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Abstract. This study presents the results from the Tropospheric Chemistry Reanalysis version 2 (TCR-2) for the period 2005-

2018 at 1.1◦ horizontal resolution obtained from the assimilation of multiple updated satellite measurements of ozone, CO,

NO2, HNO3, and SO2 from the OMI, SCIAMACHY, GOME-2, TES, MLS, and MOPITT satellite instruments. The reanalysis

calculation was conducted using a global chemical transport model MIROC-CHASER and an ensemble Kalman filter tech-5

nique that optimizes both chemical concentrations of various species and emissions of several precursors, which was efficient

for the correction of the entire tropospheric profile of various species and its year-to-year variations. Comparisons against

independent aircraft, satellite, and ozonesonde observations demonstrate the quality of the reanalysis fields for numerous key

species on regional and global scales, as well as for seasonal, yearly, and decadal scales, from the surface to the lower strato-

sphere. The multi-constituent data assimilation brought the model vertical profiles and inter-hemispheric gradient of OH closer10

to observational estimates, which was important in improving the description of the oxidation capacity of the atmosphere and

thus vertical profiles of various species. The evaluation results demonstrate the capability of the chemical reanalysis to improve

understanding of the processes controlling variations in atmospheric composition, including long-term changes in near-surface

air quality and emissions. The estimated emissions can be employed for the elucidation of detailed distributions of the anthro-

pogenic and biomass-burning emissions of co-emitted species (NOx, CO, SO2) in all major regions, as well as their seasonal,15

and decadal variabilities. The datasets are available at: https://doi.org/10.25966/9qgv-fe81 (Miyazaki et al., 2019a).
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1 Introduction

As a consequence of rapid global economic development, along with governmental regulations, air pollutant emissions have

been changing dramatically in many regions (e.g. Zhang et al., 2016; Mi et al., 2017; Zheng et al., 2018). These emission20

changes have led to substantial variations in air quality and climate over the past decades. A long-term record of atmospheric

composition is essential to comprehend the impact of human activity and natural processes on the atmospheric environment

and its effect on air quality, human health, ecosystems, and climate. Various measurements have been employed for assessing

geographical, vertical, and temporal variations in atmospheric composition. However, the present in-situ observing network

(e.g. Schultz et al., 2017) is primarily clustered in the US, Europe, and East Asia and therefore insufficient for global air quality25

assessment. Satellite measurements have immense potential for complementing in-situ measurements in providing data on the

global and regional distributions of air pollutants in the atmosphere; however, they address complex vertical sensitivities for

many key species. The evaluation of global atmospheric composition fields with a suite of satellite measurements is challenging

because of different vertical sensitivity profiles, various overpass times, and mismatches in spatial and temporal coverage

between the instruments (Boersma et al., 2016).30

Among many species that degrade air quality and contribute to climate change, tropospheric ozone is one of the most

important air pollutants and greenhouse gases in the atmosphere (e.g. Stevenson et al., 2013; Myhre et al., 2013). Tropospheric

ozone also plays a crucial role in the oxidative capacity through the production of hydroxyl radicals (OH) (e.g. Logan et al.,

1981; Thompson, 1992). However, ozone is not emitted directly but formed through secondary photochemical production

from precursors, including hydrocarbons or carbon monoxide (CO), in the presence of nitrogen oxides (NOx). These ozone35

precursors are largely controlled by anthropogenic and natural emissions, e.g., transportation, industry, lightning, biogenic and

biomass-burning sources. Analyses of co-emitted species have been used to explain emission and ozone production processes

(e.g. Mauzerall et al., 1998; Ryerson et al., 1998).

Emission inventories have been developed to assess the impact of human and natural activities on the atmospheric environ-

ment. Bottom-up inventories have struggled to account for these changes, leading to substantial errors in emission factors and40

activity rates especially in developing countries. Using satellite data, previous studies have shown increases in NOx emissions

between 2005 and 2010 and a rapid reduction after 2011 in China (Qu et al., 2017; Miyazaki et al., 2017; Zheng et al., 2018),

decreasing CO emissions from the United States and China between 2001 and 2015 (Jiang et al., 2017), a drastic SO2 emission

decrease since 2007 for China (Li et al., 2017), and a slowdown in the U.S. NOx emissions in recent years (2011–2015) (Jiang

et al., 2018). An important outcome of these studies is the realization of the importance of background chemical conditions,45

(i.e., ambient ozone, NOx, and VOC) to accurately quantify the emissions-to-concentration relationship. Consequently, it is

critical to incorporate multiple constituents to accurately represent these conditions.

Chemical data assimilation can help mitigate the limitations of current observing systems using models to propagate obser-

vational information in time and space from a limited number of observed species to a wide range of chemical components,

including surface concentrations and emissions (e.g. Lahoz and Schneider, 2014). Reanalysis is a systematic approach to create50

a long-term data record consistent with model processes and observations, using data assimilation. To improve the understand-
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ing of emission variability and the processes controlling the atmospheric composition, chemical reanalysis products have been

generated by integrating various satellite measurements. Using an ensemble Kalman filter (EnKF) data assimilation technique,

Miyazaki et al. (2015) simultaneously estimated concentrations and emissions of various species for an eight-year tropospheric

chemistry reanalysis (TCR-1) for the years 2005-2012. The TCR-1 framework based on the AGCM-CHASER (Sudo et al.,55

2002) and MIROC-CHASER (Watanabe et al., 2011) models has been used to provide comprehensive information on atmo-

spheric composition and emission variability (Miyazaki et al., 2012a, 2014, 2017; Miyazaki and Eskes, 2013; Ding et al.,

2017). Apart from the TCR systems, employing the ECMWF′s Integrated Forecasting System (IFS), three recent reanalyses

have also been released: the MACC reanalysis for the years 2003-2012 (Inness et al., 2013), the CAMS-Interim reanalysis for

the years 2003-2018 (Flemming et al., 2017) and recently the CAMS reanalysis for the years 2003 to present (Inness et al.,60

2019). A decadal reanalysis of CO was conducted at NCAR (Gaubert et al., 2016).

Miyazaki et al. (2020) developed a multi-constituent multi-model chemical data assimilation (MOMO-Chem) framework

that directly accounts for model error in transport and chemistry by integrating a portfolio of forward chemical transport

models into an EnKF system. The MOMO-Chem framework generates an ensemble of data assimilation analyses to provide

integrated unique information on the tropospheric chemistry system including precursor emissions and their uncertainty ranges65

due to model errors. In spite of substantial model forecast differences, the multi-constituent assimilation was sufficient to

reduce the multi-model spread for many key species. Harnessing assimilation increments in both NOx and ozone in MOMO-

Chem, Miyazaki et al. (2020) also demonstrated fundamental differences in the representation of fast chemical and dynamical

processes among the models.

Recently, an updated chemical reanalysis (TCR-2) has been developed based on an improved EnKF data assimilation system70

(Miyazaki et al., 2019a) and evaluated against independent observations for limited time periods in the KORUS-AQ aircraft

campaign during Apr-May 2016 (Miyazaki et al., 2019b; Thompson et al., 2019) and over remote oceans using ship-borne

measurements for the years 2012-2017 (Kanaya et al., 2019). The TCR-2 performance for 2007 has also been extensively

evaluated against various independent observations within the MOMO-Chem framework (Miyazaki et al., 2020). Huijnen

et al. (2019) quantitatively compared the TCR-2 with operational CAMS reanalyses (Flemming et al., 2017; Inness et al.,75

2019) but for ozone only. In this study, we present the detailed evaluation results of the TCR-2 performance for the years

2005-2018 for many chemically reactive species and aerosols in the troposphere, from the surface to the lower stratosphere, at

daily to decadal scales.

2 Data assimilation system

This section provides the details of the TCR-2 approach for 2005-2018. Table 1 compares the configurations of TCR-1 and80

TCR-2 systems. The major updates in TCR-2 from TCR-1 are a change in the chemistry-transport model, increased model

resolution, and updated retrievals used in the assimilation.
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2.1 Forecast model

The forecast model, MIROC-CHASER (Watanabe et al., 2011), contains detailed photochemistry in the troposphere and strato-

sphere by simulating tracer transport, wet and dry deposition, and emissions. The model calculates the concentrations of 9285

chemical species and 262 chemical reactions (58 photolytic, 183 kinetic, and 21 heterogeneous reactions). Its tropospheric

chemistry considers the fundamental chemical cycle of Ox-NOx-HOx-CH4-CO along with oxidation of non-methane volatile

organic compounds (NMVOCs) to properly represent ozone chemistry in the troposphere. MIROC-CHASER has a T106 hor-

izontal resolution (1.1◦ x 1.1◦) with 32 vertical levels from the surface to 4.4 hPa. This is coupled to the atmospheric general

circulation model MIROC-AGCM version 4 (Watanabe et al., 2011). The simulated meteorological fields were nudged toward90

the six-hourly ERA-Interim (Dee et al., 2011).

The a priori surface emissions of NOx, CO, and SO2 were obtained from bottom-up emission inventories. Anthropogenic

NOx, CO, and SO2 emissions were obtained from the HTAP version 2 for 2010 (Janssens-Maenhout et al., 2015), which com-

bines regional inventories of the European Monitoring and Evaluation Programme (EMEP), Environmental Protection Agency

(EPA), Greenhouse Gas-Air Pollution Interactions and Synergies (GAINS), and Regional Emission Inventory in Asia (REAS).95

For biomass burning were emissions, we employed the monthly Global Fire Emissions Database (GFED) version 4 (Randerson

et al., 2015). Emissions from soils were based on monthly mean Global Emissions Inventory Activity (GEIA) (Graedel et al.,

1993). Lightning NOx sources were simulated using the convection scheme of MIROC-AGCM and the relationship between

lightning activity and cloud top height (Price and Rind, 1992). Methane concentrations were scaled on the basis of present-day

values with reference to the surface concentration.100

2.2 Data assimilation method

Data assimilation applied here is based upon on an EnKF approach, the Local Ensemble Transform Kalman Filter (LETKF)

(Hunt et al., 2007). The EnKF uses an ensemble forecast to estimate the background error covariance matrix and generates an

analysis ensemble mean and covariance that satisfy the Kalman filter equations. In the forecast step, a background ensemble,

xb
i (i= 1, ...,k), is obtained from the evolution of an ensemble model forecast, where x represents the model variable, b is the105

background state, and k is the ensemble size (i.e., 32 in this study). The observation operator H is applied to the background

ensemble to converted them into the observation space, yb
i =H(xb

i ), which is composed of a spatial interpolation operator

and a satellite retrieval operator. The satellite retrieval operator uses an a priori profile and an averaging kernel of individual

measurements (e.g. Eskes and Boersma, 2003; Jones et al., 2003). Using the covariance matrices of observation and background

error as estimated from ensemble model forecasts, the data assimilation determines the relative weights given to the observation110

and the background and then transforms a background ensemble into an analysis ensemble, xa
i (i= 1, ...,k). The control vector,

z =Dx, is a subset of the state vector (x) to be adjusted during assimilation, where D is a mapping matrix. The control vector

z is updated at every analysis step by observations and then mapped back to the state vector x. Some variables in the state vector

x are not parts of the control vector z for theoretical and practical reasons as discussed below in this section. Then background
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error covariance is obtained from an ensemble forecast with the updated analysis ensemble, whereas the observation error is115

obtained from the satellite retrieval uncertainty information (c.f., Section 3.1).

In the data assimilation analysis, a covariance localization and inflation was applied. The covariance localization was used

to neglect the covariance among unrelated or weakly related variables, which results in removing the influence of spurious

correlations resulting from the limited ensemble size. The optimization of the variable localization was based on a comparison

against independent satellite and aircraft data, as described in Miyazaki et al., (2015). The analysis increments through the NO2120

assimilation were limited to adjusting only the surface emissions of NOx, LNOx sources, and concentrations of NOy species

(=NOx+HNO3 +HNO4+PAN+MPAN+N2O5). The MOPPIT CO and OMI SO2 measurements were used for constraining

surface CO and SO2 emissions only, respectively. Even in the short assimilation window (i.e., two-hour), data assimilation

increments can be used to measure systematic model biases in emissions that could affect long-term model errors. For the

LNOx sources, covariances with MOPITT CO data were neglected. Concentrations of NOy species and ozone were optimized125

from TES ozone, OMI, SCIAMACHY, and GOME-2 NO2, and MLS ozone and HNO3 observations. For NOx, concentration

adjustments are quickly lost in the lower atmosphere due to the short lifetime, while emission adjustments are more efficient to

store the information over longer time periods (Miyazaki and Eskes, 2013; Miyazaki et al., 2017). Although the concentrations

of VOCs are included in the state vector, they were not included in the control vector and thus were not optimized in the current

setting, because the current assimilated data sets did not improve their fields obviously. Consequently, the control vector in this130

study includes the concentration of NOx, HNO3, HNO4, PAN, MPAN, N2O5, and ozone, as well as the NOx, SO2, and CO

emission sources.

The covariance localization was also applied to avoid the influence of remote observations that may cause sampling er-

rors. The covariance inflation was employed to inflate the forecast error covariance, in order to prevent underestimation of

background error covariance and filter divergence caused by sampling errors associated with the limited ensemble size and by135

model errors. The cut-off radius was set to 1,643 km for NOx emissions and 2,019 km for CO emissions, lightning sources,

and chemical concentrations based on sensitivity calculations. However, the optimal localization length may depend on the

location, season, and species, reflecting meteorological conditions and the chemical lifetime.

The state vector includes several emission sources (surface emissions of NOx, CO and SO2, and lightning NOx (LNOx)

sources) as well as the concentrations of 35 chemical species (c.f., Fig. 3 in Miyazaki et al. (2012b)). As described above,140

limited variables were included in the control vector and optimized by applying covariance localization in the reanalysis cal-

culations. The emissions include both anthropogenic and natural (i.e., soil and biomass burning) sources, except for chemical

productions of CO by the oxidation of methane and biogenic non-methane hydrocarbons (NMHCs). The emission estimation

is based on a state augmentation technique, in which the background error correlations determine the relationship between the

concentrations and emissions of related species for each grid point. We employed a scheme to correct diurnal emission variabil-145

ity from the simultaneous assimilation of multiple satellite measurements obtained at different overpass times (Miyazaki et al.,

2017). The simultaneous assimilation of multiple-species data and the simultaneous optimization of the concentrations and

emission fields are important to propagate the observational information between various species and modulate the chemical

lifetimes of many species, as demonstrated in our previous studies (Miyazaki et al., 2012b, 2015, 2019b).
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3 Observations150

3.1 Assimilated data sets

An observation operator is applied to assimilate individual measurements to map the model fields into the retrieval space.

The operator includes the spatial interpolation operator, a priori profile for the satellite retrievals, and averaging kernel. See

Miyazaki et al. (2020) for more details.

3.1.1 OMI, GOME-2, SCIAMACHY NO2155

The tropospheric NO2 column retrievals used were the QA4ECV version 1.1 level 2 (L2) product for OMI (Boersma et al.,

2017a), GOME-2 (Boersma et al., 2017b), and SCIAMACHY (Boersma et al., 2017c). The ground pixel sizes of the OMI,

GOME-2, and SCIAMACHY retrievals are 13km×24km, 80km×40km, and 60km×30km, with local equator overpass times

of 13:45, 09:30, and 10:00, respectively. Since December 2009, approximately half of the pixels of the OMI measurements have

been compromised by the so-called row anomaly, which were excluded before data assimilation. The GOME-2 measurements160

were assimilated after January 2007, whereas the SCIAMACHY retrievals were assimilated before February 2012. Low-

quality data were excluded by applying the provided quality flag. A super-observation approach was employed to generate

representative data with a horizontal resolution of the forecast model for OMI, GOME-2, and SCIAMACHY observations,

following the approach of Miyazaki et al. (2012a). Super-observations were generated by averaging all data located within

a super-observation grid cell. The retrieval uncertainty of individual pixels was calculated based on error propagation in the165

retrieval. The detailed error characteristics and validation results of the NO2 products are described by Boersma et al. (2018).

3.1.2 TES ozone

The Tropospheric Emission Spectrometer (TES) ozone retrievals used are the version 6 level 2 nadir data obtained from the

global survey mode (Bowman et al., 2006; Herman and Kulawik, 2013) (https://tes.jpl.nasa.gov/data/products/level-2). This

data set consists of 16 daily orbits with 5×8 km footprints spaced approximately 200 km apart along the orbit track, with170

the equator crossing local times of 13:40 and 02:29. Low-quality data were excluded using the quality flag information. The

availability of TES measurements is strongly reduced after 2010, which can affect the reanalysis performance (Miyazaki et al.,

2015). Super observations were not generated for the TES retrievals, because of relatively large spatial representativeness of

the vertically-integrated information primarily within the free troposphere.

3.1.3 MOPITT CO175

The MOPITT total column CO data used were the version 7 L2 TIR/NIR product (Deeter et al., 2017). The TIR/NIR product

provides the greatest sensitivity to CO in the lower troposphere and increases sensitivity to near surface CO compared to

the TIR-only product. We excluded MOPITT data in polar regions (>65◦ latitude), where the quality deteriorates and the

information content lowers. because of potential problems related to cloud detection and icy surfaces. We also excluded the
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night-time data using a filter based on solar zenith angle, because daytime conditions typically provide better thermal contrast180

conditions for the retrievals. The total column averaging kernel was used in the observation operator. The reported retrieval

error was used in the observation error. The super-observation approach was also applied to MOPITT observations.

3.1.4 MLS ozone and HNO3

The Microwave Limb Sounder (MLS) data used were the version 4.2 ozone and HNO3 L2 products (Livesey et al., 2011,

2018). We used MLS data for pressures of lower than 215 hPa for ozone and 150 hPa for HNO3, while excluding tropical-185

cloud-induced outliers. The provided accuracy and precision of the measurement error were used in the observation error.

3.1.5 OMI SO2

The OMI SO2 data used were the planetary boundary layer vertical column SO2 L2 product obtained with the principal

component analysis algorithm (PCA) (Krotkov et al., 2016). Only clear-sky OMI SO2 data (cloud radiance fraction < 20%)

with solar zenith angles less than 70◦ were used, following the procedure of Fioletov et al. (2016, 2017). Because of the lack of190

information regarding the observation error, we assumed the OMI SO2 error to be a constant value of 0.25 DU, which is about

half of the standard deviation of the retrieved columns over remote regions (Li et al., 2013). The super-observation approach

was applied to OMI SO2 observations.

3.2 Validation data sets

3.2.1 TES PAN195

We use version 7 TES PAN retrievals (Payne et al., 2014; TES Science Team, 2016; Payne et al., 2017) to evaluate tropospheric

profiles of PAN for years 2005-2009. TES PAN data have provided information on the long-range transport of NOx at low

temperatures and ozone production in warmer regions of the remote troposphere (Jiang et al., 2016). Low-quality data were

excluded using the provided quality flag and information. Payne et al. (2014) showed that the detection limit for a single TES

measurement is dependent on atmospheric and surface conditions as well as on the instrument noise. For observations where200

the cloud optical depth is less than 0.5, the TES detection limit for PAN is within the region of 200 to 300 pptv.

3.2.2 AIRS/OMI ozone

We used the joint AIRS/OMI version 1 L2 tropospheric ozone profile product (Fu et al., 2018) for 2006-2010 and 2015-2018

to evaluate decadal changes in tropospheric ozone. The ozone profile retrievals were performed by applying the JPL MUlti-

SpEctra, MUlti-SpEcies, Multi-Sensors (MUSES) algorithm to both AIRS and OMI level 1B (L1B) spectral radiances (Fu205

et al., 2018). The AIRS/OMI ozone profile products have been produced with a spatial sampling and the retrieval characteristics

of ozone profiles equivalent to TES L2 standard data product, demonstrating the feasibility of extending the TES L2 data

record by a multiple spectral retrieval approach. The retrievals show reasonable agreement with WOUDC global ozonesonde

measurements (Fu et al., 2018). The AIRS/OMI data has been successfully assimilated to improve the tropospheric ozone
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analysis over East Asia during the KORUS-AQ campaign (Miyazaki et al., 2019b) and could be used to improve decadal ozone210

reanalyses.

