our aim was to create the most 185 

accurate imputation model rather than testing the relationship, we removed these outliers. 186 

Therefore, we calculated the EC:Ca and Ca:EC ratios and removed outliers, i.e., all points 187 

outside the 1.5 x interquartile range. The final imputation model was hence based on 2,062 sites.  188 

We performed a null-intercept linear regression (Figure 1) with Ca2+ as dependent variable (y) 189 

and EC as predictor (x); the resulting equation y = 0.153x was obtained (R2 = 0.84). Such 190 

relationship between Ca2+  and EC is similar as that found in the abovementioned studies (Hem 191 

1985, Sjörs ＆ Gunnarsson 2002, Plesková et al. 2016). Based on this equation, we imputed Ca2+ 192 

concentrations to all samples where only EC was measured. The imputed Ca2+ values show a 193 

somewhat narrower range (Supplementary Figure 3) than originally measured values. Both 194 
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subsets show minimum Ca2+ value below 1 mg.l-1, but imputed data show lower non-outlier 195 

maximum (125.5 mg.l-1) than measured data (197.2 mg.l-1). Absolute maximum value was also 196 

lower for the subset with imputed values. Imputation of Ca2+ values to all samples, including 197 

high-EC ones (> 1,000 µS.cm-1), hence did not skew the imputed data to higher values. 198 

 199 

Figure 1: The final regression model to impute Ca2+ values based on electrical conductivity (EC; 200 

µS.cm-1; n = 2,062 201 

 202 

 203 

Geographical modelling and selection of the predictors 204 

We used our dataset with measured groundwater pH and either measured or imputed Ca2+ 205 

concentrations to model expected values across non-sampled areas. Our aim was to produce 206 

continuous maps for groundwater-dependent pH (GW-pH) using 6,459 samples (pH min = 2.20; 207 

max = 11.32; mean = 6.69); and groundwater-dependent Ca2+ (GW-Ca) using 5,927 samples 208 

(min = 0.15; max = 3567.41; mean = 48.73 mg.l-1). Ca2+ values were ln-transformed. All field 209 
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samples had geographic coordinates assigned from GPS or georeferenced with an accuracy 210 

between ca 10 m (precise field measurements) and 500 m (from georeferenced sites in 211 

databases). We kept the pH outliers; ten values below 3.5 and nine values above 8.8. Even if 212 

these values may be suspicious, they largely come from published sources (FOREGS 213 

Geochemical Atlas of Europe, British vegetation database). Apart from measurement error, they 214 

may be explained by the influence of mineral waters from deep hydrological circulations (e.g., in 215 

a spring in the Apennines, very high pH value 11.2 was due to enrichment with sodium and 216 

chloride associated with low temperature reaction between meteoric water and ultramafic rocks; 217 

Boschetti and Toscani 2008, Boschetti et al. 2013, Segadelli et al. 2017, Cantonati et al. 2020c). 218 

These values form only a minor part of the data set and have negligible effect on the results.  219 

For each site, we obtained environmental predictors from thematic GIS maps (see below). 220 

We focused on the predictors that may causally affect the groundwater pH and calcium richness.  221 

Aquifer chemistry is of prime importance (Hem 1985, Fairchild et al. 1994, Frei et al. 2000, 222 

Chapelle et al. 2003, Tahvanainen 2004, Stevens et al. 2020), but no such thematic map exists, at 223 

least at the scale needed for computing our spatial predictions. We therefore included the 224 

lithological groups from the Hydrogeological Map of Europe (Duscher et al. 2015), together with 225 

soil pH maps (see below), for which we anticipated a certain correlation with bedrock chemistry. 226 

Apart from aquifer chemistry, residence time may also affect groundwater chemistry by 227 

impacting dissolution rates. Precipitation amount and frequency affect not only flow paths 228 

activity and redistribution of groundwater, but also its residence time in the aquifer, impacting 229 

carbonate dissolution and precipitation rates (Hem 1985, Crossman et al. 2011, Lewandowski et 230 

al. 2015, Vystavna et al. 2020). Groundwater with a short transit time (1–3 years) or ‘young 231 

water’ (Soulsby et al. 2015) can be particularly sensitive to changes in precipitation amount and 232 



