
   
 

   
 

 

Response to Reviewer 2 (R2)  
We thank reviewer 2  for their prompt and positive feedback. R2 provided an in-depth 
critique of the method and of the data product itself. The major concerns  raised include: 1) 
The use of a gap-filled pCO2 climatology to perform clustering; 2) the use of climatological 
nutrients in solving the marine carbonate system; 3) uncertainties of the dataset, particularly 
over time. We have included the reviewer’s comments in italicized blue font, while our 
answers are given in black.  We grouped all comments and answers into these three topics as 
there is significant overlap in many of the reviewer’s comments. We have also refined our 
definition of error and uncertainties. These changes have also been marked in the tack 
changes file. 
 

1. Use of gap-filled pCO2 to cluster 
 
I believe the novelty of the GRaCER method is [it] that produces an ensemble of clusters. The 
ensemble is produced because the clustering process randomly assigns the first cluster center 
in the predictor-variable space. Thus, each member of the ensemble has a different center, 
and therefore the ensemble mean does not have discrete boundaries. Based on this, it would 
be helpful to clarify a couple of details:  
 

• Lines 245-248: “It may seem tautological to use other machine learning estimates, 
but these data are just used to create regional clusters, i.e., they are not used in the 
regression step. ” How do the results vary if you do not use the previous machine 
learning estimates for clustering? Previous methods (Landschutzer, Rodenbeck etc), 
only use the observations from SOCAT for clustering. In this manuscript these 
datasets are not used in the regression step, but I believe that the results are affected 
by which data is used for the clustering. 

• Lines 172-179: How does the result vary, if you use monthly data instead of 
climatologies for the clustering process?  

• The cluster seems to collect data by climatological month. How does he method 
change if monthly data is used instead?  

 
The reviewer raised a question about our using of  pCO2 climatologies (called pCO2map) 
that are based on similar machine-learning methods.  This indeed could come across as 
tautological, especially since two of the products we are using were derived using related 
methods, i.e., the the SOM-FFN estimate of Landschützer et al. (2013) and the LSCE-FFNN  
estimate of Denvil-Sommer et al. (2019). We consider this issue as very minor, since use 
these climatologies just for the clustering step, and not for the final estimation of pCO2. This 
is done through our regression approach. Extensive testing has shown that our results are very 
robust with regard to the choice of pCO2map. This is because, all four mapping methods are 
able to predict the seasonal cycle of pCO2 well (Sommer-Denvil et al. 2018), which is the 
main dimension of variability that is captured by the clustering step.  
 
Thus one could argue that given this lack of sensitivity, one should restrict pCO2map to just 
the truly independent methods, such as the LDEO climatology. We feel that the benefit of 
using multiple products in pCO2map outweighs this alternative. The use of an ensemble 
avoids overfitting in regions of where the LDEO climatological distribution is noisy (see 



   
 

   
 

Figure). It also permits us to cluster regions that are not covered by the LDEO climatology. 
The following change was made to the manuscript with underlined text being inserted. 
 
Clustering is performed on climatological values of pCO2, SST, mixed layer depth and 
Chlorophyll-a, with additional weighting given to pCO2. As with TA, all variables are 
standardized prior to clustering with (x - µ) / σ, after which pCO2 is multiplied by 3 to give it 
stronger weighting. The larger weight given to pCO2 means that monthly clustering would 
result in very similar results to climatological clustering, as only SST and Chl-a would vary 
over time and not pCO2. Details of the regression method, and of the hyper-parameter 
selection are given in section. 
 

Will not be added to manuscript: Owing to the substantial amount of “”noise” present in the LDEO 
climatology stemming from the way the measurements are interpolated (b) it is prone to  create 
spurious clusters. Further, the coverage of pCO2map (a) allows for clustering and thus predictions in 
regions not mapped by the LDEO climatology, such as the Mediterranean.  
 
We also prefer to stick with our original choice of using the climatological distribution of 
pCO2 (and Alk) for the clustering. First, as also pointed out by the reviewer,  there is much 
less confidence in the interannual (monthly) estimates. Using these  data for clustering rather 
than the climatology of these products would run the risk of creating problems given that 
such a step would also further increase the weight of the products. This is because pCO2 is 
weighted three times more than  the other variables in the clustering step. Second, and from a 
more fundamental perspective, we argue that such a step would undermine a strength of the 
two step approach, i.e., its separation of variations on different timescales. The clustering step 
is meant to isolate primarily regions with the same seasonal cycle. The regression step is 
meant to explain the variability within each region. This is based on the assumption that, to 
first order, interannual variability can be considered as modifications of the seasonal cycle. If 
we were to allow the clusters to vary inter annually, we would lose this fundamental 
distinction, and we would ask the SOM step to take over a bigger burden of the total 
variance. Given the discrete nature of the mapping, this can actually lead to worse results. 
 
