
OceanSODA-ETHZ: A global gridded data set of the surface ocean
carbonate system for seasonal to decadal studies of ocean
acidification
Luke Gregor1 and Nicolas Gruber1

1Environmental Physics, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zürich, Switzerland

Correspondence: Luke Gregor (luke.gregor@usys.ethz.ch)

Abstract. Ocean acidification has
:::::::::
profoundly

:
altered the ocean’s carbonate chemistry profoundly since preindustrial times,

with potentially serious consequences for marine life. Yet, no long-term,
:
global observation-based data set exists that permits

:::::
allows

:
to study changes in ocean acidification for all carbonate system parameters over the last few decades. Here, we fill this

gap and present a methodologically consistent
:::::::::::::::::::::::
methodologically-consistent global data set of all relevant surface ocean param-

eters, i.e., dissolved inorganic carbon (DIC), total alkalinity (TA), partial pressure of CO2 (pCO2), pH, and the saturation state5

with respect to mineral CaCO3 (⌦) at monthly resolution over the period 1985 through 2018 at a spatial resolution of 1x1�.

This data set, named OceanSODA-ETHZ, was created by extrapolating in time and space the surface ocean observations of

pCO2 (from the Surface Ocean CO2 ATlas (SOCAT)) and total alkalinity (TA, from the Global Ocean Data Analysis Project

(GLODAP)) using the newly developed Geospatial Random Cluster Ensemble Regression (GRaCER) method. This method is

based on a two-step (cluster-regression) approach, but extends it by considering an ensemble of such cluster-regressions, lead-10

ing to higher
:::::::
improved

:
robustness. Surface ocean DIC, pH, and ⌦ were then computed from the globally mapped pCO2 and TA

using the thermodynamic equations of the carbonate system. For the open ocean, the cluster regression method estimates pCO2

and TA with global near-zero biases and root mean squared errors of 12 µatm and 13 µmol kg�1, respectively. Taking into

account also the measurement and representation errors, the total error
:::::::::
uncertainty

:
increases to 14 µatm and 21 µmol kg�1, re-

spectively. We assess the fidelity of the computed parameters by comparing them to direct observations from GLODAP, finding15

surface ocean pH and DIC global biases of near zero, and root mean squared errors of 0.023 and 16 µmol kg�1, respectively.

These errors
::::::::::
uncertainties are very comparable to those expected by propagating the total errors

:::::::::
uncertainty

:
from pCO2 and

TA through the thermodynamic computations, indicating a robust and conservative assessment of the errors
::::::::::
uncertainties. We

illustrate the potential of this new dataset by analyzing the climatological mean seasonal cycles of the different parameters of

the surface ocean carbonate system, highlighting their commonalities and differences.
::::::
Further,

:::
this

:::::::
dataset

:::::::
provides

::
a
:::::
novel20

::::::::
constraint

:::
on

:::
the

:::::
global

::::
and

::::::::::
basin-scale

:::::
trends

::
in
::::::

ocean
::::::::::
acidification

:::
for

:::
all

::::::::::
parameters.

::::::::::
Concretely,

:::
we

::::
find

:::
for

:::
the

::::::
period

::::
1990

:::::::
through

::::
2018

::::::
global

:::::
mean

:::::
trends

:::
of

:::
8.6

::
±

:::
0.1

:::::
µmol

::::
kg�1

:::::::::
decade�1

:::
for

:::::
DIC,

:::::::
�0.016

::
±

:::::
0.000

::::::::
decade�1

:::
for

::::
pH,

::::
16.5

::
±

:::
0.1

:::::
µatm

::::::::
decade�1

:::
for

::::::
pCO2,

:::
and

:::::
-0.07

::
±

::::
0.00

:::::::::
decade�1

:::
for

::
⌦.

:
The OceanSODA-ETHZ data can be downloaded from

https://doi.org/10.25921/m5wx-ja34 (Gregor and Gruber, 2020).
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1 Introduction25

The oceans have taken up roughly one quarter of the anthropogenic CO2 that has been released into the atmosphere since

the start of the industrial era (Sabine et al., 2004; Gruber et al., 2019), lowering
:::::::::
modulating the increase in atmospheric CO2

substantially. But
:::::::
However,

:
this buffering of anthropogenic climate change by the ocean comes with a substantial cost, i.e.,

ocean acidification (Doney et al., 2009). The uptake of anthropogenic CO2 over the last 150 years has made the surface

ocean more acidic with a decrease in the global mean pH from ⇠8.2 around 1850 to ⇠8.1 today (Feely et al., 2009; Jiang30

et al., 2019). This decrease in pH equates to a ⇠30% increase in the concentration of the H+ ions. Some of the anthropogenic

CO2 taken up from the atmosphere remains in the seawater as dissolved CO2, thus increasing its partial pressure (pCO2). In

fact, surface
:::::
ocean

:
pCO2 tends to track the increase in atmospheric pCO2 rather closely (e.g. Bates et al. 2014) owing to the

order of one year
:::::::
⇠ 1-year timescale for the equilibration of CO2 across the air-sea interface (Sarmiento and Gruber, 2006),

which is smaller than the decadal timescale increase in atmospheric CO2 ::::::::::::::::::::::
(Friedlingstein et al., 2019). While some of the added35

CO2 stays as CO2, the majority of is titrated away by the ocean’s carbonate ion (Sarmiento and Gruber, 2006), leading to

a substantial reduction in its concentration. This reduces the saturation state (⌦) with regard to mineral
::
the

:::::::
mineral

:::::::
calcium

::::::::
carbonate

:
(CaCO3:

), where an ⌦ of < 1 leads to dissolution of CaCO3.

These chemical changes, collectively described as ocean acidification, will have a profound impact on marine organisms,

especially those that form shells made of calcium carbonate (CaCO3 ) (Orr et al., 2005; Fabry et al., 2008; Doney et al., 2009;40

Bednaršek et al., 2019; Doney et al., 2020). Calcifying organisms living in high latitudes and subtropical and tropical upwelling

regions, with their naturally low ⌦ and pH, may be particularly vulnerable, as these regions will be among the first to cross

critical thresholds such as becoming undersaturated
::::::::
saturation

:::::::::
thresholds

:
(Orr et al., 2005; Steinacher et al., 2009; Gruber

et al., 2012; Franco et al., 2018; Fabry et al., 2009; Hauri et al., 2016; Negrete-García et al., 2019). However, marine organisms

may be susceptible to changes even where Omega
::
⌦ > 1 due to a shift in energetic requirements for shell formation (Orr45

et al., 2005; Pörtner and Farrell, 2008). For example, it is well known that corals start to decrease their calcification already

at saturation states well above 3 (Gattuso et al., 1998). Ocean acidification will thus have a significant economic impact on

fisheries and tourism through the impact on shellfish and corals,
:
respectively (Cooley and Doney, 2009; Doney et al., 2020).

At the global scale, most of what we know about the progression of ocean acidification in the recent decades has come from

either models (Bopp et al., 2013; Kwiatkowski et al., 2020) or from the combination of model-based trends with observation-50

based climatologies (Feely et al., 2009; Jiang et al., 2019). A notable exception are the large number of studies that have

analyzed the trends and variability of surface ocean pCO2 (e.g. Landschützer et al. 2013, 2016; Rödenbeck et al. 2014; Denvil-

Sommer et al. 2019; Gregor et al. 2019) and the effort of Lauvset et al. (2015) and Turk et al. (2017) to analyze long-term

trends in pH and Omega
:
⌦

:
respectively. But these studies remained limited to one single parameter. At the local to regional

:::::::::::::
local-to-regional

:
scale, a number of long-term timeseries have provided excellent insights into the processes and trends of55

ocean acidification across all carbonate system parameters (e.g. Bates et al. 2014), but no global comprehensive view of the

historical development of ocean acidification based on observations exist. This is largely a consequence of the limited observa-

tions, although observational efforts have increased substantially in the recent decades , among others through efforts such as
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GOA-ON (Global Ocean Acidification Observing Network (Tilbrook et al., 2019). The OceanSODA (Satellite Oceanographic

Datasets for Acidification) project (https://esa-oceansoda.org), which this study forms part of, aims to close this gap by linking60

satellite observations with in situ observations of the marine carbonate system.

In line with the goal of the OceanSODA project, we aim to develop a global, observation-based data set documenting

the progression of ocean acidification over the recent decades. Such a data set will be crucial to put the current trends of

ocean acidification into the context of the changes over the last few decades. By also describing the level of variability in

ocean acidification around the long-term trend, it will also help to better understand the challenges that marine organisms are65

facing. And
::::::::::
Additionally,

:
it will permit us to explore in much more detail how ocean acidification has unfolded regionally, and

potentially deviated from the simple model of it being slaved to
::::::::
dependent

:::
on the rise in atmospheric CO2.

The well measurable
:::::::::::::
well-measurable

:
parameters of the marine carbonate system are dissolved inorganic carbon (DIC), total

alkalinity (TA), pH
:
, and the partial pressure of carbon dioxide (pCO2). Very few measurement programs measure all of these

parameters concurrently. In fact, the vast majority of the observational programs measure only one parameter, with pCO2 being70

the most often measured one, followed by DIC, TA, and pH (Bakker et al., 2016; Olsen et al., 2016). Since two parameters

are sufficient to fully describe the marine carbonate system, any combination of two will permit to fully reconstruct the entire

carbonate system. But not all combination are equally suited, given the uncertainties in the measurements, the uncertainties in

the coefficients of the carbonate chemistry, and the spatiotemporal
:::::::::::::
spatio-temporal coverage vis-à-vis the variability of these

parameters.75

We use here the pair pCO2 and TA as the basis for our reconstruction for two reasons. First, these are the best observed

parameters relative to their spatio-temporal variability, permitting us to develop better predictive models for the global surface

ocean than possible for, e.g., DIC and pH. Second, detailed assessments of the internal consistency of the oceanic carbonate

system have shown that pCO2 and TA are a well suited pair to estimate pH, owing to the reliability of the measurements and the

predictive accuracy (Bockmon and Dickson, 2015; Bakker et al., 2016; Raimondi et al., 2019). This is not the case if DIC was80

used instead of TA. Our choice is supported by Takahashi and Sutherland (2013),
:
who developed the first seasonal climatology

of all parameters of the surface ocean carbonate system
:::::::::
parameters using the same pair.

Measurements of pCO2 are abundant compared to the other variables,
:
due to a well-established and robust underway sam-

pling protocol that allows instruments to also be installed on non-scientific vessels under the Volunteer Observing Ship (VOS)

program (Bakker et al., 2016; Pierrot et al., 2009). High quality pCO2 data are also easily accessible thanks to SOCAT that85

consolidates underway pCO2 observations and ensures the quality of observations (Bakker et al., 2016). Total alkalinity is not

as widely measured as pCO2 due to the fact that measurements are made discretely with bottle samples (Dickson et al., 2007).

But, fortunately, TA is highly correlated with salinity on a global scale (r=0.96) making it a suitable variable for prediction

with a < 10% error of the observed range (Lee et al., 2006; Olsen et al., 2016; Broullón et al., 2018). Further, the accessibility

to
::
of TA measurements is made possible through the continued efforts of GLODAP Olsen et al. 2016)

:::::::::::::::
(Olsen et al., 2016). We90

discarded the option to use DIC instead of TA, even though DIC is slightly more often sampled than TA. This decision is

based on the fact that DIC is more variable than TA, and also its correlation with salinity is much lower. As a result, it is much

more difficult to develop predictive models
::
for

:::::
DIC

:::
that

:::
are

::
as

:::::::
accurate

::::
and

::::::
precise

::
as

:::::
those

:::
for

::
TA. Oceanic pH is also not an
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option, since historically , it has been measured far less often than the other parameters. This is changing, since progress with

reference materials and new sensors have permitted to grow
:
a

:::::::::
tremendous

:::::::
increase

::
in

:
the number of pH measurements in recent95

yearstremendously, largely benefitting from the deployments on the ,
:::::::

largely
::::::::
benefiting

:::::
from

::::::::::
deployments

:::
of biogeochemical

Argo floats (Claustre et al., 2020).

The actual spatial and temporal coverage for any of these parameters is very low. Even for pCO2, i.e., the parameter with

the densest coverage, only about 1.4% of the global surface ocean has been sampled in any given month over the past 30

years (Bakker et al., 2016). Thus, the global-scale reconstruction of the progression of ocean acidification requires a very100

substantial inter- and extrapolation effort. Advances in remote sensing (Land et al., 2019), and the increasing power and

usability of machine learning techniques have permitted
::
us

:
to address this challenge, leading to a proliferation of such efforts.

But
::::::::
However,

:
they vary greatly between the different parameters of the marine carbonate system.

By far the most established efforts are those that interpolate and extrapolate the ocean pCO2 observations, as demonstrated

by the inter-comparison project by Rödenbeck et al. (2015). Feed-forward neural networks (FFNN) have become one of the105

favored tools (Landschützer et al., 2013; Zeng et al., 2014; Denvil-Sommer et al., 2019), but other statistical and machine

learning methods, such as Bayesian regression and tree-based regression, have also been used with similar success (Rödenbeck

et al., 2014; Gregor et al., 2019). However, the specific implementation of the methods is what sets the assortment of methods

apart. For example, the SOM-FFN method of Landschützer et al. (2013) and the CSIR-ML6 method of Gregor et al. (2019)

(amongst others) first cluster the data based on a certain set of climatological predictors and then perform a regression on pCO2110

for each resulting cluster. An alternate approach, used by both the LSCE-FFNN
:::::::::::::::
CMEMS-FFNNv2

:
(Denvil-Sommer et al.,

2019) and NIES-FNN (Zeng et al., 2014) methods, is to include the positional coordinates, without the need for subsetting the

data by clustering. Despite the differences in implementation and regression algorithms, the majority of methods achieve an

accuracy of roughly 17.5
::
for

:::
the

::::
open

:::::
ocean

::
a
::::::
RMSE

::
of

:::::::
roughly

::
18

:
µatm when compared with SOCAT (Gregor et al., 2019).

But
:::::::
However,

:
each of these methods has its strengths and weaknesses: For

:
;
:::
for example, the SOM-FFN and CSIR-ML6115

methods are able to generalize estimates in data sparse
:::::::::
data-sparse

:
regions due to information sharing within a cluster, but the

methods suffer from discrete boundaries where clusters meet (Gregor et al., 2019). These discrete boundaries may introduce

artefacts when applied to certain questions.
:::
This

::
is

::::
also

:::
the

::::
case,

:::
for

:::::::
example

::
in

:::
the

:::::::
blended

::::
open

:::::
ocean

:
-
::::::
coastal

:::::
ocean

:::::::
product

::
of

::::::::::::::::::::::
(Landschützer et al., 2020),

::::::
where

:::
the

:::::::
authors

::::::::
combined

::::
the

::::
open

::::::
ocean

:::::::
estimate

::
of

:::::::::::::::::::::::
(Landschützer et al., 2016)

::::
with

:::
the

::::::
coastal

::::::
product

::
of

::::::::::::::::::
(Laruelle et al., 2017)

:
.120

The extrapolation of TA onto a global grid is also well established (Gruber et al., 1996; Millero et al., 1998; Lee et al., 2006;

Takahashi and Sutherland, 2013; Good et al., 2013; Carton et al., 2018; Bittig et al., 2018). The highly linear
:::::::::::
highly-linear

relationship between salinity and TA means that linear regressions have been able for quite some time to estimate TA with

adequate accuracy. For example, Gruber et al. (1996) developed a globally applicable
::::::::::::::::
globally-applicable multi-linear regres-

sion model involving salinity and the conservative tracer PO (PO = O2 +170·PO4, (Broecker and Peng, 1974)) and achieved125

a global RMSE of 11 µmol kg�1. Lee et al. (2006) also used a MLR approach, but differentiated it regionally using salinity,

temperature and spatial coordinates as independent variables. The same approach was followed by Takahashi et al. (1993).

