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Abstract: Probabilistic methods are useful to estimate the uncertainty in spatial meteorological fields (e.g., the 15 

uncertainty in spatial patterns of precipitation and temperature across large domains). In ensemble probabilistic 16 

methods, “equally plausible” ensemble members are used to approximate the probability distribution, hence the 17 

uncertainty, of a spatially distributed meteorological variable conditioned on the available information. The ensemble 18 

members can be used to evaluate the impact of uncertainties in spatial meteorological fields for a myriad of 19 

applications. This study develops the Ensemble Meteorological Dataset for North America (EMDNA). EMDNA has 20 

100 ensemble members with daily precipitation amount, mean daily temperature, and daily temperature range at 0.1° 21 

spatial resolution (approx. 10-km grids) from 1979 to 2018, derived from a fusion of station observations and 22 

reanalysis model outputs. The station data used in EMDNA are from a serially complete dataset for North America 23 

(SCDNA) that fills gaps in precipitation and temperature measurements using multiple strategies. Outputs from three 24 

reanalysis products are regridded, corrected, and merged using the Bayesian Model Averaging. Optimal Interpolation 25 

(OI) is used to merge station- and reanalysis-based estimates. EMDNA estimates are generated using spatiotemporally 26 

correlated random fields to sample from the OI estimates. Evaluation results show that (1) the merged reanalysis 27 

estimates outperform raw reanalysis estimates, particularly in high latitudes and mountainous regions; (2) the OI 28 

estimates are more accurate than the reanalysis and station-based regression estimates, with the most notable 29 

improvements for precipitation evident in sparsely gauged regions; and (3) EMDNA estimates exhibit good 30 

performance according to the diagrams and metrics used for probabilistic evaluation. We discuss the limitations of the 31 

current framework and highlight that further research is needed to improve ensemble meteorological datasets. Overall, 32 

EMDNA is expected to be useful for hydrological and meteorological applications in North America. The entire 33 
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dataset and a teaser dataset (a small subset of EMDNA for easy download and preview) are available at 34 

https://doi.org/10.20383/101.0275 (Tang et al., 2020a).35 
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1. Introduction 36 

Precipitation and temperature data are fundamental meteorological variables for a wide variety of geoscientific and 37 

applications (Eischeid et al., 2000; Trenberth et al., 2003; Wu et al., 2014; Yin et al., 2018). Accurately estimating 38 

spatial meteorological fields is still challenging despite the availability of many measurement/estimation approaches 39 

(e.g., meteorological stations, weather radars, and satellite sensors) and the availability of many atmospheric models 40 

(Kirstetter et al., 2015; Sun et al., 2018; Hu et al., 2019; Newman et al., 2019a). There is consequently substantial 41 

uncertainty in analyses of spatially distributed meteorological variables. 42 

The uncertainty in spatial meteorological estimates depends on both the measurements available and the climate of 43 

the region of study. Whilst meteorological stations provide the most reliable observations at the point scale, spatial 44 

meteorological estimates based on station data can be uncertain because of both sparse station networks in remote 45 

regions and because of measurement errors caused by factors such as evaporation/wetting loss and under-catch of 46 

precipitation (Sevruk, 1984; Goodison et al., 1998; Nešpor and Sevruk, 1999; Yang et al., 2005; Scaff et al., 2015; 47 

Kochendorfer et al., 2018). Interpolating station data to a regular grid can introduce additional uncertainties, especially 48 

in regions where there are strong spatial gradients in meteorological fields. The accuracy of precipitation estimated 49 

from ground radars is affected by factors such as beam blockage, signal attenuation, ground clutter, and uncertainties 50 

in the representativeness of radar variables to surface rainfall (Dinku et al., 2002; Kirstetter et al., 2015). Moreover, 51 

the spatial and temporal coverage of ground radars is limited to large populated areas in most regions of the world. 52 

Satellite sensors provide quasi-global estimates of meteorological variables, but their utility can be limited by short 53 

sampling periods with insufficient coverage and return frequency, data latency, indirect measurements, imperfect 54 

retrieval algorithms, and instrument limitations (Adler et al., 2017; Tang et al., 2016, 2020b). Reanalysis models, 55 

which provide long-term global simulations, also contain biases and uncertainties caused by imperfect model 56 

representations of physical processes, observational constraints, and the model resolution (Donat et al., 2014; Parker, 57 

2016). 58 

In recent years, numerous deterministic gridded precipitation and temperature datasets based on observed or simulated 59 

data from single or multiple sources have become publicly available (Maurer et al., 2002; Huffman et al., 2007; 60 

Mahfouf et al., 2007; Daly et al., 2008; Di Luzio et al., 2008; Haylock et al., 2008; Livneh et al., 2013; Weedon et al., 61 

2014; Fick and Hijmans, 2017; Beck et al., 2019; Ma et al., 2020; Harris et al., 2020). Since the uncertainties vary in 62 

space and time, deterministic products do not always agree with each other (Donat et al., 2014; Henn et al., 2018; Sun 63 

et al., 2018; Newman et al., 2019a; Tang et al., 2020b). The uncertainties can propagate to applications such as 64 

hydrological modeling and climate analysis (Clark et al., 2006; Hong et al., 2006; Slater and Clark, 2006; Mears et 65 

al., 2011; Rodell et al., 2015; Aalto et al., 2016). Proper understanding of the uncertainties can benefit the objective 66 

application of meteorological analyses and further improve existing products, yet few gridded datasets provide such 67 

uncertainty estimates (Cornes et al., 2018; Frei and Isotta, 2019).  68 
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Probabilistic datasets provide alternatives to deterministic datasets for quantitative precipitation and temperature 69 

estimation (Kirstetter et al., 2015; Mendoza et al., 2017; Frei and Isotta, 2019). Recently, several ensemble 70 

meteorological datasets have become available. For example, Morice et al. (2012) develop the observation-based 71 

HadCRUT4 global temperature datasets with 100 members. Caillouet et al. (2019) develop the Spatially COherent 72 

Probabilistic Extended Climate dataset (SCOPE Climate) with 25 members in France. Newman et al. (2015, 2019b, 73 

2020) continually extend the probabilistic estimation methodology proposed by Clark and Slater (2006), and produce 74 

ensemble precipitation and temperature datasets in the contiguous USA (CONUS), the Hawaii Islands, and Alaska 75 

and Yukon, respectively. Moreover, several widely used deterministic datasets now have ensemble versions in view 76 

of the advantages of probabilistic estimates. Cornes et al. (2018) developed the ensemble version (100 members) of 77 

the Haylock et al. (2008) Europe-wide E-OBS temperature and precipitation datasets. Khedhaouiria et al. (2020) 78 

developed the experimental High-Resolution Ensemble Precipitation Analysis (HREPA) for Canada and the northern 79 

part of the CONUS with 24 members, which can be regarded as an experimental ensemble version of the Canadian 80 

Precipitation Analysis (CaPA; Mahfouf et al., 2007; Fortin et al., 2015).  81 

Our objective is to develop an Ensemble Meteorological Dataset for North America (EMDNA) from 1979 to 2018. 82 

To improve the quality of estimates in sparsely gauged regions, station data and reanalysis outputs are merged to 83 

generate gridded precipitation and temperature estimates. Then, ensemble estimates are produced using the 84 

probabilistic method described by Clark and Slater (2006) and Newman et al. (2015, 2019b, 2020). EMDNA has 100 85 

members and contains daily precipitation amount, mean daily temperature (Tmean), and daily temperature range 86 

(Trange) at 0.1° spatial resolution. Minimum and maximum temperature can be calculated from Tmean and Trange. 87 

It is expected that the EMDNA will be useful for a variety of applications in North America.  88 

2. Datasets 89 

Station observations are often subject to temporal discontinuities caused by missing values and short record lengths 90 

(Kemp et al., 1983). This study uses station precipitation and minimum/maximum temperature data from the Serially 91 

Complete Dataset for North America (SCDNA; Tang et al., 2020c), which is open-access on Zenodo 92 

