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Abstract: Probabilistic methods are very useful to estimate the spatial variability in meteorological conditions (e.g., 12 

spatial patterns of precipitation and temperature across large domains). In ensemble probabilistic methods, “equally 13 

plausible” ensemble members are used to approximate the probability distribution, hence uncertainty, of a spatially 14 

distributed meteorological variable conditioned on the available information. The ensemble can be used to evaluate 15 

the impact of the uncertainties in a myriad of applications. This study develops the Ensemble Meteorological Dataset 16 

for North America (EMDNA). EMDNA has 100 members with daily precipitation amount, mean daily temperature, 17 

and daily temperature range at 0.1° spatial resolution from 1979 to 2018, derived from a fusion of station observations 18 

and reanalysis model outputs. The station data used in EMDNA are from a serially complete dataset for North America 19 

(SCDNA) that fills gaps in precipitation and temperature measurements using multiple strategies. Outputs from three 20 

reanalysis products are regridded, corrected, and merged using the Bayesian Model Averaging. Optimal Interpolation 21 

(OI) is used to merge station- and reanalysis-based estimates. EMDNA estimates are generated based on OI estimates 22 

and spatiotemporally correlated random fields. Evaluation results show that (1) the merged reanalysis estimates 23 

outperform raw reanalysis estimates, particularly in high latitudes and mountainous regions; (2) the OI estimates are 24 

more accurate than the reanalysis and station-based regression estimates, with the most notable improvement for 25 

precipitation occurring in sparsely gauged regions; and (3) EMDNA estimates exhibit good performance according to 26 

the diagrams and metrics used for probabilistic evaluation. We also discuss the limitations of the current framework 27 

and highlight that persistent efforts are needed to further develop probabilistic methods and ensemble datasets. Overall, 28 

EMDNA is expected to be useful for hydrological and meteorological applications in North America. The whole 29 

dataset and a teaser dataset (a small subset of EMDNA for easy download and preview) are available at 30 

https://doi.org/10.20383/101.0275 (Tang et al., 2020a).31 

https://doi.org/10.5194/essd-2020-303

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 17 December 2020
c© Author(s) 2020. CC BY 4.0 License.



 2 

1. Introduction 32 

Precipitation and temperature data are fundamental inputs for a wide variety of geoscientific and operational 33 

applications benefitting society (Eischeid et al., 2000; Trenberth et al., 2003; Wu et al., 2014; Yin et al., 2018). 34 

Accurately estimating spatial meteorological fields is still challenging despite the availability of many measurement 35 

approaches (e.g., meteorological stations, weather radars, and satellite sensors) and atmospheric models (Kirstetter et 36 

al., 2015; Sun et al., 2018; Hu et al., 2019; Newman et al., 2019a). There is consequently substantial uncertainty in 37 

analyses of spatially distributed meteorological variables. 38 

The uncertainty in spatial meteorological estimates depends on both the measurements available and the climate of 39 

the region of study. Whilst meteorological stations provide the most reliable observations at the point scale, spatial 40 

meteorological estimates based on station data can be degraded by the sparsity of station networks in remote regions 41 

and by measurement errors caused by factors such as evaporation/wetting loss and under-catch of precipitation (Sevruk, 42 

1984; Goodison et al., 1998; Nešpor and Sevruk, 1999; Yang et al., 2005; Scaff et al., 2015; Kochendorfer et al., 2018). 43 

Interpolating station data to a regular grid can introduce additional uncertainties due to factors such as method choices 44 

and topographic variations. The accuracy of precipitation estimated from ground radars is affected by factors such as 45 

beam blockage, signal attenuation, ground clutter, and uncertainties in the reflectivity-rainfall relationships (Dinku et 46 

al., 2002; Kirstetter et al., 2015). Moreover, the spatial and temporal coverage of ground radars is limited to large 47 

populated areas in most regions of the world. Satellite sensors provide quasi-global estimates of meteorological 48 

variables, but their utility can be limited by short sampling periods with insufficient coverage and return frequency, 49 

indirect measurements, imperfect retrieval algorithms, and instrument limitations (Adler et al., 2017; Tang et al., 2016, 50 

2020b). Reanalysis models, which provide long-term global simulations, also contain biases and uncertainties caused 51 

by the imperfect model representations of physical processes, observational constraints, model resolution, and model 52 

parameterization (Donat et al., 2014; Parker, 2016). 53 

In recent years, numerous deterministic gridded precipitation and temperature datasets based on observed or simulated 54 

data from single or multiple sources have become available to the public (Maurer et al., 2002; Huffman et al., 2007; 55 

Mahfouf et al., 2007; Daly et al., 2008; Di Luzio et al., 2008; Haylock et al., 2008; Livneh et al., 2013; Weedon et al., 56 

2014; Fick and Hijmans, 2017; Beck et al., 2019; Ma et al., 2020; Harris et al., 2020). Since the uncertainties vary in 57 

space and time, deterministic products do not always agree with each other (Donat et al., 2014; Henn et al., 2018; Sun 58 

et al., 2018; Newman et al., 2019a; Tang et al., 2020b). The uncertainties can be propagated to applications such as 59 

hydrological modeling and climate analysis (Clark et al., 2006; Hong et al., 2006; Slater and Clark, 2006; Mears et 60 

al., 2011; Rodell et al., 2015; Aalto et al., 2016). Proper understanding of the uncertainties can benefit the objective 61 

application of meteorological analyses and further improve existing products, yet few gridded datasets provide such 62 

uncertainty estimates (Cornes et al., 2018; Frei and Isotta, 2019).  63 

Probabilistic datasets now can provide alternatives to deterministic datasets for quantitative precipitation and 64 

temperature estimation and have advantages in estimating uncertainties and representing extremes (Kirstetter et al., 65 
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 3 

2015; Mendoza et al., 2017; Frei and Isotta, 2019). Recently, several ensemble meteorological datasets have become 66 

available. For example, Morice et al. (2012) develop the observation-based HadCRUT4 global temperature datasets 67 

with 100 members. Caillouet et al. (2019) develop the Spatially COherent Probabilistic Extended Climate dataset 68 

(SCOPE Climate) with 25 members in France. Newman et al. (2015, 2019b, 2020) continually extend the probabilistic 69 

estimation methodology proposed by Clark and Slater (2006), and produce ensemble precipitation and temperature 70 

datasets in the contiguous USA (CONUS), the Hawaii Islands, and Alaska and Yukon, respectively. Moreover, several 71 

widely used deterministic datasets now have ensemble versions in view of the advantages of probabilistic estimates. 72 

Cornes et al. (2018) developed the ensemble version (100 members) of the Haylock et al. (2008) Europe-wide E-OBS 73 

temperature and precipitation datasets. Khedhaouiria et al. (2020) developed the experimental High-Resolution 74 

Ensemble Precipitation Analysis (HREPA) for Canada and the northern part of the CONUS with 24 members, which 75 

can be regarded as an experimental ensemble version of the Canadian Precipitation Analysis (CaPA; Mahfouf et al., 76 

2007; Fortin et al., 2015).  77 

Our objective is to develop an Ensemble Meteorological Dataset for North America (EMDNA) from 1979 to 2018. 78 

To improve the quality of estimates in sparsely gauged regions, station data and reanalysis outputs are merged to 79 

generate gridded precipitation and temperature estimates. Then, ensemble estimates are produced using the 80 

probabilistic method described by Clark and Slater (2006) and Newman et al. (2015, 2019b, 2020). EMDNA has 100 81 

members and contains daily precipitation amount, mean daily temperature (Tmean), and daily temperature range 82 

(Trange) at 0.1° spatial resolution. Minimum and maximum temperature can be calculated from Tmean and Trange. 83 

It is expected that the EMDNA will be useful for a variety of applications in North America.  84 

2. Datasets 85 

Station observations often have missing values and short record lengths (Kemp et al., 1983). This study uses station 86 

precipitation and minimum/maximum temperature data from the Serially Complete Dataset for North America (Tang 87 

et al., 2020c), which is open-access on Zenodo (https://doi.org/10.5281/zenodo.3735533; Access Date: July 25, 2020). 88 

Tmean and Trange are calculated from minimum and maximum temperature data. In SCDNA, raw measurements 89 

undergo strict quality control checks, and data gaps are filled by combining estimates from multiple strategies. 90 

SCDNA covers the period from 1979 to 2018 and has 24615 precipitation stations and 19579 temperature stations.  91 