3.2.3 WOUDC Ozonesonde data

We used ozonesonde observations taken from the World Ozone and Ultraviolet Radiation Data Center (WOUDC) database

(available at http://www.woudc.org) to validate the vertical ozone profiles. All available data from the WOUDC database were

used (a total of 39,959 profiles for 149 stations during 2005-2018). To compare ozonesonde measurements with the reanalysis215

fields, the reanalysis and model fields were linearly interpolated to the time and location of each measurement using the two-

hourly output data, with a bin of 25 hPa.

3.2.4 WDCGG CO data

The CO concentration observations were obtained from the World Data Centre for Greenhouse Gases (WDCGG) operated

by the World Meteorological Organization (WMO) Global Atmospheric Watch programme (http://ds.data.jma.go.jp/gmd/220

wdcgg/). Hourly and event observations from 59 stations for 2005-2014 were used to validate the surface CO concentrations.

3.2.5 HIPPO aircraft data

HIAPER Pole-to-Pole Observation (HIPPO) aircraft measurements provide global information on vertical profiles of various

species over the Pacific (Wofsy et al., 2012). Latitudinal and vertical variations in ozone and CO obtained from the five HIPPO

campaigns (HIPPO I-V) were used to validate the assimilated profiles.225

For comparison with aircraft observations (Sections 3.2.5, 3.2.6, and 3.2.7), all observed profiles were binned on a common

pressure grid with an interval of 30 hPa and mapped with a horizontal resolution of 0.5◦ x 0.5◦. The characteristics of the

aircraft measurements vary significantly among different profiles; e.g., between rural and urban and between in-cloud and clear

sky observations. Case-dependent evaluations would provide deeper insights into the processes and reanalysis performance in

possible future studies.230

3.2.6 NASA aircraft campaign data

Vertical profiles of nine key gases (O3 , CO, NO2, PAN, OH, HO2, HNO3, CH2O, and SO2) were used, obtained from the

following eight aircraft campaigns.

The DC-8 measurements obtained during the Intercontinental Chemical Transport Experiment Phase B (INTEX-B) cam-

paign over the Gulf of Mexico (Singh et al., 2009) were used for the comparison for March 2006. Data collected over highly235

polluted areas (over Mexico City and Houston) were removed from the comparison, as they could cause significant errors in

the representativeness (Hains et al., 2010).

The Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) mission (Jacob et al.,

2010) was executed during two three-week deployments based in Alaska (April 2008, ARCTAS-A) and western Canada (June-
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July 2008, ARCTAS-B). During ARCTAS-A, most of the measurements were collected between 60◦N and 90◦N, whereas240

during ARCTAS-B, the measurements were mainly recorded in the sub-Arctic between 50◦N and 70◦N.

During the Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air

Quality (DISCOVER-AQ) campaign over Baltimore in the United States during July 2011, the NASA P-3B aircraft performed

extensive profiling of the optical, chemical, and microphysical properties of aerosols (Crumeyrolle et al., 2014).

The Deep Convective Clouds and Chemistry (DC3) experiment field campaign investigated the impact of deep, mid-latitude245

continental convective clouds during May and June 2012 over northeastern Colorado, western Texas to central Oklahoma, and

northern Alabama (Barth et al., 2015). Observations obtained from the DC-8 (DC3-DC8) and Gulfstream-V (DC3-GV) aircraft

were used.

The Korea-United States Air Quality (KORUS-AQ) campaign was conducted during the period May-June 2016 over the

Korean peninsula. We used DC-8 aircraft measurements from 23 flights, as in our previous study (Miyazaki et al., 2019b).250

The Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS)

campaign was conducted over North America during August and September 2013. The DC-8 employed in situ and remote

sensing instruments for radiation, chemistry, and microphysics in the southeastern U.S. from the boundary layer to the upper

troposphere. All DC-8 data were used in this study.

3.2.7 ATom aircraft data255

ATom-1 and ATom-2 flew transects through the Pacific, Southern, Atlantic, and Arctic oceans with the NASA DC-8 aircraft in

August 2016 and February 2017, respectively. The 11 flights for each campaign sampled air profiles by frequently ascending

and descending between 0.2 km and 12 km. The DC-8 carried a suite of instruments that measured over 100 different chemical

constituents, aerosol particle properties and chemical composition. We used the merged ATom-1 and ATom-2 OH data (Wofsy

et al., 2018). The same data were used in Wolfe et al. (2019).260

3.2.8 Surface aerosol measurements

We used the in situ surface observations of sulfate, nitrate, and ammonium aerosols from the European Monitoring and

Evaluation Programme (EMEP; http://ebas.nilu.no) for Europe, the Clean Air Status and Trends Network (CASTNet; https:

//www.epa.gov/castnet) for the United States, and the Acid Deposition Monitoring Network in East Asia (EANET; https:

//www.eanet.asia) for East Asia. The observation data at 52, 51, and 30 monitoring sites were obtained from the EMEP, CAST-265

Net, and EANET networks for 2005-2017, respectively.

4 Evaluation results

This section presents validation results of numerous species using various independent observations. To confirm improvements

in the reanalysis, results from a model simulation without any chemical data assimilation (i.e., a control run) are likewise

shown.270
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4.1 Ozone

4.1.1 Ozonesonde

Figs 1 and 2 compare the vertical profile and time series of tropospheric ozone with the global ozonesonde observations

taken from the WOUDC network. The validation of the reanalysis and control run with global ozonesonde observations is

summarized in Table 2. The model bias in the lower and middle troposphere is negative except near the surface at low and275

mid latitudes, whereas it is positive in the upper troposphere and lower stratosphere (UTLS) for the globe. The large positive

biases in the extratropical UTLS could be associated with errors in the stratosphere-troposphere-exchange (STE) processes and

chemical processes such as halogen chemistry, in addition to errors in the prescribed ozone concentrations above 70 hPa in the

model.

The reanalysis shows improved agreement with the ozonesonde observations over the globe. The data assimilation generally280

decreased the ozone concentration in the extratropics UTLS (200-90 hPa) for the globe and in the middle and upper tropo-

sphere (500-200 hPa) at high latitudes of both hemispheres throughout the year. In the lower troposphere (850-500 hPa), the

data assimilation increased the ozone concentrations and removed most of the model biases for the globe. Consequently, the

reanalysis mean bias became nearly zero in the extratropical UTLS regions and less than 15% in the free troposphere for the

globe. At high latitudes, the tropospheric ozone is not directly constrained by any measurements. Nevertheless, the reanalysis285

ozone shows improved agreements with the ozonesonde measurements through atmospheric transport from lower latitudes and

from the stratosphere. In the lower troposphere, the annual mean reanalysis ozone bias is less than 1.2 ppbv, except for the

tropics (4.2 ppb), which is 70-94% smaller than the bias in the control run. In the middle and upper troposphere, the mean

ozone bias is less than 5.7 ppbv for the SH high latitudes and 3.1 ppbv for other regions, which is 74-99% lower than the bias

in the control run. The RMSE is also reduced by 6-50% for 850-500 hPa and 500-200 hPa, with large reductions for the SH mid290

and high latitudes (42-50%) for 500-200 hPa, except for the tropical lower troposphere. The mean bias (RMSEs) reductions in

the UTLS regions are about 93-99% (51-74%) in the extratropics and 56% (41%) in the tropics.

Both seasonal and interannual variations are well reproduced by the chemical reanalysis throughout the troposphere, with

temporal correlations greater than 0.90 at the mid-latitudes of both hemispheres and greater than 0.85 at NH high latitudes. The

correlations in the UTLS range from 0.88 to 0.99. The lower correlations in the tropical lower troposphere (r = 0.73-0.77) with295

enhanced biases in winter and at SH high latitude’s lower troposphere (r = 0.75) could be attributed to the remaining model

errors and the lack of direct observational constraints at high latitudes throughout the reanalysis period and in the tropical

troposphere after 2009 (c.f., Section 7.1). During 2005-2009, the mean ozone bias in the tropical troposphere did not change

significantly with year, which suggests that the TES measurements provide constraints on making stable long-term analysis of

the free-tropospheric ozone. The observed trend is positive at the NH mid-latitudes in the lower troposphere (+0.9 ppb/year),300

corresponding to increased concentrations after 2012, but the significance of this trend is not very high. The reanalysis (+0.4

ppb/year) shows better agreement with the observed slope than the control run (-1.4 ppb/year). The long-term trends will

further be discussed in Section 6.
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The mean ozone biases in TCR-2 are reduced from those in TCR-1 for many regions, especially for the NH mid and

high latitudes (e.g., from -3.9 to -1.2 ppb and from -8.0 to -0.2 ppb at the NH high-latitudes between 850 and 500 hPa and305

between 500 and 200 hPa, respectively) and SH mid latitudes (from -1.0 to 0.4 ppb and from -1.9 to -0.2 ppb between 850 and

500 hPa and between 500 and 200 hPa, respectively). An exception is the tropics, where the reduced number of ozonesonde

observations for the most recent years used in the TCR-2 validation affected the evaluated performance. Huijnen et al. (2019)

and Christophe et al. (2019) compared tropospheric ozone reanalysis products from CAMS, CAMS-Interim, TCR-1 and TCR-

2. The updated reanalyses (CAMS-Rean and TCR-2) showed substantially improved agreements with independent ground310

and ozonesonde observations over their predecessor versions (CAMS-iRean and TCR-1) for the diurnal, synoptical, seasonal,

and decadal variability. The improved performance can be attributed to a mixture of various upgrades, such as revisions in the

chemical data assimilation, including the assimilated measurements and the forecast model performance. The updated chemical

reanalyses agree well with each other in most cases, which highlights the usefulness of the current chemical reanalyses in a

variety of studies.315

4.1.2 AIRS/OMI satellite retrievals

Fig. 3 compares the time series of ozone with the AIRS/OMI retrievals over selected polluted areas between 700 and 500 hPa

during 2005-2018. The AIRS/OMI data was not available for some part of the time period (2005 and from 2011 to 2014)

at the time of this study. To provide continuous decadal records of the control run and reanalysis fields in the AIRS/OMI

observation space, we applied the 2007 AIRS/OMI retrieval sampling and averaging kernel to the control run and reanalysis320

fields for 2005 and 2011-2014. In the United States and China, the control run generally underestimates compared with the

AIRS/OMI observations especially in summer, and the reanalysis shows improved agreements. The mean bias and RMSEs

over China are reduced by 80% (to -1.1 ppb) and 63% (to 4.3 ppb), respectively. Over India, the data assimilation reduced the

mean bias from -9.9 ppb in the control run to 0.6 ppb, while showing larger concentrations (by about 3 ppb) after 2015 than

before 2009 similar to the observations (by about 6 ppb). For tropical regions, the overall model negative biases compared to325

the AIRS/OMI observations are greatly reduced in the reanalysis (e.g., from -9.9 ppb in the control run to 0.6 ppb over central

Africa). The estimated reanalysis errors are mostly within the AIRS/OMI retrieval uncertainty. These improved agreements

in the reanalysis, along with the good agreements between the reanalysis and ozonesonde observations (c.f., Section 4.1.1),

demonstrate the great potential of AIRS/OMI data to further improve decadal ozone reanalysis, as will be discussed in Section

7.3.330

4.1.3 Aircraft

The reanalysis captured the observed latitudinal-vertical distributions by the HIPPO aircraft measurements over the Pacific.

(Fig. S1 and Table S1). On average, the control run shows negative biases in the lower troposphere (850-500 hPa) from

the SH high latitudes to NH high latitudes (-4.6 to -3.6 ppb), whereas the model bias is positive in the middle and upper

troposphere (19.6 to 42.6 ppb between 500-200 hPa) except in the tropics (-2.6 ppb). The negative model biases in the lower335

troposphere are greatly reduced by data assimilation (by 33-80%). Data assimilation introduced a slight positive bias in the NH
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lower troposphere, probably associated with corrections made to precursors’ emissions over East Asia and the stratospheric

concentrations. The positive model biases in the middle and upper troposphere (500-200 hPa) are also reduced by 44-92%

except for the tropics and SH low latitudes, as commonly suggested by comparisons to the ozonesonde measurements (c.f.,

Section 4.1.2). These results demonstrate that the assimilation of multiple-species data sets is a powerful way to globally340

constrain the entire tropospheric ozone profile, including that over remote oceans.

The comparison with the NASA aircraft data (Fig. 4) shows that the control run generally underestimates ozone in the free

troposphere, with largest biases (up to about 15 ppb) for the DC3-GV over the United States and KORUS-AQ profiles over

South Korea. In turn, it is overestimated in the lower stratosphere for the ARCTAS-A and -B profiles over the Arctic. Near

the surface, the control run overestimates ozone for the DISCOVER-AQ profile by 15 ppb and for the KORUS-AQ profile by345

7 ppb, which could partly be attributed to the model representative error. Data assimilation mostly removed the model biases

throughout the troposphere and lower stratosphere, even for the profiles without the direct tropospheric ozone constraints by the

TES measurements (after 2009). Miyazaki et al. (2019b) demonstrated that strong corrections for the entire tropospheric ozone

profile during the KORUS-AQ were mainly obtained from the combined assimilation of UTLS O3 (MLS) and tropospheric

NO2 column (OMI and GOME-2) retrievals.350

4.2 NO2

4.2.1 Satellite retrievals

Fig. 5 compares the global maps of tropospheric NO2 columns between the satellite measurements, control run and chemical

reanalysis. The control run generally underestimated tropospheric NO2 columns over most polluted areas, with large negative

biases over industrial areas (e.g. East China, Europe, eastern USA, and South Africa) and over large biomass-burning areas (e.g.355

Central Africa). As an exception, positive model biases appeared over parts of China, mainly over southeastern China, after

2015 (Fig. 6) associated with the use of the 2010-year HTAP v2 inventories and because emission reductions after 2012 are

not described by the inventories. Compared to the control run in TCR-1, the control run in TCR-2 shows reduced annual mean

model biases in tropospheric NO2 columns against the satellite measurements for the same time periods by up to 90% over

China, by 13% over the western United States, and by 37% over South Africa, mainly attributed to the increased horizontal360

resolution (Sekiya et al., 2018). The different model bias against the three retrievals can be attributed to the overpass time

difference and diurnal variations in chemical processes and emissions, as the three products are generated using the same

retrieval approach (Boersma et al., 2018).

The negative model bias over these regions is greatly reduced in the reanalysis, decreasing the global mean negative bias

by about 84-93% as compared to the three satellite retrievals to -0.03-0.02 ×1015 molec cm−2 (Table 3). Data assimilation365

improvement is also observed in the reduced global RMSE from 0.30-0.38 to 0.17-0.27 ×1015 molec cm−2 and in the in-

creased spatial correlation from 0.95-0.96 to 0.97-0.98. The remaining errors in the reanalysis are considerably smaller for

most polluted regions in TCR-2 than in TCR-1 (the global mean biases are -0.18 to -0.05 ×1015 molec cm−2, the RMSEs

are 0.38-0.95 ×1015 molec cm−2, the spatial correlations are 0.92-0.97 in TCR-1). The improvements from TCR-1 can be
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associated with various reasons: increased model resolution, improved assimilated retrievals including reduced uncertainty for370

polluted regions, and improved data assimilation setting including the use of the diurnal emission variability correction scheme.

The remaining negative biases could be associated with errors in the model chemical equilibrium states, planetary boundary

layer (PBL) mixing, and diurnal variations of chemical processes and emissions. Meanwhile, Sekiya et al. (2020) demonstrated

that increasing model resolution from 1.1◦ to 0.56◦ reduced the analysis errors of tropospheric NO2 by 5–24%.

Fig. 6 shows the time series of regional mean tropospheric NO2 concentrations. The regional error statistics compared to the375

OMI retrievals are summarized in Table 4. Over East China, the model negative bias is relatively large in winter, particularly

in comparison with SCIAMACHY and OMI during 2010-2014 when the observed NO2 concentrations are relatively high.

In contrast, the model bias against OMI and GOME-2 is negative during 2015-2018, when the observed concentrations are

relatively low. The reanalysis captures the observed decadal changes (r = 0.99 for OMI using montly mean concentrations),

through corrections made to NOx emissions. Slight negative biases remain during the 2010-2014 winters compared with OMI380

and SCIAMACHY.

Over Europe, the negative model bias is persistent against the three retrievals throughout the reanalysis period. The data

assimilation reduced about 30-60% of the model negative bias compared with OMI (by 54 % for mean) and most of the biases

against SCIAMACHY. In contrast, the reanalysis reveals excessively high NO2 compared with GOME-2 during summer. The

observed negative trend by OMI (-1.2%/year) is efficiently captured by the reanalysis (-1.2%/year, r = 0.95).385

Over the United States, the observed NO2 concentrations decreased rapidly during 2005-2009 and subsequently show

weaker reductions, as discussed by Jiang et al. (2018). The observed negative trends (-2.3%/year) during 2005-2018 are better

represented by the reanalysis (-2.1%/year) than by the control run (0.6%/year). The model negative biases compared with the

OMI measurements remain partially in late-winter and spring. Data assimilation also increased the temporal correlation with

OMI from 0.54 to 0.88.390

Over India, the model negative bias increased with year because of the lack of the emission increases in the a priori emissions.

The a posteriori NOx emissions in 2018 are up to 90% larger than the a priori emissions over polluted areas at grid scale,

whereas the remaining negative NO2 biases suggest that the NOx emission analysis increments are insufficient. We applied

a covariance inflation to the emission factors to prevent covariance underestimation caused by the application of a persistent

forecast model, by inflating the spread to a minimum predefined value (i.e., 30% of the initial standard deviation (=40%))395

at each analysis step. The inflation was essential to maintain emission variability and continue to increase the emissions. The

remaining model biases suggest requirements for a stronger covariance inflation, although too large inflation can cause unstable

analysis increments. The reanalysis shows positive trends over the 14 years (+1.3%/year) consistent with the OMI observations

(+1.6%/year), with high temporal correlations with respect to all the retrievals (r = 0.96 for OMI). The mean bias was reduced

by about 80% compared to OMI.400

Over north and central Africa, and south America, the control run largely underestimated the NO2 concentrations in the

biomass burning off-seasons, while the interannual variability in the active seasons for biomass burning are not efficiently

captured. The data assimilation removed most of the model negative bias throughout the year, except for reduced concentrations

over South America in 2005, 2007, and 2010. The reanalysis period mean biases against OMI are reduced by more than 90%
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over North Africa, Central Africa, and over South America, with increased temporal correlations from 0.92-0.97 to 0.98-0.99.405

Data assimilation reduced the seasonal amplitude by about 20-30 % over north and central Africa.

Over Southeast Asia and Australia, the control run underestimated the NO2 concentrations throughout the year with respect

to all the retrievals. The data assimilation removed most of the negative biases and reproduced inter-annual variability such as

high concentrations in 2010 and 2013-2016 over Southeast Asia and in 2006-2007 and 2012-2013 over Australia.