More recently, more nuanced and non-linear regression approaches have improved upon the MLR approaches (Sasse et al.,
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2013; Carter et al., 2018; Broullón et al., 2018; Bittig et al., 2018). For example, the Locally Interpolated Alkalinity Regression

(LIARv2) still makes use of linear regression but interpolates the regression coefficients spatially from a fixed set of trained130

regression nodes located at every 5’th
::
th point (Carter et al., 2016). Sasse et al. (2013) used a self-organizing map approach

coupled with a local linear optimizer (called SOMLO) and achieved a global RMSE of 9 µmol kg�1. A similar RMSE was

achieved by Broullón et al. (2018) using a neural network approach (NNGv2).
:::::
These

:::
low

::::::
RMSE

::::::
levels

::::
were

::::
also

::::::::
achieved

::
by

:::::
these

::::::
studies

:::::::
avoiding

:::
the

:::::::::
nearshore

:::
and

::::::
coastal

::::::::::::
environments,

::::::
where

:::::::::
variability

::
in

:::
the

::::::
surface

:::::
ocean

:::::::::
carbonate

::::::
system

::
is

::::
much

::::::
higher

::::
than

::
in

:::
the

:::::
open

:::::
ocean

::::::::::::::::::
(Laruelle et al., 2017).

:
In addition to these global regressions, several regionally specific135

:::::::::::::::
regionally-specific regressions were developed (see Table 1 in Land et al. 2019).

In comparison, only very few efforts attempted to inter- and extrapolate DIC. Lee et al. (2000) were the first to produce a

global map of DIC using a regression methodology. Concretely, they ;
::::::::
however,

::::
their

:::::::::
application

:
employed a regional multiple

linear
:::::::::
multi-linear

:
regression model similar to that used later to map TA. But their application was limited to the generation of

a seasonal climatology. It was then not until Sasse et al. (2013) when the first global reconstruction of the temporal progression140

of DIC over multiple years was published. They used the same SOMLO method as they had used for TA, creating global maps

of DIC with a RMSE of 11 µmol kg�1. More recently, Keppler et al. (2020) used the SOM-FFN method of Landschützer

et al. (2013) to reconstruct DIC throughout the upper water column on a monthly basis, but they limited their discussion to

the mean seasonal cycle.

Here, to map TA and pCO2 to the globe, we will use a newly developed two step
:::::::
globally,

::::::::
including

::::
the

::::::
coastal

::::::
ocean,145

::
the

:::::::
Arctic,

:::
and

:::
the

:::::::::::::
Mediterranean,

:::
we

:::
use

::
a
::::::::::::::
newly-developed

::::::::
two-step

:
cluster-regression approach that is similar in design

to the SOM FFN method (Landschützer et al., 2013, 2016) but extend it by using an ensemble of such cluster-regressions.

This method, referred to as Geospatial Random Cluster Ensemble Regression (GRaCER), increases the robustness of the

estimates considerably. It also removes the boundary problems inherent in all methods that use fixed regional boundaries. We

apply the same methodology to TA and pCO2, resulting in methodologically consistent
:::::::::::::::::::::::
methodologically-consistent

:
global150

estimates of the two parameters, from which DIC, pH, and ⌦ can then be computed using the well-established thermodynamic

models of the seawater carbonate system. These latter estimates can then be compared against the many available DIC and

pH measurements, providing a large set of independent data to assess the fidelity of our estimates. This requires also a good

understanding of the different sources of uncertainties, including those emanating from sampling and measurement, from the

statistical modeling, and from the lack of representativeness, i.e., the fact that a local measurement is not representative for the155

large pixel (100 x 100 km and 1 month), that one models in our regressions).

The rest of the manuscript describes the data and methods used to calculate this data set for ocean acidification. The uncer-

tainties of the predictions are assessed, followed by the presentation of the data with a focus on the seasonal cycle. Last, we

discuss the implications of the uncertainties for the use of the derived marine carbonate system.
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2 Methods160

To reconstruct the global progression of all parameters of the surface ocean carbonate system over the last three decades

(1985 through 2018), we follow the three steps depicted by the flow diagram in Figure 1. Concretely
:::
First, we develop first a

statistical model for the measured TA and pCO2 using the newly developed GRaCER method. This method itself consists of

two steps, i.e., a cluster step, where the target variables are clustered regionally, and a regression step, where for each cluster,

a regression is evaluated. These two steps are repeated multiple times, creating an ensemble of models; Second we map these165

two quantities to the globe
::::::
globally

:
and over time using this ensemble of statistical models and global observations of the

predictor variables; Third and last, we use a thermodynamic model of the seawater carbonate system to compute the remaining

parameters of the surface ocean carbonate system, namely DIC, pH, and ⌦. Along the way, we extensively evaluate and test

each step with independent observations. We refer to the dataset with the evaluated and complete marine carbonate system as

OceanSODA-ETHZ.170

Next, we describe the concept of the GRaCER method, and then detail its implementation for pCO2 and TA. This is followed

by a description of the numerous types of data employed and how they were prepared. Lastly, we demonstrate how we used a

thermodynamic model to derive the remaining parameters of the marine carbonate system.

2.1 GRaCER Algorithm

The GRaCER algorithm builds conceptually on a series of cluster-regression algorithms that have been successfully used for175

the inter- and extrapolation of surface ocean pCO2 (Sasse et al., 2013; Landschützer et al., 2013, 2016; Iida et al., 2015;

Gregor et al., 2019). The main advantage of such a two-step approach is that the first clustering
:::::::
clustering

:
step organizes

the variability regionally and temporally. This greatly enhances then the fidelity of the second step, i.e., the regression, as the

size of the regression problem is reduced from the global domain to smaller, more homogeneous regions. A second advantage

is that this clustering brings together regions with similar seasonality and similar co-variability with potential predictors,180

irrespective of the number of observations. This
:::
The

:::::::::
regression

::::
step

:::::::
explains

:::
the

:::::::::
variability

:::::
within

:::::
each

:::::
region

::::
over

::::
time

::::
and

::::
space

:::::::::::
dimensions,

::::::::
including

:::::::::
interannual

:::::::::
variability.

:::::::
Further,

:::
the

::::::::
clustering

:
permits the regression to transfer information from

spatially distant, but geochemically similar regions, making the inter and extrapolation more robust in data poor regions. The

main innovation of the GRaCER algorithm relative to the previously used two-step approaches is its use of ensembles of

cluster-regressions, i.e., the generation of a whole series of clusters and corresponding regressions, which permits to overcome185

:::::::::
overcomes the boundary problems that are inherent in all two-step approaches.

For the clustering step, we use monthly climatological data of pCO2 and TA and related parameters (Figure 2a-c), to deter-

mine the main patterns of variability of the target variable and its co-variability with potential predictor variables. The
:::
We

:::::
opted

::
for

::
a
::::::::
clustering

:::
on

::::::::::::
climatological

::::
data

:::::
rather

::::
than

::
on

:::
the

::::::
actual

:::::::
monthly

::::
data

::
in

:::::
order

::
to

::::::
clearly

:::::
focus

::
on

:::
the

:::::::::
clustering

:::::
step’s

:::
role

::
to

::::::
isolate

::::::::
primarily

::::::
regions

:::::
with

:::
the

::::
same

:::::::
seasonal

::::::
cycle.

:::
The

:::::::::
alternative

:::::::::
approach,

:::
i.e.,

::
to

::::::
cluster

:::
on

:::
the

:::::::
monthly

::::
data

::
is190

:::
also

:::::
more

:::::
prone

::
to

:::::
errors

::::
since

:::
the

::::::::::::
climatological

:::::::::::
distributions

::
are

:::::
better

::::::
known

::::
than

::::
their

::::::::::::::
month-to-months

:::::::::
variations.

:::::::
Finally,

::::::::
clustering

::
on

::::::::
monthly

:::
data

::::::
would

:::
also

::::
take

:::::
away

::::::
signals

::::
from

:::
the

:::::::::
regression

::::
step,

:::::
which

::
is
:::::::
actually

:::::
better

:::::
suited

::
to
:::::::
capture

:::
the
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::::::
smaller

::::
level

:::::::::
variations

::::::::
associated

::::
with

:::
the

::::::::::
interannual

:::::::::
variability

:::
and

::::::
trends.

::::
The mini-batch K-means implementation in the

Python Scikit-Learn package is used to perform the clustering due to its computational efficiency and scalability with large data

sets (Pedregosa et al., 2011). A user-defined number of cluster centers are initiatedwith the ,
::::::
where

::::::
cluster

::::::
centers

::::::::
represent195

::
the

:::::
mean

::
of

:::
the

::::::
points

::
in

:
a
::::::
cluster.

::::
The K-means++ algorithm

:
is

::::
used

::
to

::::::
initiate

:::
the

::::::
cluster

::::::
centers, which randomly selects the

location of the first cluster center, then iteratively selects a best-guess location for the remaining cluster centers. Thereafter, the

algorithm minimizes the distance between cluster centers and data points in the variable space. Once the clusters have been

defined for the climatological domain, the co-located training data are assigned to the monthly clusters.

The Regression is then performed individually for each of the clusters (Figure 2d-f). The GRaCER method does not use a200

prescribed regression method -
::
—

:
rather the appropriate algorithm for the particular use case is implemented. Importantly, the

algorithm must be able to scale appropriately to the size of the problem. For example, the training data set for TA is one 20th of

the size of the pCO2 training data set, thus a more computationally expensive
:::::::::::::::::::::
computationally-expensive

:
method can be used

to predict TA.

The Ensemble members are created by performing the cluster-regression step multiple times. Creating an ensemble is205

possible due to the fact that each clustering instance is slightly different (Figure 2g-i). In practice, the spatial distribution of

the clusters is similar, i.e., there is consistency in the typology of the clusters, particularly in regions where clusters are well

defined(e.g.
:
,
::::
such

::
as

::
in
:::

the
:

subtropical gyres and
::
in

:::
the

:
tropical eastern Pacific). However, there are regions that belong to

different clusters, i.e.
:
, there is slight variance in the typology between ensemble members. The differences are due to the

random initialization of the first cluster center in the K-means clustering step, and the fact that clustering variables for some210

regions have weak gradients in spatial auto-correlation resulting in weak association to a cluster. In practice, this means that

the location of cluster boundaries vary between ensemble members, thus the ensemble mean does not have discrete boundaries

(Figure 2j).

2.2 Algorithm Implementation

2.2.1 Total alkalinity215

For the estimation of TA, we employ the support vector regression (SVR) regression method with 12 clusters and 16 ensem-

ble members. The clustering is performed on climatological mean total alkalinity
:::
TA, sea-surface salinity (SSS), sea-surface

temperature (SST) and nitrate (
::::
NO�

3 ;
:

Table 1 and section 2.3 below). The optimal variables on which clustering should be

performed were selected by assessing the regression scores of each combination of variables following the methodology of

Gregor et al. (2019).
::
All

::::
data

:::
are

:::::::::::
standardized

::
to

:::
the

:::::
mean

:::
(µ)

::::
and

:::::::
standard

:::::::::
deviation

:::
(�)

::::
prior

::
to
:::::::::

clustering
:::::::
( (x�µ)

� ),
:::::

after220

:::::
which

:::
TA

::
is

:::::
given

::::
three

:::::
times

:::
the

::::::
weight

::
of

:::
the

:::::
other

::::::::
variables.

A similar exhaustive search was used for determining the number of clusters. The number of ensemble members was chosen

by the number above which there is no longer an increase in performance, analogous to the number of trees in a Random

Forest. Test data are a subset of years spaced three years apart starting in 1985. We ensure that the models are not overfitted by

selecting hyper-parameters using K-fold cross validation (further details are in Section A3).225
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To regress and map TA, we use SSS, SST, silicic acid (Si), and N⇤ = NO3 � 16 · PO4 (Gruber et al., 1996)
:::::::::::::::::::
N⇤ = NO�

3 � 16 · PO3�
4

:::::::::::::::::::::::::::::::::::::
(simplified from Gruber and Sarmiento, 1997) as predictors. Our choice of SSS and SST as predictors is easily justified by

these two variables accounting for the majority of TA variability (Lee et al., 2006; Carter et al., 2018). The addition of silicic

acid
::
Si and N⇤ as predictors is to account for seasonal changes in primary production that has an impact on TA (Wolf-Gladrow

et al., 2007; Carter et al., 2018). Further, N⇤ expresses the zonal differences between and within the large ocean basins bet-230

ter than using simply nitrate or phosphate-
::::
NO�

3 ::
or

::::::
PO3�

4 ::
—

:
an important consideration, since coordinates (i.e., latitude and

longitude) are not given as
:::::::
included

::
in

:::
our

:::
set

::
of predictors.

2.2.2 Partial pressure of CO2

For the estimation of pCO2, we use two regression methods, i.e., GBDT (gradient boosted decision trees) and FFNN
:::::::
FFNNv2

(feed forward neural network). These are implemented with 21 clusters and 16 ensemble members (eight each). The number235

of clusters is at the upper end of the range compared with the number of clusters used by the MPI-SOMFFN or CSIR-ML6

methods. But
::::::::
However, testing has shown that additional clusters are required to account for the additional complexity by the

inclusion of
:::
our

:::::::
inclusion

:::
of

:::
data

:::::
from the coastal, Arctic,

:
and Mediterranean seas.

Clustering is performed on climatological values of pCO2, SST, mixed layer depth,
:

and Chlorophyll-a, with additional

weighting given to pCO2.
::
As

:::::
with

:::
TA,

:::
all

::::::::
variables

:::
are

:::::::::::
standardized

:::::
prior

::
to

:::::::::
clustering

::::
with

::::::

(x�µ)
� ,

:::::
after

:::::
which

::::::
pCO2 ::

is240

::::::::
multiplied

:::
by

:
3
::
to

::::
give

::
it

:::::::
stronger

:::::::::
weighting.

Details of the regression method, and of the hyper-parameter selection are given in section A3. Test data are selected as

every 5th year starting in 1985, and validation data for early stopping is selected using the same approach starting in 1987,

where the latter is used for early stopping to reduce over-fitting and keep model complexity within bounds.

The regression and mapping is performed with the following variables as predictors: SST, SSS, the logarithm of Chlorophyll-245

a, the logarithm of mixed-layer depth, the meridional and zonal components of the surface winds, the sine and cosine of
day of year·⇡
365·180 , and the atmospheric dry-air mixing ratio (xCO2). These predictors are the same as used by Gregor et al. (2019) and

various combinations of these methods have been used by previous approaches (Landschützer et al., 2014; Denvil-Sommer

et al., 2019).

It is important to note that the predictors are proxies for the spatio-temporal changes in pCO2 and do not necessarily explain250

the physical mechanism by which changes in pCO2 are driven. For example, an increase in sea-surface temperature in the sub-

tropics results in an increase pCO2 as shown by Takahashi et al. (1993); Lefèvre and Taylor (2002). In contrast, surface warming

in the Southern Ocean can be a proxy for stratification that reduces outcropping of high CO2 waters (Landschützer et al., 2015;

Gregor et al., 2018). Similarly, changes in SSS and MLD also capture the distribution and processes that drive changes in sur-

face pCO2, such as stratification and mixing. However, the climatological MLD product used here does not capture interannual255

variability in stratification and mixing. We thus include the two surface wind components that, along with SST, are a proxy

for wind-driven mixing and upwelling. Chlorophyll is also an important driver of pCO2 on a local scale, particularly in the

high latitude regions where high primary productivity results in rapid uptake of pCO2 Bakker et al. (2008); Gregor et al. (2018)
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Table 1. Variables used as the clustering features and predictor variables for regression. Details about these data are given in the text. Note

that clustering features are all resampled to monthly climatologies. †TAmap is the exception where a quasi-annual mean is used. The first

column for regression shows the target variable. All machine learning models use the same variables to train and predict the final estimates

with the exception of ‡SSS, where ungridded GLODAP data is used to train and SODA salinity is used to predict. All other references to

SSS refer to the gridded SODA product.

Clustering Clustering features (monthly climatology)

TA †TAmap, SSS, SST, N⇤

pCO2 pCOmap
2 , SST, Chl-a, MLDclim

Regression & Mapping Predictors (monthly)

TAGLODAP ‡SSSGLODAP
SODA , SST, Si, N⇤

pCOSOCAT
2 xCOatm

2 , SST, SSS, Chl-a, MLDclim, u-wind, v-wind

:::::::::::::::::::::::::::::::::
(Bakker et al., 2008; Gregor et al., 2018). Lastly, xCO2 is included to account for the close tracking of oceanic pCO2 to atmo-

spheric CO2 concentrations (Bates et al., 2014).260

2.3 Data

Data are used to develop the two-step GRaCER model, i.e., clustering and regression, and to evaluate the estimates. Table 1

provides an overview of all data employed and the purposes for which they are used and Table 2 shows the corresponding

source of the data. We describe each data set by parameter and use.