Station-based gridded meteorological estimates usually rely on a certain number of neighboring stations surrounding 92 

the target location. For most regions in CONUS, the search radius to find 20 or 30 neighboring stations (lower and 93 

upper limits for station-based gridded estimates in Sect. 3.1) is smaller than 100 km (Fig. 1). For the regions northern 94 

to 50°N or southern to 20°N, however, the search radius is much larger and even exceeds 1000 km in the Arctic 95 

Archipelago. The sparse station network at higher latitudes motivates our decision to optimally combine station data 96 

with reanalysis products. 97 
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 4 

The reanalysis products used in this study include the fifth generation of European Centre for Medium-Range Weather 98 

Forecasts (ECMWF) atmospheric reanalyses of the global climate (ERA5; Hersbach et al., 2020), the Modern-Era 99 

Retrospective analysis for Research and Applications, Version 2 (MERRA-2; Gelaro et al., 2017), and the Japanese 100 

55-year Reanalysis (JRA-55; Kobayashi et al., 2015). The spatial resolutions of ERA5, MERRA-2, and JRA-55 are 101 

0.25°´0.25°, 0.5°´0.625°, and ~55 km, respectively. Their start years are 1979, 1980, and 1958, respectively. 102 

Therefore, only ERA5 and JRA-55 are used for 1979 throughout this study. Although reanalysis models assimilate 103 

observations from various sources, they differ with station measurements in many aspects (Parker, 2016) and often 104 

contain large uncertainties as shown by assessment and multi-source merging studies (e.g., Donat et al., 2014; Lader 105 

et al., 2016; Beck et al., 2017, 2019; Tang et al., 2020b). Thereby, the possible dependence between reanalysis 106 

estimates and station data is not considered when merging them in this study. 107 

The elevation data are sourced from the 3 arc-second resolution Multi-Error-Removed Improved-Terrain digital 108 

elevation model (MERIT DEM; Yamazaki et al., 2017).  109 

 110 

Figure 1. The color of each 0.1° grid indicates the radial radius to find (a) one, (b) 20, and (c) 30 neighboring stations 111 

for precipitation (a-c) and temperature (d-f). 112 
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3. Methodology 113 

The estimate of a variable at a specific location and time step can be regarded as a random value following a probability 114 

distribution. The probability density functions (PDFs) of variables such as the Tmean and Trange, can be approximated 115 

using the normal distribution. Their value 𝑥 for the target location and time step is expressed as: 116 

𝑥	~	𝑁(𝜇, 𝜎!) (1)  

where 𝜇 is the mean value and 𝜎 is the standard deviation. The probabilistic estimation of Tmean and Trange can be 117 

realized by sampling from this distribution. In a spatial meteorological dataset, the distribution parameters vary with 118 

space and time, and the variability is related to the nature of variables and gridding (interpolation) methods. The 119 

performance of gridding methods is critical because accurate estimation of 𝜇 can reduce systematic bias and smaller 120 

𝜎 means narrower spread. 121 

Precipitation is different from Tmean and Trange because it can be intermittent from local to synoptic scales and its 122 

distribution is both highly skewed and bounded at zero. Following Papalexiou (2018) and Newman et al. (2019b), the 123 

cumulative density function (CDF) of precipitation can be expressed as below: 124 

 125 

𝐹"(𝑥) = (1 − 𝑝#)𝐹"|"%#(𝑥) + 𝑝#,			𝑓𝑜𝑟		𝑥 ≥ 0 (2)  

where 𝐹"(𝑥) is the CDF for 𝑥 ≥ 0, 𝐹"|"%#(𝑥) is the CDF for	𝑥 > 0, and 𝑝# is the probability of zero precipitation. 126 

The probability of precipitation (PoP) is 1 − 𝑝# . The CDF 𝐹"|"%#(𝑥)  is often approximated using the normal 127 

distribution after applying suitable transformation functions to observed precipitation. Clark and Slater (2006) perform 128 

the normal quantile transformation using an empirical CDF from station observations. Newman et al. (2015) apply a 129 

power-law transformation. Newman et al. (2019b) adopts the Box-Cox transformation, that is, 130 

𝑥& =
𝑥' − 1
𝜆  (3)  

where 𝜆 is set to 1/3 following Newman et al. (2019b) and Fortin et al. (2015). Eq. (1) applies to 𝑥&, enabling the 131 

probabilistic estimation of precipitation. Unlike Newman et al. (2019b) that uses transformed precipitation throughout 132 

the production, this study only uses Box-Cox transformation when the assumption of normality is necessary (Sect. 133 

3.2.4 and 3.3) to reduce the error introduced by the back transformation. The limitations and alternative choices of 134 

precipitation transformation are discussed in Sect. 5.2. 135 

In summary, seven space- and time-varying parameters (𝜇 and 𝜎 for three variables and PoP) should be obtained to 136 

realize probabilistic estimation. Our method to develop probabilistic meteorological estimates is summarized in Fig. 137 

2a. We apply four main steps to produce EMDNA: (1) station-based regression estimates (Sect. 3.1), (2) the regridding, 138 
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 6 

downscaling, bias correction and merging of three reanalysis products (Sect. 3.2), (3) optimal interpolation-based 139 

merging of reanalysis and station-based regression outputs, and the bias correction of the resulting precipitation 140 

estimates (Sect. 3.3), and (4) the production of probabilistic estimates in the form of spatial meteorological ensembles 141 

(Sect. 3.4). 142 

 143 

Figure 2. (a) The flowchart outlining the main steps for producing EMDNA. P represents precipitation and T represents 144 

temperature. (b-e) demonstrate output examples from (a-1 to -4), respectively. (b) Latitudinal distribution of the root 145 

mean square error (RMSE) for temperature and normalized RMSE (NRMSE) for precipitation (Sect. 3.1). (c) Example 146 

showing the mean temperature of MERRA-2 before and after regridding (Sect. 3.2). (d) The correction ratios 147 
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 7 

calculated using precipitation climatology from the bias-corrected CHELSA (Sect. 3.3). (e) Example of the ensemble-148 

based distributions of precipitation and temperature estimates from EMDNA (Sect. 3.4). 149 

3.1 Regression estimates from station data 150 

Clark and Slater (2006) and Newman et al. (2015, 2019b) use locally weighted linear regression and logistic regression 151 

to obtain gridded precipitation and temperature estimates which are used as parameters in Eq. (1). However, for high-152 

latitude regions in North America where stations are scarce (Fig.1), such gridded estimates based only on station data 153 

could contain large uncertainties (Fig. 2b) due to the long distances needed to assemble a sufficient sample of stations 154 

to form the regressions. This study uses optimal interpolation (OI) to merge data from stations and reanalysis models. 155 

In this section, we only obtain regression estimates and their errors at the locations of stations, which are used as inputs 156 

to OI in Sect. 3.3. 157 

3.1.1 Locally weighted linear regression 158 

Daily precipitation amount, Tmean and Trange are estimated for all stations based on the locally weighted linear 159 

regression. Let 𝑥( be the station observation for variable X (precipitation, Tmean, and Trange), the regression estimate 160 

𝑥7 for the target point and time step is obtained as below: 161 

𝑥( = 𝑥7 + 𝜀 = 𝛽# +: 𝐴)𝛽)
*

)+,
+ 𝜀 (4)  

where 𝐴)  is the ith time-invariant attribute (or predictor variables), 𝛽# and 𝛽)  are regression coefficients estimated 162 

using ordinary least squares, and 𝜀 is the residual (or error term). The attributes are latitude, longitude, and elevation 163 

for Tmean and Trange. For precipitation, two more attributes (west-east and south-north slopes) are used to account 164 

for windward and leeward slope precipitation differences. An isotropic Gaussian low-pass filter is used to smooth 165 

DEM before calculating slopes, which can reduce the influence of noise in a high-resolution DEM on the large-scale 166 

topographic effect of precipitation (Newman et al., 2015). Ideally the scale of this smoothing reflects the scale at 167 

which terrain most directly influences precipitation or temperature spatial patterns; in this case the filter bandwidth is 168 

180 km.   169 

For a target station point, 𝑥7 is obtained based on data from neighboring stations. Newman et al. (2015, 2019b) used 170 

30 neighboring stations, without controlling for maximum station distance. The very low station density in high-171 

latitude regions makes this configuration infeasible, hence this study adopts a relatively flexible criterion for selecting 172 

neighboring stations: (1) finding at most 30 stations within a fixed search radius (400 km), and (2) if fewer than 20 173 

stations are found, extending the search radius until 20 stations are found. The least number is set to 20 to ensure that 174 

linear/logistic regression is robust. To incorporate local dependence, a tricube weighting function is used to calculate 175 

the weight 𝑤),. between the target station i and the neighboring station j. 176 
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 8 