Over Southern Africa, the control run underestimated the NO2 concentrations by a factor of about two throughout the year,410

while about 50% of the model negative bias is removed by data assimilation. The remaining model errors can be partially

attributed to the limitations in assimilated measurements (e.g., coverage and uncertainty) and persistent model errors, such

as too-short lifetime of NOx through processes such as NO2 + OH reactions and the reactive uptake of HO2 and N2O5 by

aerosols (e.g. Lin et al., 2012; Stavrakou et al., 2013). Further, any errors in the location of individual sources such as power

plants in the bottom-up inventories could prevent data assimilation improvements in our approach.415

4.2.2 Aircraft

Compared with the vertical NO2 profiles from the aircraft measurements, the simulated NO2 concentration in the free tropo-

sphere is generally too low, whereas the model biases within the boundary layer vary among campaigns (Fig. 4). The relatively

coarse resolution of the model could cause large differences near the surface, especially at urban sites. For the ARCTAS pro-

files, the control run failed to reproduce the enhanced concentrations in the boundary layer, and data assimilation only has420

small impacts throughout the troposphere. In the lower stratosphere, the MLS O3 and HNO3 data assimilation effectively

corrects the amount of NO2 for the ARCTAS-A profile. The insufficient corrections at high latitudes in the troposphere are

associated with limited influences of surface NOx emissions on the NO2 profiles. For the DISCOVER-AQ profile, the control

run overestimated rapid NO2 increases toward the surface, whereas the reanalysis shows improved agreements. Compared with

the two DC3 profiles, both the control run and reanalysis show close agreement with observations from the surface to middle425

troposphere, while underestimating the NO2 concentrations in the upper troposphere. For SEAC4RS, the data assimilation

leads to an underestimation within the boundary later. In contrast, for KORUS-AQ, the negative model bias (up to about 40 %)

in the boundary layer is mostly removed by data assimilation.

4.3 CO

4.3.1 Surface430

We used the WDCGC in-situ measurements in 59 stations to evaluate the reanalysis CO concentrations. The comparison results

are summarized in Table 5 and shown in Fig. 7 for selected sites. The control run underestimated the mean CO concentrations

by 9.4 and 19.8 ppbv at NH mid and high latitudes, with the largest negative biases in winter. The model CO underestimations

in the NH are commonly reported in many models (e.g. Stein et al., 2014). The model bias is positive in the tropics and SH by

about 13-14 ppbv. After data assimilation, the model biases are greatly reduced in the SH, the tropics, and NH mid-latitudes (by435

66-88%), while reproducing the observed seasonal and inter-annual variations for many sites. In contrast, at NH high latitudes,
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the reanalysis CO in TCR-2 reveals small corrections. For instance, over Barrow, Heimaery, and Cold Bay, most of the negative

model biases remain. This is different from the substantial improvements found for the entire globe in TCR-1 (Miyazaki et al.,

2015). There are several potential reasons for the remaining negative biases, as will be discussed in Section 7.4.

4.3.2 Aircraft440

Both the control run and reanalysis captured latitudinal variations in CO over the Pacific acquired by HIPPO observations,

including maximum gradients around the equator and the subtropical jet (Fig. S2). As summarized in Table S2, the control run

underestimates CO concentrations in the NH and overestimates them in the tropics and SH almost for the entire troposphere

over the Pacific. The assimilation decreased CO concentrations and removed the model positive bias by about 63-79% in the

lower troposphere and by 56-67% in the middle and upper troposphere in the tropics and SH. In the NH, data assimilation445

improvements are small, which can be attributed to remaining errors in the surface emissions, chemical productions and losses

(i.e., OH), long-range transport from the Eurasian continent, and stratosphere-troposphere exchange (STE) (c.f., Section 7.4).

The control run generally captured the observed profiles for most NASA aircraft flights, except for an up to 50-130 ppb

underestimation in the lower and middle troposphere for the ARCTAS-A, ARCTAS-B, and KORUS-AQ profiles (Fig. 4).

Substantial reductions in the model negative bias are found for the KORUS-AQ profile because of increased local and remote450

(mainly China) CO emissions (Miyazaki et al., 2019b). In contrast, the bias reduction is small for the ARCTAS profiles.

MOPITT data are assimilated equatorward of 65◦, which limits improvements at high latitudes. Meanwhile, the along-track

measurements could not be representative of the concentrations within the large domain of the western Arctic during ARCTAS-

B (Bian et al., 2013), which may also explain the large negative bias for the ARCTAS-B profile.

4.4 SO2455

Compared with the aircraft measurements (Fig. 4), the control run mostly overestimates SO2 concentrations in the lower

troposphere by a factor of 2-5 for the DC-3, SEAC4RS, and KORUS-AQ profiles. The data assimilation greatly reduced the

positive model biases and reproduced the observed profiles, with mean bias reductions of up to 90%, mainly because of reduced

surface SO2 emissions. The near surface SO2 concentrations became too low by about 20% after data assimilation for the

SEAC4RS and KORUS-AQ profiles, which could be associated with the large uncertainty and assumptions made (e.g., constant460

observation errors, c.f., Sec. 3.1.5) in the assimilated OMI SO2 retrievals and possible overestimation of an atmospheric sink

of SO2 within the boundary layer in the model. Any errors in the assimilated retrievals and model processes could introduce

biases in the estimated emissions (c.f., Section 5.3). For the ARCTAS profiles, both the control run and reanalysis show

excessively low SO2 concentrations throughout the troposphere, likely associated with the lack of observational constraints

and large uncertainty in the model processes.465
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4.5 PAN

4.5.1 Aircraft

Comparisons with the aircraft measurements (Fig. 4) revealed that the control run tends to underestimate PAN in the free

troposphere during INTEX-B by about 50-70%, during ARCTAS-B by about 10-30%, during SEAC4RC and KORUS-AQ by

up to about 30%, and for the DC3-DC8 profile by up to about 10%. Data assimilation mostly removed the negative model470

biases in the free troposphere. In the lower troposphere, the reanalysis reveals improved agreements for the KORUS-AQ,

SEAC4RS, and DISCOVER-AQ profiles. These improvements demonstrate that information obtained from the NO2 retrievals

was propagated efficiently to the NOy budget for many regions. In contrast, for the INTEX-B, ARCTAS-A, and ARCTAS-B

profiles, the reanalysis shows poor agreement likely due to model errors in the boundary layer chemical production and loss

processes of PAN as well as spatial representativeness errors.475

4.5.2 Satellite retrievals

The TES PAN retrievals allow evaluation of the conversion process from NOx to PAN and its long-range transport across both

polluted and remote regions. Because of the TES single-footprint detection limit of 200-300 pptv (Payne et al., 2014), we

focus on regions over and downstream of highly polluted areas only. Fig. 8 shows the seasonal variations of tropospheric PAN

averaged over the years 2005-2009 between 800-400 hPa. The observed PAN concentrations are the largest in boreal spring480

(MAM) over most polluted regions of the NH extratropics, including north America, and northern and eastern parts of the

Eurasian continent, while the enhanced concentrations over northern Pacific suggests long-range transports. The springtime

maximum over the Arctic can be attributed to the transport of pollution and fires from Russia and China (Fischer et al., 2014).

During summer, the strong contrast between source and remote areas could reflect the short lifetime of PAN due to thermal

decomposition. The observed PAN concentrations in the tropics are high over northern Africa in DJF and over central Africa in485

JJA, corresponding to the biomass burning season. The enhanced concentrations over the Atlantic in SON are likely associated

with lightning NOx sources, as well as strong biomass burning emissions over the Amazon and long-range transport along

westerly jets.

The control run captured well the observed spatial and temporal variability, including the enhanced concentrations over

polluted areas with a maximum in spring in the subtropics and extratropics of both hemispheres and the signals of inter-490

continental transports across the northern Pacific and Atlantic. The overall good agreement demonstrates the capability of the

model in representing the global nitrogen cycles, as shown in the GEOS-Chem simulations (Jiang et al., 2016). Despite the

good agreements, the control run is lower than the TES retrievals over eastern China and North America in SON and DJF,

South America in MAM and JJA, the Middle East in JJA, and is higher over Europe and over East Asia in JJA.

Data assimilation generally increased PAN over and downstream of major polluted areas throughout the year, corresponding495

to the increased surface and lightning NOx emissions. The increases are large over northern and central Africa, South America

and the tropical Atlantic in SON, Southeast Asia in MAM, and at the NH mid latitudes over land in MAM and JJA. The

increased concentrations reduced the model negative bias against the TES retrievals over East Asia and North America in SON
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and over Southeast Asia in DJF. These corrections led an about 4% global RMSE reduction in DJF and MAM, while the

spatial pattern is reasonably captured by the reanalysis (r = 0.52-0.84). In contrast, the data assimilation adjustment increased500

the positive model bias in JJA over most of the NH mid latitudes and over northern and central Africa throughout the year. The

remaining discrepancies can be attributed to unconstrained model processes, such as overestimated conversions from NOx to

PAN and underestimated thermal decompositions, as well as the TES retrieval errors. Fischer et al. (2014) suggested that PAN

is generally more sensitive to NMVOC emissions than NOx emissions. Fu et al. (2008) and Fischer et al. (2014) also suggested

that underestimations in Asian outflow can be attributed to emissions of aromatic species and missing NMVOC emissions in505

China. Thus, adding constraints in the reanalysis framework, especially on VOCs emissions, would benefit improving PAN and

chemically-related species including ozone. Further investigation on the detailed PAN distributions using aircraft and satellite

measurements would be helpful to comprehend the possible mechanisms and error sources in the reanalysis PAN fields.

4.6 OH

OH is directly linked to the concentrations of species determining the primary production (O3 and H2O), removal (CO and510

methane), and regeneration of OH (NOx). Because of the multi-constituent constraints for many key species, a positive impact

is expected on global OH fields, given that the reactions are reasonably well described by the model. As shown in Fig. 9, the

global tropospheric OH distribution is substantially modified in the reanalysis. Data assimilation mostly increased OH, with

the largest increases in the SH tropics. The mean OH concentration in the SH tropics is increased over the reanalysis period

by 20-25% at 700 hPa and 30-45% at 500 hPa. In the NH extratropics, the OH increases are about 15-20% at 700 hPa and 20-515

30% at 500 hPa. These increases are found throughout the reanalysis period, with the largest increases during spring-summer

in both hemispheres. Both the concentration assimilation and the emission optimization were important in introducing these

OH changes. The 14-year mean NH/SH OH ratio in the chemical reanalysis is 1.19±0.015 (1σ inter-annual variability), in

contrast to 1.30 in the control run, which is closer to the estimates of 0.97±0.12 based on methyl chloroform observations

(Patra et al., 2014). The NH/SH ratio is maximum in 2016 (1.23), reflecting relatively high OH concentrations over East Asia520

and low concentrations over South America (Figs. S3 and S4). The inter-annual variability can be associated with both human

and natural activities, through changes in climate condition including lightning and in anthropogenic emissions, as discussed

in Murray et al. (2013) and Rowlinson et al. (2019).

The tropospheric mean OH concentrations averaged during the reanalysis periods are estimated at 8.7×105molec cm−3

for the control run and 11.5×105molec cm−3 for the reanalysis. By applying the obtained tropospheric OH burden to the525

ACCMIP multi-model mean estimates of tropospheric chemical methane lifetime (τOH(chemical)) from Voulgarakis et al.

(2013) for 2000 (mean OH concentrations= (11.7± 1.0)× 105molec cm−3, τOH(chemical)=9.3±1.6 yr, and total life time

(τOH(total))= 8.6 yr)), we estimated τOH(chemical) for 2005-2018 at 12.5 yr for the control run and 9.5 yr for for the

reanalysis. The large changes in methane lifetime has a strong implication into the methane budget estimate including emission

inversions.530

The model bias against the aircraft profiles varies largely among the campaigns. For the INTEX-B profile, the control run

captured the observed profile well, whereas the data assimilation puts too high OH throughout the troposphere, likely corre-
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sponding to increased ozone. For the ARCTAS-A, ARCTAS-B, and KORUS-AQ profiles, the model negative bias is strongly

reduced by data assimilation in the free troposphere, mainly due to the increased NOx emissions and resultant increased ozone.

The large negative bias near the surface remains for the ARCTAS-B profiles. Remaining large errors in HO2 could influence the535

performance of the simulation of OH for some profiles, including ARCTAS-B. Observed OH concentrations are also largely

uncertain (e.g. Heard and Pilling, 2003; Stone et al., 2012). Brune and Thames (2019) estimated the absolute accuracy for

aircraft HOx measurements to be ± 32 % at 2 sigma confidence.

The ATom measurements provide great data to evaluate remote tropospheric OH, for instance, that derived from OMI CH2O

measurements (Wolfe et al., 2019). Compared with all the profiles during the ATom-1 and ATom-2, the RMSE is reduced by up540

to 30% above about 600 hPa in the reanalysis than in the control run (Fig. 10a). Improved agreements can be found for many

profiles throughout the troposphere (Fig. S5), whereas a few profiles (e.g., on August 6, 2018, February 2, 2017, and February

5, 2017) led to a degradation in the agreements in the lower troposphere. The ATom measurements provide comprehensive

pictures of inter-hemispheric ratios of OH and its seasonal changes over remote oceans (Fig. 10b,c). The observed inter-

hemispheric ratio is about two near the surface and exceeds seven in the middle troposphere in boreal summer (ATom-1),545

whereas it is 0.4-0.8 throughout the troposphere in boreal winter (ATom-2). The control run mostly overestimated the ratios

by a factor of up to 2.5 for ATom-1 and by up to 1.6 for ATom-2, with the largest overestimation in the lower troposphere.

Data assimilation decreased the ratio and shows improved agreements from the surface to the upper troposphere. Because the

chemical lifetimes of many species are affected by the amount of OH, the improved representation of OH profiles and its global

distributions suggests that multi-constituent assimilation improves the simulation of concentrations and emissions of various550

species. Decadal changes in the tropospheric OH derived from the reanalysis will be discussed in Section 6.

4.7 Aerosols

Although no aerosol observations were assimilated, improved representations of aerosol fields can be expected through correc-

tions made to trace gas concentrations, such as NOx and SO2, that affect the formation of secondary aerosols. Figure 11 shows

the scatter plots of ammonium (NH4), nitrate (NO3), and sulfate (SO4) aerosols from in-situ observations, control run, and555

reanalysis. The control run overestimates ammonium and sulfate aerosol concentrations and underestimates the nitrate aerosol

concentrations for most of the CASTNET (the US), EANET (East Asia), and EMEP (Europe) sites, while the estimated mean

biases (Table 6) are dominated by large biases for a few stations. The median biases are lower than the mean biases for many

cases. The multi-constituent data assimilation substantially modified the aerosol concentrations. The RMSE is decreased by

7-61% for ammonium aerosols, 2-11% for nitrate aerosols, and by 5-38% for sulfate aerosols, by data assimilation while the560

correlation improved for many cases, for instance, from 0.27 to 0.42 for ammonium aerosols compared to the EMEP observa-

tions. The median bias also became smaller (by up to 75 %) for most cases. For urban stations, the model representativeness

errors may prevent data assimilation improvements, which may have caused degradation for some cases. An assessment of

global particulate nitrate and ammonium aerosols in the MIROC-CHASER simulation is also given in (Bian et al., 2017).

Substantial changes in the aerosol concentrations suggest considerable potential of trace gas data assimilation for constrain-565

ing secondary aerosol formation processes. Among numerous factors, optimizations of NOx and SO2 emissions are considered
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to be essential to improve secondary aerosol formation in our framework. Our comparisons show improved agreements against

various aircraft measurements for many key species relevant to aerosol formations, such as NO2, HNO3 and SO2 (c.f., Section

4.8). Meanwhile, assimilation of AOD and aerosol concentration observations are required to further improve the represen-

tation of primary aerosol emissions and concentrations (e.g. Yumimoto et al., 2017). Simultaneous assimilation of trace gas570

and aerosol observations would be a powerful approach to fully represent aerosol-gas interactions in the data assimilation

framework, which would improve both trace gas and aerosol data assimilation analysis.

4.8 Other reactive species

As shown in Fig. 4, the observed main structures of HNO3 are generally captured well by the control run, with increasing

errors toward the surface for some profiles. The increase in HNO3 toward the surface is driven mainly by the oxidation of NOx575

in polluted areas for most profiles except for the ARCTAS-A. The control run overestimated the lower tropospheric HNO3

concentrations by a factor of more than 2 for the INTEX-B, DISCOVER-AQ, and KORUS-AQ profiles, whereas it mostly

underestimated HNO3 concentrations throughout the troposphere for the ARCTAS-B, DC3-DC8, DC3-GV, and SEAC4RS

profiles. For ARCTAS-A, the control run largely overestimated HNO3 above about 600 hPa. The data assimilation mostly

increases the HNO3 concentrations throughout the troposphere except for the ARCTAS-A and DISCOVER-AQ profiles, pri-580

marily attributing to the increased NOx emissions and NO2 concentrations. The data assimilation increase largely reduced the

negative model biases in the free troposphere and lower stratosphere for the ARCTAS-A and DC3-DC8 and DC3-GV profiles.

In contrast, it increased the positive model bias in the lower troposphere for INTEX-B and KORUS-AQ. For DISCOVER-AQ,

the positive model bias in the lower troposphere is greatly reduced. To improve the lower tropospheric HNO3 concentrations,

corrections for its removal processes including deposition and direct assimilation of tropospheric HNO3 measurements could585

be important. In the UTLS region, the MLS HNO3 data assimilation mostly removed the positive model bias in HNO3 for the

ARCTAS-AQ profile.

The tropospheric HO2 profiles mainly reflect variations in water vapor. The control run generally overestimates HO2

throughout the troposphere except for the ARCTAS-B profile. The control run overestimates the tropospheric HO2 concen-

trations. As an exception, the model negative bias is found in the lower troposphere for the ARCTAS-B and in the upper590

troposphere for KORUS-AQ. Data assimilation slightly increases HO2 in the lower troposphere and decreases it in the upper

troposphere for most cases. The increased HO2 in the lower troposphere could be associated with increased CO through the

reaction of OH with CO that converts OH into HO2. The remaining errors could be associated with model errors for instance

in the heterogeneous loss of HO2 on cloud droplets.

Both the control run and reanalysis capture well the tropospheric CH2O profiles for most campaigns, except for the595

ARCTAS-A where CH2O concentrations are underestimated by a factor of 2 throughout the troposphere. The data assimi-

lation influences on CH2O concentrations are small, because of the lack of assimilation of direct measurements. Inter-species

correlations with CH2O in the in the state vector was neglected for all the assimilated measurements, which also prevented

data assimilation adjustments to CH2O.
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5 Emission sources600

In this section, we briefly describe the estimated emissions from the TCR-2 calculations. Further detailed analyses of the 14-

year variations in the estimated emission sources and its influences on global air quality and health impacts will be discussed

in a separate study. The global distribution of a priori and a posteriori emissions and its time series are shown in Figs 12 and 13

and summarized in Table 7. The estimated linear trends are shown in Fig. 14. The regional total emission statistics for surface

emissions and lightning NOx sources are summarized in Table 8 and 9, respectively.605

5.1 Surface NOx emissions

The multi-constituent data assimilation framework has been used to improve estimates of global NOx emissions (Miyazaki and

Eskes, 2013; Miyazaki et al., 2014, 2015, 2017, 2019b). In this framework, the simultaneous optimization of concentrations

and emissions of many species reduces the model-observation mismatches that arise from model errors other than those related

to emissions. Meanwhile, the simultaneous assimilation of multiple satellite measurements obtained at different overpass times610

was employed to constrain diurnal emission variability (Miyazaki et al., 2017). Thus, the estimated emissions in TCR-2 can be

expected to provide unique information on decadal changes in anthropogenic and natural emission sources.

The global surface NOx emissions averaged over the 14 years are estimated at 49.2 TgN/yr from the data assimilation, which

is 17.4% larger than the a priori emissions (41.9 TgN). The mean total emissions are estimated at 29.0 TgN (12.0% larger than

the a priori emissions) for the NH (20◦N-90◦N), 16.8 TgN (22.6% larger) for the tropics (20◦S-20◦N), and 3.5 TgN (29.6%615

larger) for the SH (20◦S-90◦S), as summarized in Table 7.