14 
 

frequency. We therefore also considered climatic parameters associated with precipitation in the 233 

models (see below). Although there are some other potential predictors of minor importance that 234 

may affect groundwater chemistry (Hem 1985, Stevens et al. 2020), no corresponding thematic 235 

map is available to be included into our models. For some sites, the selected predictors were 236 

missing in the maps (e.g., sites at far north in the arctic zone, or close to sea or water bodies) and 237 

these sites were therefore not included in the final models. We finally collected topographic data 238 

to test the potential effect of elevation and slope as indirect factors potentially influencing 239 

groundwater chemistry. 240 

 241 

Numerical analyses 242 

Numerical analyses were done in R version 3.6.3 (R Core Team, 2020), with the support of 243 

ArcGIS 10.2 (ESRI, Redlands, CA) for geoprocessing and map production. We first conducted 244 

exploratory analyses to test the prediction ability of GIS layers related to soil bedrock, climate, 245 

and topography on the variation of both Ca and pH.  We focused on layers with a complete 246 

coverage of Europe, with an eastern border from the Black Sea in Turkey to the White Sea in 247 

Russian Federation, thus including the regions with a relatively good cover of field 248 

measurements (Figure 2). We performed Linear Models for individual variables to select those 249 

providing significant relationships and > 1% of explained variance. A variable for soil pH 250 

(measured in water solution) at 15 cm depth for a 250 m grid resolution provided by the soilgrids 251 

project (www.soilgrids.org) had the highest explanatory power for GW-pH (R2 = 0.22) and GW-252 

Ca (R2 = 0.16). The same results were obtained when using the same variable for 5 or 10 cm 253 

depth. We also tested soil estimates from Ballabio et al. (2019), but they provided weaker 254 

relationships for both GW-pH (R2 = 0.14 using soil pH as a predictor) and GW-Ca (R2 = 0.01 255 

http://www.soilgrids.org/
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using soil pH, R2 = 0.01 using soil CaCO3).  To account for lithology, we used the lithological 256 

groups (litho3 level) included in the polygon layer of the Hydrogeological map of Europe 257 

(Duscher et al. 2015) as a categorical variable. We also selected annual precipitation (Bio12) as 258 

provided in CHELSA (Karger et al. 2017) to account for precipitation gradients which are 259 

expected to influence groundwater regimes. Other CHELSA variables related to precipitation 260 

were highly correlated with annual precipitation (Pearson r > 0.75) and omitted. Slope and 261 

elevation showed negligible effects on both  GW-pH and GW-Ca ((linear regression, adjR2 < 262 

0.05, P < 0.001). Since preliminary models showed no differences with these variables were 263 

included, they were discharged. 264 

The variables of lithology and soil pH were aggregated to the same grid extent of CHELSA at 1 265 

km resolution, as the most appropriate scale to balance the original scales of both layers. This 266 

grid extent is also the most suitable spatial scale to be used in the context of further ecological 267 

modeling, which is in many cases combined with climatic data from e.g.  CHELSA or 268 

WorldClim (www.worldclim.org) for making temporal climatic projections. The lithological 269 

map (originally at 1:1,500,000 scale, which corresponds to a raster resolution of c. 1 km) was 270 

converted to a grid resolution using the dominant unit. Soil pH was converted from the original 271 

250 m to 1 km grid resolution using a bilinear interpolation to create a smooth surface based on 272 

the weighted average of the four nearest cells. 273 

 274 

Figure 2. Spatial distribution of the three groups of calibration data collected for modelling 275 

groundwater pH and Ca2+ in European fens (original and literature data from springs and fens; 276 

data from streams from FOREGS Geochemical Atlas of Europe; other data). Other data include 277 

http://www.worldclim.org/
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public data from national groundwater monitoring of Bulgaria and Slovenia. For separate maps 278 

of pH and Ca2+ see Supplementary Figure 5. 279 

  280 

 281 

 282 

Because even the combination of the selected variables might not lead to precise fine-scale 283 

indication of aquifer chemistry, we further employed a kriging approach to data analysis, 284 

assuming an effect of spatial correlation to estimate the values close to the original samples. The 285 

final spatial predictions were therefore based on regression kriging (RK), a technique that 286 
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combines a regression model based on explanatory variables with the interpolation of model 287 

residuals with ordinary kriging (Hengl et al. 2007; Meng et al. 2013). RK is especially 288 

appropriate for modeling soil attributes at medium and large scales, combining the spatial 289 

autocorrelation of soil variables with the explanatory power of auxiliary variables (Keskin and 290 