𝑤),. = [1 − (
𝑑),.
𝑑/01

)2]2 
(5)  

where 𝑑),. is the distance between i and j, and 𝑑/01 depends on the maximum distance (𝑑),./01) between i and all its 177 

neighboring stations. If 𝑑),./01 is smaller than 100 km, 𝑑/01 is set to 100 km; otherwise, 𝑑/01 is set to 𝑑),./01 + 1 km 178 

(Newman et al., 2015, 2019b). Regression coefficients are estimated by weighted least squares method (described in 179 

in Appendix A). 180 

We found that a small number of observations stations show a climatology that is notably statistically different from 181 

surrounding stations, which could cause an adverse effect on gridded estimates, particularly in sparsely gauged regions. 182 

Strategies are designed to identify and exclude such stations (Appendix B).  183 

3.1.2 Locally weighted logistic regression 184 

PoP is estimated using the locally weighted logistic regression by fitting binary precipitation occurrence to spatial 185 

attributes: 186 

PoP =
1

1 + exp(−𝛽# + ∑ 𝐴)𝛽)*
)+, ) (6)  

The attributes (𝐴)) are the same as those used by precipitation regression. Regression coefficients are estimated in 187 

Appendix A.  188 

The errors of precipitation, temperature, and PoP estimates for all stations are calculated as the difference between 189 

regression estimates and station observations using the leave-one-out cross-validation procedure. 190 

3.2 Regridding, correction, and merging of reanalysis datasets 191 

The three reanalysis datasets (ERA5, MERRA-2, and JRA-55) have different spatial resolutions and contain 192 

systematic biases. In this section, we discuss steps taken to (1) regrid all reanalysis datasets to the resolution of 193 

EMDNA (0.1°), (2) perform a correction to remove the systematic bias in original estimates, and (3) merge the three 194 

reanalysis datasets to produce a background field that improves over any individual reanalysis dataset, in support of 195 

the reanalysis-station merging described in Sect. 3.3.  196 

3.2.1 Regridding of reanalysis datasets 197 

Precipitation, Tmean, and Trange are regridded to 0.1° using locally weighted regression (Fig. 2c). Latitude, longitude, 198 

and elevation are used as predictor variables for simplicity. Precipitation or temperature lapse rates are implicitly 199 

considered by involving elevation in the regression. Raw reanalysis data from a 5 × 5 space window (i.e., 25 coarse-200 

resolution grids) centered by the 0.1° target grid are used to perform the regression. Each grid is represented using its 201 

center point. This regridding method has been proven effective in previous studies (Xu et al., 2015; Duan and Li, 2016; 202 

Lu et al., 2020). Reanalysis estimates are also regressed to the locations of all stations to facilitate evaluation and 203 
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 9 

weight estimation in the following steps, which can avoid the scale mismatch caused by using point-scale observations 204 

to evaluate 0.1° gridded estimates (Tang et al., 2018a). 205 

We also tested other regridding methods such as the nearest neighbor, bilinear interpolation, and temperature lapse 206 

rate-based downscaling (Tang et al., 2018b). Results (not shown) indicated that their performance is generally inferior 207 

to the locally weighted regression with respect to several accuracy metrics. 208 

3.2.2 Probability of precipitation estimation 209 

Reanalysis precipitation can exhibit large biases in the number of wet days because the models often generate many 210 

light precipitation events. To overcome this limitation, we designed two methods for determining the occurrence of 211 

reanalysis precipitation. The first is to use positive thresholds to determine precipitation occurrence. The threshold 212 

was estimated in two ways, namely by forcing reanalysis precipitation (1) to have the same number of wet days with 213 

station data, or (2) to achieve the highest critical success index (CSI). Gridded thresholds can be obtained through 214 

interpolation and used to discriminate between precipitation events or non-events. However, this method can only 215 

obtain binary occurrence instead of continuous PoP between zero and one. The second method is based on univariate 216 

logistic regression. The amount of reanalysis precipitation is used as the predictor and the binary occurrence from 217 

station data is used as the predictand. The logistic regression is implemented for each reanalysis product in the same 218 

way as Sect. 3.1.2. The comparison between the threshold-based method and the logistic regression-based method 219 

shows the latter achieves higher accuracy. Therefore, we adopt the univariate logistic regression to estimate PoP for 220 

each reanalysis product in this study. The possible bias caused by station measurements is not considered. 221 

3.2.3 Bias correction of reanalysis datasets 222 

Considering reanalysis products usually contain systematic bias (Mooney et al., 2011; Beck et al., 2017; Tang et al., 223 

2018b, 2020b), the linear scaling method (also known as multiplicative/additive correction factor; Teutschbein and 224 

Seibert, 2012) is used to correct reanalysis precipitation, Tmean, and Trange estimates. Reanalysis PoP is not corrected 225 

because station information has been incorporated in the logistic regression. Let 𝑥3 be the reanalysis estimate for 226 

variable X, the corrected estimate for a target grid/point i is calculated as: 227 

𝑥3,)∗ =

⎩
⎪⎪
⎨

⎪⎪
⎧𝑥3,) +

∑ 𝑤),.L𝑥̅(,. − 𝑥̅3,.N/
.+,

∑ 𝑤),./
.+,

																			additive	correction
	
	

𝑥3,)
∑ 𝑤),.

𝑥̅(,.
𝑥̅3,.

/
.+,

∑ 𝑤),./
.+,

																									multiplicative	correction	

 (7)  

where 𝑥3,)∗  is the corrected reanalysis estimate, 𝑤),. is the distance-based weight (Eq. (5)), and 𝑥̅(,. and 𝑥̅3,. are the 228 

climatological mean for each month (e.g., all January from 1979 to 2018) from station observations and reanalysis 229 

estimates for the jth neighboring station, respectively. The additive correction is used for Tmean and Trange, and the 230 

multiplicative correction is used for precipitation. The number of neighboring stations (m) is set to 10, which is smaller 231 
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 10 

than that used for linear or logistic regression (Sect. 3.1) but should be enough for bias correction. The upper bound 232 

of 
1̅!,#
1̅$,#

 is set to 10 to avoid over-correction in some cases (Hempel et al., 2013). 233 

Linear scaling can also be performed at monthly (Arias-Hidalgo et al., 2013; Herrnegger et al., 2018; Willkofer et al., 234 

2018) or daily (Vila et al., 2009; Habib et al., 2014) scales by replacing 𝑥̅(,. and 𝑥̅3,. by monthly mean (e.g., January 235 

in one year) or daily values. We compared the performance of corrections at different scales and found that monthly- 236 

or daily-scale corrections acquire more accurate estimates than the climatological correction. The climatological 237 

correction was adopted because (1) it preserves the absolute/relative trends better than daily or monthly corrections, 238 

and (2) the OI merging (Sect. 3.3) adjusts daily variability of estimates, which compensates for the limitation of 239 

climatological correction and makes daily/monthly-scale correction unnecessary.  240 

Quantile mapping is another widely used correction method (Wood et al., 2004; Cannon et al., 2015). We compared 241 

quantile mapping and linear scaling and found that they are similar in statistical accuracy, while quantile mapping 242 

achieves better probability distributions with much smaller Hellinger distance (Hellinger, 1909) which is a metric used 243 

to quantify the similarity between estimated and observed probability distributions. Nevertheless, quantile mapping 244 

could result in spatial smoothing of precipitation and temperature, particularly in high-latitude regions where stations 245 

are few. For example, Ellesmere Island, the northernmost island of the Canadian Arctic Archipelago, usually shows 246 

lower temperature in inland regions due to orographic uplift. However, quantile mapping will erase this gradient 247 

because reanalysis grids for this island are corrected based on almost the same reference stations. To ensure the 248 

authenticity of spatial distributions, quantile mapping is not used in this study.  249 

3.2.4 Merging of reanalysis datasets 250 

The three reanalysis products are merged using the Bayesian Model Averaging (BMA, Hoeting et al., 1999), which 251 

has proved to be effective in fusing multi-source datasets (Chen et al., 2015; Ma et al., 2018a, 2018b). According to 252 

the law of total probability, the PDF of the BMA estimate can be written as: 253 

𝑝(𝐸) =: 𝑝(𝐸|𝑥3∗, 𝑥() ∙ 𝑝(𝑥3∗|𝑥()
2

3+,
 (8)  

where E is the ensemble estimate, 𝑥3∗  (r=1, 2, 3) is the bias-corrected estimate from three reanalysis products, 254 