Data assimilation largely increased surface NOx emissions over major polluted areas such as most parts of China, Southeast

Asia, and Europe (Fig. 12). The increments vary from year-to-year over these regions. For instance, they decreased in more

recent years over China. This is associated with the assumptions applied to the a priori emissions, such as the use of 2010 an-

thropogenic emissions in the estimations for 2011-2018. The complex spatial structure of the increments over India and eastern620

China suggests that the emissions evolved differently among the grid points while the bottom-up inventories exhibited large

uncertainty. The seasonal variations are also largely modified for many regions. The bottom-up inventories did not consider

seasonal variability for anthropogenic emissions, such as emissions from wintertime heating. Over agriculture and desert areas

such as the western and central United States, Sahara, western China, and southern Europe, the summertime large positive

increments can be attributed to underestimated soil emissions, as commonly suggested by Oikawa et al. (2015) and Visser625

et al. (2019). By applying the ratio of different emission categories within the a priori emissions for each grid point, the global

total a posteriori NOx emissions by soils is estimated at 8.7 TgN, which is about 58% larger than the a priori emissions (5.5

TgN) and closer to other recent estimates of around 10 TgN (Steinkamp and Lawrence, 2011; Hudman et al., 2012; Vinken

et al., 2014). The large positive increments over north and central Africa, South America, and Southeast Asia suggest general

underestimations in biomass burning emissions in the GFED v4 inventories.630

Fig. 15 depicts the decadal trend of the estimated NOx emissions over major polluted regions, updated from our previous

estimates (Miyazaki et al., 2017). The detailed spatial maps of the NOx emissions for an individual year are shown in Fig.
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S6, and the regional yearly emission values are summarized in Table S3. For China, the estimated emissions increased from

2005 to 2011 by 30 % and decreased rapidly after 2013. Since 2016, the Chinese country-total emissions started to increase

again, while exhibiting substantial spatial differences in the estimated trends. For India, the emissions show a continuous635

increase by 30% over 14 years. The Middle East also exhibits an emissions increase from 2005 to 2014 of 24%. After 2014, it

exhibits a flattened or a slight negative trend, however with substantial spatial variations. For the United States, the emissions

show a reduction of 25% from 2005 to 2010. The emission reduction is slowed down afterwards, as suggested by Jiang et al.

(2018) using our previous emission estimates based on the TCR-1 system (Miyazaki et al., 2017). The estimated emissions for

Europe show a negative trend during 2005-2014 (by 13%), followed by a flattened trend. Our estimates also reveal substantial640

emission increases for most parts of Southeast and South Asia, and Mexico after 2014. In spite of the substantial changes for

many regions reflecting a combination of effects of environmental policies and economic activities, the global total emissions

did not change obviously over 2005-2018 (49.2±2.8 TgN).

5.2 Surface CO emissions

The 14-year mean of global total emissions of CO is increased by 26% by data assimilation (1104 Tg CO/yr vs. 877 Tg CO/yr),645

which is attributable to a 35% increase in the NH and 18% increase in the tropics. The large positive increments are found

over eastern and southern China, northern parts of Southeast Asia, India, and central Africa (Fig. 12). The emissions increase

in the NH is large in the boreal late winter-spring period, especially over polluted areas at NH mid-latitudes, which enhanced

the seasonal amplitude for industrialized countries.

The estimated emissions show strong negative trends over most parts of China (by -0.6%/yr), Japan (-2.2%/yr), Europe650

(-0.8%/yr) and the United States (-1.8%/yr) and positive trends over India (1.5%/yr) during 2005-2018 (Fig. 14). As seen in

the underestimated decreasing trends of surface CO concentration for the NH in the current estimates (c.f., Section 4.3), the

obtained CO emissions could underestimate a long-term decreasing trend in CO emissions in NH as compared with other

estimates (e.g. Jiang et al., 2017). For biomass burning areas, such as Southeast Asia, Amazon, and central and north Africa,

the estimated emissions exhibit a strong year-to-year variability, such as enhanced emissions over Southeast Asia in 2006-2007655

and 2015, and over South America in 2007 and 2010 (Fig. S7). The regional total surface CO emission values are summarized

in Table S4.

In the multi-constituent data assimilation framework, the assimilation of non-CO observations influences various chemical

species including OH, which provides additional constraints on the CO emission estimation. As suggested in Section 4.6,

possible underestimations in OH in the control run could lead to underestimations in the estimated CO emissions for many660

regions. Assimilation of ozone and NO2 measurements exerts a substantial influence on OH and thus on CO emission estimates.

Nevertheless, insufficient corrections for the NH extratropical CO suggest requirements for further improving CO emission

estimates, as will be discussed in Section 7.4.
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5.3 Surface SO2 emissions

The 14-year mean global total surface SO2 emissions are decreased by about 30% by data assimilation from 50.9 to 35.1 TgS,665

with large reductions in the NH (by 37%). The negative data assimilation increments are also large over China (by -50%), India

(-64%), and Southeast Asia (-75%), suggesting overestimated emissions in the bottom-up inventories for most industrialized

areas. In contrast, the mean increments are positive over western Europe and the western United States (by up to 50%). These

large adjustments suggest large uncertainties in the current inventories, as suggested by Koukouli et al. (2018) and Miyazaki

et al. (2019b). The increments changed largely during the 14 years for many regions, according to substantially temporal670

changes in the observed SO2 columns.

The a posteriori SO2 emissions show substantial reductions during the years 2005-2018 over China (by -6.1%/yr for the

country total), some parts of Europe (by up to -6%/yr at grid scale), the eastern United States (up to -3%/yr) and Japan (up

to -8%/yr), whereas it shows strong increase over India (up to 5%/yr), the Middle East (up to 4%/yr), and Mexico (about 4%

around Mexico city). The negative trends are particularly large over central and southwestern China, which is due to strong675

emission reductions after 2010 (Fig. S8), as reported by Li et al. (2017) and Koukouli et al. (2018). In contrast, the reductions

are smaller for northwestern China, which could be attributed to the exceptional positive trend in this region after 2010 (Ling

et al., 2017). The obtained strong emission changes (summarized in Table S5), along with changes in NOx emissions, have

strong implications into the secondary aerosol formation processes for many polluted regions.

The a posteriori SO2 emissions seem excessively high in 2011 for many regions (c.f., Fig. S8), which seems unrealistic680

and could be due to potential problems in data assimilation setting or assimilated retrievals. Volcanic eruptions also affected a

temporal increase in the estimated emissions, as shown by Carn et al. (2017) using the OMI SO2 measurements. This requires

additional careful verification before used in detailed trend analysis. The estimated emissions should have a large uncertainty

associated with large retrieval uncertainty (e.g., random noise of 0.5 DU for remote areas, as described in Li et al. (2013)) and

the assumed constant retrieval errors and air mass factor. Because the optimized emission factors were applied to the a priori685

emissions, any missing sources in a priori inventories (e.g. Liu et al., 2018) could also lead to systematic biases in the estimated

emissions.

5.4 Lightning NOx sources

The multi-constituent data assimilation with different vertical sensitivities provides strong constraints to distinguish between

surface and lightning NOx sources and to correct the vertical profiles of lightning NOx sources. The a posteriori global total690

lightning NOx source is 7.5 TgN, which is about 32% higher than in the control run (5.7 TgN). The estimated global total

emission is about 17% larger than our previous estimates (6.4 TgN) based on the TCR-1 system (Miyazaki et al., 2014).

The differences between two estimates can primarily be attributed to change in the forecast model and its resolution. The

resolution improvement affected the representation of cumulus convection and lightning frequency distributions. Nevertheless,

both estimates suggest common problems of the lightning parameterizations such as requirements to modify the C-shape695

assumption and land-ocean contrasts.
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The long-term trends of lightning NOx are mostly insignificant and dominated by multi-year scale variability rather than

linear increase or decrease (Fig. S9 and Table S6). The inter-annual variability of lightning NOx during 2005-2018 is large

over Southeast and South Asia, central and southern Africa, Central Africa, and the Amazon (Fig. 14). Over central Africa, the

lightning NOx sources are large in 2006 and 2008 and small in 2016. The lightning NOx sources also show strong interannual700

variations over the Amazon, with a maximum in 2009 and minimum in 2015. These changes are considered to be connected

with climate variability such as ENSO (Rowlinson et al., 2019), associated with variations in convective activity, thunderstorm

type, and cloud distributions. The lack of TES ozone measurements after 2010 introduced artificial changes, whereas the

variations are considered to be consistent during 2005-2009 and 2010-2018 in the reanalysis when the observation density

is nearly constant. Further detailed analyses are required to understand the possible causal mechanisms of the multi-year705

variability, which would provide important implications into chemistry-climate interaction processes. The regional total values

of the estimated lightning NOx sources for major source regions.

6 Trend diagnostics

The reanalysis reveals substantial changes in concentrations of various species, which provides an important framework to

comprehend the roles of natural and human activities on atmospheric composition. We evaluated long-term atmospheric com-710

position variations using two data sets: the standard reanalysis products and a reanalysis without TES measurements (noTES

reanalysis). The two data sets are identical after 2010, whereas in the standard reanalysis corrections made by the TES mea-

surements for 2005-2009 could lead to artificial decadal trends during the reanalysis. The noTES reanalysis is meant to provide

a consistent long-term record. As shown in Figs. 16, S10 and S11, the noTES reanalysis reveals positive trends for the surface

ozone over many regions, with strong positive trends over India (up to 0.25 ppb/yr), Southeast Asia (up to 0.4 ppb/yr), and715

over the northern Pacific (up to 0.3 ppb/yr). Positive trends for surface ozone are also found throughout the SH. In contrast,

strong reductions appear over the United States (up to -0.2 ppb/yr) and Europe (up to -0.15 ppb/yr). At 500 hPa (Figs. 16,

S12 and S13), the linear ozone trends are overall positive except around the equator. The positive trend at 500 hPa reaches

0.3-0.4 ppb/year over the SH tropics, the tropical Atlantic, and the Middle East in the noTES reanalysis, which were mostly

attributable to changes in anthropogenic NOx emissions. The strong increasing surface ozone trends indicate strong impacts of720

human activity on air quality, human health and climate over the past decade. The increases in the extratropical UTLS region

can be driven by changes in STEs. The standard reanalysis products exhibit large positive trends at low latitudes and nega-

tive trends over most of the extratropics, associated with systematic biases between the model and TES measurements during

2005-2009.

The estimated global tropospheric ozone burden in the noTES reanalysis was 330.6 ± 5.8 Tg for 2005-2018, which is com-725

parable to the 15-model mean value of 337 Tg from the Atmospheric Chemistry and Climate Model Intercomparison Project

(ACCMIP) for 2000 (Young et al., 2013) and is slightly larger than the estimates of 300 Tg from the five satellite products

for the years 2014–2016 (Gaudel et al., 2018), which could be partly attributed to the limited sensitivity of the satellite mea-

surements to the lower troposphere and polar regions. The noTES reanalysis revealed a slight increase in global tropospheric
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ozone burden (+0.4 Tg/yr) during 2005-2018. Because of the corrections by TES measurements, the global tropospheric ozone730

burden was 3.5 % lower in the reanalysis (317.0 Tg) than in the noTES reanalysis (328.7 Tg) for 2005-2009, which is closer

to the satellite-based estimates.

According to changes in concentrations of various species including ozone, the reanalysis reveals a general positive trend

in OH during the reanalysis period (Figs. 17, S3 and S4). The tropospheric OH from the noTES reanalysis exhibits strong

increases over the tropical western and eastern Pacific by up to +1.2%/year, and 0.9-1.4%/yr over southern India, southern735

Vietnam, west coast of Saudi Arabia, and western Iran. Annual and zonal mean OH concentrations in the noTES reanalysis

are increased over 10◦N-20◦N, 700-500 hPa by 0.5-0.6%/yr and at the SH low and mid-latitudes in the lower troposphere by

0.3-0.4%/yr. These trends are commonly found in both data sets, but with weaker trends in the standard reanalysis. At the NH

mid latitudes in the free troposphere, only the noTES reanalysis reveals substantial increases in OH by 0.5-0.7%/year. Based on

a sensitivity calculation, these significant changes in OH were found to be strongly driven by surface NOx emission variations,740

with strong increases from 2007 to 2012. These results highlight substantial impact of human activity on the oxidation capacity

of the atmosphere and chemical lifetime of many species such as methane (e.g. Rigby et al., 2017), as previously suggested by

Wang and Jacob (1998).

7 Discussions

7.1 Assimilated data biases and availability745

Significant temporal changes in the reanalysis quality can partly be attributed to discontinuities in the observing systems. As

discussed in Section 6, the reduced number of assimilated TES ozone retrievals after 2010 substantially influenced the us-

ability of the reanalysis products for trend analyses. Meanwhile, changes in the NO2 observing system, including the OMI

row anomaly after December 2009 and the limited temporal coverage of SCIAMACHY and GOME-2, are also considered

to affect long-term consistency. The reanalysis ozone bias against the ozonesonde measurements was relatively large in the750

tropical lower and middle troposphere, which could partly be attributed to the positive biases in the assimilated TES measure-

ments. Miyazaki et al. (2015) tested a bias correction scheme for assimilation of TES ozone based on evaluation results using

ozonesonde measurements (Boxe et al., 2010; Verstraeten et al., 2013), however the results were not always positive because

of the difficulty in estimating the detailed bias structure. The reanalysis ozone bias can also be affected by biases in ozone

precursors measurements such as NO2 measurements. Nevertheless, we did not apply any bias correction to any assimilated755

measurements in the reanalysis, because of the difficulty in estimating the bias structure including inter-measurement biases.

To improve the temporal consistency, a detailed assessment of biases in individual retrievals (e.g. Compernolle et al., 2020)

and between different retrieval products would be helpful, as already tested in the CAMS reanalysis (Inness et al., 2019)

The availability of the ozonesonde measurements for the most recent years was also limited at the time of this research,

which limits the evaluation of the reanalysis performance. The mean ozonesonde concentrations at SH mid latitudes show760

rapid changes after 2017, which were associated with the reduced number of available ozonesonde observations at the time of

this research and consequent increased representativeness errors of the ozonesonde network for the large domain. The current
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ozonesonde network is also too sparse to capture the regional and monthly representative ozone fields especially in the tropics,

which can lead to substantial sampling biases in the reanalysis performance, as discussed for evaluations of chemistry-climate

models (Miyazaki and Bowman, 2017).765

7.2 Impact of forecast model performance

Even though the assimilation of multi-species data influences the representation of various chemical fields including precur-

sor emissions, the remaining model errors, such as chemical reaction rates, deposition rates, the limited representation of

atmospheric chemistry, as well as meteorology, limit the data assimilation improvements. Miyazaki et al. (2020) developed a

MOMO-Chem framework using four global CTMs and an EnKF data assimilation that directly accounts for model error in770

transport and chemistry. They demonstrated that the observational density and accuracy was sufficient for the assimilation to

reduce the influence of model errors in data assimilation analysis; i.e., multi-model spread of ozone analysis is reduced by

20-85% in the free troposphere. Model negative biases in tropospheric NO2 column and surface CO in the NH are also greatly

reduced by more than 40% in all models. MOMO-Chem provides integrated unique information on the tropospheric chemistry

system and its uncertainty ranges, which would benefit future development of chemical reanalysis.775

Meanwhile, a strong reanalysis dependence on forecast model performance was found on the near surface concentrations

and precursor emissions, associated with insufficient observational constraints (Huijnen et al., 2019; Miyazaki et al., 2020).

The ozone response to precursor’s emissions was also found to be strongly sensitive to the chemical mechanisms in the model,

which varied by a factor of 2 for end-member models, revealing fundamental differences in the representation of fast chemical

and dynamical processes (Miyazaki et al., 2020). The emissions of ozone precursors other than NOx and CO, such as VOCs,780

have a pronounced influence on the tropospheric chemistry. Adjusting additional model parameters such as VOC emissions,

deposition, and/or chemical reactions rates could help reduce model errors. Furthermore, a simultaneous assimilation of trace

gas and aerosol measurements would also reduce systematic model errors and provide more comprehensive information on

various applications. Meanwhile, high-resolution modeling is also essential for accurate modeling of non-linear chemistry and

resolving rapid variations in air pollutions and emissions around cities (Valin et al., 2011; Sekiya et al., 2018), which is also785

needed to improve the reanalysis performance.

7.3 Challenges with next generation satellite data

Next generation satellite data products, that have improved vertical sensitivity and accuracy, as well as improved spatial sam-

pling, have great potential to further improve emissions and surface ozone analyses. The exploitation of existing sounders

and development of multispectral retrievals is expected to add constraints on the reanalysis and to remove remaining model790

errors. For instance, as demonstrated in Section 3.2.2, the multispectral AIRS/OMI ozone retrievals provide decadal records of

tropospheric ozone. Miyazaki et al. (2019b) demonstrated that assimilation of AIRS/OMI ozone data, together with precursors

and stratospheric measurements, improved the tropospheric ozone analysis over East Asia during the KORUS-AQ campaign

for any meteorological conditions. This would provide important constraints on the decadal ozone variations in the reanalysis.
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Tropospheric PAN retrievals from TES were used to evaluate the reanalysis fields over both polluted and remote regions795

(c.f., Section 4.1.2). Cross-Track Infrared Sounder (CrIS) on Suomi-NPP also provides tropospheric PAN retrievals with im-

proved coverage and accuracy compared with TES (Payne et al., 2019). Assimilating PAN retrievals from TES and CrIS can

be expected to improve the representation of the global nitrogen cycles, which would also benefit surface and lightning NOx

emission estimates combining with tropospheric NO2 column measurements. Meanwhile, TROPOMI provides global maps

of the tropospheric NO2 column on a daily basis with improved accuracy and higher spatial resolution compared with OMI800

(Griffin et al., 2019). Assimilating TROPOMI NO2 has potential for improved evaluation of the changing landscape of emis-

sions on urban-to-regional and regional-to-global scales (Lorente et al., 2019). Assimilation of other retrievals such as OMI

and TROPOMI CH2O, CrIS Isoprene (Fu et al., 2019), and TES, CrIS, and IASI NH3 (Shephard and Cady-Pereira, 2015)

would also help improve the model chemistry and tropospheric ozone reanalysis.

7.4 Under-constrained CO emissions805

The validation results of CO concentrations suggested under-corrected surface emissions of CO, especially in the NH extratrop-

ics (c.f., Section 4.3). There are several reasons for this. First, while our previous estimates in TCR-1 used MOPITT TIR-only

CO profile data at 700 hPa, TCR-2 used TIR/NIR total column retrievals. The truly optimal settings of data assimilation pa-

rameters probably differ between the two setups. The TCR-2 setting might require further optimization. Second, the chi-square

and observation-minus-forecast statistics suggested underestimated background errors of CO for many regions. Considering810

different systematic model errors and the increased model resolution between TCR-1 and TCR-2, background error inflation

settings need to be further optimized for TCR-2. Third, the data assimilation window (two-hour) used is clearly too short for

CO emission estimates, considering its relatively long chemical lifetime and the coverage and limited near-surface sensitivity

of MOPITT measurements. A longer data assimilation window for CO emission estimates, while keeping the short window for

short-lived species such as NOx and ozone, would be required. Finally, CO is produced by the oxidation of methane and bio-815

genic NMHCs (Duncan et al., 2007). These components can account for part of the missing CO concentrations. Adding more

observational constraints, such as for CH2O and methane, would help improve CO emission estimates (e.g. Stein et al., 2014;

Zheng et al., 2018). We have already tested some of the developments and obtained improved estimates of CO concentrations

and emissions, which will be implemented in the next generation chemical reanalysis.

7.5 Uncertainty estimation820

Important information regarding the reanalysis product is provided by the error covariance. Within the EnKF assimilation

framework, the analysis ensemble spread is estimated from the standard deviation across the ensemble and provides a measure

of the uncertainty of the reanalysis product. The information on the analysis uncertainty is included in the TCR-2 reanalysis

products. For instance, as shown in Fig. S14, the analysis spread for ozone is about 1-3 ppb in the tropics and subtropics

and 3-12 ppbv in the extratropics before 2011. These variations may be related to spatial variations in observation errors,825

the number of assimilated measurements, and model errors. After 2011, the spread mostly becomes smaller than 3 ppb for

the globe. The analysis uncertainty after 2011 seems excessively small as compared with the validation results against the
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ozonesonde measurements (c.f., Section 4.1.1), which is likely associated with the stiff tropospheric chemical system and lack

of observational constraints. The obtained results indicate the requirements for additional observational information and/or

stronger covariance inflation for measuring the analysis spread corresponding to actual analysis uncertainty. At 200 hPa, the830

analysis spread is about 1-4 ppb in the tropical upper troposphere and about 20-80 ppb in the extratropical lower stratosphere.