Grunwald 2018). We implemented RK with the GSIF R package (Hengl 2020). As the regression 291 

component, we computed Random Forests since a preliminary analysis with our data showed 292 

better performance than linear models, generalised linear models, or generalised additive models. 293 

Random Forests are ensemble learning methods based on decision trees and an internal 294 

correction of overfitting, which provide high interpretability and good performance when 295 

compared with other algorithms used in soil spatial modeling (Wiesmeier et al. 2011). Another 296 

advantage of Random Forests is that they have no requirements for considering the probability 297 

distribution of soil variables, fitting complex non-linear relationships for spatial extrapolation 298 

(Hengl et al. 2015) that ultimately improve the spatial predictions. We fitted the Random Forests 299 

model and the residual variogram for groundwater pH and Ca2+ separately using the function 300 

fit.gstatModel() in GSIF package. Effect plots for the predictors were created for the same 301 

models using partial() function in pdp package (Greenwell 2017). Spatial predictions were then 302 

computed with the predict() function using the model object generated previously and a 5-fold 303 

cross-validation. Model evaluation was based on the calculation of the Mean Error (ME) and the 304 

Root Mean Squared Error (RMSE) as the differences between predicted and observed values 305 

(Keskin and Grunwald 2018; Pham et al. 2019). We compared the relationships between the 306 

models produced for both groundwater pH and Ca2+ by using a random sampling of 5,000 points 307 

to extract cell values and computing a Pearson correlation. To assess regional differences, we 308 
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correlated values grouped in 25 neighboring cells of each single cell using the rasterCorrelation() 309 

function in the spatialEco R package (Evans 2020). 310 

 311 

3. Results 312 

In measured data, ranges and medians of pH and Ca2+ concentration were similar across 313 

Europe (Supplementary Figure 4), with the lowest pH values found in the Atlantic and Iberian 314 

regions; and the highest pH values found in southern Europe except Iberian Peninsula. The 315 

lowest Ca2+ values were found in boreal Europe, while the highest in Central and Southern 316 

Europe. The Random Forest models computed with the lithology, soil pH, and precipitation 317 

explained 40% and 55% of the variance for GW-pH and GW-Ca, respectively. Lithology was the 318 

variable with the highest importance in both models (Figure 3), although its effect was higher in 319 

the model computed for Ca2+ than for pH. These effects were mainly associated with the 320 

lithological units reflecting calcareous bedrocks, followed by categories with coarse and fine 321 

sediments such as flysch (Figure 4). Soil pH had higher relative importance in GW-pH than GW-322 

Ca, although in both cases the variable had a similar positive effect. Finally, annual precipitation 323 

had the lowest contributions in the two models (Figure 3), with  both Ca2+ and pH dropping 324 

suddenly after the threshold of annual precipitation of ca 1800 mm (Figure 4), although the 325 

highest pH values occur under the lowest precipitation and tend to decrease towards high-326 

precipitation areas. 327 

 328 

Figure 3. Variable importance of Random Forest models computed for groundwater pH and 329 

Ca2+. MSE = Mean Standard Error. 330 
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 331 

Figure 4. Partial dependence plots showing the effects of the variables used in the Random 332 

Forest models computed for model groundwater pH and Ca2+ in Europe.333 

 334 
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When adding the kriging component, model predictions reached 65% and 74% of explained 335 

variance for GW-pH and GW-Ca, respectively. The mean values of standard errors (SE; 0.00058 336 

for pH; -0.0009 for Ca) and Root Mean Squared Errors (RMSE; 0.588 for pH; 0.690 for Ca) 337 

were higher in the models for pH, but in both cases showed low values that suggest accurate 338 

predictions, in agreement with their total explained variance. 339 

Model predictions for GW-pH reflected the lowest values in Scandinavia, Iceland, northern UK, 340 

and some regions of Central and Eastern Europe (Figure 5). The highest values were predicted in 341 

eastern Iberia and many regions of Central and Eastern Europe, although a big part of the study 342 

area was dominated by neutral pH values (6 to 7). The spatial patterns for GW-Ca (Figure 5) 343 

were rather similar to pH. The overall correlation between the two models was 0.83 (Pearson r, P 344 