𝑝(𝐸|𝑥3∗, 𝑥() is the predicted PDF based only on a specific reanalysis product, and 𝑝(𝑥3∗|𝑥() is the posterior probability 255 

of reanalysis products given the station observation 𝑥(. The posterior probability 𝑝(𝑥3∗|𝑥() can be identified as the 256 

fractional BMA weight 𝑤3  with ∑ 𝑤3	2
3+, = 1. BMA prediction can be written as the weighted sum of individual 257 

reanalysis products. 258 

For Tmean and Trange, 𝑝(𝐸|𝑥3∗, 𝑥() can be regarded as the normal distribution 𝑔(𝐸|𝜃3) defined by the parameter 259 

𝜃3 = {𝜇3 , 𝜎3!}, where 𝜇3 is the mean and 𝜎3! is the variance (Duan and Phillips, 2010). For precipitation, if we apply 260 
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 11 

Box-Cox transformation (Eq. (3)) to positive events (>0) and exclude zero events, its distribution is approximately 261 

normal, and 𝑝(𝐸|𝑥3∗, 𝑥() can be represented using 𝑔(𝐸|𝜃3). Therefore, Eq. (8) can be written as: 262 

𝑝(𝐸) =: 𝑤3 ∙ 𝑔(𝐸|𝜃3)
2

3+,
 (9)  

There are different approaches to infer 𝑤3  and 𝜃3  (Schepen and Wang, 2015). This study uses the log-likelihood 263 

function to estimate the parameters (Duan and Phillips, 2010; Chen et al., 2015; Ma et al., 2018b). The Expectation-264 

Maximization algorithm (Raftery et al., 2005) can be applied to estimate parameters by maximizing the likelihood 265 

function. BMA weights are obtained for all stations and each month. Gridded weights are obtained using the inverse 266 

distance weighting interpolation. 267 

Merging multiple datasets could affect the probability distributions and extreme characteristics of original datasets. 268 

This is not a major concern because the merged reanalysis data are further adjusted by station data in OI merging (Sect. 269 

3.3), a later step in the EMDNA process. Also, the probabilistic estimation of ensemble members (Sect. 3.4) has a 270 

large effect on estimates of extreme events. 271 

Gridded errors of BMA-merged estimates are necessary to enable optimal interpolation (Sect. 3.3). The error 272 

estimation is realized using a two-layer cross-validation (Appendix C). 273 

3.3 Optimal Interpolation-based merging of reanalysis and station data 274 

3.3.1 Optimal Interpolation 275 

OI has proven to be effective in merging multiple datasets (Sinclair and Pegram, 2005; Xie and Xiong, 2011) and has 276 

been applied in operational products such as CaPA (Mahfouf et al., 2007; Fortin et al., 2015) and the China Merged 277 

Precipitation Analysis (CMPA, Shen et al., 2014, 2018). Let 𝑥6 be the OI analysis estimate. The OI analysis estimate 278 

(𝑥6,)) for a target grid/point i and time step is obtained by adding an increment to the first guess of the background 279 

(𝑥7,)). The increment is a weighted sum of the difference between observation and background values at neighboring 280 

stations. 281 

𝑥6,) = 𝑥7,) +: 𝑤.(𝑥8,. − 𝑥7,.)
/

.+,
 (10)  

where 𝑥8,., 𝑥7,., and 𝑤. are the observed value (subscript O), background value (subscript B), and weight for the jth 282 

neighboring station. Let 𝑥9 be the true value, the errors of observed and background values are 𝜀8,. = 𝑥8,. − 𝑥9,. and 283 

𝜀7,. = 𝑥7,. − 𝑥9,. (or 𝜀7,) = 𝑥7,) − 𝑥9,)), respectively. Assuming that (1) the observation and background errors are 284 

unbiased with an expectation of zero and (2) there is no correlation between background and observation errors, the 285 

weights that minimize the variance of the analysis errors can be obtained by solving: 286 
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 12 

𝐰(𝐑 + 𝐁) = 𝐛 (11)  

where 𝐰 is the vector of 𝑤. 	(𝑗 = 1,2, … ,m), 𝐑 and 𝐁 are 𝑚×𝑚 covariance matrices of 𝜀8,.  and 𝜀7,. , respectively, 287 

and 𝐛  is the 𝑚× 1  vector of covariance between 𝜀7,)  and 𝜀7,. . The background provided by reanalysis models 288 

assimilates observations in the production and is corrected in a way using station data (described in Sect. 3.2.3), which 289 

may affect the soundness of the second assumption. The effect of this slight violation, however, is rather small 290 

according to our results and previous studies (Xie and Xiong, 2011; Shen et al., 2014b, 2018). 291 

Different approaches can be used to implement OI. For example, Fortin et al. (2015) use raw station observations as 292 

𝑥8, and assumes that the background error is a function of error variance and correlation length, and the observation 293 

error is a function of error variance. The variances and correlation length are obtained by fitting a theoretical variogram 294 

using station observations. Xie and Xiong (2011) and Shen et al. (2014) use station-based gridded estimates as 𝑥8, 295 

and assume that the background error variance is a function of precipitation intensity, the cross-correlation of 296 

background errors is a function of distance, and the observation error variance is a function of precipitation intensity 297 

and gauge density. The parameters of those functions are estimated based on station data in densely gauged regions.  298 

In this study, we adopt a novel design that calculates weights based on error estimation, a feature that is enabled by 299 

the probabilistic nature of the observational dataset. Regression estimates and their errors at station points (Sect. 3.1) 300 

are used as 𝑥8 and 𝜀8, respectively. BMA-merged reanalysis estimates and their errors (Sect. 3.2) are used as 𝑥7 and 301 

𝜀7 , respectively. We do not use gridded regression estimates because (1) 𝑥8,. − 𝑥7,.  will show weak variation if 302 

neighboring stations are replaced by neighboring grids, and (2) estimates of weights 𝐰 could be unrealistic because 303 

of the spatial smoothing of interpolated regression errors. The advantages of this design are (1) weights and inputs 304 

closely match each other and (2) weights in sparsely gauged regions are not determined by parameters fitted in densely 305 

gauged regions.  306 

The Box-Cox transformation is applied to precipitation estimates. Then, precipitation, PoP, Tmean, and Trange 307 

estimates provided by OI are used as 𝜇 and PoP required for generating meteorological ensembles. 308 

3.3.2 Error of OI-merged estimates 309 

Variance is a necessary parameter to enable ensemble estimation. The variance 𝜎! is represented using the mean 310 

squared error of OI estimates in this study. First, the error of OI analysis estimates (𝜀6 = 𝑥6 − 𝑥() is obtained for all 311 

stations using the leave-one-out strategy. Then, the 𝜎)! for the ith grid is obtained as a weighted sum of squared errors 312 

from neighboring stations: 313 

where 𝜀6,. is the difference between the station observation and OI estimate at the jth neighboring station, and 𝑤),. is 314 

the weight (Eq. (5)).  315 

𝜎)! =
∑ 𝑤),.(𝜀6,.)!/
.+,

∑ 𝑤),./
.+,

 (12)  
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 13 

3.3.3 Correction of precipitation under-catch 316 

Considering station precipitation data usually contain measurement errors such as wind-induced under-catch 317 

particularly in high-latitude and mountainous regions, OI-merged precipitation is further adjusted using the bias-318 

corrected precipitation climatology produced by Beck et al. (2020). This climatology infers the long-term precipitation 319 

using a Budyko curve and streamflow observations. Three corrected datasets are provided, including WorldClim, 320 

version 2 (WorldClim V2; Fick and Hijmans, 2017), the Climate Hazards Group Precipitation Climatology, version 1 321 

(CHPclim V1; Funk et al., 2015) and Climatologies at High Resolution for the Earth’s Land Surface Areas, version 322 

1.2 (CHELSA V1.2; Karger et al., 2017). The water balance-based method of Beck et al. (2020) considers all 323 

measurement errors (e.g., under-catch and wetting/evaporation loss) as a whole and under-catch is the major error 324 

source in many regions. 325 

Although the three datasets show similar precipitation distributions after bias correction, CHELSA V1.2 is used 326 

because its period (1979–2013) is most similar to our study period (1979–2018). The correction of OI-merged 327 

precipitation is performed in two steps: (1) the ratio between bias-corrected CHELSA V1.2 and OI-merged long-term 328 

monthly precipitation is calculated at the 0.1° resolution during 1979–2013, and (2) daily OI-merged precipitation 329 

estimates during 1979–2018 are scaled using the corresponding monthly ratio map. The bias correction notably 330 

increases precipitation in northern Canada and Alaska (Fig. 2d) where under-catch of precipitation is often large.  331 