The relative value (compared to the analysis ozone) is smaller in the extratropics because of the high accuracy of the MLS

measurements. For other species, further investigations would be required to clarify the usefulness of the estimated uncertainty

(i.e., analysis spread).

7.6 Implications for climate studies835

The long-term reanalysis products allow detailed evaluations of inter-annual and decadal variations in atmospheric composi-

tion simulated by chemistry-climate and chemistry-transport models in association with changes in human activities and natural

processes. Employing TCR-1, Miyazaki and Bowman (2017) evaluated the ACCMIP tropospheric ozone simulations and in-

vestigated sampling biases in model evaluation results when using the ozonesonde network. Evaluations of ozone simulations

using chemical reanalyses provide important information on the performance of the simulated radiative forcing (e.g. Bowman840

et al., 2013; Stevenson et al., 2013; Kuai et al., 2020), attribution of radiative forcing (Bowman and Henze, 2012), and emergent

constraints on future projections (Miyazaki and Bowman, 2017; Bowman et al., 2018). Validation of short-lived species can

be used to identify potential sources of error in model fields and is also important for evaluating the radiative forcing because

simulated OH fields influence simulated climates through their influences on methane (Naik et al., 2013; Voulgarakis et al.,

2013). The optimized precursor emission fields can be used to validate bottom-up emission inventories and lightning param-845

eterizations. As changes in tropospheric ozone burden and NOx emissions show a close relation in different future scenarios

(Stevenson et al., 2013), evaluations using the estimated emissions and evaluated model response to emissions (Miyazaki et al.,

2020) have the potential to evaluate preindustrial, present day, and future model simulations. Short-lived climate pollutants

(SLCP) are an increasingly important component of greenhouse gas budgets that limit warming to target temperatures, e.g.,

1.5C or 2C (Rogelj et al., 2019). Chemical reanalysis can play a crucial role in assessing the changes and efficacy of SLCPs.850

8 Conclusions

We conducted a tropospheric chemical reanalysis calculation for the 14 years from 2005 to 2018 based on an assimilation of

multi-constituent observations from multiple satellite sensors. The assimilated measurements of ozone, NO2, CO, HNO3, and

SO2 were obtained from the OMI, SCIAMACHY, GOME-2, TES, MLS, and MOPITT satellite instruments. Surface emis-

sions of NOx, CO, and SO2 and lightning NOx sources and the chemical concentrations of various species are simultaneously855

optimized using an EnKF data assimilation. In this framework, the improved concentrations of various species have the poten-

tial to improve the emission inversion, whereas the improved representations of emissions benefit the concentration reanalysis

through a reduction in the model errors.
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The evaluation results for various species reveal the benefit of the assimilation of multiple-species data on the analysis of

both observed and unobserved species profiles on both regional and global scales, for seasonal and decadal variations, and860

from the surface to lower stratosphere. The global statistics of the NO2, ozone, and CO evaluation results are summarized

in Table 10. The reanalysis ozone bias against the ozonesonde measurements was less than 1.2 ppb in the lower troposphere

except for the tropics and less than 3.1 ppb in the middle and upper troposphere except for the SH high latitudes, with temporal

correlations greater than 0.85 for most regions. The improved agreements in TCR-2 ozone from TCR-1 can be attributed to

a mixture of various upgrades, including assimilated measurements and the forecast model performance and resolution. The865

assimilation also removed the global mean model biases in the tropospheric NO2 column by about 84-93%, while reproducing

the observed seasonal and inter-annual changes for both industrialized and biomass burning regions (r = 0.88-0.99). The model

biases in surface CO concentrations are greatly reduced in the SH, the tropics, and NH mid latitudes by 66-88%. The reanalysis

also reasonably captured the observed spatial and temporal variability in PAN as compared with the TES satellite retrievals

(r = 0.52-0.84 for the seasonal mean fields). The negative model biases (by 10-70%) in the free tropospheric PAN are greatly870

reduced by data assimilation compared to the aircraft measurements due to increased surface and lightning NOx emissions.

Data assimilation also removed positive model biases for SO2 in the lower and middle troposphere. The reanalysis OH shows

improved agreements in global distributions over remote oceans in comparison with the ATom aircraft measurements from

the surface to the upper troposphere, with the RMSE reduction of up to 30% in the free troposphere and improved north-to-

south gradients. Constraints obtained for OH profiles have a large potential to influence the chemistry of the entire troposphere,875

which played an important role in propagating observational information among various species and in modifying the chemical

lifetimes of many species. Although no aerosol observations were assimilated, improved representations of aerosols against

surface in-situ measurements were obtained through corrections made to the secondary aerosol formation.

The multi-constituent data assimilation framework is also used to improve estimates of global emissions of NOx, CO, and

SO2. The simultaneous optimization of emissions and concentrations reduces the model-observation mismatches that arise880

from model errors other than those related to emissions. The global total emissions averaged over the 14 years is estimated

at 49.2 TgN/yr for surface NOx emissions, 1104 TgCO/yr for surface CO emissions, 35.1 TgS/yr for surface SO2 emissions,

and 7.5 TgN/yr for lightning NOx sources, which are substantially different from the a priori emissions constructed based

on bottom-up inventories. Chinese NOx emissions increased from 2005 to 2011, then rapidly decreased after 2013, and then

started to increase since 2016, while exhibiting substantial spatial differences within the country. Indian NOx emissions exhibit885

a continuous increase by 30% over 14 years. For the United States and Europe, the NOx emissions show a slowdown in NOx

emission reductions in the recent years. The SO2 emissions show substantial reductions over China (by -6.1%/yr), some parts

of Europe (up to -6%/yr on each grid), the eastern United States (up to -3%/yr) and Japan (up to -8%/yr), whereas strong

increases are found over India (up to 5%/yr), the Middle East (up to 4%), and Mexico (about 4%), all of which are associated

with environmental policies and economic activities. Lightning NOx sources exhibit strong year-to-year variability, associated890

with multi-year scale climate variability such as ENSO. The multi-year changes in emissions, along with the changes in

meteorological conditions, led to strong increases in surface ozone over India (up to +0.25 ppb/yr) and Southeast Asia (up to

+0.4 ppb/yr), as well as in tropospheric OH over the tropical western and eastern Pacific (up to +1.2%/yr) and low latitudes
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polluted areas (0.9-1.4%/yr) during 2005-2018. These results have strong implications on the impacts of human activity on

air quality, human health, and climate. Meanwhile, significant temporal changes in the reanalysis can partly be attributed to895

discontinuities in the observing systems.

The combined analysis of concentrations and emissions is considered an important development in the tropospheric chem-

istry reanalysis. Our comparisons suggest that improving the observational constraints, including the continued development

of satellite observing systems, together with the optimization of model parameterizations, such as deposition and chemical

reactions, will lead to increasingly consistent long-term reanalyses in the future. An increase in the forecast model resolution900

and an extension of data assimilation to aerosols are expected to improve the capability of chemical reanalysis for air quality

and climate applications. Techniques to reduce the influence of discontinuities in the assimilated measurements and to employ

next generation satellite retrievals would also be important developments in future chemical reanalyses. Satellite data sets from

a new constellation of LEO sounders and GEO satellites (e.g., GEMS, TEMPO and Sentinel-4) will provide more detailed

knowledge of ozone and its precursors for East Asia (Bowman, 2013).905

9 Data availability

The Tropospheric Chemistry Reanalysis (TCR-2) data for 2005-2018 is freely available at https://doi.org/10.25966/9qgv-fe81

(Miyazaki et al., 2019a). The teaser data (mon_emi_nox_tot_2005.nc) is a part of the TCR-2 data products (with the same

DOI) and can be downloaded from the TCR-2 data website by selecting "Monthly-mean data: Emissions" - "NOx (surface

total)" - "2005" at https://tes.jpl.nasa.gov/chemical-reanalysis/products/monthly-mean.910

Author contributions. KM and KB initiated the research. KM and TS conducted the TCR-2 calculations. TS, KS, MS, KO contributed to

the TCR-2 system developments. HE and FB provided OMI, SCIAMACHY, and GOME-2 NO2 data. NL provided MLS ozone and HNO3

data. HW provided MOPITT CO data. VHP provided input on the use of the TES PAN data. All authors contributed to the review and editing

of the manuscript

Competing interests. The authors declare that they have no conflict of interest.915

Acknowledgements. We acknowledge the use of data products from the NASA AURA and EOS Terra satellite missions. We also acknowl-

edge the free use of tropospheric NO2 column data from the SCIAMACHY, GOME-2, and OMI sensors from www.temis.nl, NASA’s aircraft

observations data were obtained from the NASA Langley Research Center Atmospheric Science Data Center. This research has been sup-

ported by the EU FP7 project, Quality Assurance for Essential Climate Variables (QA4ECV), grant no. 607405. Surface aerosol observations

from the CASTNET, EANET, and EMEP networks. This work was supported by the Post-K computer project Priority Issue 4. The Earth920

Simulator was used for simulations as Strategic Project. Part of this work was conducted at the Jet Propulsion Laboratory, California Institute

29

https://doi.org/10.25966/9qgv-fe81
https://tes.jpl.nasa.gov/chemical-reanalysis/products/monthly-mean


of Technology, under contract with the National Aeronautics and Space Administration (NASA). We would like to thank the editor and the

two reviewers for their valuable comments.

30



References

Barth, M. C., Cantrell, C. A., Brune, W. H., Rutledge, S. A., Crawford, J. H., Huntrieser, H., Carey, L. D., MacGorman, D., Weisman, M.,925

Pickering, K. E., et al.: The deep convective clouds and chemistry (DC3) field campaign, Bulletin of the American Meteorological Society,

96, 1281–1309, 2015.

Bian, H., Colarco, P. R., Chin, M., Chen, G., Rodriguez, J. M., Liang, Q., Blake, D., Chu, D. A., da Silva, A., Darmenov, A. S., Diskin, G.,

Fuelberg, H. E., Huey, G., Kondo, Y., Nielsen, J. E., Pan, X., and Wisthaler, A.: Source attributions of pollution to the Western Arctic

during the NASA ARCTAS field campaign, Atmos. Chem. Phys., 13, 4707–4721, https://doi.org/10.5194/acp–13–4707–2013, 2013.930

Bian, H., Chin, M., Hauglustaine, D. A., Schulz, M., Myhre, G., Bauer, S. E., Lund, M. T., Karydis, V. A., Kucsera, T. L., Pan, X., Pozzer,

A., Skeie, R. B., Steenrod, S. D., Sudo, K., Tsigaridis, K., Tsimpidi, A. P., and Tsyro, S. G.: Investigation of global particulate nitrate from

the AeroCom phase III experiment, Atmos. Chem. Phys., 17, 12 911–12 940, https://doi.org/10.5194/acp–17–12 911–2017, 2017.

Boersma, K., Vinken, G., and Eskes, H.: Representativeness errors in comparing chemistry transport and chemistry climate models with

satellite UV/Vis tropospheric column retrievals., Geosci. Model Dev., 9, 875–898, https://doi.org/10.5194/gmd–9–875–2016, 2016.935

Boersma, K., Eskes, H., Richter, A., De Smedt, I., Lorente, A., Beirle, S., Van Geffen, J., Peters, E., Van Roozendael, M., and Wagner, T.:

QA4ECV NO2 tropospheric and stratospheric vertical column data from OMI (Version 1.1)(data set), Royal Netherlands Meteorological

Institute (KNMI), http://doi.org/10.21944/qa4ecv-no2-omi-v1.1, 2017a.

Boersma, K., Eskes, H., Richter, A., De Smedt, I., Lorente, A., Beirle, S., Van Geffen, J., Peters, E., Van Roozendael, M., and Wagner, T.:

QA4ECV NO2 tropospheric and stratospheric vertical column data from GOME-2 (Version 1.1)(data set), Royal Netherlands Meteoro-940

logical Institute (KNMI), http://doi.org/10.21944/qa4ecv-no2-gome2a-v1.1, 2017b.

Boersma, K., Eskes, H., Richter, A., De Smedt, I., Lorente, A., Beirle, S., Van Geffen, J., Peters, E., Van Roozendael, M., and Wagner,

T.: QA4ECV NO2 tropospheric and stratospheric vertical column data from SCIAMACHY (Version 1.1)(data set), Royal Netherlands

Meteorological Institute (KNMI), http://doi.org/10.21944/qa4ecv-no2-scia-v1.1, 2017c.

Boersma, K. F., Eskes, H. J., Richter, A., De Smedt, I., Lorente, A., Beirle, S., van Geffen, J. H. G. M., Zara, M., Peters, E., Van Roozendael,945

M., Wagner, T., Maasakkers, J. D., van der A, R. J., Nightingale, J., De Rudder, A., Irie, H., Pinardi, G., Lambert, J.-C., and Compernolle,

S. C.: Improving algorithms and uncertainty estimates for satellite NO2 retrievals: results from the quality assurance for the essential

climate variables (QA4ECV) project, Atmos. Meas. Tech., 11, 6651–6678, https://doi.org/10.5194/amt–11–6651–2018, 2018.

Bowman, K. and Henze, D.: Attribution of direct ozone radiative forcing to spatially resolved emissions, Geophys. Res. Lett., 39, L22 704,

doi:10.1029/2012GL053 274, 2012.950

Bowman, K. W.: Toward the next generation of air quality monitoring: Ozone, Atmospheric Environment, 80, 571–583,

https://doi.org/10.1016/j.atmosenv.2013.07.007, 2013.

Bowman, K. W., Rodgers, C. D., Kulawik, S. S., Worden, J., Sarkissian, E., Osterman, G., Steck, T., Lou, M., Eldering, A.,

Shephard, M., Worden, H., Lampel, M., Clough, S., Brown, P., Rinsland, C., Gunson, M., and Beer, R.: Tropospheric emis-

sion spectrometer: Retrieval method and error analysis, IEEE Transactions on Geoscience and Remote Sensing, 44, 1297–1307,955

https://doi.org/10.1109/TGRS.2006.871 234, 2006.

Bowman, K. W., Shindell, D. T., Worden, H. M., Lamarque, J. F., Young, P. J., Stevenson, D. S., Qu, Z., de la Torre, M., Bergmann, D.,

Cameron-Smith, P. J., Collins, W. J., Doherty, R., Dalsøren, S. B., Faluvegi, G., Folberth, G., Horowitz, L. W., Josse, B. M., Lee, Y. H.,

MacKenzie, I. A., Myhre, G., Nagashima, T., Naik, V., Plummer, D. A., Rumbold, S. T., Skeie, R. B., Strode, S. A., Sudo, K., Szopa, S.,

Voulgarakis, A., Zeng, G., Kulawik, S. S., Aghedo, A. M., and Worden, J. R.: Evaluation of ACCMIP outgoing longwave radiation from960

31



tropospheric ozone using TES satellite observations, Atmos. Chem. Phys., 13, 4057–4072, https://doi.org/10.5194/acp–13–4057–2013,

2013.

Bowman, K. W., Cressie, N., Qu, X., and Hall, A.: A Hierarchical Statistical Framework for Emergent Constraints: Application to Snow-

Albedo Feedback, Geophysical Research Letters, 45, 13,050– 13,059, https://doi.org/10.1029/2018GL080 082, 2018.

Boxe, C. S., Worden, J. R., Bowman, K. W., Kulawik, S. S., Neu, J. L., Ford, W. C., Osterman, G. B., Herman, R. L., Eldering, A., Tarasick,965

D. W., Thompson, A. M., Doughty, D. C., Hoffmann, M. R., and Oltmans, S. J.: Validation of northern latitude Tropospheric Emission

Spectrometer stare ozone profiles with ARC-IONS sondes during ARCTAS: sensitivity, bias and error analysis, Atmos. Chem. Phys., 10,

9901–9914, https://doi.org/10.5194/acp–10–9901–2010, 2010.

Brune, W.H., D. M. and Thames, A.: ATom: L2 Measurements from Airborne Tropospheric Hydrogen Oxides Sensor (ATHOS), Tech. Rep.

https://doi.org/10.3334/ORNLDAAC/1709, ORNL DAAC, Oak Ridge, Tennessee, USA, 2019.970

Carn, S., Fioletov, V., McLinden, C., Li, C., and Krotkov, N.: A decade of global volcanic SO2 emissions measured from space, Scientific

reports, 7, 44 095, https://doi.org/10.1038/srep44 095, 2017.

Christophe, Y., Schulz, M., Bennouna, Y., Eskes, H., Basart, S., Benedictow, A., Blechschmidt, A.-M., Chabrillat, S., Clark, H., Cuevas, E.,

Flentje, H., Hansen, K., Im, U., Kapsomenakis, J., Langerock, B., Petersen, K., Richter, A., Sudarchikova, N., Thouret, V., Wagner, A.,

Wang, Y., Warneke, T., and Zerefos, C.: Validation report of the CAMS global Reanalysis of aerosols and reactive gases, years 2003-2018,975

Copernicus Atmosphere Monitoring Service (CAMS) report, CAMS84_2018SC1_D5.1.1-2018_v1.pdf, doi:10.24380/dqws-kg08, 2019.

Compernolle, S., Verhoelst, T., Pinardi, G., Granville, J., Hubert, D., Keppens, A., Niemeijer, S., Rino, B., Bais, A., Beirle, S., Boersma,

F., Burrows, J. P., De Smedt, I., Eskes, H., Goutail, F., Hendrick, F., Lorente, A., Pazmino, A., Piters, A., Peters, E., Pommereau, J.-

P., Remmers, J., Richter, A., van Geffen, J., Van Roozendael, M., Wagner, T., and Lambert, J.-C.: Validation of Aura-OMI QA4ECV

NO2 Climate Data Records with ground-based DOAS networks: role of measurement and comparison uncertainties, Atmos. Chem. Phys.980

Discuss., pp. https://doi.org/10.5194/acp–2019–877, in review, 2020.

Crumeyrolle, S., Chen, G., Ziemba, L., Beyersdorf, A., Thornhill, L., Winstead, E., Moore, R., Shook, M., Hudgins, C., and Anderson, B.:

Factors that influence surface PM 2.5 values inferred from satellite observations: perspective gained for the US Baltimore–Washington

metropolitan area during DISCOVER-AQ, Atmos. Chem. Phys., 14, 2139–2153, https://doi.org/10.5194/acp–14–2139–2014, 2014.

Dee, D., Uppala, S., Simmons, A., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M., Balsamo, G., Bauer, P., Bechtold,985

P., Beljaars, A., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S.,

Hersbach, H., Hólm, E., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A., Monge-Sanz, B., Morcrette, J., Park, B.,

Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J., and Vitart, F.: The ERA-Interim reanalysis: Configuration and performance of the

data assimilation system, Q.J.R. Meteorol. Soc., 137, 553–597. doi:10.1002/qj.828, 2011.

Deeter, M. N., Edwards, D. P., Francis, G. L., Gille, J. C., Martínez-Alonso, S., Worden, H. M., and Sweeney, C.: A climate-scale satellite990

record for carbon monoxide: the MOPITT Version 7 product, Atmos. Meas. Tech., 10, 2533–2555, https://doi.org/10.5194/amt–10–2533–

2017, 2017.

Ding, J., Miyazaki, K., van der A, R. J., Mijling, B., Kurokawa, J.-I., Cho, S., Janssens-Maenhout, G., Zhang, Q., Liu, F., and Levelt, P. F.:

Intercomparison of NOx emission inventories over East Asia, Atmos. Chem. Phys, 17, 10 125–10 141, https://doi.org/10.5194/acp–17–

10 125–2017, 2017.995

Duncan, B., Logan, J., Bey, I., Megretskaia, I., Yantosca, R., Novelli, P., Jones, N. B., and Rinsland, C.: Global budget of CO,

1988–1997: Source estimates and validation with a global model, Journal of Geophysical Research: Atmospheres, 112, D22 301,

doi:10.1029/2007JD008 459, 2007.