In summary, we consider our choice to be well justified. At the same time, our experience 
indicates that it is unlikely that the outcome of the regression is impacted much by the details 
of the clustering step. We added some small comment on this issue to the method section. 
The inserted text is underlined: 
 
The main advantage of such a two-step approach is that the first clustering step organizes the 
variability regionally and temporally. This greatly enhances then the fidelity of the second 
step, i.e., the regression, as the size of the regression problem is reduced from the global 



   
 

   
 

domain to smaller, more homogeneous regions. A second advantage is that this clustering 
brings together regions with similar seasonality and similar co-variability with potential 
predictors, irrespective of the number of observations. The regression step explains the 
variability within each region over time and space dimensions, including interannual 
variability. Further, the clustering permits the regression to transfer information from 
spatially distant, but geochemically similar regions, making the inter and extrapolation more 
robust in data poor regions.  
…  
For the clustering step, we use monthly climatological data of pCO2 and TA and related 
parameters (Figure 2a-c), to deter-mine the main patterns of variability of the target variable 
and its co-variability with potential predictor variables. Concretely, the clustering step is 
meant to isolate primarily regions with the same seasonal cycle. 
 
 
Figure 8 (d) shows the mean of the monthly differences between the SOMFFN and GRaCER 
pCO2 datasets. When I plot the time-series of the monthly differences between SOMFFN and 
GRaCER averaged over the eastern equatorial Pacific, I see a continuous decrease in the 
difference from 1985-2018. That could mean that for the beginning of the time period there is 
a larger difference between the two methods than by the end. Could this be a consequence of 
using the SOMFFN and other products for the clustering process? Since at the beginning of 
the period there is less observational points compared to the end.  
 
No, various tests showed that this trend in difference is not a consequence of our use of 
SOMFFN estimats in our clustering. The first part of the difference is largely due to the fact 
that data are very sparse. This makes the mapped estimates more sensitive to the specifics of 
the methods, especially in the regression step (not in the clustering step). In the regression 
step, SOMFFN and GRaCER are actually quite different, which explains the divergence of 
the estimates. In response, we emphasize in our new section on data use that the first part of 
the timeseries should be used with great caution.  
 
The MLD sub-annual and inter annual variability is removed.  
 
We use an observationally based mixed-layer depth product that is only available as a 
climatology (Holte et al. 2018). This product reports the mixed layer depth for Argo profiles 
globally and is not normalized to a specific year. Hence, the interannual variability of the 
MLD is still present in this data product. In a climatological context, this interannual 
variability acts as noise rather than signal. We thus remove this interannual signal using a 
Gaussian smoother. 
 

2. Climatological nutrients for marine carbonate system calculations 
 
To calculate DIC and pH they use climatologies of silicic acts and phosphate instead of 
monthly data.  
 
Using climatological concentrations of PO4 and SiO4 in the calculations of the marine 
carbonate system instead of the interannually varying concentrations has a  very small impact 
on the computed values. We base this conclusion on the following worst-case scenario, i.e., 
that the year to year variability is larger than the seasonal cycle in these nutrients. To 
illustrate this, we take a location in the Southern Ocean (60S, 40W) characterized by a very 
large seasonal cycle, and vary  silicic acid (59 ± 15 µmol/kg) and phosphate (1.7 ± 0.3 



   
 

   
 

µmol/kg) over this seasonal range.  As shown by the figure below, the maximal impact of 
using climatological nutrients in this calculation is 1.8 µmol/kg. In reality, the range of 
interannual variations will be much smaller. Thus, we consider the potential implication of 
our using climatological nutrient concentrations instead of interannually varying ones as 
neglibile. In response, we will add to the text  that this assumption has very little impact.  
 

 
Not added to manuscript: The range of DIC when using a range of phosphate (PO4) and silicic acid 
(Si) to solve the marine carbonate system from pCO2 and TA. The input ranges for PO4 and Si were 
determined from the magnitude of the seasonal cycle from a region where the variability is large.  
 

3. Uncertainty related points 
Moreover, some methodologies used in the manuscript should be discussed in the context of 
interannual to decadal variability 
 
We will add a section in the discussion of the manuscript that gives recommendations for the 
use of the OceanSODA-ETHZ data (as per request of R1). In this section we caution users of 
the product to treat data prior to 1990 with care as sparse data results in substantial 
uncertainties in the estimates, and also larger differences  between the different methods as 
shown in Watson et al. (2020). This will be accompanied by the figure shown below.  
 