< 0.001), but they showed differences in some regions. This was supported by the spatial 345 

correlation computed for each cell (Figure 6), reflecting different magnitudes of correlation 346 

across the study area, especially in the eastern Iberian Peninsula and Southeastern Europe. 347 

 348 

Figure 5.  Model predictions based on Regression Kriging. Note the Ca2+ concentration is on ln-349 

scale.  350 

 351 
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Figure 6. Spatial correlation between the models computed for groundwater pH and Ca2+. Values 354 

show Pearson correlation coefficient computed over every single cell by using a sampling of 25 355 

neighboring cells. 356 

 357 

 Discussion 358 

3.1. Spatial patterns in groundwater pH and Ca2+ concentration in Europe 359 

 As expected, the values of water pH and Ca2+ concentration are largely shaped by 360 

lithology in groundwater-dependent habitats across Europe. Indeed, it has been recognised by 361 
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regional studies that the distribution of major spring and fen habitats, of which the species 362 

composition largely depends on pH and Ca2+, is well determined by bedrock type (Hájek et al. 363 

2002, Tahvanainen 2004, Hinterlang 2017, Peterka et al. 2017, Cantonati et al. 2020c). Since the 364 

European-scale geological map we used here is not precise enough to capture differences in 365 

bedrock chemistry within the major lithological units that are defined largely by geological 366 

stratification, the contribution of soil pH in the model probably also reflected lithological 367 

variation, as soil pH generally correlates with regional bedrock chemistry (Chadwick and 368 

Chorover 2001). On the other hand, soil pH is also affected by climate-dependent pedogenesis, 369 

which incorporates a climate-zonal geographical component in this effect (Duchaufour 2012, 370 

Maxbauer et al. 2017).  371 

Precipitation is another determinant of groundwater chemistry in our study. High annual 372 

precipitation above ca 1800 mm obviously reduced an interaction time of groundwater with Ca2+ 373 

and carbonates deposited in rocks (Fairchild et al. 1994, Segadelli et al. 2017, Cantonati et al. 374 

2020b), resulting in lower Ca2+ concentration in groundwater. This effect is more pronounced in 375 

snowy regions, where seasonal snowmelt modulates the recharge patterns of groundwater. The 376 

duration of the snowmelt period can impact the occurrence and dynamic of preferential flow, and 377 

prolong or reduce the interaction of the seepage with soil and bedrock materials (Mohammed et 378 

al. 2019). We therefore suggest that fast hydrological pathways and short transit time driven by 379 

snowmelt and precipitation can explain the lowest Ca2+  in hyper-oceanic cold regions of SW 380 

Norway or W Scotland. It may further explain lower pH and Ca2+ values on windward slopes of 381 

high mountains, even if bedrock is moderately calcium-rich. Nevertheless, understanding the 382 

complementary effects of precipitation and slope will need to account for more accurate models 383 
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based on GPS data, better precipitation data, and  high-resolution (<250 m) topographic 384 

predictors. 385 

The resulting pattern at the European scale is governed by the strong latitudinal and 386 

altitudinal gradients, i.e. decreasing pH and Ca2+ northwards, and regionally also towards 387 

mountain regions. This pattern largely follows bedrock chemistry, with crystalline rocks 388 

prevailing, and most carbonate rocks being eroded by glaciers, in high latitudes and altitudes. 389 

The excess of precipitation over evaporation, and theoretically also slower weathering rates in 390 

colder regions (White ＆ Blum 1995), contribute as well.  Although this pattern is well known 391 