(https://doi.org/10.5281/zenodo.3735533; Access Date: July 25, 2020). Serially complete datasets improve the quality 93 

of spatial interpolation estimates compared to raw station observations with data gaps (Longman et al., 2020; Tang et 94 

al., 2021). Tmean and Trange are calculated from minimum and maximum temperature data. In SCDNA, raw 95 

measurements undergo strict quality control checks, and data gaps are filled by combining estimates from multiple 96 

strategies (including quantile mapping, spatial interpolation, machine learning, and multi-strategy merging). SCDNA 97 

uses reanalysis estimates as the auxiliary data to ensure temporal completeness in sparsely gauged regions. The 98 

production of SCDNA has nine steps: (1) matching reanalysis estimates and station data, (2) selecting qualified 99 

neighboring stations, (3) building empirical cumulative density functions (CDFs), (4) estimation based on 16 strategies 100 

for each day of the year, (5) independent validation, (6) merging estimates from the 16 strategies, (7), climatological 101 

bias correction, (8) evaluation of SCDNA, and (9) final quality control (Tang et al., 2020c). SCDNA covers the period 102 

from 1979 to 2018 and has 24,615 precipitation stations and 19,579 temperature stations. We select precipitation and 103 
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temperature because they are used in many hydrometeorological studies and are measured by a large number of 104 

meteorological stations, while other variables (e.g., humidity and wind speed) are only measured by a much smaller 105 

collection of stations. 106 

Station-based gridded meteorological estimates usually rely on a certain number of neighboring stations surrounding 107 

the target grid cell. For most regions in CONUS, the search radius to find 20 or 30 neighboring stations (lower and 108 

upper limits for station-based gridded estimates in Sect. 3.1) is smaller than 100 km (Fig. 1). For the regions north of 109 

to 50°N or south of 20°N, however, the search radius required to find 20 or 30 neighboring stations is much larger, 110 

and even exceeds 1,000 km in the Arctic Archipelago. The sparse station network at higher latitudes motivates our 111 

decision to optimally combine station data with reanalysis products. 112 

The reanalysis products used in this study include the fifth generation of European Centre for Medium-Range Weather 113 

Forecasts (ECMWF) atmospheric reanalyses of the global climate (ERA5; Hersbach et al., 2020), the Modern-Era 114 

Retrospective analysis for Research and Applications, Version 2 (MERRA-2; Gelaro et al., 2017), and the Japanese 115 

55-year Reanalysis (JRA-55; Kobayashi et al., 2015). The three widely used products are chosen because of their high 116 

spatiotemporal resolutions and suitable time length. The spatial resolutions of ERA5, MERRA-2, and JRA-55 are 117 

0.25°´0.25°, 0.5°´0.625°, and ~55 km, respectively. Their start years are 1979, 1980, and 1958, respectively. 118 

Therefore, only ERA5 and JRA-55 are used for 1979 throughout this study. Although reanalysis models assimilate 119 

observations from various sources, they differ from station measurements in many aspects (Parker, 2016) and often 120 

contain large uncertainties as shown by assessment and multi-source merging studies (e.g., Donat et al., 2014; Lader 121 

et al., 2016; Beck et al., 2017, 2019; Tang et al., 2020b). The dependence of reanalysis estimates on station data may 122 

have a negative effect on the merging of reanalysis products (Section 3.2) because the reanalysis dataset which 123 

assimilates more station data could be given higher weight. The potential dependence, however, is not considered in 124 

this study because of the limited understanding of the dependence between reanalysis estimates and station 125 

observations. Moreover, none of the reanalysis datasets assimilate precipitation data from stations. 126 

The elevation data are sourced from the 3 arc-second resolution Multi-Error-Removed Improved-Terrain digital 127 

elevation model (MERIT DEM; Yamazaki et al., 2017).  128 
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 129 

Figure 1. The color of each 0.1° grid indicates the radius to find (a) one, (b) 20, and (c) 30 neighboring stations for 130 

precipitation (a-c) and temperature (d-f). 131 

3. Methodology 132 

The estimate of a variable at a specific location and time step can be regarded as a random value following a probability 133 

distribution. The probability density functions (PDFs) of variables such as Tmean and Trange can be approximated 134 

using the normal distribution. Their value 𝑥 for a target location and time step is expressed as: 135 

𝑥	~	𝑁(𝜇, 𝜎!) (1)  

where 𝜇 is the mean value and 𝜎 is the standard deviation. Probabilistic estimates of Tmean or Trange can be realized 136 

by sampling from this distribution. In a spatial meteorological dataset, the distribution parameters vary with space and 137 

time, and the spatial variability is related to the nature of variables and gridding (interpolation) methods. The 138 

performance of gridding methods is critical because accurate estimation of 𝜇 can reduce systematic bias and smaller 139 

𝜎 means narrower spread. 140 

Precipitation is different from Tmean and Trange because it can be intermittent from local to synoptic scales and its 141 

distribution is both highly skewed and bounded at zero. Following Papalexiou (2018) and Newman et al. (2019b), the 142 

CDF of precipitation can be expressed as below: 143 



 7 

 144 

𝐹"(𝑥) = (1 − 𝑝#)𝐹"|"%#(𝑥) + 𝑝#,			𝑓𝑜𝑟		𝑥 ≥ 0 (2)  

where 𝐹"(𝑥) is the CDF for 𝑥 ≥ 0, 𝐹"|"%#(𝑥) is the CDF for	𝑥 > 0, and 𝑝# is the probability of zero precipitation. 145 

The probability of precipitation (PoP) is 1 − 𝑝# . The CDF 𝐹"|"%#(𝑥)  is often approximated using the normal 146 

distribution after applying suitable transformation functions to observed precipitation. Clark and Slater (2006) perform 147 

the normal quantile transformation using an empirical CDF from station observations. Newman et al. (2015) apply a 148 

power-law transformation. Newman et al. (2019b) adopts the Box-Cox transformation, that is, 149 

𝑥& =
𝑥' − 1
𝜆  (3)  

where 𝜆 is set to 1/3 following Newman et al. (2019b) and Fortin et al. (2015). Eq. (1) applies to 𝑥&, enabling the 150 

probabilistic estimation of precipitation. Unlike Newman et al. (2019b) that uses transformed precipitation throughout 151 

the production, this study only uses Box-Cox transformation when the assumption of normality is necessary (Sect. 152 

3.2.4 and 3.3) to reduce the error introduced by the back transformation. The limitations and alternative choices of 153 

precipitation transformation are discussed in Sect. 5.2. 154 

In summary, seven space- and time-varying parameters (𝜇 and 𝜎 for three variables and PoP) should be obtained to 155 

realize probabilistic estimation. Our method to develop probabilistic meteorological estimates is summarized in Fig. 156 

2a. We apply four main steps to produce EMDNA: (1) station-based regression estimates (Sect. 3.1), (2) the regridding, 157 

downscaling, bias correction and merging of three reanalysis products (Sect. 3.2), (3) optimal interpolation-based 158 

merging of reanalysis and station-based regression outputs, and the bias correction of the resulting precipitation 159 

estimates (Sect. 3.3), and (4) the production of probabilistic estimates in the form of spatial meteorological ensembles 160 

(Sect. 3.4). 161 
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 162 

Figure 2. (a) The flowchart outlining the main steps for producing EMDNA. P represents precipitation and T represents 163 

temperature. (b-e) demonstrate output examples from (a-1 to -4), respectively. (b) Latitudinal distribution of the root 164 

mean square error (RMSE) for temperature and normalized RMSE (NRMSE) for precipitation (Sect. 3.1). (c) Example 165 

showing the mean temperature of MERRA-2 before and after regridding (Sect. 3.2). (d) The correction ratios 166 

calculated using precipitation climatology from the bias-corrected CHELSA (Sect. 3.3). (e) Example of the ensemble-167 

based distributions of precipitation and temperature estimates from EMDNA (Sect. 3.4). 168 
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3.1 Regression estimates from station data 169 

Clark and Slater (2006) and Newman et al. (2015, 2019b) use locally weighted linear regression and logistic regression 170 

to obtain gridded temperature and gridded precipitation estimates which are used as parameters in Eq. (1). However, 171 

for high-latitude regions in North America where stations are scarce (Fig.1), such gridded estimates based only on 172 

station data could contain large uncertainties (Fig. 2b) due to the long distances needed to assemble a sufficient sample 173 

of stations to form the regressions. This study uses optimal interpolation (OI) to merge data from stations and 174 

reanalysis models. In this section, we only obtain regression estimates and their errors at the locations of stations, 175 

which are used as inputs to OI in Sect. 3.3. 176 

3.1.1 Locally weighted linear regression 177 

Daily precipitation amount, Tmean, and Trange are estimated for all stations based on the locally weighted linear 178 

regression (also known as the geographically weighted regression). Let 𝑥( be the station observation for variable X 179 

(precipitation, Tmean, and Trange), the regression estimate 𝑥7 for the target point and time step is obtained as below: 180 

𝑥( = 𝑥7 + 𝜀 = 𝛽# +: 𝐴)𝛽)
*

)+,
+ 𝜀 (4)  

where 𝐴) is the ith time-invariant topographic attribute (or predictor variables), 𝛽# and 𝛽) are regression coefficients 181 

estimated using ordinary least squares, and 𝜀 is the residual (or error term). The topographic attributes are latitude, 182 

longitude, and elevation for Tmean and Trange. For precipitation, two more topographic attributes (west-east and 183 

south-north slopes) are used to account for windward and leeward slope precipitation differences. An isotropic 184 

Gaussian low-pass filter is used to smooth DEM before calculating slopes, which can reduce the influence of noise in 185 

a high-resolution DEM on the large-scale topographic effect of precipitation (Newman et al., 2015). Ideally, the scale 186 

of this smoothing reflects the scale at which terrain most directly influences precipitation or temperature spatial 187 

patterns; in this case the filter bandwidth is 180 km.   188 

For a target station point, 𝑥7 is obtained based on data from neighboring stations. Newman et al. (2015, 2019b) used 189 