3.4 Ensemble generation 332 

3.4.1 Spatiotemporally correlated random fields 333 

Spatially correlated random fields (SCRFs) are used to sample from the probability distributions of precipitation and 334 

temperature. The SCRFs are produced using the following three steps. First, the spatial correlation structure is 335 

generated based on an exponential correlation function: 336 

𝑐),. = exp	(−
𝑑),.
𝐶:;*

) (13)  

where 𝑑),.  is the distance between grids i and j, and 𝐶:;*  is the spatial correlation length determined for each 337 

climatological month based on regression using station data for precipitation, Tmean, and Trange, separately. The 338 

spatial correlation structure is generated using the conditional distribution approach. Every point is conditioned on 339 

previously generated points which are determined using a nested simulation strategy to improve the calculation 340 

efficiency (Clark and Slater, 2006). 341 

Second, the spatially correlated random field (𝐑<)	for the tth time step is generated by sampling from the normal 342 

distribution with the mean value and standard deviation depending on the random numbers of previously generated 343 

grids (Clark and Slater, 2006).  344 
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Third, the SCRF is generated by incorporating spatial and temporal correlation relationships. Let 𝜌9= and 𝜌9> be the 345 

lag-1 auto-correlation for Tmean and Trange, respectively, 𝜌?>  be the cross-correlation between Trange and 346 

precipitation, 𝐑<@,,9=, 𝐑<@,,9> and 𝐑<@,,A> be the SCRF for the (t-1)th time step for Tmean, Trange, and precipitation, 347 

respectively, the SCRF for tth time step following (Newman et al., 2015) is written as: 348 

⎩
⎪⎪
⎨

⎪⎪
⎧	𝐑<,9= = 𝜌9=𝐑<@,,9= + l1 − 𝜌9=! 𝐑<@,,9=

𝐑<,9> = 𝜌9>𝐑<@,,9> +l1 − 𝜌9>! 𝐑<@,,9>

𝐑<,A> = 𝜌?>𝐑<@,,9> +l1 − 𝜌?>! 𝐑<@,,A>

 (14)  

3.4.2 Probabilistic estimation 349 

Probabilistic estimates are produced using the probability distribution 𝑁(𝜇, 𝜎!) in Eq. (1) and R in Eq. (14). For 350 

Tmean and Trange, the SCRF (𝐑9= and 𝐑9>) is directly used as the standard normal deviate (R"). The estimate (𝑥;) 351 

for the ensemble member e is written as: 352 

𝑥; = 𝜇 + R" ∙ 𝜎 (15)  

For precipitation, an additional step is to judge whether an event occurs or not according to OI-merged PoP and the 353 

estimated probability from the SCRF. Let 𝐹B(𝑥) be the CDF of the standard normal distribution, 𝐹B(RA>) is the 354 

cumulative probability corresponding to the random number RA>. If 𝐹B(RA>) is larger than 𝑝#, the scaled cumulative 355 

probability of precipitation (𝑝CD) is calculated as: 356 

𝑝CD =
𝐹B(RA>) − 𝑝#

1 − 𝑝#
 (16)  

The probabilistic estimate for precipitation can be expressed as: 357 

𝑥; = n
0																																															𝑖𝑓									𝐹B(RA>) ≤ 𝑝#
𝜇 + 𝐹B@,(𝑝CD) ∙ 𝜎																		𝑖𝑓									𝐹B(RA>) > 𝑝#

 (17)  

3.5 Evaluation of probabilistic estimates 358 

Independent stations that are not used in SCDNA are used to evaluate EMDNA because the leave-one-out strategy is 359 

too time-consuming for evaluating probabilistic estimates. GHCN-D stations with precipitation or temperature records 360 

less than eight years are extracted because SCDNA restricts attention to stations with at least eight-year records. In 361 

total, 15,018 precipitation stations and 2,455 temperature stations are available for independent testing.  362 
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The Brier skill score (BSS; Brier, 1950) is used to evaluate probabilistic precipitation estimates. The continuous ranked 363 

probability skill score (CRPSS) is used to evaluate probabilistic temperature estimates. Their definitions are described 364 

in Appendix D. 365 

Furthermore, the reliability and discrimination diagrams are used to assess the behavior of probabilistic precipitation 366 

estimates. The reliability diagram shows the conditional probability of an observed event (precipitation above a 367 

threshold) given the probability of probabilistic precipitation estimates. In a reliability diagram, a perfect match has 368 

all points located on the 1-1 line. The discrimination diagram shows the PDF of probabilistic precipitation estimates 369 

for different observed categories. For precipitation, two categories are defined: events or non-events, i.e., observed 370 

precipitation above or below a threshold. The difference between PDF curves of events or non-events represents the 371 

degree of discrimination. Larger discrimination is preferred. The PDF for non-event/event should be maximized at the 372 

probability of zero/one. 373 

4. Results 374 

4.1 Comparison between raw and merged reanalysis estimates 375 

The three raw reanalysis estimates are regridded, corrected for bias, and merged. In this section, we directly compare 376 

raw and BMA-merged estimates. The evaluation is performed for all stations using the two-layer cross-validation 377 

strategy. The correlation coefficient (CC) and root mean square error (RMSE) are used as evaluation metrics. 378 

For precipitation, the three reanalysis products show the highest CC in CONUS and the lowest CC in Mexico (Fig. 3). 379 

The slight spatial discontinuity of CC along the Canada-USA border and the USA-Mexico border (Fig. 3 and 6) is 380 

caused by the inconsistent reporting time of stations. Daily precipitation from reanalysis products is accumulated from 381 

0 to 24 UTC, while stations from different countries or regions usually have different UTC accumulation periods 382 

(Beck et al., 2019; Tang et al., 2020a). The distributions of RMSE agrees with those of precipitation amounts with 383 

higher values in the southern corner and west coast of North America and western CONUS. Overall, ERA5 384 

outperforms MERRA-2 followed by JRA-55. 385 

BMA-merged precipitation estimates show higher accuracy than all reanalysis products (Fig. 3). For ERA5 and JRA-386 

55, the improvement of CC and RMSE is the most evident in the Rocky Mountains, while for MERRA-2, the largest 387 

improvement occurs in central CONUS. ERA5 is the closest to BMA estimates concerning CC and RMSE. The 388 

improvement of BMA estimates against ERA5 is more prominent in the high-latitude regions. Specifically, the mean 389 

CC increases by 0.05 and 0.07 in regions southern and northern to 55°N, respectively. The corresponding decrease of 390 

mean RMSE is 0.72 and 0.89 mm/d, respectively. 391 
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 392 

Figure 3. The spatial distributions and histograms of CC (the first row) and RMSE (the second row) based on raw 393 

reanalysis precipitation estimates (ERA5, MERRA-2, and JRA-55). The improvement of BMA-merged estimates 394 

against raw reanalysis estimates is shown in the third and fourth rows. The grid resolution is 0.5°. For each 0.5° grid 395 

point, the median value of all stations located within the grid is shown. 396 

The CC of reanalysis Tmean estimates is close to one in most regions of North America (Fig. 4) and still above 0.9 in 397 

Mexico where the CC is the lowest. According to RMSE, Tmean estimates have the largest error in western North 398 

America because coarse-resolution raw reanalysis estimates cannot reproduce the variability of temperature caused 399 

by elevation variations. The rank of three reanalysis products for Tmean is the same as that for precipitation with 400 

ERA5 being the best one. BMA estimates show higher CC than reanalysis products particularly in Mexico, while the 401 

improvement of RMSE is the most notable in the Rocky Mountains. For a few stations, the RMSE of BMA estimates 402 
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is slightly worse than raw reanalysis estimates (Fig. 4) because the downscaling of reanalysis temperature could 403 

occasionally magnify the error in low-altitude regions (Tang et al., 2018b). 404 

For Trange, BMA estimates show much larger improvement than Tmean, while the differences of CC and RMSE are 405 

relatively evenly distributed (Fig. 5). The improvement of BMA estimates against JRA-55 estimates is especially large. 406 

In general, BMA is effective in improving the accuracy of reanalysis precipitation and temperature estimates. 407 

 408 

Figure 4. Same with Figure 3, but for mean temperature. 409 
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 410 

Figure 5. Same with Figure 3, but for daily temperature range. 411 

4.2 The performance of optimal interpolation 412 

Optimal interpolation is used to combine station-based estimates with reanalysis estimates. The performance of OI-413 

merged precipitation and temperature estimates is compared to the background (BMA-merged reanalysis estimates; 414 

Fig. 6) and observation (station-based regression estimates; Fig. 7) inputs. To better show the spatial variations of the 415 

improvement of OI estimates, RMSE for precipitation and Trange is normalized using the mean value (termed as 416 