(Økland et al. 2001, Hájek et al. 2006, Hinterlang 2017, Peterka et al. 2017) and has been 392 

captured also by the FOREGS Geochemical Atlas of Europe (Salminen et al. 2006), our 393 

improved model provides much finer regional patterns. In Southern Europe, low pH and Ca2+ 394 

values were modelled in the Pyrenees, the Balkans, SW Corse, and Calabria, i.e. the regions 395 

where boreal or endemic types of fen communities occur as relicts (Chytrý et al. 2020). The 396 

Alps, the Apennines, the Carpathians, and the Baltic region show a fine-scaled mosaic of 397 

alkaline (calcium-rich) and acidic (calcium-poor) groundwater that contributes to the high 398 

diversity and conservation value of groundwater-dependent ecosystems, such as fens (Cantonati 399 

et al. 2009, 2011, Gerdol et al. 2011, Joosten et al. 2017, Horsáková et al. 2018). The most 400 

apparent “acidic island” in Central Europe is located in the SW part of the Bohemian Massif 401 

(Czech Republic, Germany), where acidic types of springs and fens are quite frequent and some 402 

studies further document anthropogenic acidification on siliceous bedrock in 1970–80s, being re-403 

emerged recently because of extreme climatic events (Kapfer et al. 2012, Schweiger et al. 2015). 404 

It is, however, possible that particularly this acidic island is picked out mainly because of the 405 

high amount of available data. 406 
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Clearly, most of Fennoscandia is markedly acidic and calcium-poor mainly due to glacial 407 

history. Yet, the model identified small alkaline and calcium-enriched islands in NE and Central 408 

Sweden, and NW Norway, which are associated with rare types of calcareous fen and spring 409 

communities (Dierssen 1982, Vorren et al. 1999, Udd et al. 2015, Miller et al. 2020). More 410 

localised pockets of calcareous habitats are however known from most parts of Fennoscandia 411 

that are not recognised with the grain of our European-wide analysis. With our results, the future 412 

modelling of diversity and distribution of individual habitat types of groundwater-dependent 413 

wetlands will be more reliable. Regionally rare habitat conditions will be recognised better, and 414 

the disentangling of climate and pH effects will be more feasible. 415 

 416 

3.2. Data gaps and further improvements 417 

 Although being based on the hitherto most comprehensive field data set currently 418 

available, the presented map cannot be considered definitive. Surely there are many pH and EC 419 

or Ca2+ measurements conducted across Europe that we could not include into the data set 420 

because they are hardly accessible. Except for Russian Federation and Moldova, largest gaps still 421 

occur in the southern parts of the Pannonian plain (southeastern Hungary, northern Serbia, and 422 

western Romania), in SE Belarus, and eastern Ukraine. We have available some data from the 423 

latter region (Vystavna et al. 2015; Supplementary Table 2), but a large gap in the rest of the data 424 

set prevented reliable geospatial modelling. These data might be used in future updates of the 425 

map once the gap in Central Ukraine is filled. The lack of data in the Pannonian plain has led to 426 

poor correlation between predicted pH and Ca2+ values (Fig. 4). Such a poor correlation and 427 

sometimes low density of data apply also for some other lowland regions, such as the Danube 428 

plain in S Romania, Po valley in Italy and valleys around the Duero, Ebro, and Tagus rivers in 429 
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Spain. Apart from eutrophication, this pattern may be caused by the imbalanced distribution of 430 

groundwater-dependent habitat types in our data set. Unlike mountain regions, the data for these 431 

lowlands were largely taken from the FOREGS Geochemical Atlas of Europe (Salminen et al. 432 

2006) and national groundwater databases, i.e. largely from stream water. Considering the major 433 

purpose of our map (creating new data sources for  ecological modelling of fens and springs) 434 

these regions are less crucial for biodiversity modeling because they have largely been 435 

transformed to arable land or they are too dry. On the other hand, caution is needed when 436 

interpreting the maps in an ecological sense. The extremely high pH (˃ 8) and Ca2+ (ln [Ca2+] ˃ 4; 437 

i.e., Ca2+ ˃ 55 mg.l-1) values that occur in lowlands visually govern the map, but for ecological 438 

differentiation of groundwater-dependent habitats in Europe the differences within the middle 439 

part of the gradient, i.e. between pH 5.5 and 7.0, are much more important (Malmer 1986, 440 