30 neighboring stations, without controlling for maximum station distance. The very low station density in high-190 

latitude regions makes this configuration infeasible, hence this study adopts a relatively flexible criterion for selecting 191 

neighboring stations: (1) finding at most 30 stations within a fixed search radius (400 km), and (2) if fewer than 20 192 

stations are found, extending the search radius until 20 stations are found. The lower threshold is set to 20 to ensure 193 

that linear/logistic regression is robust. To incorporate local dependence, a tricube weighting function is used to 194 

calculate the weight 𝑤),. between the target station i and the neighboring station j. 195 

𝑤),. = [1 − (
𝑑),.
𝑑/01

)2]2 
(5)  

where 𝑑),. is the distance between i and j, and 𝑑/01 depends on the maximum distance (𝑑),./01) between i and all its 196 

neighboring stations. If 𝑑),./01 is smaller than 100 km, 𝑑/01 is set to 100 km; otherwise, 𝑑/01 is set to 𝑑),./01 + 1 km 197 
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(Newman et al., 2015, 2019b). The cubic weight function is smoother compared to functions such as exponential 198 

functions and inverse distance functions, indicating that 𝑤),. degrades with distance in a relatively slow way which 199 

generally leads to smooth spatial variations of variables. The comparison of different weight functions could be a 200 

direction for future research. Regression coefficients are estimated by weighted least squares method (described in 201 

Appendix A). 202 

We found that a small number of observation stations show a climatology that is notably statistically different from 203 

surrounding stations, which could cause an adverse effect on gridded estimates, particularly in sparsely gauged regions. 204 

Strategies to identify and exclude such stations are summarized in Appendix B.  205 

3.1.2 Locally weighted logistic regression 206 

PoP is estimated using the locally weighted logistic regression by fitting binary precipitation occurrence to topographic 207 

attributes: 208 

PoP =
1

1 + exp(−𝛽# + ∑ 𝐴)𝛽)*
)+, ) (6)  

The topographic attributes (𝐴)) are the same as those used by precipitation regression. Appendix A describes the 209 

method to estimate regression coefficients.  210 

The errors of precipitation, temperature, and PoP estimates for all stations are calculated as the difference between 211 

regression estimates and station observations using the leave-one-out cross-validation procedure (also known as the 212 

jackknife procedure). The leave-one-out evaluation could be affected by the distributions of stations in some cases. 213 

For example, two stations with very close distance may both show very high accuracy in the leave-one-out evaluation 214 

(this is a problem for all station-based evaluation methods).  215 

3.2 Regridding, correction, and merging of reanalysis datasets 216 

The three reanalysis datasets (ERA5, MERRA-2, and JRA-55) have different spatial resolutions and contain 217 

systematic biases. In this section, we discuss steps taken to (1) re-grid all reanalysis datasets to the resolution of 218 

EMDNA (0.1°); (2) perform a correction to remove the systematic bias in original estimates; and (3) merge the three 219 

reanalysis datasets to produce a background field that improves over any individual reanalysis dataset, in support of 220 

the reanalysis-station merging described in Sect. 3.3.  221 

3.2.1 Regridding of reanalysis datasets 222 

Precipitation, Tmean, and Trange are regridded to 0.1° using locally weighted regression (Fig. 2c). Latitude, longitude, 223 

and elevation are used as predictor variables for simplicity. Precipitation or temperature lapse rates are implicitly 224 

considered by involving elevation in the regression. Raw reanalysis data from a 5 × 5 space window (i.e., 25 coarse-225 

resolution grids) centered by the 0.1° target grid are used to perform the regression. Each grid is represented using its 226 
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center point. This regridding method has been proven effective in previous studies (Xu et al., 2015; Duan and Li, 2016; 227 

Lu et al., 2020). Reanalysis estimates are also regressed to the locations of all stations to facilitate evaluation and 228 

weight estimation in the following steps, which can avoid the scale mismatch caused by using point-scale observations 229 

to evaluate 0.1° gridded estimates (Tang et al., 2018a). 230 

We also tested other regridding methods such as the nearest neighbor, bilinear interpolation, and temperature lapse 231 

rate-based downscaling (Tang et al., 2018b). Results (not shown) indicated that their performance is generally inferior 232 

to the locally weighted regression with respect to several accuracy metrics. 233 

3.2.2 Probability of precipitation estimation 234 

Reanalysis precipitation can exhibit large biases in the number of wet days because the models often generate many 235 

light precipitation events. To overcome this limitation, we designed two methods for determining the occurrence of 236 

reanalysis precipitation. The first is to use positive thresholds to determine precipitation occurrence. The threshold 237 

was estimated in two ways, namely by forcing reanalysis precipitation (1) to have the same number of wet days with 238 

station data, or (2) to achieve the highest critical success index (CSI). Gridded thresholds can be obtained through 239 

interpolation and used to discriminate between precipitation events or non-events. However, this method can only 240 

obtain binary occurrence instead of continuous PoP between zero and one. The second method is based on univariate 241 

logistic regression. The amount of reanalysis precipitation is used as the predictor and the binary occurrence from 242 

station data is used as the predictand. The logistic regression is implemented for each reanalysis product in the same 243 

way as Sect. 3.1.2. The comparison between the threshold-based method and the logistic regression-based method 244 

shows the latter achieves higher accuracy. Therefore, we adopt the univariate logistic regression to estimate PoP for 245 

each reanalysis product in this study. The possible bias caused by station measurements is not considered. 246 

3.2.3 Bias correction of reanalysis datasets 247 

Considering reanalysis products contain systematic biases (Clark and Hay, 2004; Mooney et al., 2011; Beck et al., 248 

2017; Tang et al., 2018b, 2020b), the linear scaling method (also known as multiplicative/additive correction factor; 249 

Teutschbein and Seibert, 2012) is used to correct reanalysis precipitation, Tmean, and Trange estimates. Reanalysis 250 

PoP is not corrected because station information has been incorporated in the logistic regression. Let 𝑥3  be the 251 

reanalysis estimate for variable X, the corrected estimate for a target grid/point i is calculated as: 252 

𝑥3,)∗ =

⎩
⎪⎪
⎨

⎪⎪
⎧𝑥3,) +

∑ 𝑤),.L�̅�(,. − �̅�3,.N/
.+,

∑ 𝑤),./
.+,

																			additive	correction
	
	

𝑥3,)
∑ 𝑤),.

�̅�(,.
�̅�3,.

/
.+,

∑ 𝑤),./
.+,

																									multiplicative	correction	

 (7)  

where 𝑥3,)∗  is the corrected reanalysis estimate, 𝑤),. is the distance-based weight (Eq. (5)), and �̅�(,. and �̅�3,. are the 253 

climatological mean for each month (e.g., all January from 1979 to 2018) from station observations and reanalysis 254 
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estimates for the jth neighboring station, respectively. The additive correction is used for Tmean and Trange, and the 255 

multiplicative correction is used for precipitation. The number of neighboring stations (m) is set to 10, which is smaller 256 

than that used for linear or logistic regression (Sect. 3.1) but should be enough for bias correction. The upper bound 257 

of 
1̅!,#
1̅$,#

 is set to 10 to avoid over-correction in some cases (Hempel et al., 2013). 258 

Linear scaling can be performed at monthly (Arias-Hidalgo et al., 2013; Herrnegger et al., 2018; Willkofer et al., 2018) 259 

or daily (Vila et al., 2009; Habib et al., 2014) time scales by replacing �̅�(,. and �̅�3,. by the monthly mean (e.g., January 260 

in one year) or daily values. We compared the performance of corrections at different scales and found that monthly- 261 

or daily-scale corrections acquire more accurate estimates than the climatological correction. The climatological 262 

correction was adopted because (1) it preserves the absolute/relative trends better than daily or monthly corrections, 263 

and (2) the OI merging (Sect. 3.3) adjusts daily variability of estimates, which compensates for the limitation of 264 

climatological correction and makes daily/monthly-scale correction unnecessary.  265 

Quantile mapping is another widely used correction method (Wood et al., 2004; Cannon et al., 2015). We compared 266 

quantile mapping and linear scaling and found that they are similar in statistical accuracy, while quantile mapping 267 

achieves better probability distributions with much smaller Hellinger distance (Hellinger, 1909) which is a metric used 268 

to quantify the similarity between estimated and observed probability distributions. Nevertheless, quantile mapping 269 

could result in spatial smoothing of precipitation and temperature, particularly in high-latitude regions where stations 270 

are few. For example, Ellesmere Island, the northernmost island of the Canadian Arctic Archipelago, usually shows 271 

lower temperature in inland regions. However, quantile mapping will erase this gradient because reanalysis grids for 272 

this island are corrected based on stations on the coast. To ensure the authenticity of spatial distributions, quantile 273 

mapping is not used in this study.  274 

3.2.4 Merging of reanalysis datasets 275 

The three reanalysis products are merged using the Bayesian Model Averaging (BMA, Hoeting et al., 1999), which 276 

has proved to be effective in fusing multi-source datasets (Chen et al., 2015; Ma et al., 2018a, b). According to the 277 

law of total probability, the PDF of the BMA estimate can be written as: 278 

𝑝(𝐸) =: 𝑝(𝐸|𝑥3∗, 𝑥() ∙ 𝑝(𝑥3∗|𝑥()
2

3+,
 (8)  

where E is the ensemble estimate, 𝑥3∗  (r=1, 2, 3) is the bias-corrected estimate from three reanalysis products, 279 