2.3.1 Data for clustering265

For the clustering of TA, we used the mapped product of total alkalinity (TAmap) from the GLODAPv2 (Lauvset et al., 2016). We

repeat the temporally averaged mapped
:::
This

:::::::
product

:::::::::
represents

:
a
:::::::::::
quasi-annual

::::
mean

:::
as

:
it
::::
was

::::::::
generated

::::::
without

::::::::::::
consideration

::
of

:::
the

:::::::
seasonal

:::::
cycle.

:::
We

:::::
repeat

:::
this

:::::::::::
quasi-annual

:::::
mean TA to create a monthly data set over which clustering can be performed.

We thus assume that the spatial variability of TA is larger than the seasonal variability. This is backed by Takahashi and

Sutherland (2013) and Broullón et al. (2018) who found that the seasonal variability of TA for the majority of the ocean was270

more than a factor of 10 smaller than the spatial variability.

For the clustering step of pCO2, we use four data-based products resampled and gridded to a monthly by 1⇥1� resolution

(pCOmap
2 ), namely LDEO by Takahashi et al. (2014), MPI-SOMFFN by Landschützer et al. (2016), Jena-MLS by Rödenbeck

et al. (2014), and LSCE-FFNN
:::::::::::::::
CMEMS-FFNNv2

:
by Denvil-Sommer et al. (2019). It may seem tautological to use other

machine learning estimates, but these data are just used to create regional clusters, i.e., they are not used in the regression275

step. Relative to previous two-step approaches Landschützer et al. (2016); Denvil-Sommer et al. (2019), which used just the

LDEO product, we expanded on this by including three more estimates. In doing so,
:

we make the implicit assumption that

these estimates are
:::
this

::::::::
ensemble

:::
of

::::::::
estimates

::
is

:
a better representation of the pCO2 monthly climatology than the LDEO

climatology alone.
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Table 2. Data sources used in this study. *C3S (2017) is short for Copernicus Climate Change Service (C3S) (2017).

Product name Variable Abbrev Reference

SOCAT pCOSOCAT
2 pCO2 Bakker et al. (2016)

MPI-SOMFFN Gap-filled pCO2 pCOmap
2 Landschützer et al. (2016)

Jena-MLS Rödenbeck et al. (2014)

LSCE-FFNN Denvil-Sommer et al. (2019)

LDEO Takahashi et al. (2014)

GLODAP Total Alkalinity (in-situ) TA Olsen et al. (2016)

Total Alkalinity (mapped) TAmap Lauvset et al. (2016)

OSTIA Sea surface temperature SST Good et al. (2020)

Sea-ice fraction ICE

SODA v3.4.2 Salinity SSS Carton et al. (2018)

Mixed Layer Depth MLD Holte et al. (2017)

ERA5 Sea-level pressure Pres *C3S (2017)

U-component of wind U

V-component of wind V

NOAA: ATM Mole fraction of COatm
2 xCOatm*

2 Dlugokencky et al. (2019)

Globcolour Chlorophyll-a Chl-a Maritorena et al. (2010)

WOA Phosphate PO3�
4 Boyer et al. (2013)

Nitrate NO�
3

Silic acid Si

SSS is from the Simple Ocean Data Assimilation (SODA) analysis (Carton et al., 2018) and SST from the Operational Sea280

Surface Temperature and Sea Ice Analysis (OSTIA) v2 product (Merchant et al., 2019)
::::::
product

::::::::::::::::::::
(Good et al., 2019, 2020). N⇤ is

calculated using monthly climatologies of nitrate and phosphate
::::
NO�

3 :::
and

:::::
PO3�

4 :
from the World Ocean Atlas updated in 2018

(Boyer et al., 2013). We use the the monthly climatology of density-based mixed-layer depth (MLD) from Holte et al. (2017)

that is estimated from Argo float profiles.
:::
The

:::::
MLD

::::
data

::::::
product

:::::::
merges

:::::::
monthly

::::::::
estimates

::
of

:::::
MLD

::::
from

:::::::
multiple

::::::
years,

:::
but

:
is
::::::::
averaged

:::
into

::
a
::::::::::
climatology

:::
due

::
to

:::
the

::::::
paucity

::
of

::::
data

:::
on

::
an

::::::
annual

:::::
scale. A two-dimensional moving average filter is applied285

to the MLD to interpolate missing data and remove the noise introduced by interannual and sub-monthly variability.

Chlorophyll-a (Chl-a) is from the Globcolour project where a monthly climatology is calculated for the period from 1998

through 2018 (Maritorena et al., 2010). The missing data in the high latitudes during winter are filled with a 0.3 mg/m�3,

which is roughly the 20th percentile of global chlorophyll-a. Lastly, we take the log transformation (base 10) of Chl-a,
:::

to

::::::
convert

:::
the

:::::::
log-like

:::::::::
distribution

:::
of

:::::
Chl-a

::
to

:
a
::::::
normal

::::::::::
distribution

:::
for

::::::::
improved

:::::::::::
performance

::
in

:::
the

:::::::
gradient

::::::
descent

:::::::::
algorithm290

::
of

:::
the

:::::::
FFNNv2.

10



2.3.2 Data for regression and mapping

For the regression step of TA, the bottle measurements from the GLODAP v2 product are used as the target variable (Olsen

et al., 2016). Following Lee et al. (2006), we select data shallower than 20 m in latitudes lower than 30� and shallower than

30 m at higher latitudes.
::
We

:::
do

:::
not

:::::::
exclude

::::::::::::
measurements

:::::
taken

:::
in

::::::::
nearshore

::::
and

::::::
coastal

:::::::::::
environments

:::
as

::::
was

:::::::::
previously295

::::
done.

:
The quality of TA measurements was historically not as rigorous as the SOCAT pCO2 data due to the lack of reference

standards before the mid-1990’s (Bockmon and Dickson, 2015). However, most of the biases in the cruises were corrected

based on calibration to deep samples, where it is assumed that interannual TA variability is negligible relative to the magnitude

of the bias (Olsen et al., 2016). These bias corrections amount to ±5 µmol kg�1 on average.

For the regression of pCO2, we use SOCAT v2019 where only data with a SOCAT cruise quality flag of A to D and a WOCE300

quality flag of 2 are used.
::
As

::
is

:::
the

:::
case

:::
for

::::
TA,

::
we

:::
do

:::
not

:::::::
exclude

:::
data

:::::
from

::::::
coastal

:::
and

::::::::
nearshore

::::::::::::
environments.

:
The fugacity

of CO2 (fCO2) reported in SOCAT v2019 is converted to pCO2 using:

pCO2 = fCO2 · exp(P surf
atm · B+2 · �

R ·T SOCAT ) (1)

where P is atmospheric pressure at sea-level from the ERA5 reanalysis product (Copernicus Climate Change Service (C3S),

2017). B and � are virial coefficients, R is the gas constant, and T SOCAT is the ship intake temperature in �C (Dickson et al.,305

2007). In exploratory work for this study, we tested predicting �pCO2 = pCOatm
2 �pCO2 instead of just pCO2, but found that

this did not produce credible results; for a more in depth discussion see Section A2.

The discrete measurements of pCO2 and TA are resampled on a monthly grid (Jan 1985 through Dec 2018) with a spatial

resolution of 1⇥ 1� to match the predictors used in the mapping step.

Finally, outliers are removed from gridded pCOSOCAT
2 using the methods described in Section A1. In total, 2425 points are310

removed from the gridded pCOSOCAT
2 using these outlier removal approaches, equivalent to 0.85% of the original gridded data.

We use sea-surface temperature from OSTIA for both TA and pCO2 regression (Merchant et al., 2019)
:::::::::::::::
(Good et al., 2020).

The TA model is trained using in situ
::
in

:::
situ salinity from GLODAP v2 but salinity from SODA v4.3.2 is used for the mapping

step (Carton et al., 2018). The N⇤ and silicic acid
::
Si

:
are the same as used in the clustering step, but are repeated for the

number of years. Similarly, the mixed layer depth climatology described in section 2.3.1 is repeated for each year. We use315

the global mean of the mole fraction of CO2 for the marine boundary layer (xCOmbl
2 ) as a predictor in the regression as the

correction for water vapor pressure may otherwise introduce co-variance with other predictors (i.e. SST, SSS). Missing data in

the monthly Globcolour chlorophyll-a product is filled with climatological data described in section 2.3.1. The meridional and

zonal components of the surface winds are averaged from the hourly output from the ERA5 reanalysis (Copernicus Climate

Change Service (C3S), 2017).320

2.3.3 Evaluation variables

The machine learning estimates of TA, pCO2, and the computed DIC and pH are evaluated against data that are not used in

the training or mapping step.
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We use
::
For

:
DIC and pHmeasurements ,

:::
we

::::
use

:::
the

::::::
directly

:::::::::
measured

::::
data from GLODAP v2.2019 (Olsen et al., 2016).

Bockmon and Dickson (2015) report a measurement error of ±5 µmol /kg
::::
kg�1

:
for GLODAP DIC in an inter-laboratory325

comparison. Olsen et al. (2016) estimate the measurement error for pH to be 0.005. To be consistent with TA, we select data

shallower than 20 m in latitudes lower than 30� and shallower than 30 m at higher latitudes and resampled the data to monthly

by 1� ⇥ 1�.

Three long term time series stations are used to provide direct independent comparisons against
::
for DIC and TA, namely:

the Hawaii Ocean Time-series at 22.57°N, 158°W (HOT, Dore et al. 2009); the Bermuda Atlantic Time Series at 32°N, 64°W330

(BATS, Bates and Peters 2007); and the Irminger station for only DIC in the high northern Atlantic (64.3°N, 28°W, Olafsson

et al. 2010,
::::
only

:::
for

:::::
DIC). The accuracy for these measurements is reported to be below 2 µmol /kg

::::
kg�1

:
for DIC and ⇠4

µmol /kg
:::::
kg�1 for TA for all stations. We use the same depth constraints for the long term stations as for GLODAP, explained

in the paragraph above. pCO2 is also calculated from DIC and TA for HOT and BATS to provide an additional constraint.

Data present in the Lamont-Doherty Earth Observatory pCO2 data set, but not in SOCAT are used to independently compare335

pCO2. Takahashi et al. (2019) report an error estimate of ±2.5µatm
:::::::::
±2.5 µatm, but it must be added that some of the data

unique to LDEO may be excluded from SOCAT due to stricter quality control criteria for of the latter, thus errors for the LDEO

data are expected to be larger (Bakker et al., 2016).

Finally, we include Argo float measurements of pH from the Southern Ocean Carbon and Climate Observations and Mod-

eling project (SOCCOM) (Johnson et al., 2017; Williams et al., 2017). Johnson et al. (2016) report a mean uncertainty of340

±0.019 for pH for the entire water column, though this is likely higher for the upper 30 m as the authors report lower errors

for estimates below 50 m.

2.4 Computation of DIC, pH, and ⌦

The remaining parameters of the marine carbonate system, i.e., DIC, pH, and ⌦ are computed using the Python version

of CO2SYS (Humphreys et al., 2020) originally developed by Lewis et al. (1998). In addition to pCO2 and TA, CO2SYS345

requires the input of sea-surface temperature, sea-surface salinity, pressure (assumed 0 dBar at the surface), phosphate and

silic acid
:::::
PO3�

4 ,
::::
and

::
Si. We use the same data sources described in section 2.3.2 and Table 1. Climatologies of silicic acid and

phosphate
::
Si

:::
and

::::::
PO3�

4 are repeated for each year, thus assuming no interannual variability. The
:::::
impact

::
of
::::

this
::::::::::
assumption

:
is
::::::::
minimal

::::
(⌧ 2

:::::
µmol

:::::
kg-1),

:::
as

:::
can

:::
be

:::::
shown

:::
by

:::::::
varying

:::::
these

:::::::
nutrients

::::
over

::::::::
seasonal

:::::
cycle.

::::
The dissociation constants by

Dickson et al. (1990) for KHSO4 and the total boron-salinity relationship by Uppström (1974) were used, as recommended350

by Orr et al. (2015) and Raimondi et al. (2019). For further details on the calculation and the full description of the marine

carbonate system, see Dickson et al. (2007).

An important consideration in these calculations is the internal consistency of the marine carbonate system, i.e., the error due

to uncertainties in the equations and coefficients that describe the marine carbonate system. Raimondi et al. (2019) pointed out

that the pCO2-TA pair has the lowest error in the calculation of pH (0.003 ± 0.008 pH units) using the dissociation constants355

by Mehrbach et al. (1973) as refitted by Dickson and Millero (1987). However, using the same pair and the same dissociation

constants resulted in an estimate of ⌦ with respect to Aragonite that is very different from that computed using the DIC-TA
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pair. But since Raimondi et al. (2019) lacked direct measurements of ⌦, it remains unclear which pair is actually better for ⌦.

We cannot resolve this here but need to acknowledge that this inconsistency adds some additional uncertainty to our computed

⌦ values.360

3 Uncertainty assessment

Any application of our data product requires a firm understanding of the
:::::
errors

:::
and

:
uncertainties associated with each of the

reported parameters of the surface ocean carbonate system. We first discuss the
::::
errors

::::
and uncertainties associated with the

statistically modeled
:::::::::::::::::
statistically-modeled

:
quantities TA and pCO2, and then those with the computed parameters DIC, pH

and ⌦. Then, we will compare these propagated uncertainties with the uncertainty of the computed DIC and pH established365

by comparing these values with in situ observations. This provides a strong check on our ability to establish a full error budget.

:::::::::
uncertainty

:::::::
budget.

:::::
Here,

:::
we

:::
use

:::
the

:::::
term

:::::::::::
"uncertainty"

::
to

:::::::::::
characterize

:::
the

:::::
range

::
of

::::::
values

::::::
within

::::::
which

:::
the

::::
true

:::::
value

::
is

::::::
asserted

:::
to

::
lie

::::
with

:::::
some

::::
level

::
of
::::::::::

confidence.
::::
The

::::
term

::::::
"error"

::
is

::::
used

::
in

::::
two

:::::
ways.

:::::
First,

::
as

:
a
:::::::
process

:::
that

:::::
leads

::
to

:::::::::
deviations

:::::::
between

:::
the

:::::::::::
measurement

:::
and

:::
the

::::
true

::::::
value,

:::
and

::::::
second

::
as
:::

an
:::::::
estimate

::::::::::
quantifiable

:::::::
against

:
a
::::::
known

:::::
value.

::::
For

:::
the

:::::::
purpose

::
of

:::
our

:::::::
analysis

:::::
here,

:::
we

:::::::
consider

:::
the

:::::::
training

::::
data

::::
sets

:::
for

:::
TA

::::
and

:::::
pCO2::

as
:::::

such
::::::
known

::::::
values,

::::
i.e.,

:::
we

::::::
assume

::::
that

:::::
these370

::::::::::
observations

:::
are

::::::::
unbiased.

::::
This

:::
can

:::
be

:::::::
justified

::
on

:::
the

:::::
basis

::
of

::::
their

::::::
having

:::::::::
undergone

::::::::
extensive

::::::::
secondary

::::::
quality

:::::::
control.

:

3.1 Sources of uncertainty
:::::
errors

:
for TA and pCO2

We identify three sources of uncertainty
:::::
errors that contribute to the total error

:::::::::
uncertainty

:
for pCO2 and TA, namely the

:::::::::
uncertainty

:::::::::
stemming

::::
from

:::
the

:
measurement (M ), representation (R) and prediction (P ) errors. Assuming independence of

the three error sources, the total error
:::::::::
uncertainty (E) for the TA and pCO2 estimates can thus be expressed as the root of the375

squared sum of the three errors
::::::::::
uncertainties

::::
from

:::
the

:::::
three

::::
error

:::::::
sources:

E2 =M2 +R2 +P 2
p
M2 +R2 +P 2

::::::::::::::
(2)

The measurement error reflects the combination of potential biases (systematic errors) from sampling and measurement

as well as random errors associated with sampling and the imprecise nature of the measurement system. Since both TA and

pCO2 are being measured against certified reference materials and have undergone extensive secondary quality control, we380

assume that they have no systematic error, i.e., that their bias is zero. We also assume the sampling error to be small, so that

the measurement error
:::::::::
uncertainty

:
M

::::::::
associated

::::
with

:::
the

:::::::::::
measurement

::::
error

:
can be well approximated by the precision of the

employed measurement methodology (Dickson et al., 2007).