NRMSE), while Tmean is evaluated using RMSE. 417 

Overall, OI estimates are more accurate than merged reanalysis or station regression estimates for all variables across 418 

North America. Comparing OI estimates to reanalysis estimates, for precipitation, Tmean, and Trange, the mean CC 419 

is improved by 0.24, 0.02, and 0.15, respectively, and the mean RMSE is reduced by 1.88 mm/d, 0.52℃, and 0.87℃, 420 
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respectively. The improvement of OI estimates against station estimates is smaller with the mean CC increasing by 421 

0.06, 0.01 and 0.05, and the mean RMSE decreasing by 0.56 mm/d, 0.18℃, and 0.29℃ for precipitation, Tmean, and 422 

Trange, respectively.  423 

OI can utilize the complementarity between station and reanalysis estimates. For example, according to CC, the 424 

improvement of OI estimates against reanalysis estimates is larger in the eastern than the western CONUS, while the 425 

improvement against station estimates is larger in western than eastern CONUS. This means that although station 426 

estimates generally show higher accuracy reanalysis estimates, station estimates face more severe quality degradation 427 

in mountainous regions. Moreover, the latitudinal curves of CC and NRMSE in Fig. 6 and 7 indicate that the 428 

improvement of OI estimates against reanalysis estimates decreases as the latitude increases from southern CONUS 429 

to northern Canada, while the improvement against station estimates shows a reverse trend.  430 

For Tmean, the CC improvement for OI estimates is the largest in Mexico and decreases from low to high latitudes, 431 

while based on RMSE, the improvement increases with latitude. For Trange, the latitudinal variation exhibits a similar 432 

pattern with precipitation for regions north of 50°N, with larger/smaller improvement in higher latitudes against 433 

station/reanalysis estimates. For regions south of 50°N, the improvement of CC and NRMSE against station estimates 434 

shows different trends. 435 

The latitudinal variations in Fig. 6 and 7 are related to station densities (Fig. 8). Station-based estimates often have 436 

lower accuracy in regions with scarce stations (i.e., high-latitude North America), while reanalysis estimates could 437 

have less dependence on station densities due to the compensation of physically-based models. For precipitation, the 438 

improvement of OI estimates against regression estimates increases with the distance according to both CC and 439 

NRMSE, while the improvement against reanalysis estimates shows an inverse trend (Fig. 8). The shaded area figure 440 

within Fig. 8 shows that most stations can find the 20 neighboring stations within the search radius of 20-100 km. 441 

However, as the distance increases beyond 200 km, the number of stations becomes very small while the number of 442 

grids is still large. For Tmean, the trend with distance is not obvious probably because it is usually easier to interpolate 443 

Tmean observations due to its strong linkage with elevation and latitude. For Trange, the improvement against 444 

reanalysis and station estimates both increases with the distance. The results show that OI merging is particularly 445 

useful in sparsely gauged regions. 446 
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 447 

Figure 6. The differences of (a) CC and (b) NRMSE (normalized RMSE) between OI-merged precipitation estimates 448 

and BMA-merged reanalysis precipitation estimates. The latitudinal distributions of metrics are attached on the left 449 

side, showing the median value for 0.5° latitude bands. (c-d) are the same with (a-b) but for mean temperature and 450 

RMSE is not normalized. (e-f) are the same with (a-b) but for daily temperature range. 451 
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 452 

Figure 7. Similar with Figure 6, but the differences are between OI-merged precipitation estimates and station-based 453 

regression precipitation estimates. 454 
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 455 

Figure 8. The improvement of OI-based station-reanalysis merged estimates against station-based regression (REG) 456 

and BMA-merged reanalysis (BMA). The logarithmic X-axis shows the distance between the target station/grid and 457 

its 20th distant neighboring station. A larger distance represents a lower station density. The shaded area chart shows 458 

the numbers of stations and grid points corresponding to the same distance, which is the same for mean temperature 459 

and temperature range. 460 

4.3 Evaluation of probabilistic estimates 461 

The distributions of the OI and ensemble precipitation, Tmean, and Trange estimates in June 2016 are shown in Fig. 462 

9. Compared with OI precipitation estimates, ensemble precipitation estimates show generally consistent but less 463 

smooth distributions because of the relatively short spatial correlation length in the warm season. For Tmean and 464 
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Trange, OI and ensemble estimates show very similar spatial distributions. Precipitation shows the largest standard 465 

deviation, while Tmean shows the smallest, because the standard deviation is determined by the errors of OI estimates. 466 

The PoP from station observations and ensemble estimates is compared based on stations with at least 5-year-long 467 

records from 1979 to 2018 (Fig. 10). The comparison cannot represent climatological PoP (Newman et al., 2019b) 468 

due to short time length of independent stations (Sect. 3.5). Overall, EMDNA estimates show similar PoP distributions 469 

with station observations. The PoP in Canada is slightly overestimated because (1) the quality of EMDNA is lower in 470 

regions with fewer stations and (2) point-scale station observations could underestimate the PoP at a larger scale (e.g., 471 

0.1° grids) as shown by Tang et al. (2018a). 472 

 473 
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Figure 9. The distributions of average values from precipitation (the first column), mean daily temperature (the second 474 

column), and daily temperature range (the third column) averaged over the period 1-30 June 2016. The first to third 475 

rows represent estimates from OI-merged inputs, ensemble member 1, and ensemble member 100. The fourth row 476 

represents the standard deviation of all the 100 members for one month (June 2016). 477 

 478 

Figure 10. The probability of precipitation (PoP) from (a) station observations and (b) concurrent EMDNA ensemble 479 

estimates with their differences shown in (c). Stations with at least 5-year-long records from 1979 to 2018 are involved 480 

in the comparison. 481 

The discrimination diagram (Fig. 11) shows that ensemble precipitation assigns the highest occurrence frequency at 482 

the lowest estimated probability for non-precipitation events, and the performance becomes better as the threshold 483 

increases from 0 to 50 mm. For precipitation events, ensemble estimates show the highest frequency at the highest 484 

estimated probability for the thresholds of 0, 10, and 25 mm, while as the threshold increases, the frequency curve 485 

becomes skewed to the lower estimated probability. This problem is also seen in Clark and Slater (2006) and Newman 486 

et al. (2015). Ensemble precipitation shows good reliability for all precipitation thresholds with the points located at 487 

or close to the 1-1 line (Fig. 11). At low and high estimated probabilities of occurrence, ensemble precipitation shows 488 

slight wet bias. The reliability performance does not show clear dependence with thresholds. 489 
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 490 

Figure 11. The discrimination and reliability diagrams based on ensemble precipitation estimates. Four rain/no rain 491 

thresholds (0, 10, 25, 50 mm) are used. 492 

The BSS for precipitation and CRPSS for Tmean and Trange are shown in Fig. 12. In most cases, ensemble 493 

precipitation shows the highest frequency when BSS is above 0.5. As the precipitation threshold increases, the BSS 494 

values decrease. The median BSS values are 0.62, 0.54, and 0.46 for the thresholds of 0, 10, and 20 mm/d, respectively. 495 

We note that a small number of cases show BSS values smaller than zero, indicating that the ensemble estimated 496 

probability is worse than climatological probability. A low BSS value usually occurs in regions where precipitation is 497 

hard to estimate (e.g., Rocky Mountains) resulting in inaccurate parameters of Eq. (1).  498 
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The BSS for all thresholds shows a clear increasing trend from 1979 to 2018 (Fig. 12b) because the observed 499 

precipitation samples from SCDNA increase during this period (Fig. 2 in Tang et al. (2020b)). The increasing trend 500 

of BSS is particularly prominent from 2003 to 2009, during which precipitation samples in the USA experience the 501 

greatest increase (Tang et al., 2020a). The results show that although infilled station data contribute to higher station 502 

densities, observation samples still have a significant effect on gridded data estimation. 503 

Tmean shows high CRPSS for most cases with the frequency peak occurring at ~0.8. The CRPSS of Trange is much 504 

lower with the peak occurring at ~0.6. The median CRPSS for Tmean and Trange is 0.74 and 0.51, respectively. 505 

Analyses show that among stations with negative CRPSS, most are located in Mexico due to the degraded quality of 506 

temperature estimates (Sect. 4.1 and 4.2). The long-term variation of CRPSS is not shown because independent 507 

temperature stations are insufficient to support validation between 1986 and 2010.  508 

 509 

Figure 12. (a) The frequency distributions of the Brier Skill Score (BSS) for precipitation corresponding to rain/no 510 

rain thresholds from 0 to 25 mm/d. (b) The distributions of BSS for precipitation from 1979 to 2018. For each year, 511 
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the median value of all stations is used. (c) The frequency distributions of the continuous ranked probability skill score 512 