𝑝(𝐸|𝑥3∗, 𝑥() is the predicted PDF based only on a specific reanalysis product, and 𝑝(𝑥3∗|𝑥() is the posterior probability 280 

of reanalysis products given the station observation 𝑥(. The posterior probability 𝑝(𝑥3∗|𝑥() can be identified as the 281 

fractional BMA weight 𝑤3  with ∑ 𝑤3	2
3+, = 1. BMA prediction can be written as the weighted sum of individual 282 

reanalysis products. 283 
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For Tmean and Trange, 𝑝(𝐸|𝑥3∗, 𝑥() can be regarded as the normal distribution 𝑔(𝐸|𝜃3) defined by the parameter 284 

𝜃3 = {𝜇3 , 𝜎3!}, where 𝜇3 is the mean and 𝜎3! is the variance (Duan and Phillips, 2010). For precipitation, if we apply 285 

Box-Cox transformation (Eq. (3)) to positive events (>0) and exclude zero events, its distribution is approximately 286 

normal, and 𝑝(𝐸|𝑥3∗, 𝑥() can be represented using 𝑔(𝐸|𝜃3). Therefore, Eq. (8) can be written as: 287 

𝑝(𝐸) =: 𝑤3 ∙ 𝑔(𝐸|𝜃3)
2

3+,
 (9)  

There are different approaches to infer 𝑤3  and 𝜃3  (Schepen and Wang, 2015). This study uses the log-likelihood 288 

function to estimate the parameters (Duan and Phillips, 2010; Chen et al., 2015; Ma et al., 2018b). The Expectation-289 

Maximization algorithm (Raftery et al., 2005) can be applied to estimate parameters by maximizing the likelihood 290 

function. BMA weights are obtained for all stations and each month. Gridded weights are obtained using the inverse 291 

distance weighting interpolation. 292 

Merging multiple datasets could affect the probability distributions and extreme characteristics of original datasets. 293 

This is not a major concern because the merged reanalysis data are further adjusted by station data in OI merging (Sect. 294 

3.3), a later step in the EMDNA process. Also, the probabilistic estimation of ensemble members (Sect. 3.4) has a 295 

large effect on estimates of extreme events. 296 

Gridded errors of BMA-merged estimates are necessary to enable optimal interpolation (Sect. 3.3). The error 297 

estimation is realized using a two-layer cross-validation (Appendix C). 298 

3.3 Optimal Interpolation-based merging of reanalysis and station data 299 

3.3.1 Optimal Interpolation 300 

OI has proven to be effective in merging multiple datasets (Sinclair and Pegram, 2005; Xie and Xiong, 2011) and has 301 

been applied in operational products such as CaPA (Mahfouf et al., 2007; Fortin et al., 2015) and the China Merged 302 

Precipitation Analysis (CMPA, Shen et al., 2014, 2018). Let 𝑥6 be the OI analysis estimate. The OI analysis estimate 303 

(𝑥6,)) for a target grid/point i and time step is obtained by adding an increment to the first guess of the background 304 

(𝑥7,)). The increment is a weighted sum of the difference between observation and background values at neighboring 305 

stations. 306 

𝑥6,) = 𝑥7,) +: 𝑤.(𝑥8,. − 𝑥7,.)
/

.+,
 (10)  

where 𝑥8,., 𝑥7,., and 𝑤. are the observed value (subscript O), background value (subscript B), and weight for the jth 307 

neighboring station. Let 𝑥9 be the true value, the errors of observed and background values are 𝜀8,. = 𝑥8,. − 𝑥9,. and 308 

𝜀7,. = 𝑥7,. − 𝑥9,. (or 𝜀7,) = 𝑥7,) − 𝑥9,)), respectively. Assuming that (1) the observation and background errors are 309 

unbiased with an expectation of zero and (2) there is no correlation between background and observation errors, the 310 

weights that minimize the variance of the analysis errors can be obtained by solving: 311 
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𝐰(𝐑 + 𝐁) = 𝐛 (11)  

where 𝐰 is the vector of 𝑤. 	(𝑗 = 1,2, … ,m), 𝐑 and 𝐁 are 𝑚×𝑚 covariance matrices of 𝜀8,.  and 𝜀7,. , respectively, 312 

and 𝐛  is the 𝑚× 1  vector of covariance between 𝜀7,)  and 𝜀7,. . The background provided by reanalysis models 313 

assimilates observations in the production and is corrected in a way using station data (described in Sect. 3.2.3), which 314 

may affect the soundness of the second assumption. The effect of this slight violation, however, is rather small 315 

according to our results and previous studies (Xie and Xiong, 2011; Shen et al., 2014b, 2018). 316 

Different approaches can be used to implement OI. For example, Fortin et al. (2015) used raw station observations as 317 

𝑥8, and assumed that the background error is a function of error variance and correlation length, and the observation 318 

error is a function of error variance. The variances and correlation length are obtained by fitting a theoretical variogram 319 

using station observations. Xie and Xiong (2011) and Shen et al. (2014) use station-based gridded estimates as 𝑥8, 320 

and assume that the background error variance is a function of precipitation intensity, the cross-correlation of 321 

background errors is a function of distance, and the observation error variance is a function of precipitation intensity 322 

and gauge density. The parameters of those functions are estimated based on station data in densely gauged regions.  323 

In this study, we adopt a novel design that calculates weights based on error estimation, a feature that is enabled by 324 

the probabilistic nature of the observational dataset. Regression estimates and their errors at station points (Sect. 3.1) 325 

are used as 𝑥8 and 𝜀8, respectively. BMA-merged reanalysis estimates and their errors (Sect. 3.2) are used as 𝑥7 and 326 

𝜀7 , respectively. We do not use gridded regression estimates because (1) 𝑥8,. − 𝑥7,.  will show weak variation if 327 

neighboring stations are replaced by neighboring grids, and (2) estimates of weights 𝐰 could be unrealistic because 328 

of the spatial smoothing of interpolated regression errors. The advantages of this design are (1) weights and inputs 329 

closely match each other and (2) weights in sparsely gauged regions are not determined by parameters fitted in densely 330 

gauged regions. In regions with few stations, the errors of regression estimates could be larger than reanalysis estimates, 331 

resulting in a smaller contribution from regression estimates and a larger contribution from reanalysis estimates, which 332 

is the complementary effect we expect by involving reanalysis datasets in EMDNA. 333 

The Box-Cox transformation is applied to precipitation estimates. Then, precipitation, PoP, Tmean, and Trange 334 

estimates provided by OI are used as 𝜇 and PoP required for generating meteorological ensembles. 335 

3.3.2 Error of OI-merged estimates 336 

Variance is a necessary parameter to enable ensemble estimation. The variance 𝜎! is represented using the mean 337 

squared error of OI estimates in this study. First, the error of OI analysis estimates (𝜀6 = 𝑥6 − 𝑥() is obtained for all 338 

stations using the leave-one-out strategy. Then, the 𝜎)! for the ith grid is obtained as a weighted sum of squared errors 339 

from neighboring stations: 340 
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where 𝜀6,. is the difference between the station observation and OI estimate at the jth neighboring station, and 𝑤),. is 341 

the weight (Eq. (5)).  342 

3.3.3 Correction of precipitation under-catch 343 

Considering station precipitation data usually contain measurement errors such as wind-induced under-catch 344 

particularly in high-latitude and mountainous regions, OI-merged precipitation is further adjusted using the 345 

Precipitation Bias Correction (PBCOR) dataset produced by Beck et al. (2020). The PBCOR climatology infers the 346 

long-term precipitation (without rain-snow separation) using a Budyko curve and streamflow observations collected 347 

from seven national and international sources, among which the Global Runoff Data Centre (GRDC), the U.S. 348 

Geological Survey (USGS), and the Water Survey of Canada Hydrometric Data (HYDAT) are data sources in North 349 

America. The streamflow stations are scarce in high latitude regions and absent in Greenland. Three corrected datasets 350 

are provided, including WorldClim, version 2 (WorldClim V2; Fick and Hijmans, 2017), the Climate Hazards Group 351 

Precipitation Climatology, version 1 (CHPclim V1; Funk et al., 2015) and Climatologies at High Resolution for the 352 

Earth’s Land Surface Areas, version 1.2 (CHELSA V1.2; Karger et al., 2017). The water balance-based method of 353 

Beck et al. (2020) considers all measurement errors (e.g., under-catch and wetting/evaporation loss) as a whole and 354 

under-catch is the major error source in many regions. Note that the rain gauge catch error includes both under-catch 355 

and over-catch. The potential over-catch could be caused by splash of rain or blow snow collected on the wind shield 356 