The representation error, R, is a result of the fact that we develop our statistical model (GRaCER) on a grid that is in many

places coarser in time and space than the typical scales of variability of TA and pCO2. As a result, any given observation may385

not be representative for the 1⇥1� by month
:::::
1°⇥ 1°

::::::::
monthly grid cell used as a basis for our regression, leading to a bias in

the estimated mean relative to the true spatial and temporal mean. This problem is particularly severe if the number of samples

within any grid cell is low, and the spatio-temporal variability is high. This is often the case. For example, more than 90% of
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the data in the monthly gridded pCO2 product are based on a single day of sampling within the month. And with an order of

magnitude fewer observations of TA , an even larger number of cells are populated by a single observation
:::
The

:::::::
situation

::
is
:::::
more390

:::
dire

:::
for

:::
TA

:::
for

:::::
which

:::::
there

:::
are

::::::
10-fold

:::::
fewer

:::::::::::
observations

::::
than

:::::
pCO2. Since we are lacking full knowledge of the spatial and

temporal variability of TA and pCO2, we cannot fully quantify the representation error. Instead, we approximate it using the

few regions where we have sufficient observations, or then using closely related
::::::::::::
closely-related

:
parameters for which we have

more observations. For simplicity, we make the assumption that
:::
the

:::::::::
uncertainty

:::::::::
associated

::::
with this error is, on global average,

normally distributed with a bias of 0.395

The
:::::::::
uncertainty

::::::::
associated

::::
with

:::
the prediction error, P , is determined by the test scores from the evaluation of the statistical

model vis-à-vis the independent test data. The test scores describe the error incurred in the prediction of the subset of data that

is not used in the training step. This error includes also the propagated uncertainty associated with the predictor variables.

We summarize these errors
::::::::::
uncertainties

:
with mean biases

:::::::::::
(
PN

i=1 (ŷi�yi)
N )

:
and root mean squared error (RMSE). We thereby

:
,
::::::::::::::

qPN
i=1 (ŷi�yi)2

N ),
::::::
where

:
y
::
is

:::
the

:::::
target

:::::
value,

::̂
y
::
is

:::
the

::::::::
predicted

:::::
value

:::
and

:::
N

:
is
:::

the
:::::::

number
::
of

:::::::::::
observations.

::::
We separate the400

coastal and open ocean regions using the COastal Segmentation and related CATchments (COSCATs) mask (Laruelle et al.,

2013) in order to reflect their very different levels of spatio-temporal variability.

Table 3. Summary of the errors
:::::::::
uncertainties

:
of total alkalinity and pCO2 from the different error sources (see (

::::
Table 2) separately evaluated

for the open ocean and for coastal regions (defined by the COSCATs regions Laruelle et al. 2013). See text for details on how the different

sources were quantified.

Alkalinity (µmol kg�1) pCO2 (µatm)

Uncertainty Open ocean Coastal Open ocean Coastal

Measurement 5 ( 10) 2 ( 5)

Representation 16 34 7 17

Prediction 13 28 12 27

Total 21 45 14 32

3.1.1 Uncertainty for total alkalinity

We adopt a
::
an

::::::::::
uncertainty

::
M

:::::::::
associated

:::::
with

:::
the

:
measurement error of TA of ±5 µmol kg�1 based on the laboratory in-

tercomparison by Bockmon and Dickson (2015). This is only half the measurement error
:::::::
accuracy of ±10 µmol kg�1 or405

0.5% reported by GLODAPv2. We consider this to be an overly conservative
::::::::::::::::
overly-conservative estimate, since Bockmon

and Dickson (2015) pointed out that the majority of the laboratories involved in the round-robin exercise achieved an error of

better ±5µ
:::::::
accuracy

::
of

:::::
better

:::::
±5 µmol kg�1. We thus opted for this lower value that is more representative of the majority of

the data.

Owing to the sparseness of the TA observations, we cannot estimate the
:::::::::
uncertainty

:::
R

::::::::
associated

:::::
with

:::
the representation410

error directly. Instead, we use the fact that
::::
high

:::::::::
correlation

:::::::
between

:
TA and salinityare very highly correlated. This permits

us to determine the representation error for TA indirectly from an estimate of the representation error of sea-surface salinity.
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Concretely, we compare the test RMSE of TA predicted with GLODAPv2’s In-situ
:
in

::::
situ

:
salinity with the RMSE of TA

predicted with the satellite based
:::::::::::
satellite-based

:
SODA salinity (see Table 1). Since the latter salinity is supposed to reflect the

true time-space average over each grid cell, the difference between these two salinities is a direct estimate of the
:::::::::
uncertainty415

::::::::
associated

::::
with

:::
the

:
representation error for salinity. Consequently, the difference in TA from these two estimates is an estimate

of the
:::::::::
uncertainty

:::::::::
associated

::::
with

:::
the

:
representation error for TA. The resulting estimates for the open and coastal ocean are

summarized in Table 3.

The
:::::::::
uncertainty

::
P

::::::::
associated

::::
with

:::
the

:
prediction error is based on the model’s RMSE score calculated from test data and is

listed in Table 3 and Figure 3.1.1a. The global mean prediction error for the open ocean amounts to 13 µmol kg�1, with some420

regional differences. The prediction error is more than twice this number in the coastal regions, i.e., 28 µmol kg�1 (coastal

regions are defined by the COSCATs regions Laruelle et al. 2013). We find especially high prediction errors, for example, in

the highly dynamic Amazon outflow region or the Gulf of Maine in the northwestern Atlantic. However, in such regions, one

can expect that part of the high prediction error is actually stemming from a representation error, as we are not using directly

co-measured variables when we train our regression model.
::
In

::::::
Figure

:::
A2,

:::
we

:::::
show

:::
the

:::::::
spatially

:::
and

::::::::::::::
climatologically

:::::::
mapped425

:::
test

:::::
errors

:::
for

:::
TA

::
in

::::::
Figure

::
A2

:::::
using

:::
the

::::::::
GRaCER

:::::::::
approach.

While the global bias of the TA product of OceanSODA-ETHZ is near zero (0.5 µmol /kg
:::::
kg�1), confirming our assumption

about the unbiased nature of our prediction error, this is not the case regionally. For example, OceanSODA-ETHZ tends to

consistently overestimate TA in the southeastern Atlantic and underestimate TA in the southern Indian Ocean (Figure 3.1.1b).

A seasonal breakdown of the biases into DJF and JJA reveals that the winter period of each hemisphere has biases in the high430

latitudes, though data paucity weakens this outcome.
::
the

:::::::
paucity

::
of

::::
data

:::::
means

::::
that

::
we

::::
can

::::
place

::::
less

::::::
weight

::
on

::::
this

::::::
finding.

:

to make regional patterns in the biases and RMSE clearer and data were then aggregated into
::::::
4°⇥ 4°

:
pixels for clearer

visualization.

A good check on the model prediction error is provided by comparing the estimated TA against independent observations. To

this end, we use data from the Hawaii Ocean Time-series (HOT), the Bermuda Atlantic Time Series (BATS) and the Irminger435

station shown in Figures 4(a,b,e,f,i,j) and Table 4. For the period 1990-2018
:::::::::
1990–2018, the bias for BATS is 3 µmol kg�1 and

for HOT -2 µmol kg�1
:
, indicating that the method captures the interannual

::::::
overall

:::::::
structure

::::
and variability of TA well at these

subtropical stations. Further, the mean seasonal cycle well is relatively well represented at HOT and BATS, being within one

standard deviation of the interannual variability
:::::
when

::::::::
averaged

::
as

:
a
:::::::::::

climatology (Figure 4b,f). However, the results are not

as good for the Irminger station in the Atlantic high latitudes (⇠65°N), where OceanSODA-ETHZ has a large negative bias440

(-10 µmol kg�1) when compared to TA computed from
:::
the

::::::::
observed pCO2 and DICmeasurements. OceanSODA-ETHZ also

overestimates the weak seasonal cycle of TA at the Irminger station, contributing to the large bias that is particularly strong

from December to May. The RMSE at Irminger station is 15 µmol kg�1, less than 5 µmol kg�1 larger than the RMSE for

HOT and BATS stations (10 µmol kg�1 respectively) owing to the small interannual and seasonal amplitude at Irminger. The

RMSEs are thus smaller than the mean prediction error (13 µmol kg�1) at the subtropical stations, yet exceeds this mean445

estimate at the high latitude station.
:
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Table 4. Comparison of training and independent data sources with various methods for the open ocean region using the COSCATs coastal

mask by Laruelle et al. (2013). GLODAP refers to the GLODAP v2 2019 data, HOT to the Hawaii Ocean Time-series, BATS to Bermuda

Atlantic Time Series, SOCAT is the 2019 version of the Surface Ocean Carbon Atlas, SOCCOM is the pH measured by autonomous floats

from the Southern Ocean Carbon and Climate Observations and Modeling project. Statistical outliers were excluded in the calculation of

LDEO RMSE. OS-ETHZ is the OceanSODA-ETHZ data from this study, NNGv2 is from Broullón et al. (2018), LIARv2 from Carter et al.

(2018), FFNNv2
::::::::::::::
CMEMS-FFNNv2 from Denvil-Sommer et al. (2019), and SOMFFN from Landschützer et al. (2016). NNGv2 and LIARv2

predictions are made with SODA salinity and OSTIA sea surface temperature resulting in different estimates to the original publications

(Broullón et al., 2018; Carter et al., 2018). Note that the full data set is used for OceanSODA-ETHZ, unlike Table 3 which presents the errors

for test years.

TA (µmol kg�1) pCO2 (µatm) DIC (µmol kg�1) pH

GLODAP HOT BATS SOCAT LDEO GLODAP HOT BATS GLODAP SOCCOM

Bias this study
::
this

:::::
study 0.5 -2.1 2.6 -0.4 0.1 0.5 -1.0 0.4 -0.001 0.009

LIAR + FFNN 0.3 -3.1 0.2 0.5 0.6 0.001 0.013

NNGv2 1.2 -3.2 4.3 2.3 2.2 -0.4

SOMFFN 0.4 0.4

RMSE this study
::
this

:::::
study 17.5 9.5 10.1 11.1 19.9 16.3 8.7 9.1 0.024 0.036

LIAR + FFNN 18.0 8.8 8.8 13.1 19.6 0.023 0.037

NNGv2 16.2 6.7 10.4 23.1 9.5 15.2

SOMFFN 11.7 21.4

r2 this study
::
this

:::::
study 0.91 0.58 0.13 0.82 0.45 0.93 0.77 0.76 0.67 0.047

LIAR + FFNN 0.91 0.6 0.21 0.78 0.44 0.67 -0.043

NNGv2 0.93 0.75 -0.1 0.82 0.71 0.38

SOMFFN 0.82 0.49

3.1.2 Uncertainty for pCO2

For the
:::::::::
uncertainty

:::
M

:::::::::
associated

::::
with

:::
the

:
measurement error of pCO2, we adopt a value of ±2 µatm. This reflects the fact

that 80% of the data we have used from SOCAT (flags A and B) have a precision better than that number
::
and

:::
an

::::::::
accuracy

::
of

::::::
similar

:::::::::
magnitude. The remaining data we used (SOCAT flags C and D) have a measurement error

:::::::
precision

::::
and

::::::::
accuracy of450

less than ±5 µatm.

We estimate the
:::::::::
uncertainty

:::
R

::::::::
associated

:::::
with

:::
the representation error of pCO2 on the basis of a spatio-temporal gradient

analysis. To this end, we compare the pCO2 in our regular grid that has a resolution of
::::::
1°⇥ 1°

::
by

:
1 ⇥1� ⇥ 1 month, with the

pCO2 binned to a grid with twice this resolution, i.e., 0.5⇥0.5⇥
:::::::::
0.5°⇥ 0.5°

::
by

:
15-days. In regions with high spatio-temporal

coverage, the difference in the average of adjacent grid cells represents the potential change that can occur within the coarser455

::::::
1°⇥ 1°

::
by

:
1 ⇥1� ⇥ 1 month grid cell. The spatial and temporal gradients are calculated separately and we take the average of
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these two elements. Using this analysis, we estimate a representation error of our pCO2 estimates of 7 µatm and 17 µatm for

the open and coastal ocean respectively (Table 3).

From the RMSE of our test data, we estimate a
::
an

:::::::::
uncertainty

::
P
:::::::::
associated

::::
with

:::
the

::::::::
prediction

:::::
error

::
of pCO2 prediction error

of 12 µatm for the open ocean and 28 µatm for the coastal ocean (Table 3). Within the open ocean (Figure 3.1.1e), the eastern460

tropical Pacific has the highest RMSE, but this is also the region with the highest variance in the observations. The
:::::
strong

::::::::
horizontal

::::::::
gradients

::
in

:::
the

::::::
region

:::::::
increase

:::
the

:::::
errors,

::::::::::
particularly

::
at

::::::
cluster

::::::::::
boundaries.

:::
The

:
high RMSE for the coastal region

stems primarily from coastal Antarctica as well as some coastal regions in the higher latitudes of the northern hemisphere.

The former is due to large uncertainties in pCO2 during the summer months when retreating ice and ensuing rapid net primary

production result in large gradients (Bakker et al., 2008).
:::
The

::::::::::::::
climatologically

::::::
mapped

::::::
errors

:::
for

:::::
pCO2:::

are
::::::
shown

::
in

::::::
Figure465

::::::
A2(b,d)

:::::::
created

::
by

::::::::
mapping

::
the

::::
test

:::::
errors

::
to

:::
the

:::::::
clusters

:::
and

::::::::
averaged

::::
over

:::
the

::::::::
ensemble.

:

The comparison between the regression estimated and observed pCO2 reveal also some regional biases (Figure 3.1.1e), even

though
::::::
despite

:
the global bias is very

:::::
being close to zero (-0.37 µatm). Some of the highest biases are found, again, in the

eastern tropical Pacific, where strong gradients and large interannual variability may
::::::::
horizontal

::::::::
gradients

:
drive the observed

juxtaposed biases. The large negative biases in winter in the Southern Ocean are likely driven by the paucity of data in this470

region (Gregor et al., 2019).
::::::::::::::::::::::::::::::::::::::::::::::::::
(Gregor et al., 2019; Gray et al., 2018; Bushinsky et al., 2019).

:

The time series comparisons show that the seasonal cycle is well represented at BATS and HOT with r2 scores of 0.89 and

0.82 respectively (Figures 4d,h). Low biases (< 2 µatm in absolute terms) further demonstrate that pCO2 estimates are reliable

in the subtropics. The seasonal cycle is also well captured at the Irminger station in the high latitudes, but a lower r2 score and

larger bias (-8.0 µmol kg�1) allude to the dampened amplitude of the seasonal cycle particularly in the winter months (Figure475

4).

3.2 Uncertainties of the calculated parameters

We determine the uncertainties of the calculated parameters in two ways. First, we propagate the uncertainties of pCO2 and TA

through pyCO2SYS (Orr et al., 2018; Humphreys et al., 2020) onto the computed parameters DIC, pH, and ⌦. This yields an

expected error
:::::::::
uncertainty

:
that we refer to as a “bottom-up” total error

:::::::::
uncertainty

:
estimate. Second, we obtain a “top down”480

error
:::::::::
uncertainty

:
estimate, by comparing the calculated DIC and pH with independent measurements (see Table 4). We first

describe the top-down estimates and then the bottom-up. For the top-down estimate, we use the GLODAP DIC and pH data

as our independent test of the method’s performance. This is because these data are not used in any way in our estimation.