(CRPSS) for daily mean temperature and daily temperature range. 513 

5. Discussion 514 

This study presents the framework for producing an ensemble precipitation and temperature dataset over North 515 

America. Although we have tested multiple choices of methods (Sect. 3) and overall the product shows good 516 

performance (Sect. 4), the methodology still has limitations that need to be improved through continued efforts. 517 

5.1 Implementation of OI 518 

OI is used to merge reanalysis outputs and station data. To implement OI-based merging, a critical step is to estimate 519 

the weights. Previous studies usually adopt empirical error or variogram functions and fit the parameters using station 520 

observations (e.g., CaPA (Fortin et al., 2015) and CMPA (Shen et al., 2018)); then the parameters are constant for the 521 

whole study area in the actual application.  522 

In this study, we proposed a novel design, which uses station-based regression estimates as the observation filed and 523 

calculates weights by directly solving the weight functions based on observation and background errors. Compared 524 

with methods that use station data as the observation field, our method is characterized by inferior estimation of the 525 

observation field but realistic estimation of weights. The close linkage between the observation field and the weights 526 

could benefit OI estimates but comparing different OI implementations is still meaningful and necessary considering 527 

OI has been widely used and is the core algorithm of some operational products.  528 

Furthermore, regression estimates show worse performance in regions with fewer stations. More advanced 529 

interpolation methods that can utilize climatology information and comprehensively consider topographic and 530 

atmospheric conditions (Daly et al., 2008; Newman et al., 2019b; Newman and Clark, 2020) should be examined in 531 

future studies. 532 

5.2 Probabilistic estimation 533 

Power transformations (e.g., Box-Cox and root/cubic square) with fixed parameters have proven to be useful in 534 

precipitation estimation and dataset production (Fortin et al., 2015, 2018; Cornes et al., 2018; Khedhaouiria et al., 535 

2020; Newman et al., 2020). The Box-Cox transformation with a constant parameter is applied following Fortin et al. 536 

(2015) and Newman et al. (2019b, 2020). A fixed parameter, however, cannot ensure that transformed precipitation 537 

is normally distributed everywhere as is desirable.  538 

We tested a series of additional parametric and non-parametric transformations based on power functions, logarithmic 539 

functions, or a mix of both, and optimized the parametric transformation functions (including Box-Cox) for every grid 540 

by minimizing the objective function which is the sum of squared L-skewness and L-kurtosis (Papalexiou and 541 

Koutsoyiannis, 2013). Theoretically, compared to a Box-Cox transformation with a fixed parameter, the optimized 542 
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functions can obtain precipitation series closer to the normal distribution which should benefit probabilistic estimation, 543 

while the evaluation results show that the Box-Cox transformation with a fixed parameter is better at probabilistic 544 

estimation than optimized functions. We suggest there are three reasons for this: (1) the standard deviation in Eq. (1) 545 

is obtained by interpolating OI errors (Sect. 3.2.2) from neighboring stations, whereas the optimized transformation 546 

parameters could be different at those stations, (2) zero precipitation is excluded during optimization to avoid invalid 547 

transformation or optimization, which reduces the number of stations for every time step and thus degrades the quality 548 

of the spatial interpolation, and (3) the errors caused by back transformation could be large if the optimized 549 

transformation is too powerful. More efforts are needed to resolve this problem. 550 

There are other potential directions for improvement. For example, SCRF is generated from Gaussian distributions, 551 

while other choices such as copulas functions (Papalexiou and Serinaldi, 2020) show potential in probabilistic 552 

estimation. The spatial correlation length is constant for the whole study area following Newman et al. (2015, 2019b), 553 

which may introduce uncertainties for a large domain. Overall, studies related to the production of ensemble 554 

meteorological datasets are still insufficient, particularly for large areas. More studies are needed to clarify the critical 555 

issues in large-scale probabilistic estimation and explore the effect of parameter/method choices on probabilistic 556 

estimates. 557 

5.3 Alternate data sources 558 

The quality of source data (station observations and reanalysis models) primarily determines the quality of output 559 

datasets. The density of stations has a critical effect on the accuracy of the observation field and probabilistic estimates. 560 

While SCDNA collects data from multiple datasets, efforts are ongoing to expand the database by involving station 561 

sources such as provincial station networks in Canada.  562 

For reanalysis products, ERA5, MERRA-2, and JRA-55 are regridded using locally weighted linear regression to meet 563 

the target resolution. There are some choices for future improvement, such as (1) adopting/developing better 564 

downscaling methods or (2) utilizing outputs from high-resolution re-analysis products or forecasting models such as 565 

ERA5-Land or the Weather Research and Forecasting (WRF) model. For the latter one, a comprehensive assessment 566 

of available products is necessary before substituting the three reanalysis products used by EMDNA. Moreover, 567 

including other data sources such as satellite (e.g. GPM-IMERG) and weather radar estimates is also an opportunity. 568 

5.4 Precipitation under-catch 569 

Although station precipitation observations are used as the reference in this study, these values are subject to 570 

measurement errors such as wetting loss, wind-induced under-catch, and trace precipitation. Under-catch of 571 

precipitation is particularly severe in high latitudes and mountains due to the stronger wind and frequent snowfall 572 

(Sevruk, 1984; Goodison et al., 1998; Nešpor and Sevruk, 1999; Yang et al., 2005; Scaff et al., 2015; Kochendorfer 573 

et al., 2018). For example, underestimation of precipitation could be larger than 100% in Alaska (Yang et al., 1998). 574 

Bias correction of station precipitation data should consider many factors such as gauge types, precipitation phase, 575 
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and environmental conditions, which would be very complicated when a large number of sparsely distributed stations 576 

are involved over the whole of North America. 577 

The under-catch correction used in this study relies on bias-corrected precipitation climatology produced by Beck et 578 

al. (2020), which infers the long-term precipitation using a Budyko curve and streamflow observations. The bias-579 

corrected precipitation climatology, however, is less accurate in northern Canada where streamflow stations are few 580 

(Beck et al., 2020). In addition, the streamflow data used by the bias-corrected climatology also contain uncertainties 581 

(Hamilton and Moore, 2012; Kiang et al., 2018) related to factors such as streamflow derivation methods (e.g., rate 582 

curves) and measurement instruments. Whilst various under-catch correction methods (e.g., Fuchs et al., 2001; Beck 583 

et al., 2020; Newman et al., 2020) exist, further studies are needed to compare these solutions considering their 584 

effectiveness and availability of input data in a large domain. 585 

6. Data availability 586 

The EMDNA dataset is available at https://doi.org/10.20383/101.0275 (Tang et al., 2020a) in netCDF format. 587 

Individual ensemble member, ensemble mean, and ensemble spread of precipitation, Tmean, and Trange are provided. 588 

The total data size is 3.35 TB. Since the 100 members are equally plausible, users can download fewer members if the 589 

storage space and processing time are limited. 590 

The deterministic OI estimates of precipitation, PoP, Tmean, and Trange produced in this study are also available in 591 

netCDF format. The high-quality OI estimates merge reanalysis and station data, which can be useful to applications 592 

that do not need ensemble forcings. The total data size is 40.84 GB. 593 

A teaser dataset of probabilistic estimates is provided to facilitate easy preview of EMDNA without downloading the 594 

entire dataset. The teaser dataset covers the region from -116.8° to -115.2°W, and 50.7° to 51.9°N, the time from 2014 595 

to 2015, and the ensemble members from 1 to 25. The total data size is smaller than 30 MB. See Appendix E for a 596 

brief introduction. 597 

7. Summary and Conclusions 598 

Ensemble meteorological datasets are of great value to hydrological and meteorological studies. Given the lack of a 599 

historical ensemble dataset for the entire North America, this study develops EMDNA by integrating multi-source 600 

information to overcome the limitation of sparse stations in high-latitude regions. EMDNA contains precipitation, 601 

Tmean, and Trange estimates at 0.1° spatial resolution and daily temporal resolution from 1979 to 2018 with 100 602 

members. Multiple methodological choices are examined when determining critical steps in the production of 603 

EMDNA. The ultimate framework composes of four main steps: (1) generating station-based interpolation estimates 604 

from SCDNA using locally weighted linear/logistic regression, (2) regridding, correction, and merging of reanalysis 605 

products (ERA5, MERRA-2, and JRA-55), (3) merging station-reanalysis estimates using OI based on a novel method 606 
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of OI weight calculation, and (4) generating ensemble estimates by sampling from the estimated probability 607 

distributions with the perturbations provided by SCRF. 608 

The performance of each step is comprehensively evaluated using multiple methods. The results show that the design 609 

of the framework is effective. In short, we find that (1) station-based interpolation estimates are less accurate in regions 610 

with sparse stations (e.g., high latitudes) and complex terrain; (2) BMA-merged reanalysis estimates show notable 611 

improvement against raw reanalysis estimates, particularly for precipitation and Trange and over high-latitude regions; 612 