(Folland, 1988; Zhang et al., 2019). Since over-catch is less common compared to under-catch and the PBCOR dataset 357 

does not consider over-catch, the bias correction in this study only addresses the under-catch problem. Moreover, the 358 

water balance estimates of precipitation under-catch do not consider non-contributing areas of river basins (e.g., 359 

endorheic sub-catchments), which are common in the Canadian Prairies and the northern Great Plains in the USA. 360 

Although the three datasets show similar precipitation distributions after bias correction, CHELSA V1.2 is used 361 

because its period (1979–2013) is most similar to our study period (1979–2018). The correction of OI-merged 362 

precipitation is performed in two steps: (1) the ratio between bias-corrected CHELSA V1.2 and OI-merged long-term 363 

monthly precipitation is calculated at the 0.1° resolution during 1979–2013, and (2) daily OI-merged precipitation 364 

estimates during 1979–2018 are scaled using the corresponding monthly ratio map. The bias correction notably 365 

increases precipitation in northern Canada and Alaska (Fig. 2d) where precipitation under-catch is often significant 366 

due to the large proportion of snowfall. The uncertainties of gridded estimates are typically larger in high-latitude 367 

sparsely gauged regions and topographically elevated regions, which is partly related to the increased proportion of 368 

snowfall and hence larger gauge catch errors. 369 

𝜎)! =
∑ 𝑤),.(𝜀6,.)!/
.+,

∑ 𝑤),./
.+,

 (12)  
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3.4 Ensemble generation 370 

3.4.1 Spatiotemporally correlated random fields 371 

Spatially correlated random fields (SCRFs) are used to sample from the probability distributions of precipitation and 372 

temperature. The SCRFs are produced using the following three steps. First, the spatial correlation structure is 373 

generated based on an exponential correlation function: 374 

𝑐),. = exp	(−
𝑑),.
𝐶:;*

) (13)  

where 𝑑),.  is the distance between grids i and j, and 𝐶:;*  is the spatial correlation length determined for each 375 

climatological month based on regression using station data for precipitation, Tmean, and Trange, separately. The 376 

spatial correlation structure is generated using the conditional distribution approach. Every point is conditioned on 377 

previously generated points which are determined using a nested simulation strategy to improve the calculation 378 

efficiency (Clark and Slater, 2006). 379 

Second, the spatially correlated random field (𝐑<)	for the tth time step is generated by sampling from the normal 380 

distribution with the mean value and standard deviation depending on the random numbers of previously generated 381 

grids (Clark and Slater, 2006).  382 

Third, the SCRF is generated by incorporating spatial and temporal correlation relationships. Let 𝜌9= and 𝜌9> be the 383 

lag-1 auto-correlation for Tmean and Trange, respectively, 𝜌?>  be the cross-correlation between Trange and 384 

precipitation, 𝐑<@,,9=, 𝐑<@,,9> and 𝐑<@,,A> be the SCRF for the (t-1)th time step for Tmean, Trange, and precipitation, 385 

respectively, the SCRF for tth time step following (Newman et al., 2015) is written as: 386 

⎩
⎪⎪
⎨

⎪⎪
⎧	𝐑<,9= = 𝜌9=𝐑<@,,9= + l1 − 𝜌9=! 𝐑<@,,9=

𝐑<,9> = 𝜌9>𝐑<@,,9> +l1 − 𝜌9>! 𝐑<@,,9>

𝐑<,A> = 𝜌?>𝐑<,9> +l1 − 𝜌?>! 𝐑<@,,A>

 (14)  

3.4.2 Probabilistic estimation 387 

Probabilistic estimates are produced using the probability distribution 𝑁(𝜇, 𝜎!) in Eq. (1) and R in Eq. (14). For 388 

Tmean and Trange, the SCRF (𝐑9= and 𝐑9>) is directly used as the standard normal deviate (R"). The estimate (𝑥;) 389 

for the ensemble member e is written as: 390 

𝑥; = 𝜇 + R" ∙ 𝜎 (15)  
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For precipitation, an additional step is to judge whether an event occurs or not according to OI-merged PoP and the 391 

estimated probability from the SCRF. Let 𝐹B(𝑥) be the CDF of the standard normal distribution, 𝐹B(RA>) is the 392 

cumulative probability corresponding to the random number RA>. If 𝐹B(RA>) is larger than 𝑝#, the scaled cumulative 393 

probability of precipitation (𝑝CD) is calculated as: 394 

𝑝CD =
𝐹B(RA>) − 𝑝#

1 − 𝑝#
 (16)  

The probabilistic estimate for precipitation can be expressed as: 395 

𝑥; = n
0																																															𝑖𝑓									𝐹B(RA>) ≤ 𝑝#
𝜇 + 𝐹B@,(𝑝CD) ∙ 𝜎																		𝑖𝑓									𝐹B(RA>) > 𝑝#

 (17)  

3.5 Evaluation of probabilistic estimates 396 

Independent stations that are not used in SCDNA are used to evaluate EMDNA because the leave-one-out strategy is 397 

too time-consuming to evaluate probabilistic estimates. GHCN-D stations with precipitation or temperature records 398 

less than eight years are extracted because SCDNA restricts attention to stations with at least eight-year records. In 399 

total, 15,018 precipitation stations and 2,455 temperature stations are available for independent testing.  400 

The Brier skill score (BSS; Brier, 1950) is used to evaluate probabilistic precipitation estimates. The continuous ranked 401 

probability skill score (CRPSS) is used to evaluate probabilistic temperature estimates. Their definitions are described 402 

in Appendix D. 403 

Furthermore, the reliability and discrimination diagrams are used to assess the behavior of probabilistic precipitation 404 

estimates. The reliability diagram shows the conditional probability of an observed event (precipitation above a 405 

threshold) given the probability of probabilistic precipitation estimates. In a reliability diagram, a perfect match has 406 

all points located on the 1-1 line. The discrimination diagram shows the PDF of probabilistic precipitation estimates 407 

for different observed categories. For precipitation, two categories are defined: events or non-events, i.e., observed 408 

precipitation above or below a threshold. The difference between PDF curves of events or non-events represents the 409 

degree of discrimination. Larger discrimination is preferred. The PDF for non-event/event should be maximized at the 410 

probability of zero/one. 411 

4. Results 412 

4.1 Comparison between raw and merged reanalysis estimates 413 

The three raw reanalysis estimates are regridded, corrected for bias, and merged. In this section, we directly compare 414 

raw and BMA-merged estimates. The evaluation is performed for all stations using the two-layer cross-validation 415 

strategy. The correlation coefficient (CC), root mean square error (RMSE), and normalized RMSE (NRMSE) are used 416 
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as evaluation metrics. RMSE is sued for Tmean, and NRMSE is used for precipitation and Trange to remove patterns 417 

caused by climatology. 418 

For precipitation, the three reanalysis products show the highest CC in CONUS and the lowest CC in Mexico (Fig. 3). 419 

The slight spatial discontinuity of CC along the Canada-USA border and the USA-Mexico border (Fig. 3 and 6) is 420 

caused by the inconsistent reporting time of stations. Daily precipitation from reanalysis products is accumulated from 421 

0 to 24 UTC, while stations from different countries or regions usually have different UTC accumulation periods 422 

(Beck et al., 2019; Tang et al., 2020a). NRMSE is higher in central CONUS and Mexico compared to other regions. 423 

Overall, ERA5 outperforms MERRA-2 followed by JRA-55. 424 

BMA-merged precipitation estimates show higher accuracy than all reanalysis products (Fig. 3). The improvement of 425 

CC and NRMSE is the most evident in the Rocky Mountains, while for MERRA-2, the improvement is also obvious 426 

in central CONUS. ERA5 is the closest to BMA estimates concerning CC and NRMSE. The improvement of BMA 427 

estimates against ERA5 is more prominent in the high-latitude regions. Specifically, the mean CC increases by 0.05 428 

and 0.07 in regions southern and northern to 55°N, respectively. The corresponding decrease of mean NRMSE is 0.15 429 

and 0.21, respectively. 430 
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 431 

Figure 3. The spatial distributions and histograms of CC (the first row) and NRMSE (the second row) based on raw 432 

reanalysis precipitation estimates (ERA5, MERRA-2, and JRA-55). The improvement of BMA-merged estimates 433 

against raw reanalysis estimates is shown in the third and fourth rows. The maps are at the 0.5° resolution, and the 434 

value of each 0.5° grid point is the median metric of all stations located within the grid. 435 

The CC of reanalysis Tmean estimates is close to one in most regions of North America (Fig. 4) and still above 0.9 in 436 

Mexico where the CC is the lowest. According to RMSE, Tmean estimates have the largest error in western North 437 

America because coarse-resolution raw reanalysis estimates cannot reproduce the variability of temperature caused 438 

by elevation variations. The rank of three reanalysis products for Tmean is the same as that for precipitation with 439 