32



Eskes, H. and Boersma, K.: Averaging kernels for DOAS total-column satellite retrievals, Atmos. Chem. Phys., 3, 1285–1291,

https://doi.org/10.5194/acp–3–1285–2003, 2003.1000

Fioletov, V., McLinden, C. A., Kharol, S. K., Krotkov, N. A., Li, C., Joiner, J., Moran, M. D., Vet, R., Visschedijk, A. J., and Denier van der

Gon, H. A.: Multi-source SO2 emission retrievals and consistency of satellite and surface measurements with reported emissions, Atmos.

Chem. Phys., 17, 12 597–12 616, https://doi.org/10.5194/acp–17–12 597–2017, 2017.

Fioletov, V. E., McLinden, C. A., Krotkov, N., Li, C., Joiner, J., Theys, N., Carn, S., and Moran, M. D.: A global catalogue

of large SO2 sources and emissions derived from the Ozone Monitoring Instrument, Atmos. Chem. Phys., 16, 11 497–11 519,1005

https://doi.org/10.5194/acp–16–11 497–2016, 2016.

Fischer, E. V., Jacob, D. J., Yantosca, R. M., Sulprizio, M. P., Millet, D. B., Mao, J., Paulot, F., Singh, H. B., Roiger, A., Ries, L., Talbot,

R. W., Dzepina, K., and Pandey Deolal, S.: Atmospheric peroxyacetyl nitrate (PAN): a global budget and source attribution, Atmos. Chem.

Phys., 14, 2679–2698, 2014.

Flemming, J., Benedetti, A., Inness, A., Engelen, R. J., Jones, L., Huijnen, V., Remy, S., Parrington, M., Suttie, M., Bozzo, A., Peuch, V.-H.,1010

Akritidis, D., and Katragkou, E.: The CAMS interim reanalysis of carbon monoxide, ozone and aerosol for 2003–2015, 17, 1945–1983,

https://doi.org/10.5194/acp–17–1945–2017, 2017.

Fu, D., Kulawik, S. S., Miyazaki, K., Bowman, K. W., Worden, J. R., Eldering, A., Livesey, N. J., Teixeira, J., Irion, F. W., Herman, R. L.,

Osterman, G. B., Liu, X., Levelt, P. F., Thompson, A. M., and Luo, M.: Retrievals of tropospheric ozone profiles from the synergism of

AIRS and OMI: methodology and validation, Atmos. Meas. Tech., 11, 5587–5605, https://doi.org/10.5194/amt–11–5587–2018, 2018.1015

Fu, D., Millet, D. B., Wells, K. C., Payne, V. H., Yu, S., Guenther, A., and Eldering, A.: Direct retrieval of isoprene from satellite-based

infrared measurements, Nature communications, 10, 1–12, https://doi.org/10.1038/s41 467–019–11 835–0, 2019.

Fu, T.-M., Jacob, D. J., Wittrock, F., Burrows, J. P., Vrekoussis, M., and Henze, D. K.: Global budgets of atmospheric glyoxal and methyl-

glyoxal, and implications for formation of secondary organic aerosols, J. Geophys. Res., 113, D15 303, doi:10.1029/2007JD009 505,

2008.1020

Gaubert, B., Arellano Jr, A., Barré, J., Worden, H., Emmons, L., Tilmes, S., Buchholz, R. R., Vitt, F., Raeder, K., Collins, N., et al.: Toward

a chemical reanalysis in a coupled chemistry-climate model: An evaluation of MOPITT CO assimilation and its impact on tropospheric

composition, J. Geophys. Res. Atmos., 121, 7310– 7343, doi:10.1002/2016JD024 863, 2016.

Gaudel, A., Cooper, O., Ancellet, G., Barret, B., Boynard, A., Burrows, J., Clerbaux, C., Coheur, P.-F., Cuesta, J., Cuevas, E., Doniki, S.,

Dufour, G., Ebojie, F., Foret, G., Garcia, O., Granados Muños, M., Hannigan, J., Hase, F., Huang, G., Hassler, B., Hurtmans, D., Jaffe,1025

D., Jones, N., Kalabokas, P., Kerridge, B., Kulawik, S., Latter, B., Leblanc, T., Le Flochmoën, E., Lin, W., Liu, J., Liu, X., Mahieu, E.,

McClure-Begley, A., Neu, J., Osman, M., Palm, M., Petetin, H., Petropavlovskikh, I., Querel, R., Rahpoe, N., Rozanov, A., Schultz, M.,

Schwab, J., Siddans, R., Smale, D., Steinbacher, M., Tanimoto, H., Tarasick, D., Thouret, V., Thompson, A., Trickl, T., Weatherhead,

E., Wespes, C., Worden, H., Vigouroux, C., Xu, X., Zeng, G., and Ziemke, J.: Tropospheric Ozone Assessment Report: Present-day

distribution and trends of tropospheric ozone relevant to climate and global atmospheric chemistry model evaluation, Elem Sci Anth, 6,1030

p.39. DOI: http://doi.org/10.1525/elementa.291, 2018.

Graedel, T., Bates, T., Bouwman, A., Cunnold, D., Dignon, J., Fung, I., Jacob, D., Lamb, B., Logan, J., Marland, G., Middleton, P., Pacyna,

J., Placet, M., and Veldt, C.: A compilation of inventories of emissions to the atmosphere, Global Biogeochemical Cycles, 7, 1–26,

doi:10.1029/92GB02 793, 1993.

Griffin, D., Zhao, X., McLinden, C. A., Boersma, F., Bourassa, A., Dammers, E., Degenstein, D., Eskes, H., Fehr, L., Fioletov, V., Hayden,1035

K., Kharol, S. K., Li, S., Makar, P., Martin, R., Mihele, C., Mittermeier, R. L., Krotkov, N., Sneep, M., Lamsal, L. N., Linden, M. T., van

33



Geffen, J., Veefkind, J. P., and Wolde, M.: High-Resolution Mapping of Nitrogen Dioxide With TROPOMI: First Results and Validation

Over the Canadian Oil Sands, Geophysical Research Letters, 46, 1049–1060, https://doi.org/10.1029/2018GL081 095, 2019.

Hains, J. C., Boersma, K. F., Kroon, M., Dirksen, R. J., Cohen, R. C., Perring, A. E., Bucsela, E., Volten, H., Swart, D. P., Richter, A., Wittrock,

F., Schoenhardt, A., Wagner, T., Ibrahim, O. W., van Roozendael, M., Pinardi, G., Gleason, J. F., Veefkind, J. P., and Levelt, P.: Testing and1040

improving OMI DOMINO tropospheric NO2 using observations from the DANDELIONS and INTEX-B validation campaigns, Journal

of Geophysical Research: Atmospheres, 115, D05 301, doi:10.1029/2009JD012 399., 2010.

Heard, D. E. and Pilling, M. J.: Measurement of OH and HO2 in the troposphere, Chemical Reviews, 103, 5163–5198,

https://doi.org/10.1021/cr020 522s, 2003.

Herman, R. and Kulawik, S.: Tropospheric Emission Spectrometer TES Level 2 (L2) data user’s guide, Tech. rep., Jet Propulsion Laboratory,1045

2013.

Hudman, R., Moore, N., Mebust, A., Martin, R., Russell, A., Valin, L., and Cohen, R.: Steps towards a mechanistic model of global soil nitric

oxide emissions: implementation and space based-constraints, Atmos. Chem. Phys., 12, 7779–7795, 2012.

Huijnen, V., Miyazaki, K., Flemming, J., Inness, A., and Sekiya, T.: An inter-comparison of CAMS and TCR tropospheric ozone reanalysis

products, Geosci. Model Dev. Discuss., pp. https://doi.org/10.5194/gmd–2019–297, in review, 2019.1050

Hunt, B. R., Kostelich, E. J., and Szunyogh, I.: Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman

filter, Physica D: Nonlinear Phenomena, 230, 112–126, https://doi.org/10.1016/j.physd.2006.11.008, 2007.

Inness, A., Baier, F., Benedetti, A., Bouarar, I., Chabrillat, S., Clark, H., Clerbaux, C., Coheur, P., Engelen, R., Errera, Q., et al.: The MACC

reanalysis: an 8 yr data set of atmospheric composition, Atmos. Chem. Phys., 13, 4073–4109, 2013.

Inness, A., Ades, M., Agusti-Panareda, A., Barré, J., Benedictow, A., Blechschmidt, A.-M., Dominguez, J. J., Engelen, R., Eskes, H., Flem-1055

ming, J., Huijnen, V., Jones, L., Kipling, Z., Massart, S., Parrington, M., Peuch, V.-H., Razinger, M., Remy, S., Schulz, M., and Suttie,

M.: The CAMS reanalysis of atmospheric composition, Atmos. Chem. Phys., 19, 3515–3556, https://doi.org/10.5194/acp–19–3515–2019,

2019.

Jacob, D. J., Crawford, J., Maring, H., Clarke, A., Dibb, J. E., Emmons, L., Ferrare, R., Hostetler, C., Russell, P., Singh, H., et al.: The Arctic

Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) mission: design, execution, and first results,1060

Atmos. Chem. Phys., 10, 5191–5212, https://doi.org/10.5194/acp–10–5191–2010, 2010.

Janssens-Maenhout, G., Crippa, M., Guizzardi, D., Dentener, F., Muntean, M., Pouliot, G., Keating, T., Zhang, Q., Kurokawa, J., Wankmüller,

R., Denier van der Gon, H., Kuenen, J. J. P., Klimont, Z., Frost, G., Darras, S., Koffi, B., and Li, M.: HTAP_v2. 2: a mosaic of regional

and global emission grid maps for 2008 and 2010 to study hemispheric transport of air pollution, Atmos. Chem. Phys., 15, 11 411–11 432,

https://doi.org/10.5194/acp–15–11 411–2015, 2015.1065

Jiang, Z., Worden, J. R., Payne, V. H., Zhu, L., Fischer, E., Walker, T., and Jones, D. B.: Ozone export from East Asia: The role of PAN,

Journal of Geophysical Research: Atmospheres, 121, 6555– 6563, doi:10.1002/2016JD024 952, 2016.

Jiang, Z., Worden, J. R., Worden, H., Deeter, M., Jones, D., Arellano, A. F., and Henze, D. K.: A 15-year record of CO emissions constrained

by MOPITT CO observations, Atmos. Chem. Phys., 17, 4565–4583, https://doi.org/10.5194/acp–17–4565–2017, 2017.

Jiang, Z., McDonald, B. C., Worden, H., Worden, J. R., Miyazaki, K., Qu, Z., Henze, D. K., Jones, D. B., Arellano, A. F., Fischer, E. V.,1070

Zhu, L., and Boersma, K. F.: Unexpected slowdown of US pollutant emission reduction in the past decade, Proceedings of the National

Academy of Sciences, 115, 5099–5104; DOI: 10.1073/pnas.1801191 115, 2018.

34



Jones, D. B., Bowman, K. W., Palmer, P. I., Worden, J. R., Jacob, D. J., Hoffman, R. N., Bey, I., and Yantosca, R. M.: Potential of observations

from the Tropospheric Emission Spectrometer to constrain continental sources of carbon monoxide, Journal of Geophysical Research:

Atmospheres, 108, 4789, doi:10.1029/2003JD003 702, 2003.1075

Kanaya, Y., Miyazaki, K., Taketani, F., Miyakawa, T., Takashima, H., Komazaki, Y., Pan, X., Kato, S., Sudo, K., Sekiya, T., Inoue, J., Sato,

K., and Oshima, K.: Ozone and carbon monoxide observations over open oceans on R/V Mirai from 67◦ S to 75◦ N during 2012 to 2017:

testing global chemical reanalysis in terms of Arctic processes, low ozone levels at low latitudes, and pollution transport, Atmos. Chem.

Phys., 19, 7233–7254, https://doi.org/10.5194/acp–19–7233–2019, 2019.

Koukouli, M. E., Theys, N., Ding, J., Zyrichidou, I., Mijling, B., Balis, D., and van der A, R. J.: Updated SO2 emission estimates over China1080

using OMI/Aura observations, Atmos. Meas. Tech., 11, 1817–1832, https://doi.org/10.5194/amt–11–1817–2018, 2018.

Krotkov, N. A., McLinden, C. A., Li, C., Lamsal, L. N., Celarier, E. A., Marchenko, S. V., Swartz, W. H., Bucsela, E. J., Joiner, J., Duncan,

B. N., Boersma, K. F., Veefkind, J. P., Levelt, P. F., Fioletov, V. E., Dickerson, R. R., He, H., Lu, Z., and Streets, D. G.: Aura OMI observa-

tions of regional SO2 and NO2 pollution changes from 2005 to 2015, Atmos. Chem. Phys., 16, 4605–4629, https://doi.org/10.5194/acp–

16–4605–2016, 2016.1085

Kuai, L., Bowman, K. W., Worden, H., Miyazaki, K., Kulawik, S., Conley, A., Lamarque, J.-F., Paulot, F., Paynter, D., Oman, L. D., Strode,

S., Rozanov, E., Stenke, A., Revell, L., Plummer, D. A., Deushi, M., Jöckel, P., and Kunze, M.: Attribution of Chemistry-Climate Model

Initiative (CCMI) ozone radiative flux bias from satellite, Atmos. Chem. Phys., 20, 281–301, https://doi.org/10.5194/acp–20–281–2020,

2020.

Lahoz, W. A. and Schneider, P.: Data assimilation: making sense of Earth Observation, Frontiers in Environmental Science, 2, 16. doi:1090

10.3389/fenvs.2014.00 016, 2014.

Li, C., Joiner, J., Krotkov, N. A., and Bhartia, P. K.: A fast and sensitive new satellite SO2 retrieval algorithm based on principal component

analysis: Application to the ozone monitoring instrument, Geophysical Research Letters, 40, 6314– 6318, doi:10.1002/2013GL058 134,

2013.

Li, C., McLinden, C., Fioletov, V., Krotkov, N., Carn, S., Joiner, J., Streets, D., He, H., Ren, X., Li, Z., et al.: India is overtaking China as1095

the world’s largest emitter of anthropogenic sulfur dioxide, Scientific reports, 7, 14 304, https://doi.org/10.1038/s41 598–017–14 639–8,

2017.

Lin, J.-T., Liu, Z., Zhang, Q., Liu, H., Mao, J., and Zhuang, G.: Modeling uncertainties for tropospheric nitrogen dioxide columns affecting

satellite-based inverse modeling of nitrogen oxides emissions, Atmos. Chem. Phys., 12, 12 255–12 275, https://doi.org/10.5194/acp–12–

12 255–2012, 2012.1100

Ling, Z., Huang, T., Zhao, Y., Li, J., Zhang, X., Wang, J., Lian, L., Mao, X., Gao, H., and Ma, J.: OMI-measured increasing SO2 emissions

due to energy industry expansion and relocation in northwestern China, Atmos. Chem. Phys., 17, 9115–9131, https://doi.org/10.5194/acp–

17–9115–2017, 2017.

Liu, F., Choi, S., Li, C., Fioletov, V. E., McLinden, C. A., Joiner, J., Krotkov, N. A., Bian, H., Janssens-Maenhout, G., Darmenov, A. S., and

Da Silva, A. M.: A new global anthropogenic SO2 emission inventory for the last decade: a mosaic of satellite-derived and bottom-up1105

emissions, Atmos. Chem. Phys., 18, 16 571–16 586, https://doi.org/10.5194/acp–18–16 571–2018, 2018.

Livesey, N., Read, W., Froidevaux, L., Lambert, A., Manney, G., Pumphrey, H., Santee, M., Schwartz, M., Wang, S., Cofield, R., Cuddy,

D. T., Fuller, R. A., Jarnot, R. F., Jiang, J. H., Knosp, B. W., Stek, P. C., Wagner, P. A., and Wu., D. L.: Earth Observing System (EOS)

Aura Microwave Limb Sounder (MLS) version 3.3 level 2 data quality and description document, JPL D-33509, 2011.

35



Livesey, N., Read, W., Wagner, P., Froidevaux, L., Lambert, A., Manney, G., Millán Valle, L., Pumphrey, H., Santee, M., Schwartz, M.,1110

Wang, S., Fuller, R. A., Jarnot, R. F., Knosp, B. W., Martinez, E., and Lay, R. R.: Version 4.2 x Level 2 data quality and description docu-

ment, Jet Propul, Tech. rep., Lab., Tech. Rep. JPL D-33509 Rev. D, Pasadena, CA, USA (Available from https://mls.jpl.nasa.gov/data/v4-

2_data_quality_document.pdf), 2018.

Logan, J. A., Prather, M. J., Wofsy, S. C., and McElroy, M. B.: Tropospheric chemistry: A global perspective, Journal of Geophysical

Research: Oceans, 86, 7210–7254, 1981.1115

Lorente, A., Boersma, K., Eskes, H., Veefkind, J., Van Geffen, J., de Zeeuw, M., van der Gon, H. D., Beirle, S., and Krol, M.:

Quantification of nitrogen oxides emissions from build-up of pollution over Paris with TROPOMI, Scientific Reports, 9, 20 033,

https://doi.org/10.1038/s41 598–019–56 428–5, 2019.

Mauzerall, D. L., Logan, J. A., Jacob, D. J., Anderson, B. E., Blake, D. R., Bradshaw, J. D., Heikes, B., Sachse, G. W., Singh, H., and

Talbot, B.: Photochemistry in biomass burning plumes and implications for tropospheric ozone over the tropical South Atlantic, Journal1120

of Geophysical Research: Atmospheres, 103, 8401– 8423, doi:10.1029/97JD02 612., 1998.

Mi, Z., Meng, J., Guan, D., Shan, Y., Liu, Z., Wang, Y., Feng, K., and Wei, Y.-M.: Pattern changes in determinants of Chinese emissions,

Environmental Research Letters, 12, 074 003, https://doi.org/10.1088/1748–9326/aa69cf, 2017.

Miyazaki, K. and Bowman, K.: Evaluation of ACCMIP ozone simulations and ozonesonde sampling biases using a satellite-based multi-

constituent chemical reanalysis., Atmos. Chem. Phys., 17, 8285–8312, https://doi.org/10.5194/acp–17–8285–2017, 2017.1125

Miyazaki, K. and Eskes, H.: Constraints on surface NOx emissions by assimilating satellite observations of multiple species, Geophysical

Research Letters, 40, 4745– 4750, doi:10.1002/grl.50 894, 2013.

Miyazaki, K., Eskes, H., and Sudo, K.: Global NOx emission estimates derived from an assimilation of OMI tropospheric NO2 columns,

Atmos. Chem. Phys., 12, 2263–2288, https://doi.org/10.5194/acp–12–2263–2012, 2012a.

Miyazaki, K., Eskes, H., Sudo, K., Takigawa, M., Van Weele, M., and Boersma, K.: Simultaneous assimilation of satellite NO2, O3,1130

CO, and HNO3 data for the analysis of tropospheric chemical composition and emissions, Atmos. Chem. Phys, 12, 9545–9579,

https://doi.org/10.5194/acp–12–9545–2012, 2012b.

Miyazaki, K., Eskes, H., Sudo, K., and Zhang, C.: Global lightning NOx production estimated by an assimilation of multiple satellite data

sets, Atmos. Chem. Phys., 14, 3277–3305, https://doi.org/10.5194/acp–14–3277–2014, 2014.

Miyazaki, K., Eskes, H., and Sudo, K.: A tropospheric chemistry reanalysis for the years 2005–2012 based on an assimilation of OMI, MLS,1135

TES, and MOPITT satellite data, Atmos. Chem. Phys., 15, 8315–8348, https://doi.org/10.5194/acp–15–8315–2015, 2015.