Wheeler ＆ Proctor 2000, Hájek et al. 2006, Rydin and Jeglum 2013).  441 

Our data set is expected to be amended in the future, as more studies will be published and more 442 

data will be available, so further versions will be accessible in the open repository. New data will 443 

help to improve predictions for those regions with relatively lower sampling effort, and also 444 

those with lithologically heterogeneous landscapes. Future updates of the model may also focus 445 

at finer spatial resolution (e.g., 100 to 250 m) but this will require to increase the spatial accuracy 446 

of the calibration data and the predictor variables, as in some Central-European areas (Le et al. 447 

2019, Chuman et al. 2019). Although we tested several variables with potential predictive effect 448 

on groundwater pH and Ca, many of them had lower explanatory power (e.g. Ballabio et al. 449 

2019) or they were redundant with the soil pH layer we used (i.e. previous versions of soil.grids 450 

using the same data sources). The low predictive value of other predictors with potential 451 

predictive value, like slope, elevation or other precipitation variables, is probably related to their 452 
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broad spatial scale, with values averaged at 1 km grid resolution having little impact to 453 

discriminate groundwater variation at the landscape level (Jiménez-Alfaro et al. 2018b). This 454 

contrasts with the predictive value of the lithological layer, which is however based on a similar 455 

spatial (but originally vectorial) resolution. However, lithological bedrock is generally more 456 

homogeneous at the landscape scale, with the only exception of certain geological complex 457 

regions. These findings suggest that future improvements of our models will depend on the 458 

quality of new lithological (or related soil chemistry) variables with direct effect on groundwater 459 

pH and Ca. We also note that the lithological map we used here is simplified to large units, while 460 

many regional and national geological maps are being produced at finer details. The combination 461 

of such new predictors with accurate calibration data at the continental level and at fine scale 462 

resolution seems the most likely opportunity to produce significantly better models, since the 463 

influence of spatial-dependent (kriging) effects is rather limited by the distribution of sample 464 

points. 465 

 466 

Conclusions 467 

Here, we provide the first European map of groundwater pH and Ca2+ content. We collected as 468 

even as possible distributed field measurements of water pH and Ca2+ or EC from European 469 

groundwater-dependent habitats, with relatively higher sampling effort in regions rich in 470 

endangered groundwater-dependent ecosystems (springs, fens). Despite the general high 471 

accuracy of our models, we note that prediction uncertainties may affect the reliability of models 472 

computed with both Random Forests and kriging (Hengl et al. 2018; Szatmári & Pásztor 2019). 473 

Another source of prediction uncertainty is related to the quality of the original chemical 474 

measurements and the georeferentiation of their geographic position. Moreover, the predictor 475 
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variables rely on spatial models (soil pH, precipitation) or broad geographic maps (lithology) 476 

which are based on their own uncertainties and assumptions. Future Improvements of 477 

groundwater pH and Ca estimates should therefore consider a more accurate set of response 478 

variables and fine-scale predictors, preferably including lithology and soil pH (i.e., variables 479 

surrogating bedrock chemistry) and precipitation sum (i.e., residence time of groundwater). 480 

Despite potential uncertainties and data gaps, this study uses an unprecedented combination of 481 

data to provide freely accessible and realistic maps that can be used in any kind of spatial 482 

modelling, showing better resolution and fewer gaps than previously published maps. The 483 

character of our input data, which are also freely accessible, predetermines our map for being 484 

used in ecological modelling to address the distribution and diversity of groundwater-dependent 485 

ecosystems and associated species. We even believe that our maps could be also suitable for 486 

ecological modelling of other than groundwater-dependent habitats. It may mirror the bedrock 487 

chemistry better than the map of soil pH, because soil pH is a resultant of pedogenetic processes, 488 

which are tightly associated with the character of the vegetation cover itself (Miles 1985, 489 

Duchaufour 2012), We conclude that our European maps of near-surface groundwater pH and 490 

EC provides the best solution currently available for modelling the biodiversity of groundwater-491 

dependent ecosystems, especially at the continental or supra-regional scale.  492 
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