ERA5 being the best one. BMA estimates show higher CC than reanalysis products particularly in Mexico, while the 440 

improvement of RMSE is the most notable in the Rocky Mountains. For a few stations, the RMSE of BMA estimates 441 
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is slightly worse than raw reanalysis estimates (Fig. 4) because the downscaling of reanalysis temperature could 442 

occasionally magnify the error in low-altitude regions (Tang et al., 2018b). 443 

For Trange, BMA estimates show much larger improvement than Tmean, while the differences of CC and NRMSE 444 

are relatively evenly distributed (Fig. 5). The improvement of BMA estimates against JRA-55 estimates is especially 445 

large. In general, BMA is effective in improving the accuracy of reanalysis precipitation and temperature estimates. 446 

 447 

Figure 4. Same with Figure 3, but for mean temperature. 448 
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 449 

Figure 5. Same with Figure 3, but for daily temperature range. 450 

4.2 The performance of optimal interpolation 451 

Optimal interpolation is used to combine station-based estimates with reanalysis estimates. The performance of OI-452 

merged precipitation and temperature estimates is compared to the background (BMA-merged reanalysis estimates; 453 

Fig. 6) and observation (station-based regression estimates; Fig. 7) inputs. To better show the spatial variations of the 454 

improvement of OI estimates, RMSE for precipitation and Trange is normalized using the mean value (termed as 455 

NRMSE), while Tmean is evaluated using RMSE. 456 

Overall, OI estimates are more accurate than merged reanalysis or station regression estimates for all variables across 457 

North America. Comparing OI estimates to reanalysis estimates, for precipitation, Tmean, and Trange, the mean CC 458 

is improved by 0.24, 0.02, and 0.15, respectively, and the mean RMSE is reduced by 1.88 mm/d, 0.52℃, and 0.87℃, 459 
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respectively. The improvement of OI estimates against station estimates is smaller with the mean CC increasing by 460 

0.06, 0.01 and 0.05, and the mean RMSE decreasing by 0.56 mm/d, 0.18℃, and 0.29℃ for precipitation, Tmean, and 461 

Trange, respectively.  462 

OI can utilize the complementarity between station and reanalysis estimates. For example, according to CC, the 463 

improvement of OI estimates against reanalysis estimates is larger in the eastern than the western CONUS, while the 464 

improvement against station estimates is larger in western than eastern CONUS. This means that although station 465 

estimates generally show higher accuracy than reanalysis estimates, station estimates face more severe quality 466 

degradation in mountainous regions. Moreover, the latitudinal curves of CC and NRMSE in Fig. 6 and 7 indicate that 467 

the improvement of OI estimates against reanalysis estimates decreases as the latitude increases from southern 468 

CONUS to northern Canada, while the improvement against station estimates shows a reverse trend.  469 

For Tmean, the CC improvement for OI estimates is the largest in Mexico and decreases from low to high latitudes, 470 

while based on RMSE, the improvement increases with latitude. For Trange, the latitudinal variation exhibits a similar 471 

pattern with precipitation for regions north of 50°N, with larger/smaller improvement in higher latitudes against 472 

station/reanalysis estimates. For regions south of 50°N, the improvement of CC and NRMSE against station estimates 473 

shows different trends. 474 

Station-based estimates often have lower accuracy in regions with scarce stations (i.e., high-latitude North America), 475 

while reanalysis estimates could have less dependence on station densities due to the compensation of physically-476 

based models. Therefore, OI merging is particularly useful in sparsely gauged regions. 477 
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 478 

Figure 6. The differences of (a) CC and (b) NRMSE (normalized RMSE) between OI-merged precipitation estimates 479 

and BMA-merged reanalysis precipitation estimates. The latitudinal distributions of metrics are attached on the left 480 

side, showing the median value for 0.5° latitude bands. (c-d) are the same with (a-b) but for mean temperature and 481 

RMSE is not normalized. (e-f) are the same with (a-b) but for daily temperature range. 482 
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 483 

Figure 7. Similar with Figure 6, but the differences are between OI-merged precipitation estimates and station-based 484 

regression precipitation estimates. 485 

4.3 Evaluation of probabilistic estimates 486 

The distributions of the OI and ensemble precipitation, Tmean, and Trange estimates in June 2016 are shown in Fig. 487 

8. Compared with OI precipitation estimates, ensemble precipitation estimates show generally consistent but less 488 

smooth distributions because of the relatively short spatial correlation length in the warm season. For Tmean and 489 

Trange, OI and ensemble estimates show very similar spatial distributions. Precipitation shows the largest standard 490 

deviation, while Tmean shows the smallest, because the standard deviation is determined by the errors of OI estimates. 491 

The PoP from station observations and ensemble estimates is compared based on stations with at least 5-year-long 492 

records from 1979 to 2018 (Fig. 9). The comparison cannot represent climatological PoP (Newman et al., 2019b) due 493 

to short time length of independent stations (Sect. 3.5). Overall, EMDNA estimates show similar PoP distributions 494 

with station observations. The PoP in Canada is slightly overestimated because (1) the quality of EMDNA is lower in 495 
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regions with fewer stations and (2) point-scale station observations could underestimate the PoP at a larger scale (e.g., 496 

0.1° grids) as shown by Tang et al. (2018a). 497 

 498 

Figure 8. The distributions of average values from precipitation (the first column), mean daily temperature (the second 499 

column), and daily temperature range (the third column) averaged over the period 1-30 June 2016. The first to third 500 

rows represent estimates from OI-merged inputs, ensemble member 1, and ensemble member 100. The fourth row 501 

represents the standard deviation of all the 100 members for one month (June 2016). 502 
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 503 

Figure 9. The probability of precipitation (PoP) from (a) station observations and (b) concurrent EMDNA ensemble 504 

estimates with their differences shown in (c). Stations with at least 5-year-long records from 1979 to 2018 are involved 505 

in the comparison. 506 

The discrimination diagram (Fig. 10) shows that ensemble precipitation assigns the highest occurrence frequency at 507 

the lowest estimated probability for non-precipitation events, and the performance becomes better as the threshold 508 

increases from 0 to 50 mm. For precipitation events, ensemble estimates show the highest frequency at the highest 509 

estimated probability for the thresholds of 0, 10, and 25 mm, while as the threshold increases, the frequency curve 510 

becomes skewed to the lower estimated probability. This problem is also seen in Clark and Slater (2006) and Newman 511 

et al. (2015). Ensemble precipitation shows good reliability for all precipitation thresholds with the points located at 512 

or close to the 1-1 line (Fig. 10). At low and high estimated probabilities of occurrence, ensemble precipitation shows 513 

slight wet bias. The reliability performance does not show clear dependence with thresholds. 514 
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 515 

Figure 10. The discrimination and reliability diagrams based on ensemble precipitation estimates. Four rain/no rain 516 

thresholds (0, 10, 25, 50 mm) are used. 517 

The BSS for precipitation and CRPSS for Tmean and Trange are shown in Fig. 11. In most cases, ensemble 518 

precipitation shows the highest frequency when BSS is above 0.5. As the precipitation threshold increases, the BSS 519 

values decrease. The median BSS values are 0.62, 0.54, and 0.46 for the thresholds of 0, 10, and 20 mm/d, respectively. 520 

We note that a small number of cases show BSS values smaller than zero, indicating that the ensemble estimated 521 

probability is worse than climatological probability. A low BSS value usually occurs in regions where precipitation is 522 

hard to estimate (e.g., Rocky Mountains) resulting in inaccurate parameters of Eq. (1).  523 
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The BSS for all thresholds shows a clear increasing trend from 1979 to 2018 (Fig. 11b) because the observed 524 

precipitation samples from SCDNA increase during this period (Fig. 2 in Tang et al. (2020c)). The increasing trend 525 

of BSS is particularly prominent from 2003 to 2009, during which precipitation samples in the USA experience the 526 

greatest increase (Tang et al., 2020c). The results show that although infilled station data contribute to higher station 527 

densities, observation samples still have a significant effect on gridded data estimation. 528 

Tmean shows high CRPSS for most cases with the frequency peak occurring at ~0.8. The CRPSS of Trange is much 529 

lower with the peak occurring at ~0.6. The median CRPSS for Tmean and Trange is 0.74 and 0.51, respectively. 530 

Trange shows lower CRPSS probably because the bias direction (i.e., overestimation or underestimation) of daily 531 

minimum and maximum temperature could be different, resulting in the larger bias of Trange than Tmean. Analyses 532 

show that among stations with negative CRPSS, most are located in Mexico due to the degraded quality of temperature 533 

estimates (Sect. 4.1 and 4.2). The long-term variation of CRPSS is not shown because independent temperature 534 

stations are insufficient to support validation between 1986 and 2010.  535 

 536 
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Figure 11. (a) The frequency distributions of the Brier Skill Score (BSS) for precipitation corresponding to rain/no 537 

rain thresholds from 0 to 25 mm/d. (b) The distributions of BSS for precipitation from 1979 to 2018. For each year, 538 

the median value of all stations is used. (c) The frequency distributions of the continuous ranked probability skill score 539 

(CRPSS) for daily mean temperature and daily temperature range. 540 

5. Discussion 541 

This study presents the framework for producing an ensemble precipitation and temperature dataset over North 542 