Miyazaki, K., Eskes, H., Sudo, K., Boersma, K. F., Bowman, K., and Kanaya, Y.: Decadal changes in global surface NOx emissions from

multi-constituent satellite data assimilation, Atmos. Chem. Phys, 17, 807–837, https://doi.org/10.5194/acp–17–807–2017, 2017.

Miyazaki, K., Bowman, K., Sekiya, T., Eskes, H., Boersma, F., Worden, H., Livesey, N., Payne, V. H., Sudo, K., Kanaya, Y., Takigawa, M.,

and Ogochi, K.: Chemical Reanalysis Products, https://doi.org/10.25966/9qgv-fe81, 2019a.1140

Miyazaki, K., Sekiya, T., Fu, D., Bowman, K., Kulawik, S., Sudo, K., Walker, T., Kanaya, Y., Takigawa, M., Ogochi, K., Eskes, H., Boersma,

K. F., Thompson, A. M., Gaubert, B., Barre, J., and Emmons, L. K.: Balance of Emission and Dynamical Controls on Ozone During

the Korea-United States Air Quality Campaign From Multiconstituent Satellite Data Assimilation, Journal of Geophysical Research:

Atmospheres, 124, 387–413. https://doi.org/10.1029/2018JD028 912, 2019b.

Miyazaki, K., Bowman, K. W., Yumimoto, K., Walker, T., and Sudo, K.: Evaluation of a multi-model, multi-constituent assimilation frame-1145

work for tropospheric chemical reanalysis, Atmos. Chem. Phys, 20, 931–967, https://doi.org/10.5194/acp–20–931–2020, 2020.

36

https://doi.org/10.25966/9qgv-fe81


Murray, L. T., Logan, J. A., and Jacob, D. J.: Interannual variability in tropical tropospheric ozone and OH: The role of lightning, Journal of

Geophysical Research: Atmospheres, 118, 11,468– 11,480, doi:10.1002/jgrd.50 857, 2013.

Myhre, G., Samset, B. H., Schulz, M., Balkanski, Y., Bauer, S., Berntsen, T. K., Bian, H., Bellouin, N., Chin, M., Diehl, T., Easter, R. C.,

Feichter, J., Ghan, S. J., Hauglustaine, D., Iversen, T., Kinne, S., Kirkevåg, A., Lamarque, J.-F., Lin, G., Liu, X., Lund, M. T., Luo, G.,1150

Ma, X., van Noije, T., Penner, J. E., Rasch, P. J., Ruiz, A., Seland, Ø., Skeie, R. B., Stier, P., Takemura, T., Tsigaridis, K., Wang, P., Wang,

Z., Xu, L., Yu, H., Yu, F., Yoon, J.-H., Zhang, K., Zhang, H., and Zhou, C.: Radiative forcing of the direct aerosol effect from AeroCom

Phase II simulations, Atmos. Chem. Phys., 13, 1853–1877, https://doi.org/10.5194/acp–13–1853–2013, 2013.

Naik, V., Voulgarakis, A., Fiore, A. M., Horowitz, L. W., Lamarque, J.-F., Lin, M., Prather, M. J., Young, P., Bergmann, D., Cameron-Smith,

P., Cionni, I., Collins, W. J., Dalsøren, S. B., Doherty, R., Eyring, V., Faluvegi, G., Folberth, G. A., Josse, B., Lee, Y. H., MacKen-1155

zie, I. A., Nagashima, T., van Noije, T. P. C., Plummer, D. A., Righi, M., Rumbold, S. T., Skeie, R., Shindell, D. T., Stevenson, D. S.,

Strode, S., Sudo, K., Szopa, S., and Zeng, G.: Preindustrial to present-day changes in tropospheric hydroxyl radical and methane life-

time from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP), Atmos. Chem. Phys., 13, 5277–5298,

https://doi.org/10.5194/acp–13–5277–2013, 2013, 2013.

Oikawa, P., Ge, C., Wang, J., Eberwein, J., Liang, L., Allsman, L., Grantz, D., and Jenerette, G.: Unusually high soil nitrogen oxide emissions1160

influence air quality in a high-temperature agricultural region, Nature communications, 6, 8753, https://doi.org/10.1038/ncomms9753,

2015.

Patra, P., Krol, M., Montzka, S., Arnold, T., Atlas, E. L., Lintner, B., Stephens, B., Xiang, B., Elkins, J., Fraser, P., et al.: Observational

evidence for interhemispheric hydroxyl-radical parity, Nature, 513, 219, 2014.

Payne, V., Alvarado, M., Cady-Pereira, K., Worden, J., Kulawik, S., and Fischer, E.: Satellite observations of peroxyacetyl nitrate from the1165

Aura Tropospheric Emission Spectrometer, Atmos. Meas. Tech., 7, 3737–3749, https://doi.org/10.5194/amt–7–3737–2014, 2014.

Payne, V., Kulawik, S. S., Fischer, E. V., Bowman, K. W., Worden, H. M., Francis, G. L., Cady-Pereira, K., Flocke, F. M., Lindaas, J., Pollack,

I. B., and Campos, T. L.: Observations of atmospheric composition in fire plumes over the Western United States in summertime from the

Cross-Track Infrared Sounder, in: AGU Fall Meeting 2019, AGU, 2019.

Payne, V. H., Fischer, E. V., Worden, J. R., Jiang, Z., Zhu, L., Kurosu, T. P., and Kulawik, S. S.: Spatial variability in tropospheric peroxyacetyl1170

nitrate in the tropics from infrared satellite observations in 2005 and 2006, Atmos. Chem. Phys., 17, 6341–6351, 2017.

Price, C. and Rind, D.: A simple lightning parameterization for calculating global lightning distributions, Journal of Geophysical Research:

Atmospheres, 97, 9919–9933, doi:10.1029/92JD00 719, 1992.

Qu, Z., Henze, D. K., Capps, S. L., Wang, Y., Xu, X., Wang, J., and Keller, M.: Monthly top-down NOx emissions for China

(2005–2012): A hybrid inversion method and trend analysis, Journal of Geophysical Research: Atmospheres, 122, 4600–4625,1175

doi:10.1002/2016JD025 852., 2017.

Randerson, J., van der Werf, G., Giglio, L., Collatz, G., and Kasibhatla, P.: Global Fire Emissions Database, Version 4.1 (GFEDv4), Tech.

Rep. https://doi.org/10.3334/ORNLDAAC/1293, ORNL DAAC, Oak Ridge, Tennessee, USA, 2015.

Rigby, M., Montzka, S. A., Prinn, R. G., White, J. W., Young, D., O’Doherty, S., Lunt, M. F., Ganesan, A. L., Manning, A. J., Simmonds,

P. G., Salameh, P. K., JensMühle, C. M. H., Weiss, R. F., Fraser, P. J., Steele, L. P., Krummel, P. B., ArchieMcCulloch, and Park, S.:1180

Role of atmospheric oxidation in recent methane growth, Proceedings of the National Academy of Sciences, 114, 5373–5377; DOI:

10.1073/pnas.1616426 114, 2017.

Rogelj, J., Forster, P. M., Kriegler, E., Smith, C. J., and Séférian, R.: Estimating and tracking the remaining carbon budget for stringent

climate targets, Nature, 571, 335–342, 2019.

37



Rowlinson, M. J., Rap, A., Arnold, S. R., Pope, R. J., Chipperfield, M. P., McNorton, J., Forster, P., Gordon, H., Pringle, K. J., Feng, W.,1185

Kerridge, B. J., Latter, B. L., and Siddans, R.: Impact of El Niño Southern Oscillation on the interannual variability of methane and

tropospheric ozone, Atmos. Chem. Phys., 19, 8669–8686, https://doi.org/10.5194/acp–19–8669–2019, 2019.

Ryerson, T. B., Buhr, M. P., Frost, G. J., Goldan, P. D., Holloway, J. S., Hübler, G., Jobson, B. T., Kuster, W. C., McKeen, S. A., Parrish,

D. D., Roberts, J. M., Sueper, D. T., Trainer, M., Williams, J., and Fehsenfeld, F. C.: Emissions lifetimes and ozone formation in power

plant plumes, Journal of Geophysical Research: Atmospheres, 103, 22 569– 22 583, doi:10.1029/98JD01 620, 1998.1190

Schultz, M., Schröder, S., Lyapina, O., Cooper, O., Galbally, I., Petropavlovskikh, I., von Schneidemesser, E., Tanimoto, H., Elshorbany, Y.,

Naja, M., Seguel, R., Dauert, U., Eckhardt, P., Feigenspahn, S., Fiebig, M., Hjellbrekke, A.-G., Hong, Y.-D., Christian Kjeld, P., Koide,

H., Lear, G., Tarasick, D., Ueno, M., Wallasch, M., Baumgardner, D., Chuang, M.-T., Gillett, R., Lee, M., Molloy, S., Moolla, R., Wang,

T., Sharps, K., Adame, J., Ancellet, G., Apadula, F., Artaxo, P., Barlasina, M., Bogucka, M., Bonasoni, P., Chang, L., Colomb, A., Cuevas,

E., Cupeiro, M., Degorska, A., Ding, A., Fröhlich, M., Frolova, M., Gadhavi, H., Gheusi, F., Gilge, S., Gonzalez, M., Gros, V., Hamad, S.,1195

Helmig, D., Henriques, D., Hermansen, O., Holla, R., Huber, J., Im, U., Jaffe, D., Komala, N., Kubistin, D., Lam, K.-S., Laurila, T., Lee,

H., Levy, I., Mazzoleni, C., Mazzoleni, L., McClure-Begley, A., Mohamad, M., Murovic, M., Navarro-Comas, M., Nicodim, F., Parrish,

D., Read, K., Reid, N., Ries, L., Saxena, P., Schwab, J., Scorgie, Y., Senik, I., Simmonds, P., Sinha, V., Skorokhod, A., Spain, G., Spangl,

W., Spoor, R., Springston, S., Steer, K., Steinbacher, M., Suharguniyawan, E., Torre, P., Trickl, T., Weili, L., Weller, R., Xu, X., Xue, L.,

and Zhiqiang, M.: Tropospheric Ozone Assessment Report: Database and metrics data of global surface ozone observations, Elementa:1200

Science of the Anthropocene, 5, p.58. DOI: http://doi.org/10.1525/elementa.244, 2017.

Sekiya, T., Miyazaki, K., Ogochi, K., Sudo, K., and Takigawa, M.: Global high-resolution simulations of tropospheric nitrogen dioxide using

CHASER V4. 0., Geosci. Model Dev., 11, 959–988, https://doi.org/10.5194/gmd–11–959–2018, 2018.

Sekiya, T., Miyazaki, K., Ogochi, K., Sudo, K., Takigawa, M., Eskes, H., and Boersma, F.: Global 0.56◦-resolution data assimilation of

satellite measurements for tropospheric chemistry analysis on a megacity scale, Journal of Advances in Modeling Earth Systems, in1205

review, 2020.

Shephard, M. and Cady-Pereira, K.: Cross-track Infrared Sounder (CrIS) satellite observations of tropospheric ammonia, Atmos. Meas.

Tech., 8, 1323–1336, https://doi.org/10.5194/amt–8–1323–2015, 2015.

Singh, H., Brune, W., Crawford, J., Flocke, F., and Jacob, D. J.: Chemistry and transport of pollution over the Gulf of Mexico and the Pacific:

spring 2006 INTEX-B campaign overview and first results, Atmos. Chem. Phys., 9, 2301–2318, 2009.1210

Stavrakou, T., Müller, J.-F., Boersma, K., Van Der A, R., Kurokawa, J., Ohara, T., and Zhang, Q.: Key chemical NOx sink uncertainties and

how they influence top-down emissions of nitrogen oxides, Atmos. Chem. Phys., 13, 9057–9082, https://doi.org/10.5194/acp–13–9057–

2013, 2013.

Stein, O., Schultz, M., Bouarar, I., Clark, H., Huijnen, V., Gaudel, A., George, M., and Clerbaux, C.: On the wintertime low bias of Northern

Hemisphere carbon monoxide found in global model simulations, Atmos. Chem. Phys., 14, 9295–9316, https://doi.org/10.5194/acp–14–1215

9295–2014, 2014.

Steinkamp, J. and Lawrence, M. G.: Improvement and evaluation of simulated global biogenic soil NO emissions in an AC-GCM, Atmos.

Chem. Phys., 11, 6063–6082, https://doi.org/10.5194/acp–11–6063–2011, 2011.

Stevenson, D. S., Young, P. J., Naik, V., Lamarque, J.-F., Shindell, D. T., Voulgarakis, A., Skeie, R. B., Dalsoren, S. B., Myhre, G., Berntsen,

T. K., Folberth, G. A., Rumbold, S. T., Collins, W. J., MacKenzie, I. A., Doherty, R. M., Zeng, G., van Noije, T. P. C., Strunk, A.,1220

Bergmann, D., Cameron-Smith, P., Plummer, D. A., Strode, S. A., Horowitz, L., Lee, Y. H., Szopa, S., Sudo, K., Nagashima, T., Josse, B.,

Cionni, I., Righi, M., Eyring, V., Conley, A., Bowman, K. W., Wild, O., and Archibald, A.: Tropospheric ozone changes, radiative forcing

38



and attribution to emissions in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP), Atmos. Chem. Phys.,

13, 3063–3085, https://doi.org/10.5194/acp–13–3063–2013, 2013.

Stone, D., Whalley, L. K., and Heard, D. E.: Tropospheric OH and HO 2 radicals: field measurements and model comparisons, Chemical1225

Society Reviews, 41, 6348–6404, 2012.

Sudo, K., Takahashi, M., Kurokawa, J.-i., and Akimoto, H.: CHASER: A global chemical model of the troposphere 1. Model description,

Journal of Geophysical Research: Atmospheres, 107, 4339, doi:10.1029/2001JD001 113, 2002.

TES Science Team: TES/Aura L2 Peroxyacyl Nitrate Nadir - Version 7, published by NASA Langley Atmospheric Science Data Center

DAAC, http://doi.org/10.5067/AURA/TES/TL2PANN_L2.007, 2016.1230

Thompson, A. M.: The oxidizing capacity of the Earth’s atmosphere: Probable past and future changes, Science, 256, 1157–1165, 1992.

Thompson, A. M., Stauffer, R. M., Boyle, T. P., Kollonige, D. E., Miyazaki, K., Tzortziou, M., Herman, J. R., Abuhassan, N.,

Jordan, C. E., and Lamb, B. T.: Comparison of Near-Surface NO2 Pollution With Pandora Total Column NO2 During the

Korea-United States Ocean Color (KORUS OC) Campaign, Journal of Geophysical Research: Atmospheres, 124, 13 560–13 575.

https://doi.org/10.1029/2019JD030 765, 2019.1235

Valin, L., Russell, A., Hudman, R., and Cohen, R.: Effects of model resolution on the interpretation of satellite NO2 observations, Atmos.

Chem. Phys., 11, 11 647–11 655, https://doi.org/10.5194/acp–11–11 647–2011, 2011.

Verstraeten, W., Boersma, K., Zörner, J., Allaart, M., Bowman, K., and Worden, J.: Validation of six years of TES tropospheric ozone

retrievals with ozonesonde measurements: implications for spatial patterns and temporal stability in the bias, Atmos. Meas. Tech., 6,

1413, 2013.1240

Vinken, G., Boersma, K., Maasakkers, J., Adon, M., and Martin, R.: Worldwide biogenic soil NO x emissions inferred from OMI NO2

observations, Atmos. Chem. Phys., 14, 10 363–10 381, https://doi.org/10.5194/acp–14–10 363–2014, 2014.

Visser, A. J., Boersma, K. F., Ganzeveld, L. N., and Krol, M. C.: European NOx emissions in WRF-Chem derived from OMI: impacts on

summertime surface ozone, Atmos. Chem. Phys., 19, 11 821–11 841, https://doi.org/10.5194/acp–19–11 821–2019, 2019.

Voulgarakis, A., Naik, V., Lamarque, J.-F., Shindell, D. T., Young, P., Prather, M. J., Wild, O., Field, R., Bergmann, D., Cameron-Smith, P.,1245

et al.: Analysis of present day and future OH and methane lifetime in the ACCMIP simulations, Atmos. Chem. Phys., 13, 2563–2587,

https://doi.org/10.5194/acp–13–2563–2013, 2013.

Wang, Y. and Jacob, D. J.: Anthropogenic forcing on tropospheric ozone and OH since preindustrial times, Journal of Geophysical Research:

Atmospheres, 103, 31 123– 31 135, doi:10.1029/1998JD100 004, 1998.

Watanabe, S., Hajima, T., Sudo, K., Nagashima, T., Takemura, T., Okajima, H., Nozawa, T., Kawase, H., Abe, M., Yokohata, T., et al.:1250

MIROC-ESM 2010: Model description and basic results of CMIP5-20c3m experiments, Geoscientific Model Development, 4, 845–872,

https://doi.org/10.5194/gmd–4–845–2011, 2011.

Wofsy, S., Apel, E., Blake, D., Brock, C., Brune, W., Bui, T., Daube, B., Dibb, J., Diskin, G., Elkiins, J., et al.: ATom: Merged Atmospheric

Chemistry, Trace Gases, and Aerosols, ORNL DAAC, Oak Ridge, Tennessee, USA, 2018.

Wofsy, S. C., Daube, B. C., Jimenez, R., Kort, E., Pittman, J. V., Park, S., Commane, R., Xiang, B., Santoni, G., Jacob, D., Fisher, J., Pickett-1255

Heaps, C., Wang, H., Wecht, K., Wang, Q.-Q., Stephens, B. B., Shertz, S., Watt, A., Romashkin, P., Campos, T., Haggerty, J., Cooper,

W. A., Rogers, D., Beaton, S., Hendershot, R., Elkins, J. W., Fahey, D. W., Gao, R. S., Moore, F., Montzka, S. A., Schwarz, J. P., Perring,

A. E., Hurst, D., Miller, B. R., Sweeney, C., Oltmans, S., Nance, D., Hintsa, E., Dutton, G., Watts, L. A., Spackman, J. R., Rosenlof,

K. H., Ray, E. A., Hall, B., Zondlo, M. A., Diao, M., Keeling, R., Bent, J., Atlas, E. L., Lueb, R., and Mahoney, M. J.: Hippo merged

10-second meteorology and atmospheric chemistry and aerosol data (r_20121129), Carbon Dioxide Information Analysis Center, Oak1260

39



Ridge National Laboratory and Oak Ridge and Tennessee.[Avaialble at http://dx. doi. org/10.3334/CDIAC/hippo_010,(Release 20121,

129)], 2012.

Wolfe, G. M., Nicely, J. M., Clair, J. M. S., Hanisco, T. F., Liao, J., Oman, L. D., Brune, W. B., Miller, D., Thames, A., Abad, G. G.,

Ryerson, T. B., Thompson, C. R., Peischl, J., McKain, K., Colm Sweeney, P. O. W., Kim, M., Crounse, J. D., Hall, S. R., Ullmann, K.,

Diskin, G., Bui, P., Chang, C., and Dean-Day, J.: Mapping hydroxyl variability throughout the global remote troposphere via synthe-1265

sis of airborne and satellite formaldehyde observations, Proceedings of the National Academy of Sciences, 116, 11 171–11 180; DOI:

10.1073/pnas.1821661 116, 2019.

Young, P. J., Archibald, A. T., Bowman, K. W., Lamarque, J.-F., Naik, V., Stevenson, D. S., Tilmes, S., Voulgarakis, A., Wild, O., Bergmann,

D., Cameron-Smith, P., Cionni, I., Collins, W. J., Dalsøren, S. B., Doherty, R. M., Eyring, V., Faluvegi, G., Horowitz, L. W., Josse, B.,

Lee, Y. H., MacKenzie, I. A., Nagashima, T., Plummer, D. A., Righi, M., Rumbold, S. T., Skeie, R. B., Shindell, D. T., Strode, S. A., Sudo,1270

K., Szopa, S., and Zeng, G.: Pre-industrial to end 21st century projections of tropospheric ozone from the Atmospheric Chemistry and

Climate Model Intercomparison Project (ACCMIP), Atmos. Chem. Phys., 13, 2063–2090, https://doi.org/10.5194/acp–13–2063–2013,

2013.