(3) OI achieves more accurate estimates than interpolation and reanalysis estimates from (1) and (2), respectively, and 613 

the complementary effect between reanalysis and interpolation estimates contributes to the large improvement of OI 614 

estimates in sparsely gauged regions; and (4) ensemble precipitation estimates show good discrimination and 615 

reliability performance for all thresholds, and the BSS values for ensemble precipitation and CRPSS values for 616 

ensemble Tmean and Trange are high in most cases. BSS values of ensemble precipitation increase from 1979 to 2018 617 

due to the increase of the number of stations. 618 

Overall, EMDNA (version 1) will be useful for many applications in North America such as regional or continental 619 

hydrological modeling. Meanwhile, we recognize that the current framework is not perfect and have provided 620 

suggestions on the future directions for large-scale ensemble estimation of meteorological variables. Continuing 621 

efforts from the community are needed to promote the development of probabilistic estimation methods and datasets. 622 
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 633 

Appendix A. Regression coefficients 634 

The coefficients for locally weight linear regression are estimated using weighted least square. Given a station i with 635 

m neighboring stations, let 𝐀 = [1, 𝐴,, … , 𝐴*] be the 𝑚× 𝑛 + 1 attribute matrix, let 𝐱 = (𝑥,, 𝑥!, … , 𝑥/) be the station 636 

observations from neighboring stations, and let 𝐰) = L𝑤),,, 𝑤),!, … , 𝑤),/N be the weight vector with distance-based 637 
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weights computed from Eq. (5). The regression coefficients 𝜷 = (𝛽#, 𝛽,, … , 𝛽*) for Eq. (4) are estimated from the 638 

weighted normal equation as 639 

  

𝜷 = (𝐀E𝐖𝐀)@,𝐀E𝐖𝐱, A1 

where the 𝑚×𝑚 weight matrix 𝐖 = 𝐈/𝐰) is a diagonal matrix obtained by multiplying the 𝑚×𝑚 identity matrix 640 

𝐈/ with the weight vector 𝐰) . 641 

The regression coefficients for logistic regression (Eq. 6) are estimated iteratively as: 642 

𝜷*;F = 𝜷(:G + (𝐀E𝐖𝐕𝐀)@,𝐀E𝐖(𝐏# −𝝅) A2 

𝝅 =
1

1 + exp	(−𝐀𝜷(:G) A3 

𝐕 = 𝐈/𝝅(1 − 𝝅) A4 

where 𝐏# is a vector of binary precipitation occurrence for neighboring stations, 𝝅 is the vector of estimated PoP for 643 

neighboring stations, and 𝐕 is the diagonal variance matrix for PoP. The regression coefficients 𝜷(:G are initialized as 644 

a vector of ones.  645 

 646 

Appendix B. Anomalous stations 647 

To exclude climatologically anomalous stations, for temperature (Tmean or Trange), we calculate: (1) the absolute 648 

difference of the climatological mean between the target station and the average value of its 10 neighboring stations 649 

(referred as Diff-1), and (2) the absolute difference of the climatological mean between station observation and 650 

regression estimates (referred as Diff-2). A temperature station will be excluded if its Diff-1 is larger than the 95% 651 

percentile and its Diff-2 larger than the 99% percentile of all stations simultaneously. The threshold of percentiles for 652 

Diff-1 is lower to better identify some climatologically anomalous stations.  653 

For precipitation, the ratio (Ratio-1 and Ratio-2) is obtained in the same way with the Diff-1 and Diff-2 of temperature. 654 

A two-tailed check is used for precipitation compared with the one-tailed check for temperature. A precipitation station 655 

will be excluded if its Ratio-1 is larger (or smaller) than the 99.9% (1%) percentile and its Ratio-2 larger (or smaller) 656 

than the 99.9% (1%) percentile simultaneously. This check has more tolerance for heavy precipitation but tries to 657 

exclude more extremely dry stations.  658 
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As a result, ~1.5% precipitation and temperature stations are rejected, after which algorithms described in Sect. 3.1.1 659 

and 3.1.2 are re-run. Stations can be anomalous because they are badly operated or simply because they are unique in 660 

terms of topography or climate. The usage of Diff-2 or Ratio-2 is helpful to avoid excluding unique stations, but for 661 

cases where the regression is ineffective, the unique stations can still be wrongly excluded. Although the effect on 662 

final estimates could be rather small, better strategies could be used in future studies. 663 

 664 

Appendix C. Error of BMA-merged reanalysis estimates 665 

The errors of BMA-merged estimates are first estimated for all stations and then interpolated to grids. Considering 666 

station observations cannot be used to evaluate merged estimates once they are used in bias correction or BMA weight 667 

estimation, a two-layer cross-validation strategy is designed. In the first layer, we treat i as the target station and find 668 

its m (𝑗, = 1, 2,… ,𝑚; 	𝑖	Ï	𝑗,) neighboring stations. In the second layer, we treat each 𝑗, as a target station, and (1) 669 

find m (𝑗! = 1, 2,… ,𝑚; 	𝑖	Ï	𝑗!) neighboring stations for each 𝑗,, (2) calculate linear scaling correction factors for all 670 

𝑗!, (3) estimate the correction factor for the target 𝑗, by interpolating factors at all 𝑗! stations using inverse distance 671 

weighting, (4) correct estimates at 𝑗,  using the correction factor, (5) calculate BMA weights of three reanalysis 672 

products for all 𝑗, stations, (6) interpolate BMA weights from all 𝑗, stations to the target station i and merge the three 673 

reanalysis products for i, and (7) calculate the difference between merged reanalysis estimates and station observations 674 

for i. This two-layer design may seem convoluted but is necessary to ensure that the error estimation is realistic. 𝑗, 675 

and 𝑗! could be partly overlapped due to their close locations but should not cause a large effect on the error estimation 676 

for i because data for i are only used in (7) in this design. The station-based errors are interpolated to all grids using 677 

inverse distance weighting.  678 

Appendix D. Metrics for probabilistic evaluation 679 

BSS is calculated based on the Brier Score (BS): 680 

BSS = 1 −
BS

BSC:)/
 D1 

BS =
1
𝑛: (PoP;*D − PoP(HD)!

*

)+,
 D2 

where PoP;*D  is the estimated probability of ensemble precipitation, PoP(HD  is the observed binary precipitation 681 

occurrence, 𝑛 is the sample number, and BSC:)/ is the climatological BS by assigning the climatological probability 682 

to all samples. When the two series match the value of BSS will be equal to one. 683 

CRPSS is calculated based on the continuous ranked probability skill score (CRPS; Hersbach, 2000): 684 
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CRPSS = 1 −
CRPS

CRPSC:)/
 D3 

CRPS = � (𝐹(𝑥) − 𝐻(𝑥 ≥ 𝑥())!𝑑𝑥
I

@I
 D4 

where 𝐹(𝑥) is the CDF of the ensemble temperature estimate x, 𝑥( is the observed temperature, 𝐻(𝑥 ≥ 𝑥() is the 685 

Heaviside step function with the value being one if the condition 𝑥 ≥ 𝑥( is satisfied and zero if not satisfied, and 686 

CRPSC:)/ is the climatological CPRS. CRPS measures the distance between the CDF of probabilistic estimates and 687 

observations. For a perfect match, the value of CRPSS would be one. 688 

Appendix E. Teaser dataset 689 

The teaser dataset is a subset of EMDNA probabilistic estimates for a small region (-116.8° to -115.2°W, 50.7° to 690 

51.9°N) and a short period (2014 to 2015) with only 25 ensemble members.  Users can easily download and preview 691 

the teaser dataset (<30 MB) before downloading the entire EMDNA dataset (~3 TB or ~40 GB) as shown in Sect. 6. 692 

The region covers the Bow River basin above Banff, Canada, which is located in the Canadian Rockies (Figure A1). 693 

The spread of ensemble members in this region could be large due to the complex topography and limited stations. 694 
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 695 

Figure A1. The distributions of daily precipitation (the first column), mean daily temperature (the second column), 696 

and daily temperature range (the third column) on 29 June 2015. The first to third rows represent ensemble members 697 

1, 10, and 20, respectively. The fourth row represents the standard deviation of 25 members for this day. The black 698 

line outlines the Bow River basin above Banff, Canada. 699 

 700 
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