America. Although we have tested multiple choices of methods (Sect. 3) and overall the product shows good 543 

performance (Sect. 4), the methodology still has limitations that need to be improved through continued efforts. 544 

5.1 Implementation of OI 545 

OI is used to merge reanalysis outputs and station data. To implement OI-based merging, a critical step is to estimate 546 

the weights. Previous studies usually adopt empirical error or variogram functions and fit the parameters using station 547 

observations (e.g., CaPA (Fortin et al., 2015) and CMPA (Shen et al., 2018)); then the parameters are constant for the 548 

whole study area in the actual application.  549 

In this study, we proposed a novel design, which uses station-based regression estimates as the observation field and 550 

calculates weights by directly solving the weight functions based on observation and background errors. Compared 551 

with methods that use station data as the observation field, our method is characterized by inferior estimation of the 552 

observation field but realistic estimation of weights. The close linkage between the observation field and the weights 553 

could benefit OI estimates but comparing different OI implementations is still meaningful and necessary considering 554 

that OI has been widely used and is the core algorithm of some operational products.  555 

Furthermore, regression estimates show worse performance in regions with fewer stations. More advanced 556 

interpolation methods that can utilize climatology information and comprehensively consider topographic and 557 

atmospheric conditions (Daly et al., 2008; Newman et al., 2019b; Newman and Clark, 2020) should be examined in 558 

future studies. 559 

5.2 Probabilistic estimation 560 

Power transformations (e.g., Box-Cox and root/cubic square) with fixed parameters have proven to be useful in 561 

precipitation estimation and dataset production (Fortin et al., 2015, 2018; Cornes et al., 2018; Khedhaouiria et al., 562 

2020; Newman et al., 2020). The Box-Cox transformation with a constant parameter is applied following Fortin et al. 563 

(2015) and Newman et al. (2019b, 2020). A fixed parameter, however, cannot ensure that transformed precipitation 564 

is normally distributed everywhere as is desirable.  565 

We tested a series of additional parametric and non-parametric transformations based on power functions, logarithmic 566 

functions, or a mix of both, and optimized the parametric transformation functions (including Box-Cox) for every grid 567 
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by minimizing the objective function which is the sum of squared L-skewness and L-kurtosis (Papalexiou and 568 

Koutsoyiannis, 2013). Theoretically, compared to a Box-Cox transformation with a fixed parameter, the optimized 569 

functions can obtain precipitation series closer to the normal distribution which should benefit probabilistic estimation, 570 

while the evaluation results show that the Box-Cox transformation with a fixed parameter is better at probabilistic 571 

estimation than optimized functions. We suggest there are three reasons for this: (1) the standard deviation in Eq. (1) 572 

is obtained by interpolating OI errors (Sect. 3.2.2) from neighboring stations, whereas the optimized transformation 573 

parameters could be different at those stations, (2) zero precipitation is excluded during optimization to avoid invalid 574 

transformation or optimization, which reduces the number of stations for every time step and thus degrades the quality 575 

of the spatial interpolation, and (3) the errors caused by back transformation could be large if the optimized 576 

transformation is too powerful. More efforts are needed to resolve this problem. 577 

There are other potential directions for improvement. For example, SCRF is generated from Gaussian distributions, 578 

while other choices such as copulas functions (Papalexiou and Serinaldi, 2020) show potential in probabilistic 579 

estimation. The spatial correlation length is constant for the whole study area following Newman et al. (2015, 2019b), 580 

which may introduce uncertainties for a large domain. Overall, studies related to the production of ensemble 581 

meteorological datasets are still insufficient, particularly for large areas. More studies are needed to clarify the critical 582 

issues in large-scale probabilistic estimation and explore the effect of parameter/method choices on probabilistic 583 

estimates. 584 

5.3 Alternate data sources 585 

The quality of source data (station observations and reanalysis models) primarily determines the quality of output 586 

datasets. The density of stations has a critical effect on the accuracy of the observation field and probabilistic estimates. 587 

While SCDNA collects data from multiple datasets, efforts are ongoing to expand the database by involving station 588 

sources such as provincial station networks in Canada.  589 

For reanalysis products, ERA5, MERRA-2, and JRA-55 are regridded using locally weighted linear regression to meet 590 

the target resolution. There are some choices for future improvement, such as (1) adopting/developing better 591 

downscaling methods or (2) utilizing outputs from high-resolution re-analysis products or forecasting models such as 592 

ERA5-Land (Muñoz-Sabater et al., 2021) or the Arctic System Reanalysis (Bromwich et al., 2018). Moreover, 593 

including other data sources such as satellite and weather radar estimates is also an opportunity for regions with 594 

adequate sample coverage. 595 

5.4 Precipitation under-catch 596 

Although station precipitation observations are used as the reference in this study, these values are subject to 597 

measurement errors such as wetting loss, wind-induced under-catch, and trace precipitation. Station temperature 598 

measurements also contain errors due to microclimate and sensor design, which is generally small and not discussed 599 

here. The under-catch of precipitation is particularly severe in high latitudes and mountains due to the stronger wind 600 

and frequent snowfall (Sevruk, 1984; Goodison et al., 1998; Nešpor and Sevruk, 1999; Yang et al., 2005; Scaff et al., 601 
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2015; Kochendorfer et al., 2018). For example, underestimation of precipitation could be larger than 100% in Alaska 602 

(Yang et al., 1998). Bias correction of station precipitation data should consider many factors such as gauge types, 603 

precipitation phase, and environmental conditions, which would be very complicated when a large number of sparsely 604 

distributed stations are involved over the whole of North America. 605 

The under-catch correction used in this study relies on bias-corrected precipitation climatology produced by Beck et 606 

al. (2020), which infers the long-term precipitation using a Budyko curve and streamflow observations. The bias-607 

corrected precipitation climatology, however, is less accurate in northern Canada where streamflow stations are few 608 

(Beck et al., 2020). The streamflow data used by the bias-corrected climatology also contain uncertainties (Hamilton 609 

and Moore, 2012; Kiang et al., 2018) related to factors such as streamflow derivation methods (e.g., rate curves) and 610 

measurement instruments. In addition, this correction method aims to constrain the total precipitation amount and 611 

cannot distinguish between rainfall and snowfall which show different gauge catch performance. Data users can realize 612 

rain-snow classification using approaches such as temperature threshold-based methods and reanalysis model-based 613 

snowfall proportion. Moreover, as mentioned earlier, the water balance estimates of precipitation under-catch do not 614 

consider non-contributing areas of river basins. Whilst various under-catch correction methods (e.g., Fuchs et al., 2001; 615 

Beck et al., 2020; Newman et al., 2020) exist, further studies are needed to compare these solutions considering their 616 

effectiveness and availability of input data in a large domain. 617 

6. Data availability 618 

The EMDNA dataset is available at https://doi.org/10.20383/101.0275 (Tang et al., 2020a) in netCDF format. 619 

Individual ensemble member, ensemble mean, and ensemble spread of precipitation, Tmean, and Trange are provided. 620 

Since the 100 members are equally plausible, users can download fewer members if the storage space and processing 621 

time are limited. The deterministic OI estimates of precipitation, PoP, Tmean, and Trange produced in this study are 622 

also available in netCDF format. The high-quality OI estimates merge reanalysis and station data, which can be useful 623 

to applications that do not need ensemble forcings. The data sizes are 3.35 TB for the probabilistic part and 40.84 GB 624 

for the deterministic part, respectively. 625 

The ensemble mean of the 100 members for Tmean and Trange is similar to deterministic OI estimates. For 626 

precipitation, the ensemble mean is slightly higher than deterministic OI estimates due to the back transformation. We 627 

recommend that users select the deterministic dataset instead of the ensemble mean if their applications do not involve 628 

uncertainty characterization.  629 

A teaser dataset of probabilistic estimates is provided to facilitate easy preview of EMDNA without downloading the 630 

entire dataset. The teaser dataset covers the region from -116.8° to -115.2°W, and 50.7° to 51.9°N, the time from 2014 631 

to 2015, and the ensemble members from 1 to 25. The total data size is smaller than 30 MB. See Appendix E for a 632 

brief introduction. 633 
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7. Summary and Conclusions 634 

Ensemble meteorological datasets are of great value to hydrological and meteorological studies. Given the lack of a 635 

historical ensemble dataset for the entire North America, this study develops EMDNA by integrating multi-source 636 

information to overcome the limitation of sparse stations in high-latitude regions. EMDNA contains precipitation, 637 

Tmean, and Trange estimates at 0.1° spatial resolution and daily temporal resolution from 1979 to 2018 with 100 638 

members. Multiple methodological choices are examined when determining critical steps in the production of 639 

EMDNA. The ultimate framework composes of four main steps: (1) generating station-based interpolation estimates 640 

from SCDNA using locally weighted linear/logistic regression, (2) regridding, correction, and merging of reanalysis 641 

products (ERA5, MERRA-2, and JRA-55), (3) merging station-reanalysis estimates using OI based on a novel method 642 

of OI weight calculation, and correcting precipitation under-catch using the PBCOR dataset, and (4) generating 643 

ensemble estimates by sampling from the estimated probability distributions with the perturbations provided by SCRF. 644 