Global estimates of
::
In

:::
the

:::::
global

::::::
mean,

:::
the

::::::::
computed

:
DIC in OCEANSODA-ETHZ have a low bias when

:::
has

:
a
::::
very

::::
low

:::
bias

:
compared with in situ GLODAP measurements (0.5 µmol /kg) and are the same as the global TA bias

:::::
kg�1)

:
(Table 4).485

The spatial distribution of
:::::::
Spatially,

:
the DIC biases shows

:::::
reveal

:
a more nuanced picture, with large positive biases in the

western equatorial Pacific and negative biases in the western equatorial Atlantic. The bias in the western equatorial Atlantic

matches the negative bias in the pCO2 in the same region; however, the source of the DIC bias in the Pacific is not clear from

the pCO2 and TA test data biases. The global mean of the top-down error
:::::::::
uncertainty

:
estimate for DIC (16.3 µmol �1 for the

17



open ocean) is then perhaps a better reflection of the uncertainty as positive and negative values don’t
::
do

:::
not

:
cancel each other490

out. The prediction errors for

:
It
::
is

:::::::::
interesting

::
to

:::::
point

:::
out

:::
that

:::
the

::::::::
computed

:::::
DIC

::
in

:
OceanSODA-ETHZ of

::::::::
compares

::::
very

::::::::
favorably

::
to

:::::::
directly

::::::::
estimated

DIC are lower across all independent data when compared with the
:::::::
products,

::::
such

::
as

::::
that

:::::::
provided

:::
by NNGv2

:
.
:::
Our

::::::::::
uncertainty

::::::::
associated

::::
with

:::
the

:::::::::
prediction

:::::
error

:::
for

::::
DIC

:::
of

::::
16.3

:::::
µmol

:::
�1

:
is
:::::::::::

substantially
:::::
better

::::
than

:::::
theirs

:
(23.1 µmol kg�1)

:::::
across

:::
all

::::::::::
independent

::::
data.495

The comparison of the DIC time series data (BATS, HOT and Irminger stations) supports the findings of the global top-

down estimates (Figure 6). The biases are relatively low for HOT and BATS (-1.0 and 0.4 µmol kg�1 respectively), but the bias

is much larger at Irminger station (-6.9 µmol kg�1) which is at a much higher latitude (64°N) compared to HOT and BATS in

the subtropics (< 35°N). However, this bias is not reflected in the zonal average of the seasonal biases (Figure 5c). Similarly, the

RMSE is also larger at Irminger station (14 µmol /kg
::::
kg�1) compared to HOT and BATS (⇠9 µmol kg�1) in the subtropics).500

Despite these differences in the top-down error, the same amount of variability is represented by the OCEAN-SODA DIC for

all three stations (⇠0.76) owing to the larger seasonal cycle at Irminger station.

The pH comparison with the GLODAP pH measurements shows that OceanSODA-ETHZ has a negligible bias (0.001). As

with DIC, regional biases are
::
in

:::
pH

::
re larger than the global average, with the coastal and high latitude oceans contributing

significantly to the regional biases. The GLODAP comparison of pH RMSE
:::::
RMSE

::
of

:::
pH

::::
with

::::::
respect

::
to
:::::::::
GLODAP is also low505

(0.024), but is
::::::
slightly outperformed by the RMSE of pH calculated with LIARv2 TA and FFNNv2 pCO2 (made available in

the FFNNv2 data set, 0.023)but .
::::
But given the uncertainty of GLODAP pH (0.005), the difference is negligible.

For the “bottom-up” estimate, we propagate the total error
:::::::::
uncertainty of pCO2 and only the

::::::::::
uncertainties

:::::::::
associated

::::
with

::
the

:
measurement and prediction errors for TA. We do this to avoid including the representation error twice in the bottom-up

estimate, as we hypothesize that the representation error of TA is largely accounted for by the representation error of pCO2 and510

vice versa. We choose to use the representation error of pCO2 rather than TA as the larger number of samples gives us greater

confidence in the estimate. Moreover, we feel that the assumptions we make in the estimate of the TA representation error are

larger than those for pCO2, thus further justifying our choice in using only the representation error of pCO2.

The comparison of top-down vs bottom-up error
:::::::::
uncertainty

:
estimates for open and coastal oceans is shown in Figure 7

with values of the total errors
::::::::::
uncertainties

:
also shown. The top-down and bottom-up error

:::::::::
uncertainty

:
estimates for DIC are515

relatively accurate with the estimates being within 5% of each other in the open ocean and 9% in the coastal ocean. However,

the estimates are not as coherent for pH where there the bottom-up error is 23% smaller
:::
than

::::
the top-down error than the

:::::::::
uncertainty

:
in the open ocean. The difference is even bigger in the coastal ocean where the bottom-up is 31% smaller than the

top-down error
:::::::::
uncertainty.
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4 Results520

4.1 Comparison with other climatologies

A spatial comparison between OceanSODA-ETHZ and existing products might reveal potential biases in our product if the

bias is present in all comparisons. We compare TA against LIARv2 and NNGv2 (Carter et al., 2018; Broullón et al., 2018) by

first taking the difference for each month and then calculating the average for these differences. The same approach is used to

compare pCO2 with SOMFFN and FFNNv2 (Landschützer et al., 2016; Denvil-Sommer et al., 2019).525

The differences in TA between OceanSODA-ETHZ and NNGv2 and LIARv2 are on the same order of magnitude in the

open ocean as the prediction error (13 µmol /kg
::::
kg�1) but are slightly larger on average for NNGv2 than for LIARv2 (Figure

8a,b). There is also some agreement in the spatial distribution
:::::
pattern

:
of the distribution, particularly in data sparse parts of the

Pacific and Indian Oceans. The larger differences may stem from the fact that both LIARv2 and NNGv2 are more constrained

by spatial coordinates than GRaCER. NNGv2 uses latitude and longitude as a predictor
::::::::
predictors while the LIARv2 approach530

interpolates
::
the

:
linear regression coefficients for every 5� grid cell (Broullón et al., 2018; Carter et al., 2018). The divergence in

data sparse regions is thus not surprising. Though, it must be emphasized that this comparison serves more as a "sanity check"

than as a ground truthing exercise.

The differences between OceanSODA-
::::::::::::::::
OceanSODA-ETHZ pCO2 and FFNNv2 and SOMFFN are smaller and not as spa-

tially coherent than those for TA. The differences are marginally larger for the OceanSODA - FFNNv2 than for OceanSODA535

- SOMFFN (Figure 8c,d). This is consistent with the data in Table 4, where the metrics for the SOMFFN are very similar

to OceanSODA-ETHZ. The smaller difference between the latter should not come as a surprise as the GRaCER approach is

built on the two-step cluster-regression approach of the SOMFFN, while the FFNNv2 approach includes spatial coordinates

(Landschützer et al., 2016; Denvil-Sommer et al., 2019). In general, the dissimilarity between the differences is encouraging

as it indicates that OceanSODA-ETHZ is not consistently biased relative to SOMFFN and FFNNv2.540

:::
We

:::
also

:::::
show

:::
the

:::::::
temporal

::::::::
evolution

::
of

:::
the

::::::::::
basin-mean

:::::::::
differences

:::::::
between

:::::::::::::::::
OceanSODA-ETHZ

:::::
pCO2:::

and
:::::
other

:::::::::
gap-filling

:::::::
methods

::::::
(Figure

:::
9).

:::
In

:::
the

:::::::
Atlantic

:::::::
(Figure

:::
9a),

:::::::::::::::::
OceanSODA-ETHZ

::::::
pCO2::

is
::::
< 2

:::::
µatm

:::::
lower

::::
than

:::
the

:::::
mean

:::
of

:::
the

:::::
other

::::::::
gap-filling

::::::::
methods

::
for

:::
the

::::::
period

::::
1990

::
to

:::::
2008.

:::::::::
Thereafter,

:::
the

::::::::
difference

::
is
::::
< 1

:::::
µatm.

::
In

:::
the

:::::
Indian

::::::
ocean,

:::
our

:::::
pCO2::::::::

estimates

::::
have

:
a
::::::::
persistent

:::::::
negative

:::::::::
difference

::
of

::::
⇠ 2

::::
µatm

:::::::
(Figure

:::
9c).

::::
The

::::::::::
comparison

::
in

:::
the

::::::
Pacific

::::::
(Figure

:::
9b)

::
is

:::
the

::::
most

:::::::::
consistent

::::
with

:::
the

::::
other

::::::::
methods,

::::
with

::
a
:::::
slight

:::::::
positive

:::::::::
difference

::
in

:::
the

::::::::
beginning

:::
of

:::
the

:::::
period

::::::::::
(pre-1990).

::::
The

:::::::::::::::::
OceanSODA-ETHZ545

:::::::
estimates

:::
of

:::::
pCO2::

in
:::
the

::::::::
Southern

:::::
Ocean

:::::::
(Figure

:::
9d)

::::
have

::
a
::::
large

:::::::
positive

:::::::::
difference

::::
prior

::
to

:::::
1990

:
–
:::
up

::
to

:
6
:::::
µatm

:::
for

::::
one

::
of

::
the

:::::::::
ensemble

::::::::
members.

::::
This

:::::::::
difference

::::::
quickly

:::::::::
diminishes

::::
and

::
is

::::
near

::::
zero

::
by

:::::
1990.

::::::
There

::
is

:::
also

::
a
:::::::
negative

:::::::::
difference

::::
later

::
in

:::
the

::::::
period

:::::
(2004

::
to

::::::
2015);

::::::::
however,

:::
the

::::::::
ensemble

:::::
spread

::::
over

::::
this

:::::
period

::
is
:::::
large.

:

:::
The

::::::::::
comparison

::::
with

:::::
other

::::::::
methods

::::::::
illustrates

::::
that

:::::
while

:::::::::
gap-filling

:::::::
methods

:::
are

::::::::::
converging

:::
on

:
a
::::::
global

:::::
scale,

:::::
there

:::
are

::::::::
regionally

::::::::::
differences.

:::::::
Further,

:::::
large

:::::::::
differences

::
in

::::::
pCO2 :::::::

between
:::::::
methods

:::::
prior

::
to

:::::
1990

:::::::
indicates

:::::
high

:::::::::
uncertainty

:::
for

::::
this550

::::::
period.
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4.2 Seasonal Climatologies

The climatological mean spatial distribution of TA, pCO2, DIC, pH
:
, and ⌦, obtained by averaging the estimates from 1985

through 2018, reveal a very rich and diverse pattern of variability with commonalities and differences (Figure 10). The clima-

tological maps are accompanied by Hovmoeller diagrams that show the zonal average of the seasonal cycle for each of the555

variables (Figure 11). We also show climatological time series for each of the variables at high (55�N, 170�W), mid (30�N,

170�W) and low (10�N, 170�W) latitude locations.

Total alkalinity shows the largest differences between basins, with the mean alkalinity being much higher in the saltier

Atlantic than in the Pacific and Indian basins (Boutin et al., 2018) (Figure 10a). The spatial variability of TA on a global scale

exceeds the variability of the seasonal cycle (Figure 11a,e). Seasonal variability of TA is on the order of 20 µmol kg�1 at the560

chosen mid and high latitude locations, while the latitudinal gradient is as large as 150 µmol kg�1. However, much of the TA

seasonality is driven by seasonal changes in salinity due to precipitation and ice melt in the respective regions.

Dissolved inorganic carbon is more homogeneous across the basins, but has a much larger meridional gradient than TA,

amounting to more than 150 µmol kg�1 (Figure 10b). This meridional gradient is seasonally substantially more modified than

is the case for TA, particularly in the high latitudes of the northern hemisphere where the seasonal cycle is as large as 100565

µmol kg�1 11b,g). The larger seasonal cycle in DIC is due to the carbon update
:::::
uptake by spring-time phytoplankton blooms

and stratification during the warmer seasons (Siegel et al., 2002). The magnitude of the spring-time blooms is dampened by

iron limitation in the Southern Ocean, visible by a smaller seasonal cycle amplitude (
:
⇠40 µmol kg�1) (Watson et al., 2000;

Tagliabue et al., 2017). However, the background DIC concentration in the Southern Ocean is much larger due to upwelling of

DIC-rich circumpolar deep waters driven by the persistent westerlies south of 50�S (Marshall and Speer, 2012).570

The spatial distribution and seasonal cycles of pCO2 and pH (Figures 10c,d) and 11c,d,g,h
::
h,i) are strongly negatively cor-

related due to the inverse stoichiometric relationship between dissolved aqueous CO2 and [H+] (Dickson et al., 2007). The

reduction in DIC is concomitant with the reduction in pCO2 in the high latitudes due to the biological uptake of [CO2
::::
CO2]

(11c,g
:::::
Figure

:::::
11g,h). However, this relationship does not hold true in the mid latitudes, where the slight decrease in DIC is

contrasted by a relatively strong increase in pCO2. This is due to the positive temperature dependence of pCO2 (the opposite575

is true for pH) (Takahashi et al., 1993), which will be elaborated on in the discussion.

The spatial distribution of ⌦ (Figures 10e,f and 11e,j) strongly reflects the concentration of the carbonate ion, which can be

well approximated by the difference between TA and DIC (Sarmiento and Gruber, 2006). Given that the seasonal cycle of TA

is much weaker than DIC, the latter dominates the seasonal cycle of ⌦arag :::
⌦Ar:(Figures 11e,j). This would also be true for

⌦calc :::
⌦Ca which only differs

:::
from

::::
⌦Ar in magnitude and not in distribution or seasonality (the latter is not shown).580

4.3
:::::
Global

::::
and

::::::::::
basin-scale

:::::::::
long-term

::::::
trends

:::
The

:::::::::::::::::
OceanSODA-ETHZ

::::
data

:::
set

:::
can

:::::::
provide

::::::::
important

:::::
novel

:::::::::
constraints

:::
on

:::
the

:::::::::
long-term

:::::
trends

::
in

::::::
ocean

:::::::::::
acidification.

:::
We

::::::::
determine

:::
the

::::::::
long-term

::::::
trends

:::
by

:
a
:::::
linear

:::::::::
regression

::::::::
approach,

:::::::::
restricting

:::
the

::::::
period

::
to

::::
1990

:::::::
through

:::::
2018,

::::
thus

:::::::
leaving

:::
out

::
the

::::::
1980s,

::::::
where

:::
the

:::::::
estimates

:::
are

:::::
much

:::::
more

::::::::
uncertain.

:
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:::
The

::::::
global

:::
and

::::::::::
basin-scale

:::::
trends

:::
for

::::::
pCO2 :::

are
::::::::::
remarkably

::::::
similar

:::::::
(varying

:::
by

::::
only

:::::
about

:::
0.5

::::::::::::
µatm decade-1

:::::::
around

:::
the585

:::::
global

:::::
mean

::
of

:::::::::::::::::
16.5 µatm decade-1)

::::::
(Table

::
5.

::::
The

:::::
ocean

:::::
trends

:::
are

::::
also

::::
very

:::::::::
consistent

::::
with

:::
the

::::::
trends

::
in

::::::::::
atmospheric

:::::
CO2

:::::::::::::::::::
(⇠ 18.6 µatm decade-1),

::::::::
reflecting

:::
the

::::
fact

:::
that

:::
the

::::
CO2::::::

system
::
in

:::
the

::::::
surface

:::::
ocean

::
is

::::::::
following

:::
the

:::::::
increase

::
in

:::
the

::::::::::
atmosphere

::::
very

::::::
closely

:::::::
globally

::
as

::::
well

::
as

::
in

::
all

::::::
ocean

::::::
basins.

:::
The

::::::::::
atmospheric

:::::
trend

::
is

::::::
slightly

::::::
steeper

::::
than

:::::
those

::
in

:::
the

::::::
ocean.

::::
This

::
is

::
as

:::::::
expected

:::::
since

:::
the

::::::::::
atmospheric

::::
CO2:::::::

increase
:::::
forces

:::
the

::::::
ocean,

::::::
leading

::
to

:
a
:::::
slight

:::::
delay,

::
a

::::::::
reflection

::
of

::
an

:::::::
increase

::
in

:::
the

::::::
air-sea

::::::::::::
disequilibrium

::::
over

::::
time

::::
(see

::::
e.g.,

:::::::::
discussion

::
in

:::::::::::::::::::::::::
Matsumoto and Gruber (2005)

:
).
::::
This

::::::
growth

:::
in

:::
the

::::::
air-sea

::::::::::::
disequilibrium

::
is590

::
the

:::::::
driving

::::
force

::::::
behind

:::
the

:::::::
increase

::
in

:::
the

:::::::
oceanic

::::
sink

:::::::
strength

::
for

::::::::::::
anthropogenic

:::::
CO2 ::::

over
::::
time

::::::::::::::::
(Gruber et al., 1996)

:
.