Discussion – Recommendations for use: However, users of the OceanSODA-ETHZ product 
should be aware of the fact that that data prior to the 1990’s should be treated with care due 
to the paucity of SOCAT pCO2 training data during this period (Rödenbeck et al., 2015; 
Watson et al., 2020). This was rescently demonstrated by Watson et al. (2020) who used an 
ensemble of various regression approaches to show that the spread of pCO2 estimates prior 
to the 1990’s is large due to the paucity of data. Similarly, Gregor et al. (2019) showed that 
pCO2 estimates prior to 1990 tend to have aslightly positive bias. Hence, the trends shown in 
Table 5 are calculated for the years after 1990, i.e., covering the period 1990–2018. 
 
If the authors consider that their dataset is good to estimate internal and decadal variability, 
then they should add some analysis and comparison with other existent pCO2 observation-
based datasets.  
 



   
 

   
 

Agreed. In response, we will add the figure below to the manuscript showing the basin-mean 
difference between OceanSODA-ETHZ pCO2 and that of the other methods: MPI-SOMFFN, 
Jena-MLS, CMEMS-FFNN, and CSIR-ML6.  The thin lines show the individual method 
differences, while the thick line shows the mean difference of the four methods. In the Indian 
ocean, the OceanSODA-ETHZ pCO2 estimate is persistently lower than the pCO2 estimated 
by the ensemble of the four other methods. A similar negative difference is found in the 
Atlantic, but the difference diminishes from 2008 onward. In the Pacific and Southern Ocean, 
there are positive differences prior to 1990 that diminish thereafter. The spread of the relative 
differences is larger in the Pacific and Southern Ocean, not unexpected given the much larger 
data gaps in these ocean basins.

 
Results – Comparison with other products: basin-mean difference between OceanSODA-ETHZ 
pCO2 and other methods: MPI-SOMFFN, Jena-MLS, CMEMS-FFNN, and CSIR-ML6. The thin lines 
show the differences to the individual methods, while the thick line shows the mean difference across 
the four methods. 
 
Results – Comparison with other products: We also show the basin-mean temporal 
differences between OceanSODA-ETHZ pCO2 and other gap-filling methods (Figure 9). In 
the Atlantic (Figure 9a), OceanSODA-ETHZ pCO2 is < 2 μatm lower than the mean of the 
other gap-filling methods for the period 1990 to 2008. Thereafter, the difference is < 1 μatm. 
In the Indian ocean, our pCO2 estimates have a persistent negative difference of ∼ 2 μatm 
(Figure 9c). The comparison in the Pacific (Figure 9b) is the most consistent with the other 
methods, with a slight positive difference in the beginning of the period (pre-1990). The 
OceanSODA-ETHZ estimates of pCO2 in the Southern Ocean (Figure 9d) have a large 
positive difference prior to 1990 – up to 6 μatm for one of the ensemble members. This 
difference quickly diminishes and is near zero by 1990. There is also a negative difference 
later in the period (2004 to 2015); however, the ensemble spread over this period is large. 
 
The comparison with other methods illustrates that while gap-filling methods are converging 
on a global scale, there are regionally differences. Further, large differences in pCO2 
between methods prior to 1990 indicates high uncertainty for this period. 
 



   
 

   
 

To further address R2’s point, we will add the figure of the bias of the TA and pCO2 relative 
to the training data sets (GLODAPv2 and SOCAT respectively) in the supplementary 
material. The biases for pCO2 are larger (~5 µatm) at the beginning of the time series when 
there is less data. Gregor et al. (2019) found similar biases for pCO2 in the pre-1990 period 
using gradient boosted trees. TA biases are erratic over time due to the highly uneven 
sampling distribution (e.g., not only in time, but also in space, e.g., by sampling in river 
plume areas where the uncertainty is large). The low number of samples exacerbates this 
effect. 

 
Appendix: Timeseries of the median bias (solid lines) of TA (orange) and pCO2 (blue) relative to the 
GLODAP and SOCAT datasets, respectively. The dashed lines show the number of observations for 
each of the data (right axis). 
 
A pCO2 RMSE of 12 muatm is larger than inter annual variability for many locations.  
 
The RMSE represents a distribution of the uncertainty theoretically centered around a zero 
mean. It provides an estimate of the expected uncertainty of a particular instance. In our case, 
this is an estimate for a single grid cell for a single month. When assessing variations in 
pCO2 (or any of the other quantities), we usually analyze the temporal variations averaged 
over a larger region or averaged over an entire year. Even though the data are to a certain 
degree autocorrelated in time and space which reduces the number of degrees of freedom 
somewhat, the uncertainty of the mean estimate is reduced by the square-root of the (reduced) 
number of degrees for freedom. For example, when averages are formed over 10°x10° 
regions in the annual mean, we expect at least a factor of ten reduction in the uncertainty of 
this mean. Thus, we expect an uncertainty of around 1µatm of this mean, which is much 
smaller than the signal one is interested.  
 