The performance of each step is comprehensively evaluated using multiple methods. The results show that the design 645 

of the framework is effective. In short, we find that (1) station-based interpolation estimates are less accurate in regions 646 

with sparse stations (e.g., high latitudes) and complex terrain; (2) BMA-merged reanalysis estimates show notable 647 

improvement against raw reanalysis estimates, particularly for precipitation and Trange and over high-latitude regions; 648 

(3) OI achieves more accurate estimates than interpolation and reanalysis estimates from (1) and (2), respectively, and 649 

the complementary effect between reanalysis and interpolation estimates contributes to the large improvement of OI 650 

estimates in sparsely gauged regions; and (4) ensemble precipitation estimates show good discrimination and 651 

reliability performance for all thresholds, and the BSS values for ensemble precipitation and CRPSS values for 652 

ensemble Tmean and Trange are high in most cases. BSS values of ensemble precipitation increase from 1979 to 2018 653 

due to the increase in the number of stations. 654 

Overall, EMDNA (version 1) will be useful for many applications in North America such as regional or continental 655 

hydrological modeling. Meanwhile, we recognize that the current framework is not perfect and have provided 656 

suggestions on the future directions for large-scale ensemble estimation of meteorological variables. Continuing 657 

efforts from the community are needed to promote the development of probabilistic estimation methods and datasets. 658 

Development of datasets at higher resolutions (e.g., 1 km and hourly) is also an important direction to enable more 659 

sophisticated hydrometeorological studies (e.g., Sampson et al., 2020). 660 
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 671 

Appendix A. Regression coefficients 672 

The coefficients for locally weight linear regression are estimated using weighted least squares. Given a station i with 673 

m neighboring stations, let 𝐀 = [1, 𝐴,, … , 𝐴*] be the 𝑚× 𝑛 + 1 attribute matrix, let 𝐱 = (𝑥,, 𝑥!, … , 𝑥/) be the station 674 

observations from neighboring stations, and let 𝐰) = L𝑤),,, 𝑤),!, … , 𝑤),/N be the weight vector with distance-based 675 

weights computed from Eq. (5). The regression coefficients 𝜷 = (𝛽#, 𝛽,, … , 𝛽*) for Eq. (4) are estimated from the 676 

weighted normal equation as 677 

  

𝜷 = (𝐀E𝐖𝐀)@,𝐀E𝐖𝐱, A1 

where the 𝑚×𝑚 weight matrix 𝐖 = 𝐈/𝐰) is a diagonal matrix obtained by multiplying the 𝑚×𝑚 identity matrix 678 

𝐈/ with the weight vector 𝐰) . 679 

The regression coefficients for logistic regression (Eq. 6) are estimated iteratively as: 680 

𝜷*;F = 𝜷(:G + (𝐀E𝐖𝐕𝐀)@,𝐀E𝐖(𝐏# −𝝅) A2 

𝝅 =
1

1 + exp	(−𝐀𝜷(:G) A3 

𝐕 = 𝐈/𝝅(1 − 𝝅) A4 

where 𝐏# is a vector of binary precipitation occurrence for neighboring stations, 𝝅 is the vector of estimated PoP for 681 

neighboring stations, and 𝐕 is the diagonal variance matrix for PoP. The regression coefficients 𝜷(:G are initialized as 682 

a vector of ones.  683 

 684 

Appendix B. Anomalous stations 685 

To exclude climatologically anomalous stations, for temperature (Tmean or Trange), we calculate: (1) the absolute 686 

difference of the climatological mean between the target station and the average value of its 10 neighboring stations 687 
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(referred to as Diff-1), and (2) the absolute difference of the climatological mean between station observation and 688 

regression estimates (referred as Diff-2). A temperature station will be excluded if its Diff-1 is larger than the 95% 689 

percentile and its Diff-2 larger than the 99% percentile of all stations simultaneously. The threshold of percentiles for 690 

Diff-1 is lower to better identify some climatologically anomalous stations.  691 

For precipitation, the ratio (Ratio-1 and Ratio-2) is obtained in the same way with the Diff-1 and Diff-2 of temperature. 692 

A two-tailed check is used for precipitation compared with the one-tailed check for temperature. A precipitation station 693 

will be excluded if its Ratio-1 is larger (or smaller) than the 99.9% (1%) percentile and its Ratio-2 larger (or smaller) 694 

than the 99.9% (1%) percentile simultaneously. This check has more tolerance for heavy precipitation but tries to 695 

exclude more extremely dry stations.  696 

As a result, ~1.5% precipitation and temperature stations are rejected, after which algorithms described in Sect. 3.1.1 697 

and 3.1.2 are re-run. Stations can be anomalous because they are badly operated or simply because they are unique in 698 

terms of topography or climate. The usage of Diff-2 or Ratio-2 is helpful to avoid excluding unique stations, but for 699 

cases where the regression is ineffective, the unique stations can still be wrongly excluded. Although the effect on 700 

final estimates could be rather small, better strategies could be used in future studies. 701 

 702 

Appendix C. Error of BMA-merged reanalysis estimates 703 

The errors of BMA-merged estimates are first estimated for all stations and then interpolated to grids. Considering 704 

station observations cannot be used to evaluate merged estimates once they are used in bias correction or BMA weight 705 

estimation, a two-layer cross-validation strategy is designed. In the first layer, we treat i as the target station and find 706 

its m (𝑗, = 1, 2,… ,𝑚; 	𝑖	Ï	𝑗,) neighboring stations. In the second layer, we treat each 𝑗, as a target station, and (1) 707 

find m (𝑗! = 1, 2,… ,𝑚; 	𝑖	Ï	𝑗!) neighboring stations for each 𝑗,, (2) calculate linear scaling correction factors for all 708 

𝑗!, (3) estimate the correction factor for the target 𝑗, by interpolating factors at all 𝑗! stations using inverse distance 709 

weighting, (4) correct estimates at 𝑗,  using the correction factor, (5) calculate BMA weights of three reanalysis 710 

products for all 𝑗, stations, (6) interpolate BMA weights from all 𝑗, stations to the target station i and merge the three 711 

reanalysis products for i, and (7) calculate the difference between merged reanalysis estimates and station observations 712 

for i. This two-layer design may seem convoluted but is necessary to ensure that the error estimation is realistic. 𝑗, 713 

and 𝑗! could be partly overlapped due to their close locations but should not cause a large effect on the error estimation 714 

for i because data for i are only used in (7) in this design. The station-based errors are interpolated to all grids using 715 

inverse distance weighting.  716 

Appendix D. Metrics for probabilistic evaluation 717 

BSS is calculated based on the Brier Score (BS): 718 
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BSS = 1 −
BS

BSC:)/
 D1 

BS =
1
𝑛: (PoP;*D − PoP(HD)!

*

)+,
 D2 

where PoP;*D  is the estimated probability of ensemble precipitation, PoP(HD  is the observed binary precipitation 719 

occurrence, 𝑛 is the sample number, and BSC:)/ is the climatological BS by assigning the climatological probability 720 

to all samples. When the two series match the value of BSS will be equal to one. 721 

CRPSS is calculated based on the continuous ranked probability skill score (CRPS; Hersbach, 2000): 722 

CRPSS = 1 −
CRPS

CRPSC:)/
 D3 

CRPS = � (𝐹(𝑥) − 𝐻(𝑥 ≥ 𝑥())!𝑑𝑥
I

@I
 D4 

where 𝐹(𝑥) is the CDF of the ensemble temperature estimate x, 𝑥( is the observed temperature, 𝐻(𝑥 ≥ 𝑥() is the 723 

Heaviside step function with the value being one if the condition 𝑥 ≥ 𝑥( is satisfied and zero if not satisfied, and 724 

CRPSC:)/ is the climatological CPRS. CRPS measures the distance between the CDF of probabilistic estimates and 725 

observations. For a perfect match, the value of CRPSS would be one. 726 

Appendix E. Teaser dataset 727 

The teaser dataset is a subset of EMDNA probabilistic estimates for a small region (-116.8° to -115.2°W, 50.7° to 728 

51.9°N) and a short period (2014 to 2015) with only 25 ensemble members. Users can easily download and preview 729 

the teaser dataset (<30 MB) before downloading the entire EMDNA dataset (~3 TB or ~40 GB) as shown in Sect. 6. 730 

The region covers the Bow River basin above Banff, Canada, which is located in the Canadian Rockies (Figure A1). 731 

The spread of ensemble members in this region could be large due to the complex topography and limited stations. 732 
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 733 

Figure A1. The distributions of daily precipitation (the first column), mean daily temperature (the second column), 734 

and daily temperature range (the third column) on 29 June 2015. The first to third rows represent ensemble members 735 

1, 10, and 20, respectively. The fourth row represents the standard deviation of 25 members for this day. The black 736 

line outlines the Bow River basin above Banff, Canada. 737 
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