:::
The

::::::::::
basin-scale

:::::::::
consistency

:::::
holds

::::
true

:::
for

:::
pH

::
as

::::
well

:::::::
(-0.016

::::
units

::::::::
decade-1)

::::
and

:::
⌦ar::::::

(-0.07
::::
units

:::::::::
decade-1),

:::::
where

::::::
global

:::::
values

:::
are

::::
very

::::::
similar

::
to
:::::
those

::::::::
averaged

::::::
across

:::
the

:::::::
different

:::::
ocean

::::::
basins.

::
In
::::::::

contrast,
::::
there

::
is
:::::
more

::::::
spatial

:::::::::
variability

::
in

:::
the

::::
DIC

::::::
trends,

:::
but

:::
the

::::::
overall

:::::::::
magnitude

::
of

:::::
about

:
9
:::::
µmol

::::::::
kg-1dec-1

::::::
largely

:::::::::
represents

::
the

::::::
uptake

::
of

::::::::::::
anthropogenic

::::
CO2:::::

from
:::
the

::::::::::
atmosphere.

:::
The

::::::
spatial

:::::::::
differences

::
in
:::
the

:::::
DIC

:::::
trends

:::
are

::::
also

::::::::
mirrored

::
in

:::
the

:::::
spatial

:::::::::
variations

::
in

:::
the

::
TA

::::::
trends,

::::
with

:::::::
regions595

::::
with

:::::
higher

:::::
DIC

:::::
trends

::::::
having

::::::
higher

:::
TA

::::::
trends.

::::
This

::::::
makes

:::::
sense

::
in

:::::
terms

::
of

:::::::
positive

:::::
trends

::
in

:::
TA

:::::::::
increasing

:::
the

::::::::
buffering

:::::::
capacity,

:::::
hence

:::::::::
permitting

::::
DIC

::
to

:::::
grow

::::
faster

:::
for

:::
the

:::::
same

:::::::
increase

::
in

:::::::
seawater

::::::
pCO2.

::::
The

:::::
trends

::
in

:::
TA

:::::::::
themselves

:::
are

::::::
driven

:::::
almost

:::::::
entirely

::
by

:::::::
salinity

::::
with

:
a
::::::::::
basin-scale

:::::::::
correlation

::
of

::::
0.99

::::
(see

::::::::::::::::
Cheng et al. (2020)

:
).

Table 5.
::::
Linear

:::::
trends

:::
and

::::
their

:::::::
standard

::::
errors

:::
for

:::::::::::::::
OceanSODA-ETHZ

:::::::
variables

:::
for

::
the

:::::
period

:::::
1990

:
to
:::::

2018.
:::
All

::::::
columns

:::::
show

:::::::
increases

::
per

::::::
decade

::::::
(dec�1).

:::
All

:::::
trends

::
in

::
the

::::
table

:::
are

::::::::
significant

:::::::::
(P < 0.05).

:::
We

::::::
exclude

::
the

:::::
Arctic

::
as
:::
the

:::::::::::::::
OceanSODA-ETHZ

::::::
product

::::
only

:::::
covers

:::
23%

::
of

:::
this

:::::
region

:::
and

::::
may

:::
thus

::::
give

::::::
spurious

::::::
trends.

:::
The

:::::
Ocean

:::::
basins

:::
are

:::::
defined

:::
by

::
the

::::
map

:::::
shown

::
in

:::::
Figure

:::
A4.

::
TA

: :::
DIC

: ::
⌦ar: ::

pH
: ::::

pCO2: :::::
pCOatm

2 :

::::
µmol

:::::::
kg-1dec-1

: ::::
µmol

:::::::
kg-1dec-1

: :::
units

::::
dec-1

: :::
units

::::
dec-1

: ::::
µatm

::::
dec-1

: ::::
µatm

::::
dec-1

:

:::::
Global

: ::
1.5

::
±
:::
0.1

: ::
8.6

::
±
:::
0.1

: ::::
-0.07

::
±

:::
0.00

: :::::
-0.016

::
±

::::
0.000

: :::
16.5

::
±
:::
0.1

: :::
18.6

::
±
:::
0.1

:

::::::
Atlantic

::
3.1

::
±
:::
0.2

: :::
10.0

::
±
:::
0.4

: ::::
-0.07

::
±

:::
0.00

: :::::
-0.016

::
±

::::
0.000

: :::
16.7

::
±
:::
0.2

: :::
18.8

::
±
:::
0.2

:

:::::
Pacific

: ::
0.5

::
±
:::
0.1

: ::
8.1

::
±
:::
0.3

: ::::
-0.07

::
±

:::
0.00

: :::::
-0.016

::
±

::::
0.000

: :::
16.7

::
±
:::
0.1

: :::
18.7

::
±
:::
0.1

:

:::::
Indian

::
4.4

::
±
:::
0.4

: :::
10.9

::
±
:::
0.6

: ::::
-0.06

::
±

:::
0.00

: :::::
-0.015

::
±

::::
0.000

: :::
16.2

::
±
:::
0.4

: :::
18.3

::
±
:::
0.1

:

:::::::
Southern

::
0.5

::
±
:::
0.1

: ::
7.0

::
±
:::
0.6

: ::::
-0.06

::
±

:::
0.01

: :::::
-0.017

::
±

::::
0.001

: :::
16.0

::
±
:::
0.4

: :::
18.5

::
±
:::
0.1

:

5 Discussion

5.1 Choosing the appropriate machine learning configuration600

Here we consider here two notable decisions that have a large impact on the final estimates: 1) the use of the ensemble approach,

and 2) the choice of regression algorithm. For details on the minor choices, see section A3 in the supplementary materials.

As previously motivated, we opt for the cluster-regression approach that is able to generalize estimates in sparse regions

due to information sharing within a cluster. However, cluster boundaries are often semi-discrete, resulting in artifactual bound-

ariesin estimates. This makes the output of cluster-regression approaches less suitable for studies where gradients over short605
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time periods or distances are assessed, e.g.
:
,
:::
for

:::
the detection of extreme events. Our approach removes these boundaries and im-

proves the robustness of the estimate
:::::::
estimates

:
by eliminating, to large extent, the sensitivity of the regression to the clustering

algorithm.

The second major consideration is the choice of regression algorithm. Our choice of different algorithms for TA and pCO2

may seem peculiar; however
:
.
::::::::
However, this decision was informed by the nature of the problems. While regressing TA and610

pCO2 are conceptually similar, the size of each data set and the distribution of training samples sets them apart. When gridded

to a monthly ⇥1deg⇥1deg resolution
::
by

::::::
1°⇥ 1°

:::::::::
resolution, the number of data are ⇠ 300000 for SOCAT pCO2 and ⇠ 16000

for GLODAP TA; i.e., nearly 20 times more data for the former. However, the strong linear correlation between TA and salinity

(r = 0.96) compensates for the poor sampling distribution; that is, as long as the regression method is able to extrapolate -
::
—

a criterion that
:::
the support vector regression (SVR)

::::::
method

:
meets.615

pCO2 is not highly
::::::
poorly correlated to any proxies

::::
proxy, suggesting that the regression problem is more complex, thus

requiring a method that is appropriately non-linear. Gradient-boosted decision trees (GBDT) and feed-forward neural-networks

(FFNN) meet this criterion. But why not just use one of these approaches? Work by Gregor et al. (2019) found that an ensemble

of methods (SVR, GBDT and FFNN) outperformed each individual member. And while SVR performed well in Gregor et al.

(2019), the method does not scale to larger problems, which GBDT and FFNN
:::::::
FFNNv2 are capable of,

:
leading to our choice620

of the latter two. One critique of GBDT in this application may be that, being a tree-based method, it is not able to extrapolate.

However, we feel that the cluster-regression approach combined with the large number of training data for pCO2 compensates

for this shortcoming. GBDT provide also provide useful diagnostics
:
, such as feature importances,

:
that, when combined with

the GRaCER approach, provides useful information about the spatial and seasonal importance of the proxies.

5.2 Why are pH uncertainties less well-constrained?625

One of the novel contributions of this study is that we are able to assert the validity of our results by comparing the bottom-up

(propagated) with the top-down errors (in situ
::::::::::
uncertainties

:::
(in

::::
situ comparisons). Using this approach, we show that the error

:::::::::
uncertainty

:
estimates of DIC are remarkably well-constrained, with the top-down being within 5% of the bottom-up error

:::::::::
uncertainty

:
estimate for the open ocean (7b). The same statistic

:::::::
statistics

:
for pH yields a 23% difference between the two

budgets. The question is thus, why are pH bottom-up and top-down error estimates not so
:::::::::
uncertainty

::::::::
estimates

:::::
much

::::
less630

consistent?

To assess this problem from the bottom-up perspective, we need to consider the uncertainties of pCO2 and TA. But given that

the DIC error
:::::::::
uncertainty

:
budgets are well constrained, we can, with some certainty, rule out the bottom-up error

:::::::::
uncertainty

estimate as the source for the larger mismatch in pH.

The source of the mismatch must thus be driven primarily by uncertainties in the top-down perspective, where it may be635

that the representation error of pH is larger than for DIC. We can immediately rule out the measurement error as a contributor

to the mismatch, as the bias of the measurements (provided accurate calibration to reference samples) should be normally

distributed around zero. Thus,
:::
the representation error is a more

:::
the

::::
most

:
likely candidate, due to the temperature and pressure

sensitive nature of pH compared to the conservative nature of DIC w.r.t.
::::
with

::::::
respect

::
to

:
the same variables (Dickson et al.,
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2007). This is important given that our "surface" pH data from GLODAP can be as deep as 30 m, while pCO2 is typically640

measured at a 10 m depth
::
the

::::::
intake

:::::
depth

::
of

::::
most

::::::
ships,

:::::
which

::
is

::::::::
typically

::
at

:
5
:::

m
:::::::::::::::::
(Bakker et al., 2016). A basic sensitivity

study of the variability of pH in the surface layer shows that the median standard deviation of "surface" pH at a single station

is 0.004 units (even when normalized to a standard temperature and depth). The same approach for DIC yields a standard

deviation of 2 µmol kg�1. This suggests that the vertical representation
::::::::
mismatch error of GLODAP alone already explains a

good deal of the mismatch in the error
::::::::::
discrepancy

::
in

:::
the

:::::::::
uncertainty

:
budgeting. One might reduce this uncertainty by placing645

tighter constraints on the definition of "surface" pH, limiting the depths between 3 m and 15 m, for example, but at the loss of

valuable test samples. The representation error from horizontal representation errors
::::::::
(described

::
in

:::::::
Section

::::
3.1) could further

explain the remaining disparity in the pH error budget.

5.3 Can we reduce the total error
::::::::::
uncertainty?

The last two decades have seen major advances in the reduction of the measurement uncertainty for both
:::::::::::
improvements

:::
in650

::
the

::::::::
accuracy

::::
and

::::::::
precision

::
of

:::
the

:
TA and pCO2 ::::::::::::

measurements,
::::::
leading

::
to

:::::::::
substantial

:::::::::
reductions

:::
in

:::
the

:::::::::::
measurement

:::::
errors.

The introduction of certified reference materials for TA and a standardized approach for measuring pCO2 with reference gases

means that the measurement uncertainties
::::::::::
uncertainties

:::::::::
associated

::::
with

:::
the

::::::::::::
measurements are low.

In contrast, the prediction uncertainty is the largest contributor to the total error
:::::::::
uncertainty for both DIC and TA

:
, suggesting

that this could be a fruitful avenue to pursue. However, current literature suggests that this is unlikely. Gregor et al. (2019)655

showed that within a selection of six gap filling methods, all achieved similar accuracy scores when compared with independent

data, upon which the authors suggested that we have hit a "wall".

This leaves the representation error, which contributes a moderate fraction to the total pCO2 and TA errors
:::::::::::
uncertainties in

the open ocean and even less in the coastal ocean. A back-of-the-envelope calculation shows that increasing the resolution of

pCO2 fourfold (from monthly by 1°x1° to 8-daily by 0.25°x 0.25°) could decrease the representation error by 2.5 µatm ( 35%)660

for the open ocean and 3.2 µatm for the coastal ocean ( 20%). This is perhaps not as much as expected, but these small gains are

larger than those that are currently being made in the prediction uncertainties
:::
with

::::::
regard

::
to

::
the

:::::::::
prediction

:::::
errors

:
(Gregor et al.,

2019). This is not applicable for TA, where ungridded values are already used to train GRaCER and the
:::::
where

:::
the

::::::::
selection

::
of

::
the

:
predictor variables are more likely contributors

::::
likely

:::::
more

::::::::
important.

Why are these gains smaller than hoped? It may be that our gradient approach for calculating the representation error breaks665

down as the resolution increases due to the decreasing number of adjacent grid points. This is hardly surprising considering that

78% of grid cells in the SOCAT v2019 monthly gridded
::::::::::::::
monthly-gridded product are represented by sampling on a single day

that falls within that period (Bakker et al., 2016). Another possibility is that decreasing both the spatial and temporal resolution

exposes the sharp mesoscale gradients that are otherwise averaged over at larger resolutions (Resplandy et al., 2009; Monteiro

et al., 2015). The gains
::::
With

:::
the

::::::::
currently

::::::::
available

::::
data,

::
it
::::::
seems

::
as

::
if

:::
the

::::::::
reduction

:
to be made in the total uncertainty are670

thus small by increasing the resolution of the prediction data
:::
will

::
be

:::::
small.
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5.4 Regional sensitivity of pCO2 to driver variables

Here we demonstrate one of the possible ways in which the OceanSODA-ETHZ data can be used to gain further insight into

the marine carbonate system.

We decompose and attribute the mean seasonal cycle variability of pCO2 to its drivers, namely TA, DIC, temperature and675

salinity. Past studies using observation based-products have been limited to a simpler thermal/non-thermal decomposition of

pCO2 due to the lack of DIC and TA (Takahashi et al., 2002; Landschützer et al., 2015). This is thus the first time that a

full decomposition of pCO2 has been applied to observation-based data for a global domain. The decomposition is performed

with pyCO2SYS by keeping all but one of the drivers constant (to the average) and assess the influence on pCO2 (Humphreys

et al., 2020). This is conceptually similar to the decomposition applied
::::::
similar to

:::::::
previous

::::::
studies

::::
that

:::::::
applied

::
an

:::::::::
analogous680

::::::::::::
decomposition

::
to ocean simulation output by Lovenduski et al. (2007)

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Lovenduski et al., 2007; Fassbender et al., 2018; Gallego et al., 2018)

. An important note to make, considering that we intend that OceanSODA-ETHZ is used for ocean acidification studies, is that

the decomposition of pH would result in virtually the same contribution of the drivers (Dickson et al., 2007).

The seasonal amplitude of pCO2 is driven predominantly by changes in DIC in the high and equatorial latitudes, and by

temperature in the mid latitudes (Figure 12d). At first glance, these results may seem similar to those that the simpler thermal685

decomposition might result in, requiring only temperature. However, in regions where the seasonal amplitude of pCO2 is

smaller, the importance of TA becomes more apparent. For example, at the mid-latitude station (Figure 12b), TA and DIC

synergistically act to dampen the impact of temperature on pCO2. Conversely, at the equatorial station (Figure 12c) the effect

of TA on pCO2 opposes that of the more dominant DIC. Further, there are regions in the tropics where TA is the dominant

driver due to the weak seasonal cycle of both temperature and DIC.690

5.5
:::::::::::::::

Recommendations
:::
for

::::
use

::
In

::::
order

::
to

:::
use

:::
the

:::::::::::::::::
OceanSODA-ETHZ

::::::
product

::
in

::
an

:::::::
optimal

:::::::
manner,

:
it
::
is

::::::::
important

::
to

::
be

:::::
aware

::
of

:::
its

:::::::
strengths

::::
and

::::::::::
weaknesses.