When looking at long-term trends, potential biases matter as well.  The biases in our product 
are in general ≪10 µatm, with the exception of parts of the Southern Ocean, and the Eastern 
Tropical Pacific (see paragraph below). Fortunately, there are well sampled areas (through 
time) in these regions allowing us to compare the OceanSODA-ETHZ pCO2 estimates with 
SOCAT directly. In the figure below we show direct comparisons of pCO2 in the Eastern 
Equatorial Pacific, Western Pacific, and the Drake Passage. The interannual variability is 
well captured in these regions, confirming our hypothesis. Still, the large interannual 
variability in the Eastern Equatorial Pacific is occasionally underestimated.    



   
 

   
 

 
Not added to manuscript: Comparison of OceanSODA-ETHZ (solid) and SOCAT (dashed) pCO2 
for open ocean regions. The three chosen regions have persistent occupancy for the selected regions 
and periods: 62% for the Eastern Equatorial Pacific (< 5°N/S < 180°W), 84% for the Western Pacific 
(25° to 40° N, 128° to 145°E), and 76% for the Drake Passage (> 50°S, between 73° and 65°W over 
the period 2000 to 2018). 
  
 
Lines 412-415: “The highest biases on pCO2 when comparing with observations are located 
in the eastern tropical Pacific where inter annual variability is higher”. This may suggest 
that the dataset does not represent well inter annual variability  
 
The analyses above demonstrate that the Ocean-SODA-ETHZ product is able to capture most 
of the large variability observed in the Eastern Tropical Pacific. The large RMSE and biases 
are found at the edges of the tropical Pacific, where the mean lateral gradients are high. These 
lateral gradients shift strongly during El Niños and La Niñas, posing a challenge to any 
interpolation method. Any small deviation in the specific location of the gradient leads to 
large local biases, although the large-scale spatial mean is well captured.  The fact that the 
interannual variability of the Eastern Equatorial Pacific is still well captured (as shown 
above) reinforces this. 
 
 
  



   
 

   
 

 
4. Extra additions 

Lastly, we have added a table showing the trends of a set number of variables of the marine 
carbonate system. The trends are calculated for the period 1990-2018 due to the reasons 
explained above.  
 
Results – Regional Trends: The global and basin-scale trends for pCO2 are remarkably 
consistent (∼ 16.5 μatm decade-1) when compared with pCO2atm (∼ 18.6 μatm decade-1), with 
the atmospheric slope being slightly steeper than the oceanic trend (Table 5). The basin-scale 
consistency holds true for pH (-0.016 units decade-1) and Ωar (-0.07 units decade-1), where 
global values are consistent with the regional values. Total alkalinity trends are more 
variable from basin to basin but are driven almost entirely by salinity with a basin-scale 
correlation of 0.99. Lastly, DIC shows similar variability to TA trends, which makes sense in 
terms of TA increasing the buffering capacity of seawater while pCO2 remains relatively 
consistent on a basin-scale. 
 
Results – Regional Trends: Table showing the slopes and associated standard error for 
OceanSODA-ETHZ variables for the period 1990-2018. All columns show increases per decade (d). 
All trends are significant (P > 0.05). We exclude the Arctic as the OceanSODA-ETHZ product only 
covers 23% of this region and may thus give spurious trends. The Ocean basins are defined by the 
map shown in Figure A4. 

Region pH ΩAR  TA DIC  pCO2 pCO2atm 
Units (units/d) (units/d) (µmol/kg/d) (µmol/kg/d) (µatm/d) (µatm/d) 
Global -0.015 ± 0.0 -0.06 ± 0.0 1.4 ± 0.1 8.2 ± 0.1 15.5 ± 0.1 17.8 ± 0.1 
Atlantic -0.015 ± 0.0 -0.06 ± 0.0 3.5 ± 0.1 9.9 ± 0.3 15.7 ± 0.1 17.9 ± 0.1 
Pacific -0.015 ± 0.0 -0.07 ± 0.0 0.6 ± 0.1 7.9 ± 0.2 15.7 ± 0.1 17.8 ± 0.1 
Indian -0.015 ± 0.0 -0.07 ± 0.0 3.0 ± 0.3 9.7 ± 0.4 15.3 ± 0.3 17.6 ± 0.1 
Southern -0.016 ± 0.0 -0.06 ± 0.0 0.2 ± 0.1 6.7 ± 0.5 15.0 ± 0.3 17.7 ± 0.1 

 

 
Figure A4: Ocean basin boundaries used in Table (above) as used by the RECCAP2 project 
(https://reccap2-ocean.github.io/regions/). The Southern Ocean and North Atlantic boundaries are 
defined by biome boundaries defined in Fay and McKinley (2014). 