Yumimoto, K., Tanaka, T. Y., Oshima, N., and Maki, T.: JRAero: the Japanese reanalysis for aerosol v1. 0, Geoscientific Model Development,

10, 3225–3253, https://doi.org/10.5194/gmd–10–3225–2017, 2017.1275

Zhang, Y., Cooper, O. R., Gaudel, A., Thompson, A. M., Nédélec, P., Ogino, S.-Y., and West, J. J.: Tropospheric ozone change from 1980 to

2010 dominated by equatorward redistribution of emissions, Nature Geoscience, 9, 875–879, https://doi.org/10.1038/ngeo2827, 2016.

Zheng, B., Tong, D., Li, M., Liu, F., Hong, C., Geng, G., Li, H., Li, X., Peng, L., Qi, J., Yan, L., Zhang, Y., Zhao, H., Zheng, Y., He, K.,

and Zhang, Q.: Trends in China’s anthropogenic emissions since 2010 as the consequence of clean air actions, Atmos. Chem. Phys., 18,

14 095–14 111, https://doi.org/10.5194/acp–18–14 095–2018, 2018.1280

40



Figure 1. Comparison of the vertical ozone profiles between ozonesondes (black), control run (blue), and reanalysis (red) averaged for the

period 2005–2018. The upper row shows the mean profile; center and lower rows show the mean difference and the RMSE between the

control run and the observations (blue) and between the reanalysis and the observations (red). From left to right, results are shown for the

SH high latitudes (55–90◦ S), SH mid latitudes (15–55◦ S), tropics (15◦ S–15◦ N), NH mid latitudes (15–55◦ N), and NH high latitudes

(55–90◦ N).
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Figure 2. Time series of the monthly mean ozone concentration obtained from ozonesondes (black), control run (blue), and reanalysis (red)

averaged between 850–500hPa (lower row), 500–200hPa (center row), and 200–90hPa (upper row). From left to right the results are

shown for the SH high latitudes (55–90◦ S), SH mid-latitudes (15–55◦ S), tropics (15◦ S–15◦ N), NH mid-latitudes (15–55◦ N), and NH high

latitudes (55–90◦ N).
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Figure 3. Time series of the monthly mean ozone concentration obtained from the AIRS/OMI retrievals (black), control run (blue), and

reanalysis (red) averaged between 700–500hPa over the United States (127–70◦ W, 28–50◦ N), India (68–89◦ N, 8–33◦ N), China (110–

123◦ N, 30–40◦ N), and Central Africa (10–40◦ E, 20◦ S–Eq.).
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Figure 4. Mean vertical profiles of O3 (ppb), CO (ppb), NO2 (ppt), PAN (ppt), OH (ppt), HO2 (ppt), HNO3 (ppt), CH2O (ppt),

and SO2 (ppt) obtained from aircraft measurements (black), control run (blue), and reanalysis (red), for the INTEX-B profile (1st row),

ARCTAS-A profile (2nd row), ARCTAS-B profile (3rd row), DISCOVER-AQ profile (4th row), DC3-DC8 profile (5th row), DC3-GV

profile (6th row), SEAC4RC profile (7th row), and KORUS-AQ profile (8th row). Error bars represent the standard deviation of all data

within one bin (with an interval of 30hPa).
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Figure 5. Global distributions of the tropospheric NO2 columns (in 1015 molec cm−2). The results are shown for OMI (left columns) for

2005-2018, SCIAMACHY (middle columns) for 2005-2011, and GOME-2 (right columns) for 2007-2018. Upper row shows the tropospheric

NO2 columns obtained from the satellite retrievals (OBS), centre row shows the difference between the model simulation and the satellite

retrievals (Model-OBS); and lower row shows the difference between the data assimilation and the satellite retrievals (Assim-OBS).
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Figure 6. Time series of regional monthly mean tropospheric NO2 columns (in 1015 molec cm−2) averaged over China (110–123◦E, 30–

40◦N), Europe (10◦W–30◦E, 35–60◦N), the United States (70–125◦W, 28–50◦N), India (68–89◦E, 8–33◦N), South America (50–70◦W,

20◦S–Equator), North Africa (20◦W–40◦E, Equator–20◦N), Central Africa (10–40◦E, Equator–20◦S), Southern Africa (25–34◦E, 22–31◦S),

Southeast Asia (96–105◦E, 10–20◦N), and Australia (113–155◦E, 11–44◦S) obtained from the satellite retrievals (black), control run (blue),

and the data assimilation (red). Results are shown for the OMI retrievals (left columns), SCIAMACHY retrievals (centre columns), and

GOME-2 retrievals (right columns). 46



Figure 7. Time series of monthly mean surface CO concentrations obtained from the WDCGG ground measurements (black), control run

(blue), and reanalysis (red).
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Figure 8. Global distributions of the PAN concentrations (in ppt) averaged between 800 and 400 hPa during 2005-2009. The results are

shown for the TES retrievals (left columns), model simulation (2nd columns), reanalysis (3rd columns), and the reanalysis minus model

(right columns) for DJF (top row), MAM (2nd row), JJA (3rd row), and SON (bottom row).
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Figure 9. Latitude-pressure cross section of the mean OH concentration (right panels) averaged during 2005-2018 and time-latitude cross-

section of the monthly mean OH concentration averaged between the surface and 300 hPa (left panels). The mean OH concentrations from

the control run (upper row), reanalysis (center row) and the difference between the reanalysis and the model simulations (lower row) are

shown. Units are 104 molecules cm−3.
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Figure 10. Vertical profiles of (a) OH RMSEs compared with the ATom-1 and ATom-2 aircraft observations (in pptv) and inter-hemispheric

gradients of OH for (b) ATom-1 and (c) ATom-2 from the observations (black), control run (blue), and reanalysis (red).
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Figure 11. Comparisons of monthly mean surface aerosol concentrations between the control run (blue) and reanalysis (red) with the EMEP

(upper row), EANET (center row), and EMEP (lower row) observations for ammonium (left columns), nitrate (center columns), and sulfate

(right columns) aerosols for 2005-2017.
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Figure 12. Global distributions of surface NOx emissions (in 10−13kgNm−2s−1) (left columns), surface CO emissions (in

10−10kgCOm−2s−1) (2nd columns), surface SO2 emissions (in 10−13kgSm−2s−1) (3rd columns), and lighting NOx sources (in

10−14kgNm−2s−1) (right columns) averaged over 2005–2018. The a priori emissions (upper rows), a posteriori emissions (middle rows),

and analysis increment (lower rows), i.e., the difference between the a posteriori and the a priori emissions, are shown for each panel.
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Figure 13. Time series of monthly total global and regional surface NOx emissions (in TgNyr−1), surface CO emissions (in TgCOyr−1),

surface SO2 emissions (in Tg Syr−1), LNOx emissions (in TgNyr−1), and obtained from the reanalysis (solid lines) and the emission

inventories or the control run (dashed lines) over the globe (90◦ S–90◦ N), NH (20–90◦ N), tropics (TR, 20◦ S–20◦ N), and SH (90–20◦ S).

The mean emissions values obtained from the reanalysis run and the emission inventories (in bracket) averaged over the years 2005-2018 are

shown on the right-hand side.
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Figure 14. Global distribution of linear trend of the a posteriori surface NOx emissions (in 10−13kgNm−2s−1 per year), surface CO

emissions (in 10−11kgCOm−2s−1 per year), and surface SO2 emissions (in 10−14kgSm−2s−1 per year), and standard deviation of the

a posteriori lightning NOx emissions (in 10−14kgNm−2s−1 per year) for the period 2005–2018. The red (blue) colour indicates positive

(negative) trends.
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Figure 15. Time series of the difference (in %) of the annual mean a posteriori surface NOx emissions relative to the 2005 emissions in the

period 2005–2018 for India (orange), China (blue), Europe (light blue), the Middle East (red), and the United States (green).
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Figure 16. Global distribution of linear trend of ozone concentrations (in ppb per year) at the surface (upper row) and 500 hPa (center

row) obtained from the reanalysis (left columns) and noTES reanalysis (right columns) for the years 2005-2018. The lower row shows

latitude-pressure cross section of the linear trend (in % per year).
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Figure 17. Same as in Fig. 16, but for tropospheric OH (in 104 molecules cm−3 per year, upper row) and the latitude-pressure cross-section

of OH trends (in % per year, lower row) for the years 2005-2018.
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Table 1. Comparisons of TCR-1 and TCR-2.

TCR-1 (Miyazaki et al., 2015) TCR-2 (This study)

Forecast model AGCM-CHASER MIROC-CHASER

47 species, 113 reactions 92 species, 262 reactions

Meteorological data nudged to NCEP/DOE-II nudged to ERA-Interim

Emissions: Surface NOx and CO, lightning NOx, TCR-1 + SO2 emissions

State vector Chemical concentrations: 35 species

(NOx, HNO3, HNO4, PAN, MPAN, N2O5, and ozone in the control vector)

Assimilated data OMI NO2 (DOMINO2), OMI NO2 (QA4ECV v1.1),

SCIAMACHY, GOME-2 NO2 (TM4NO2A v2.3), SCIAMACHY, GOME-2 NO2 (QA4ECV v1.1),

TES ozone (v5), MOPITT CO (v6 TIR), TES O3 (v6), MOPITT CO (v7 TIR/NIR),

MLS ozone, HNO3 (v3.3) MLS ozone, HNO3 (v4.2), OMI SO2 (PCA)

A priori emissions EDGAR v4.2, GFED v3.1, GEIA HTAP v2, GFED v4, GEIA

Period 2005-2012 2005-2018

Resolution 2.8◦x2.8◦, 32 layers to 4 hPa 1.1◦x1.1◦, 32 layers to 4 hPa
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Table 2. Model and ozonesonde observation comparisons for the reanalysis and the control run (in brackets) for 2005-2018. The units of the

root-mean-square error (RMSE) and bias are ppb.

90–55◦ S 55–15◦ S 15S–15◦ N 15–55◦ N 55–90◦ N

Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

850– 0.9 4.1 −0.4 5.3 4.2 7.8 1.0 6.7 1.2 5.8

500 hPa (-4.0) (4.6) (-6.2) (6.8) (-4.3) (7.7) (-5.4) (7.5) (-4.1) (6.2)

WOUDC 500– 5.7 15.7 -0.2 13.0 3.1 9.0 0.9 17.0 -0.2 26.7

sonde 200 hPa (27.7) (31.8) (3.0) (22.3) (-11.9) (12.2) (2.6) (22.4) (27.0) (39.1)

200– 22.2 67.5 3.4 42.7 7.3 22.0 1.9 59.1 2.6 86.0

90 hPa (332.7) (261.6) (142.7) (126.9) (16.6) (37.0) (125.1) (120.9) (256.4) (211.3)
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Table 3. Comparisons of global tropospheric NO2 columns between the control run and the satellite retrievals in brackets, and between the

reanalysis run and the satellite retrievals: OMI for 2005–2018, SCIAMACHY for 2005–2011, and GOME-2 for 2007–2018. Shown are the

global spatial correlation (S-Corr), the mean bias (BIAS: the data assimilation minus the satellite retrievals) and the root-mean-square error

(RMSE) in 1015 molec cm−2.

OMI SCIAMACHY GOME-2

S-Corr 0.98 0.98 0.97

(0.95) (0.96) (0.95)

BIAS -0.03 0.01 0.02

(-0.19) (-0.15) (-0.20)

RMSE 0.17 0.27 0.24

(0.30) (0.38) (0.38)
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Table 4. The monthly mean bias and temporal correlation of regional mean tropospheric NO2 columns: the data assimilation minus the

satellite retrievals from OMI for the period 2005–2018 in 1015 molec cm−2. The results of the model simulation (without data assimilation)

are also shown in brackets.

Bias T-Corr

China -0.43 0.99

(-0.34) (0.92)

Europe -0.23 0.95

(-0.50) (0.83)

USA -0.12 0.88

(-0.26) (0.54)

S-America -0.01 0.98

(-0.30) (0.92)

N-Africa 0.02 0.98

(-0.24) (0.93)

C-Africa -0.01 0.99

(-0.23) (0.97)

S-Africa -0.42 0.98

(-0.80) (0.94)

SE-Asia -0.13 0.96

(-0.60) (0.88)

Australia -0.03 0.85

(-0.22) (0.85)

India -0.04 0.96

(-0.22) (0.68)
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Table 5. Same as Table 2, but for surface CO concentrations. The unit is ppb. Observations used are the WDCGG observations during

2005–2014.

90–55◦ S 55–15◦ S 15S–15◦ N 15–55◦ N 55–90◦ N

Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

2.1 9.5 4.7 2.0 -3.6 29.5 1.2 58.4 -9.4 36.3

(13.2) (18.6) (14.1) (24.3) (13.8) (34.2) (-9.4) (50.2) (-19.8) (33.2)
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Table 6. Comparisons of surface aerosol concentrations between the control run and the in-situ observations in brackets, and between the

reanalysis run and the in-situ observations for 2005-2017. Shown are the linear regression slope and intercept, the correlation (Corr), the

mean and median biases, and RMSE in µgm−3 for the EMEP, CASTNET, and EANET stations.

Slope+intercept Corr Bias (mean) Bias (median) RMSE

EMEP 0.47x+0.40 0.42 -0.26 0.03 1.17

Ammonium (0.49x+0.43) (0.27) (-0.22) (0.09) (1.26)

CASTNET 1.38x-0.10 0.93 0.19 0.14 0.30

Ammonium (2.14x-0.30) (0.93) (0.57) (0.57) (0.77)

EANET 0.75x+0.41 0.62 0.12 0.16 0.78

Ammonium (0.98x+0.51) (0.72) (0.49) (0.46) (0.87)

EMEP 0.26x+0.60 0.22 -1.84 -0.50 4.74

Nitrate (0.23x+0.55) (0.20) (-2.00) (-0.59) (4.81)

CASTNET 1.89x-0.12 0.73 0.63 0.41 1.01

Nitrate (1.96x-0.21) (0.71) (0.60) (0.31) (1.03)

EANET 0.70x+0.29 0.53 -0.25 -0.17 1.61

Nitrate (0.62x+0.02) (0.43) (-0.66) (-0.53) (1.82)

EMEP 0.54x+0.34 0.44 -0.65 -0.37 1.40

Sulfate (0.73x+0.18) (0.30) (-0.42) (-0.17) (1.47)

CASTNET 0.92x-0.10 0.85 -0.43 -0.68 0.65

Sulfate (2.12x-0.21) (0.86) (1.02) (1.16) (1.61)

EANET 0.88x+0.29 0.74 -1.68 -1.42 1.65

Sulfate (1.00x+0.51) (0.80) (-0.17) (0.08) (2.66)
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Table 7. The global and regional mean surface NOx (in TgNyr−1), CO (in TgCOyr−1), and SO2 emissions (in Tg Syr−1) and lightning

NOx sources (in TgNyr−1) obtained from the a priori emissions (in brackets) and a posteriori emissions for the period 2005-2018. The

results are shown for the Northern Hemisphere (NH, 20–90◦N), the tropics (TR, 20◦S–20◦N), the Southern Hemisphere (SH, 90–20◦S), and

the globe (GL, 90◦S–90◦N).

Globe NH TR SH

Surface NOx 49.2±2.8 29.0±2.6 16.8±2.1 3.5±0.5

41.9 25.9 13.7 2.7

Surface CO 1103.8±223.2 591.7±90.9 472.1±195.5 34.0±18.7

(876.7) (439.9) (400.4) (36.3)

Surface SO2 35.1±3.0 24.2±3.1 7.5±0.7 3.4±0.3

(50.9) (38.6) (8.6) (3.8)

Lightning NOx 7.5±0.8 2.5±1.2 4.1±0.5 0.9±0.4

(5.7) (2.0) (3.0) (0.6)
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Table 8. The regional mean surface NOx (in TgNyr−1), CO (in TgCOyr−1), and SO2 emissions (in Tg S yr−1) obtained from the a priori

emissions and a posteriori emissions for the period 2005-2018 and their linear trends (in % per year). The results are shown for China (110–

123◦E, 30–40◦N), Europe (10◦W–30◦E, 35–60◦N), the United States (70–125◦W, 28–50◦N), South America (50–70◦W, 20◦S–Equator),

North Africa (20◦W–40◦E, Equator–20◦N), Central Africa (10–40◦E, Equator–20◦S), Southern Africa (25–34◦E, 22–31◦S), Southeast Asia

(96–105◦E, 10–20◦N), Australia (113–155◦E, 11–44◦S), and India (68–89◦E, 8–33◦N).

China Europe US S. America N. Africa C. Africa S. Africa SE Asia Australia India

NOx TCR-2 6.1 4.6 5.3 1.2 3.2 2.9 0.7 0.6 1.6 3.3

NOx prior 6.1 3.6 5.1 0.9 2.7 2.8 0.5 0.4 1.1 3.3

NOx trend 0.2 -1.3 -2.7 -1.0 -0.1 0.1 0.1 0.4 0.1 2.2

CO TCR-2 176.9 42.4 64.6 38.5 107.1 164.9 7.9 13.7 15.4 78.0

CO prior 128.4 26.5 56.9 31.4 93.4 100.0 6.2 14.7 16.4 71.7

CO trend -0.6 -0.8 -1.8 -4.7 0.8 0.9 0.8 0.1 1.8 1.5

SO2 TCR-2 5.8 2.8 2.5 0.4 0.6 0.7 0.5 0.1 1.2 1.8

SO2 prior 11.6 3.8 5.8 0.2 0.5 0.7 1.1 0.4 1.6 5.0

SO2 trend -6.1 -1.1 -1.1 2.1 -1.9 -0.4 2.0 -0.1 0.9 2.2
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Table 9. Same as in Table 7, but for lightning NOx sources NOx (in TgNyr−1) for North America (120–65◦ W, 20–60◦ N), Europe (10◦ W–

30◦ E, 35–60◦ N), northern Eurasia (60–130◦ E, 30–68◦ N), the Pacific (154–180◦ E, 35◦ S–20◦ N and 180◦ E–88◦ W, 35◦ S–12◦ N), South

America (77–39◦ W, 35◦ S–10◦ N), the Atlantic ocean (35◦ W–8◦ E, 30◦ S–3◦ N), northern Africa (15◦ W–48◦ E, 3–25◦ N), southern Africa

(10–48◦ E, 30◦ S–3◦ N), the Indian ocean (52–108◦ E, 40–9◦ S), Southeast Asia (95–146◦ E, 9◦ S–26◦ N), and Australia (112–154◦ E, 40–

12◦ S).

Europe N. America S. America S. Africa N. Africa Siberia India SE Asia Pacific Atlantic Australia

LNOx TCR-2 0.18 0.48 1.12 0.79 0.72 0.56 0.06 0.96 0.24 0.02 0.27

LNOx prior 0.13 0.39 0.87 0.56 0.55 0.47 0.03 0.72 0.12 0.02 0.23

Table 10. Summary of global statistics of the NO2, ozone, and CO evaluation results for the reanalysis and the control run (in brackets)

against tropospheric NO2 in 1015 molec cm−2 from Table 3, ozonesonde measurements in ppb from Table 2, and surface CO measurements

in ppb from Table 5.

Bias RMSE

Satellite tropospheric NO2 -0.03–0.02 0.17–0.27

(-0.20– -0.15) (0.30–0.38)

Ozonesonde 850–500 hPa -0.4 – 4.2 4.1 – 7.8

(-6.2 – -4.0) (4.6 – 7.7)

Ozonesonde 500–200 hPa -0.2 – 5.7 9.0–26.7

(-11.9–27.7) (12.2–39.1)

Surface CO -9.4 – 4.7 2.0 –58.4

(-19.8 – 14.1) (18.6 – 50.2)
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