:::
The

:::::::
primary

:::
use

::
of

:::
the

:::::::::::::::::
OceanSODA-ETHZ

::::
data

::
set

::
is

::
to

::::::::
determine

::::
and

:::::
assess

:::
the

::::::::::
seasonality,

:::
the

:::::::::
interannual

::::::::
variations

::::
and

:::::
trends

::
of

:::::
ocean

::::::::::
acidification

::::::
thanks

::
to

::
its

:::::::::
containing

::
all

:::::::
relevant

:::::::::
parameters

::
of

:::
the

::::::
marine

::::::::
carbonate

::::::
system

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Landschützer et al., 2015, 2016; Gregor et al., 2018; Keppler and Landschützer, 2019)695

:
.
::::::::
However,

::::
users

:::
of

:::
the

:::::::::::::::::
OceanSODA-ETHZ

::::::
product

::::::
should

:::
be

:::::
aware

:::
of

:::
the

:::
fact

::::
that

::::
that

::::
data

::::
prior

::
to

:::
the

::::::
1990’s

::::::
should

:::
be

:::::
treated

::::
with

::::
care

:::
due

::
to

:::
the

::::::
paucity

::
of

:::::::
SOCAT

:::::
pCO2:::::::

training
::::
data

:::::
during

:::
this

::::::
period

::::::::::::::::::::::::::::::::::::
(Rödenbeck et al., 2015; Watson et al., 2020)

:
.
::::
This

:::
was

:::::::
recently

:::::::::::
demonstrated

:::
by

:::::::::::::::::
Watson et al. (2020)

:::
who

:::::
used

::
an

::::::::
ensemble

::
of

::::::
various

:::::::::
regression

::::::::::
approaches

::
to

::::
show

::::
that

::
the

::::::
spread

::
of

:::::
pCO2::::::::

estimates
:::::
prior

::
to

:::
the

::::::
1990’s

:
is
:::::
large

:::
due

::
to

:::
the

:::::::
paucity

::
of

::::
data.

::::::::
Similarly,

:::::::::::::::::
Gregor et al. (2019)

::::::
showed

::::
that

:::::
pCO2 ::::::::

estimates
::::
prior

::
to

:::::
1990

::::
tend

::
to

::::
have

:
a
:::::::
slightly

::::::
positive

:::::
bias.700

:::
The

:::::::
product

::
is

:::
also

:::::
very

::::
well

:::::
suited

:::
for

::::::::
assessing

:::::::
models.

::::::
Thanks

::
to

:::
the

::::::::
spatially

:::::::
resolved

::::::::
estimates

::
of

::::::::::
uncertainty

:::
for

:::
TA

:::
and

:::::
pCO2:::::::

(Figure
::::
A2),

:::
one

::::::
cannot

::::
only

::::::
assess

:::
the

:::::::::::::::
model-observation

:::::::::::
mismatches,

:::
but

::::
also

:::::
weigh

:::::
them

::::
with

:::
the

::::::::::
appropriate

:::::::::::
uncertainties.
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:
A
:::::::

strength
:::

of
:::
the

:::::::::::::::::
OceanSODA-ETHZ

::::::
product

::
is
::::
that

::
it

::::::
extends

::::::
further

::::
into

:::
the

::::::
coastal

:::::::
margin

::::
than

::::
most

::::::::
previous

::::::
studies

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Iida et al., 2015; Landschützer et al., 2016; Denvil-Sommer et al., 2019)

:
.
::::
This

::
is

:::::::
achieved

::
i)

::
by

::::::::
including

::::::
coastal

:::::::::::
observations705

:::::
during

:::
the

:::::::
training,

:::
and

:::
ii)

::
by

:::::
using

:
a
:::::
larger

::::::
number

::
of
:::::::
clusters

::::::::
compared

::
to

:::::
other

::::::::
clustering

:::::::::
approaches

:::::::::::::::::::::::::::::::::::::::
(Landschützer et al., 2016; Watson et al., 2020)

:
.
::::
This

::::::
permits

::
to

:::::
better

:::::::
separate

:::::
open

:::::
ocean

:::
and

::::::
coastal

:::::::::
variability

:::::::
through

:::
the

::::::::
inclusion

::
of

:::::::
suitable

:::::::
variables

::
in

:::
the

:::::::::
clustering

:::
step

::::
(e.g.

::::::
Chl-a

::
for

::::::
pCO2,

::::
and

:::
see

::::::
Figure

:::
A5

::
to

:::
see

::
a
::::::::::::
representation

::
of

::::::
cluster

:::::::::::
boundaries).

::::
This

:::::
gives

::
us

:::::::::
confidence

:::
in

:::
the

::::::
coastal

:::::::
estimates

::
of

:::
the

::::::::::::
climatological

:::::::
seasonal

:::::
cycle.

::::
Our

::::::
product

::
is

::::::::
therefore

:::::::::
comparable

::
to
::::
that

::
of

::::::::::::::::::::::
Landschützer et al. (2020)

:::
who

:::::::
blended

::::::::
separate

::::::
coastal

::::
and

::::
open

::::::
ocean

:::::
pCO2::::::::

products
:::
into

::
a
:::::
single

:::::::::::::
climatological

::::::
product

:::::
with

:::::::
monthly

:::::::::
resolution710

:::::::::::::::::::::::::::::::::::::::
(Landschützer et al., 2016; Laruelle et al., 2017).

:

:::
The

::::
total

:::::::::::
uncertainties

::
of

::::
our

::::::::
estimates

::
in

:::
the

::::::
coastal

:::::
ocean

:::
are

:::::::::::
considerably

:::::
larger

:::::::::
compared

::
to

:::
the

::::
open

::::::
ocean

::::::::
estimates

::::::
(Figure

:::
7).

::::
This

::::::
reflects

:::
the

:::::
much

::::::
higher

:::::::::::::
spatio-temporal

:::::::::
variability

::
of

:::
the

:::::::
physical

::::
and

::::::::
chemical

::::::::::
environment

:::
in

:::
the

::::::
coastal

:::::
ocean,

:::::::
leading

::
to

:::::
much

:::::
higher

:::::::::
variations

::
in

:::
the

::::::
marine

::::::::
carbonate

:::::::
system

:::::::::::::::::
(Laruelle et al., 2017)

:
.
:::::
Since

:::
our

::::::::
predictor

::::::::
variables

::
are

:::::
only

:::::::
partially

:::::::::
reflecting

::::
this

:::::::::
variability,

::
a
:::::
large

::::::
portion

:::
of

:::
the

:::::
high

::::
total

::::::::::
uncertainty

::
is

::::
due

::
to

::
a
:::::
high

::::::::::::
representation715

::::
error

::::::
(Table

::
3).

:::::::::
Increasing

::::
the

::::::::
resolution

:::
of

:::
the

:::::::
products

::::
may

::::::::
improve

:::
the

::::
total

::::::::::
uncertainty

::
of

::::::
coastal

::::::::
estimates

:::
as

::::
done

:::
by

:::::::::::::::::
Laruelle et al. (2017).

:::::
Until

:::
we

:::::
arrive

::
at

:::
this

:::::
point,

:::
the

:::::::::::::::::
OceanSODA-ETHZ

::::
data

::::::
should

::
be

::::
used

::::
with

::::
care

::
in

:::
the

::::::
coastal

::::::
ocean.

::::::
Further,

:::
we

::::::::::
recommend

:::
that

::::::::::
researchers

::::::::
interested

::
in

:::
the

:::::::::::
investigation

::
of

:::::::::
interannual

:::::::::
variability

:::
and

::::::
trends

::
in

:::
the

::::::
coastal

:::::
ocean

::::
using

::::
the

::::::::::::::::
OceanSODA-ETHZ

:::::::
product

::::::
should

::::
also

:::::
look

:
a
:::
the

::::::::::
underlying

::
in

::::
situ

::::
data

::
to

::::
gain

::
a
:::::
better

::::::::::::
understanding

:::
of

:::
the

:::::::::
variability,

:::::
trends,

::::
and

:::::::::::
uncertainties

::
for

:::
the

::::::
coastal

::::::
region

::
of

:::::::
interest.

:
720

6 Summary

Our approach for estimating TA and pCO2 is an evolution of the cluster-regression approach: we
::
We

:
create an ensemble of

estimates by repeating the cluster-regression step multiple times, each with a different variation of clustering. We call this

approach the Geo-spatial Random Cluster Ensemble Regression (GRaCER). The result is an estimates that are
:::::::
estimate

::::
that

:
is
:

more robust with better generalization and the output does not have the discrete cluster boundaries that single member725

cluster-regression approaches have.

We find that our estimates of TA are within the ballpark of of previous methods with a prediction error (root mean square

error) of 13 µmol kg�1 for open ocean estimates, while biases are < 1 µmol kg�1. Taking into consideration all sources of

error (measurement and representation errors), the total error
:::::::::
uncertainty is 17 µmol kg�1 for TA. The prediction error for

pCO2 in the open ocean is 12 µatm, also with a bias of < 1 µatm. Including the measurement an
:::
and representation errors for730

pCO2 results in a total error
:::::::::
uncertainty

:
of 14 µatm for the open ocean. We estimate the total error

:::::::::
uncertainty

:
of DIC and

pH to be 19 µmol kg�1 and 0.022 units when compared with independent GLODAPv2 data for the open ocean. Finally, we

compare the aforementioned "top-down" error
:::::::::
uncertainty

:
estimates of DIC and pH with the "bottom-up" error

:::::::::
uncertainty

estimates that are calculated by propagating the TA and pCO2 total error
:::::
pCO2::::

total
:::::::::
uncertainy estimates through the marine

carbonate system. This budgeting approach shows that we have a good grasp on the uncertainties of DIC for both the open735
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and coastal oceans. However, pH uncertainties are not as well resolved, most likely due to a mismatch in the representivity of

::
the

:
measured pH.

Lastly, we
::
We

:
demonstrate a use case of the OceanSODA-ETHZ data set in which we decompose the seasonal variability

of pCO2 into four driver components of DIC, TA, temperature and salinity. We find that DIC is the dominant driver in the

high and equatorial latitudes, while temperature contributes the majority of the signal in the subtropics. Importantly, DIC and740

temperature are antagonistic drivers of pCO2
::::
pCO2, while alkalinity always acts in opposition to the stronger of the two primary

drivers.
:::
We

::::
also

::::
show

:::
the

::::::
strong

:::::::::
constraints

:::::::::::::::::
OceanSODA-ETHZ

:::
can

::::
pose

:::
on

:::
the

::::::::
long-term

::::::
trends

::
in

:::::
ocean

:::::::::::
acidification.

Finally, OceanSODA-ETHZ will be maintained and updated for future work.

7 Code and data availability

Software for the GRaCER framework is available on GitHub (access provided on request). The OceanSODA-ETHZ dataset is745

available at https://doi.org/10.25921/m5wx-ja34 (Gregor and Gruber, 2020).

Appendix A: Supplement to the Methods

A1 pCO2 outlier removal

The first outlier removal method requires the pCO2 to be adjusted from the ship intake temperature to the satellite SST as

described by (Goddijn-Murphy et al., 2015):750

pCOSST
2 = pCOSOCAT

2 ⇥ exp(0.0433 · (T SST �T SOCAT)) (A1)

where the ship intake depth varies due to inconsistent depth between vessels and the water column state (e.g. well stratified

or mixed). Here TSST is the foundation temperature given by the Operational Sea Surface Temperature and Sea Ice Analysis

(OSTIA) v2
::::::
product

::::::::::::::::
(Good et al., 2020). The OSTIA product is matched to the ungridded pCOSOCAT

2 at daily by 0.25°⇥0.25°

resolution (Donlon et al., 2012)
:::::::::::::::
(Good et al., 2020). The corrected pCO2 is then binned to monthly by 1°⇥1° without weight-755

ing. Data are excluded where the absolute difference between pCOSST
2 and pCOSOCAT

2 is larger than 40 µatm.

Secondly, we exclude data that lie outside the expected ranges for the monthly climatology of pCO2. The expected ranges

are defined using the interquartile range outlier detection method for each pixel in a given month with the following equation:

IQR=Q3 �Q1 (A2)

lower limit =Q1 � IQR · 1.5 (A3)760

upper limit =Q3 + IQR · 1.5 (A4)

where Q1 and Q3 are the 25th and 75th percentiles, respectively. This approach is only applied where there are enough data

present for a particular month of the year.
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A2 Target variable: �pCO2 vs pCO2

In this study, one of the avenues that explored was to predict �pCO2 instead of pCO2. Motivation for predicting �pCO2 is765

that it might allow new measurements from recent years to add new information about the seasonal cycle in regions where

sampling was previously seasonally biased, e.g. the SOCCOM float data (Gray et al., 2018). Bushinsky et al. (2019) showed

that including the new information about the seasonal cycle of pCO2
::::
pCO2:in machine learning estimates resulted in stronger

winter outgassing, but their results could only show this for the period that SOCCOM float data are present. One of the reasons

that machine learning approaches are not able to propagate this information back through time is that the larger pCO2
:::::
pCO2 is770

"anchored" by the atmospheric
::::
CO2 CO2 concentrations that are used as a proxy. Atmospheric pCO2 is required as a predictor

variable to capture the interannual signal of pCO2. Predicting �pCO2 might thus allow one to remove atmospheric pCO2 as a

driver because the interannual term trend of pCO2 is removed.

The results appeared promising, but on further investigation we found that the regressions that were trying to predict �pCO2

were not able to represent the increasing strength of the sink. Further
::::::::::
Furthermore, we found that the interannual variability of775

pCO2 was reduced compared to results that include atmospheric xCO2 as a driver. Ultimately, we abandoned the approach.

A3 Hyper-parameter selection for regression methods

A3.1 Total alkalinity: support vector regression

Hyper-parameters for the support vector regression (SVR) were chosen on a per-cluster basis using grid search cross validation,

where unshuffled K-fold cross validation with five splits was used. The ⌫SVR variety of the algorithm from the scikit-learn780

package in Python was used. The parameters C, �,
:
and ⌫ were selected.

A3.2 pCO2: Gradient boosted decision trees

We used the LightGBM package to perform the gradient boosted regression with decision trees (GBDT). The GBDT algorithm

was trained using early stopping, which determines the number of trees used in the model – typically one of the most important

hyper-parameters. Every every fifth year from 1987 to 2019 was set aside as the validation data used in the early stopping. The785

total number of leaves per tree and the minimum number of training points per terminal leaf were both set to N0.5, where N

is the number of training points in a given cluster. The number of leaves per tree determines the size of the tree. The difference

with LightGBM compared to other packages, like XGBoost, is that trees are grown on a leaf wise basis rather than a level-wise

basis, where the depth of the tree would be a more important hyper-parameter. The minimum number of training points per

terminal leaf determines how many points are aggregated in an estimate – a small number could thus result in over-fitting.790

The value N0.5 was determined experimentally with a single ensemble member, where the optimal values were determined

with K-Fold cross validation. The results were in the ball-park of N0.5 showing relatively low sensitivity to changes in these

hyper-parameters. Further, the learning rate was set to 0.2 and L1 and L2 regularization were both set to 20.
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A3.3 pCO2: Feed-forward neural network

Given that the problem of solving pCO2 is not very complex (i.e. it is within the capability of a single layer neural network),795

the multi-layer perceptron regressor from the scikit-learn package was used. The size of the hidden layer for each cluster was

determined by shuffled K-fold cross validation with five splits. The maximum number of weights in a hidden layer was set to

N0.55. Back propagation was performed using the Adam optimizer. The learning rate of the optimizer was selected in the cross

validation process. Early stopping was used to speed up the training process and prevent over-fitting where one random third

of the data were used in early stopping.800

A3.4 Feature importances of pCO2

A4
:::::::::
GRaCER

:::::::
mapped

::::::
cluster

:::::::
metrics

:::
One

:::
of

:::
the

:::::::::
advantages

::
of

:::::
using

:::
the

:::::::::
GRaCER

::::::::
approach

::
is

:::
that

::::
any

:::::
metric

::::
can

::
be

:::::::
mapped

:::::
from

:::
the

::::::
results

::
to

:::
the

::::::::::
appropriate

:::::::
clusters,

:::::::
resulting

::
in
:::
an

::::::::
ensemble

::
of

::::::
metric

::::::
scores.

::::
The

:::::::
possible

::::::
metrics

::::
that

:::
can

:::
be

::::::
applied

:::::::
include

::::
bias,

::::
root

:::::
mean

:::::::
squared

::::
error,

::::
and

::::
mean

::::::::
absolute

::::
error.

:::::::
Further,

:::::
these

::::::
metrics

:::
can

:::
be

::::::
applied

::
to

:::
test

::::
data,

::::::::
meaning

:::
that

:::
the

::::::::
resulting

:::::
scores

:::
can

:::
be

:::::
based805

::
on

:::
test

::::::
scores

:::
—

:::
that

::
is

::::
data

::::
that

::
is

::::::
unseen

::
by

:::
the

::::::
model

::::::
during

:::
the

:::::::
training

:::::::
process,

::::
thus

:::::
giving

::
a
:::
true

::::::::::::
representation

:::
of

:::
the

:::::::::
uncertainty.

::::::
Given

:::
that

:::
the

::::::
cluster

:::::
used

::
in

:::
this

:::::
study

:::
are

:::::::::::::
climatological,

:::
we

:::
can

:::
get

::::
fully

:::::::
mapped

::::::::::::
climatological

::::::::
estimates

:::
of

:::::::::
uncertainty.

:

:::
The

::::::::::
uncertainty

::
of

:::
TA

:::::::
remains

::::::
fairly

:::::::
constant

:::::::
between

:::::::
summer

::::
and

::::::
winter,

:::::
with

:::
the

:::::::
Amazon

::::::
plume

:::::::
showing

:::::::::
increased

:::::::::
uncertainty

::
in

:::::::
northern

::::::::::
hemisphere

:::::::
summer

::::::
(Figure

:::::
A2c).

:
810

:::
The

:::::::
seasonal

:::::::::
difference

::
is

:::::
larger

:::
for

:::::
pCO2::::

than
:::

for
::::
TA.

:::
For

::::::::
example,

::::::::::
uncertainty

::
in

:::
the

::::::::
Southern

:::::
Ocean

::
is
:::::
much

::::::
larger

::
in

::
the

::::::::
southern

::::::::::
hemisphere

::::::
summer

:::::::
(Figure

::::
A2b,

:::::
DJF)

::::::::
compared

::::
with

::::::
winter

::::::
(Figure

:::::
A2d,

::::
JJA).

:

::::::::
Similarly,

:::
the

:::::
spatial

::::::::::
distribution

::
of

::::::
feature

::::::::::
importances

:::
can

:::
be

:::::::::
determined

::::
with

:::
the

::::::::
GRaCER

::::::::
approach

:::::
when

::::
using

::::::::
Gradient

:::::::
Boosted

:::::::
Decision

::::::
Trees

::
as

:::
the

:::::::::
regression

:::::::
method

::::::
(Figure

:::::
A3).

::::
Each

:::::::::
ensemble

:::::::
member

:::
has

::
a
::::::
feature

::::::::::
importance

::::::::
assigned

::
to

:
a
:::::::
cluster.

:::::
When

::::::::
averaged

::::
over

:::
the

::::::::
ensemble

:::::::::
members,

:
a
:::::::::

smoothed
::::::::::::
climatological

:::::::
estimate

:::
of

::::::
feature

::::::::::
importance

:::
can

:::
be815

::::::::
estimated.

:

A4.1
::::::
Cluster

::::::::::
boundaries

:::
The

::::::::
GRaCER

::::::
method

:::::::::
introduces

:::
the

::::
idea

::
of

:::::
using

::
an

::::::::
ensemble

::
of

:::::::
clusters,

::::
thus

::::::::
removing

:::
the

::::::::
variability

::::
that

:::
may

:::
be

:::::::::
introduced

::
in

:::
the

::::::::
clustering

:::::
step.

:::
The

:::::::
location

:::
of

:::
the

:::::::
clusters

:::::
varies

::::
from

:::::::::
ensemble

:::::::
member

::
to

::::::::
ensemble

::::::::
member.

::::
This

::::::
creates

::
a
:::::
"high

:::::::
variance

::
—

::::
low

::::
bias"

:::::::
scenario

::::
that

::
is

::::
used

::
by

:::::
other

::::::::
ensemble

:::::::
methods

::::
such

::
as
::::::::
Random

::::::
Forests

::::::::::::::
(Breiman, 2001).

::::
The

:::::::
location820

::
of

::::
these

::::::::::
boundaries

:::
can

::::
give

::::::::::
information

:::::
about

:::
the

:::::
mean

::::::::::
distribution

::
of

:::
the

::::::::
clusters.

:::
For

::::::::
example,

::::::::
locations

:::::
where

:::::
there

:::
are

::
no

::::::
cluster

:::::::::
boundaries

::::
( 1

::
in

::::::
Figure

::::
A5)

::::::
indicate

::::::
cluster

::::::
centers

::::
that

:::
fall

::::::
within

:::
the

::::
same

::::::
cluster

:::
for

:::
the

:::::::
majority

::
of

::::
time

:::::
steps

:::
and

::::::::
ensemble

::::::::
members.

::::::
While

::::::
regions

::::::
where

:::::
cluster

::::::::::
boundaries

:::::
occur

::::
very

::::
often

:::
(>

:
8
::
in
::::::
Figure

::::
A5)

:::
are

::::::::
indicative

::
of

:::::::
regions

:::::
where

:::::::::
boundaries

:::
are

:::::
found

:::
for

::::
most

:::::
time

::::
steps

:::
and

::::::::
ensemble

:::::::::
members.
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Figure 1. Schematic flow diagram showing the three steps required to reconstruct the the surface ocean carbonate system. In the first step

:::::
(yellow

::::::::
hexagons), the GRaCER (Geospatial Random Cluster Ensemble regression) method is used to develop statistical models for the

observed TA (left) and pCO2 (right) fields. In the second step
::::::
(orange

::::::::
rectangles), these statistical models are used to extrapolate these two

parameters over time and space using ancillary observations, primarily stemming from satellite observations. In the third step
:::
(red

::::
oval), the

inter- and extrapolated TA and pCO2 fields are then used to compute the remaining parameters of the surface ocean carbonate system, namely

DIC, pH, and the saturation state of seawater with regard to mineral CaCO3, ⌦. The output of steps two and three is the OceanSODA-ETHZ

product. Also shown are the various data sets and data flows used in this study. The different lines indicate whether data is used for training

(solid lines)or ,
:
testing (dashed lines)

:
, or output with an estimate of uncertainty, where independent test data are shown with gray dashed

lines. The gridded/satellite data are summarized in Table 1. Independent test data are shown by the purple box. pyCO2SYS is the software

used to solve the marine carbonate system and propagate uncertainties (Humphreys et al., 2020).
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Figure 2. A schematic showing the steps used in the GRaCE-R method for a single month. (a-c) show a subset of the clusters of a single

ensemble member (h), with the adjacent scatter plots (d-f) showing the training data for each cluster and the linear regression models for that

cluster (with toy data). (g-i) show the ensemble member estimates for a subset of three members
::
for

::::
pCO2. (j) shows the ensemble mean for

all ensemble members, which includes ensemble members not shown in (g-i).

Figure 4. A comparison of a subset of measurements from long term observation stations (gray) with predicted total alkalinity (TA)

(left: a,b,e,f,i,j) and partial pressure of CO2 (pCO2) (right: c,d,g,h,k,l). The top row (a-d) shows data for the Bermuda Ocean Time Se-

ries (BATS)Hawaii Ocean Time-series (HOT), the middle row (e-h) for the
:::::
Hawaii

::::::
Ocean

:::::::::
Time-series

::::::
(HOT), and the bottom row (i, l)

shows the Irminger station. The narrow panels show the average of the seasonal climatology for the time series. The gray shading shows

the standard deviation of the observations for the period 1990 to 2018, while the orange/blue lines show the average estimate. TA for the

Irminger station is calculated from pCO2 and DIC, and pCO2 is calculated for BATS and HOT using DIC and TA, as described in section

2.4.
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Figure 5. Root mean squared error (RMSE - a,d) and biases (b,c,e,f) for: dissolved inorganic carbon (DIC, top) and pH (bottom) compared

with in-situ
:
in

:::
situ

:
GLODAP v2.2019 data. The two subplots in the right most column compare the zonally averaged

::::::::::::
zonally-averaged

:
bias

for JJA and DJF. Data were processed for plotting as described in
::::::
Section 4.
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Figure 6. A comparison of observations from long term observation stations (gray) with predicted dissolved inorganic carbon (DIC). The

top row (a,b) shows data for the Bermuda Ocean Time Series (BATS), the middle row (c,d) for the Hawaii Ocean Time-series (HOT) and the

bottom row (e,f) shows the Irminger station. The narrow panels on the right show the average of the seasonal climatology for the time series,

where the gray shading shows the standard deviation of the observations for the period 1990 to 2018, while the green line shows the average

estimate.
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Figure 7. A comparison of propagated uncertainties with independent errors
:::::::::
uncertainties as an assertion of the validity of error

::::::::
uncertainty

estimates. The map (a) shows the separation between coastal and open ocean, (b) shows the error contributions in the open ocean, and (c)

in the coastal ocean. The total error
::::::::
uncertainty has been broken into the three different components. Note that the values represented by the

bar plots are not equivalent to values in Table 3 as the latter shows pCO2 and TA total errors
:::::::::
uncertainties

:
for test data only, while the bar

charts show total errors
:::::::::

uncertainties for all data; further the breakdown of the errors
::::
error

::::::::::
contributions is proportional to the contribution

of the sum of the squares
:::
(see

:::
Eq.

::
2).
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Figure 8. A comparison of the mean differences between TA (top) and pCO2 (bottom) for OceanSODA-ETHZ and other
:::::::
published methodsin

the literature: (a) LIARv2, (b) NNGv2, (c) LSCE-FFNNv2
:::::::::::::
CMEMS-FFNNv2, and (d) MPI-SOMFFN. The markers in the North Pacific show

the locations used in the comparison of the climatology in Figure 11.

Figure 9.
:
A

:::::::::
basin-mean

::::::::::
comparison

:::
of

::::::::::::::::
OceanSODA-ETHZ

:::::
pCO2::::

with
::::

four
:::::::::

gap-filling
::::::::

methods:
::::::::::::

MPI-SOMFFN,
:::::::::::

JENA-MLS,

::::::::::::::
CMEMS-FFNNv2,

:::
and

:::::::::
CSIR-ML6.

::::
The

:::
thin

::::
lines

:::::
show

:::
the

::::::::
differences

::
to
:::

the
::::::::
individual

:::::::
methods,

:::::
while

:::
the

::::
thick

:::
line

:::::
shows

:::
the

:::::
mean

:::::::
difference

:::::
across

:::
the

::::
four

:::::::
methods.

:::
We

::
do

:::
not

::::
show

:::
the

:::::
Arctic

:::::
Ocean

::
as

:::::::::::::::
OceanSODA-ETHZ

:::::
covers

::::
only

::::
23%

::
of

:::
the

:::::
region.

::::
The

::::::
vertical

:::::
dashed

:::
line

::
in

::::
each

::::
figure

:::::
marks

:::
the

:::
year

:::::
1990,

:::::
where

:::::::
estimates

::::
prior

::
to

:::
this

:::::
period

::::
show

:::::
biases

::
in

::
(b,

::
c).

:
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Figure 10. Climatological mean
::::
Mean

:
maps of the GRaCER-based estimates of

::
for

:::
the

:::::
period

::::::::
1985–2018

:::
for

:
(a) total alkalinity and (c)

pCO2, as well as those of the computed variables, (b) dissolved inorganic carbon, (d) pH, (e) ⌦calc (saturation state with regard to calcite)
:
,

and (f) ⌦arag (saturation state with regard to aragonite). The three black markers in each plot show the locations chosen for the seasonal

analysis in Figure 11f-j.
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Figure 11. Hovmoeller plots (a-d
:::
a-e) showing the zonally averaged seasonal climatology

::::::::::
climatologies for (a) total alkalinity, (b) dissolved

inorganic carbon, (c) pCO2, (d) pH, and (e) aragonite saturation state (⌦Ar). The second row of figures
:::::
panels (f-j) show the corresponding

variables for a high (55�N, 180�E
:
,
:::
blue), mid (30�N, 180�E,

::::::
orange) and low-latitude (10�N, 180�E,

:::::
green) location. The units for (f-j)

correspond with the units in (a-e).
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Figure 12. Attribution of DIC, TA and temperature to the seasonal cycle of pCO2. The top two figures show the seasonal cycle of pCO2

and the drivers thereof for (a) high latitudes, (b) mid latitudes, and (c) low latitudes. These locations are shown with the markers in the

Pacific ocean in (c). The map (c
:
d) shows the dominant driver of the seasonal cycle for each region calculated as the value with the maximum

seasonal amplitude.

Figure A1.
::::
Time

::::
series

::
of
:::
TA

:::::::
(orange)

:::
and

:::::
pCO2 :::::

(blue)
:::::::
estimates,

::::
with

:::
the

::::::::
respective

::::::
training

:::
data

::::
sets

::::::::::
(GLODAPv2

:::
and

:::::::
SOCAT).

::::
The

:::::
dashed

::::
lines

::::
show

:::
the

::::::
number

::
of

::::::
training

::::
data

::::
(right

:::::
axis).

:::
The

::::::
vertical

:::
line

:::::
shows

:::
the

:::
year

:::::
1990,

:::::
before

:::::
which

:::::::::::::::
OceanSODA-ETHZ

:::::
pCO2

:::::::
estimates

:::
tend

::
to

::
be

:::::
larger

:::
than

:::::
other

::::::::
gap-filling

:::::::
estimates

::
of

::::
pCO2
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Figure A2.
:::
The

:::::
Huber

:::
test

:::::
scores

::::::
mapped

::
to

:::
the

:::::::
ensemble

::::::
clusters

:::
for

::::
Total

::::::::
Alkalinity

::::
(TA)

:::
and

:::::
pCO2.

:::
The

:::
top

::::
row

:::::
shows

:::::
Huber

:::::
scores

::::::
averaged

:::
for

::::::::
December,

:::::::
January,

:::
and

:::::::
February

::::
(DJF)

:::
and

:::
the

::::::
bottom

:::
row

::::
June,

::::
July,

:::
and

::::::
August

::::
(JJA).

::::
The

:::::
Huber

::::
score

::
is

:
a
::::
blend

:::::::
between

:::
root

::::
mean

:::::::
squared

::::
error

::::::
(RMSE)

:::
and

:::::
mean

::::::
absolute

::::
error

:::::::
(MAE),

:::::
where

::::
MAE

::
is

::::::
applied

::
to

:::::
values

:::
that

:::
are

::::::::
considered

:::::::
outliers.

::::
Only

:::
test

:::
data

::
is

::::
used

::
to

:::::::
calculate

::::
these

:::::::::::
climatological

:::::
scores,

:::::::
meaning

:::
that

:::
the

:::::
scores

:::
are

::::
based

:::
on

::::::::
GLODAP2

::::
and

::::::
SOCAT

:::
data

:::
for

:::
TA

:::
and

:::::
pCO2

:::::::::
respectively.

Figure A3. Feature importances determined by Gradient Boosted Decision Trees for pCO2 predictions. A subset of four proxies are shown

for the months of June, July
:
, and August. The feature importances allow one to make informed decisions about the inclusion or exclusion of

proxy variables. Here, temperature (a) is one of the more important features, Chl-a is most important in the high northern latitudes, the U

and V components of the winds are important along the coastal regions, particularly the eastern boundary upwelling systems.
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Figure A4.
:::::
Ocean

::::
basin

::::::::
boundaries

::::
used

::
in

::::
Table

:
5
::
as

::::
used

::
by

:::
the

::::::::
RECCAP2

:::::
project

:
(https://reccap2-ocean.github.io/regions/

:
).

:::
The

:::::::
Southern

:::::
Ocean

:::
and

::::
North

:::::::
Atlantic

::::::::
boundaries

:::
are

:::::
defined

:::
by

::::
biome

:::::::::
boundaries

::::::
defined

:
in
::::::::::::::::::::
Fay and McKinley (2014).

Figure A5.
:::
Map

::
of

:::
the

::::::
position

::
of
::::::
cluster

::::::::
boundaries

:::::
across

:::
all

:::::::
ensemble

:::::::
members

:::
and

::::::
months

:::
for

::
(a)

::::
total

:::::::
alkalinity

:::
and

:::
(b)

:::::
pCO2.

::::
The

::::
white

::::::
regions

::::::
indicate

:::::::
locations

:::
that

:::::
belong

:::::
almost

:::::::::
exclusively

:
to
:::
the

::::
same

:::::
cluster.

::::
Dark

::::::
regions

::::
show

:::::
where

:::::
cluster

::::::::
boundaries

:::
are

::::::::
persistent.
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