Journal cover Journal topic
Earth System Science Data The data publishing journal
Journal topic

Journal metrics

IF value: 9.197
IF9.197
IF 5-year value: 9.612
IF 5-year
9.612
CiteScore value: 12.5
CiteScore
12.5
SNIP value: 3.137
SNIP3.137
IPP value: 9.49
IPP9.49
SJR value: 4.532
SJR4.532
Scimago H <br class='widget-line-break'>index value: 48
Scimago H
index
48
h5-index value: 35
h5-index35
Preprints
https://doi.org/10.5194/essd-2020-295
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-2020-295
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

  03 Nov 2020

03 Nov 2020

Review status
This preprint is currently under review for the journal ESSD.

Synoptic Analysis of a Decade of Daily Measurements of SO2 Emission in the Troposphere from Volcanoes of the Global Ground-Based Network for Observation of Volcanic and Atmospheric Change

Santiago Arellano1, Bo Galle1, Fredy Apaza2, Geoffroy Avard3, Charlotte Barrington4, Nicole Bobrowski5, Claudia Bucarey6, Viviana Burbano7,, Mike Burton8,a, Zoraida Chacón7, Gustavo Chigna9, Christian Joseph Clarito10, Vladimir Conde1, Fidel Costa4, Maarten De Moor3, Hugo Delgado-Granados11, Andrea Di Muro12, Deborah Fernandez10, Gustavo Garzón7, Hendra Gunawan13, Nia Haerani13, Thor H. Hansteen14, Silvana Hidalgo15, Salvatore Inguaggiato8, Mattias Johansson1, Christoph Kern16, Manne Kihlman1, Philippe Kowalski12, Pablo Masias2, Francisco Montalvo17, Joakim Möller18, Ulrich Platt5, Claudia Rivera1,b, Armando Saballos19, Giuseppe Salerno8, Benoit Taisne4, Freddy Vásconez15, Gabriela Velásquez6, Fabio Vita8, and Mathieu Yalire20 Santiago Arellano et al.
  • 1Department of Space, Earth and Environment, Chalmers University of Technology (Chalmers), Sweden
  • 2Instituto Geológico, Minero y Metalúrgico (INGEMMET), Peru
  • 3Observatorio Vulcanológico y Sismológico de Costa Rica (OVSICORI), Costa Rica
  • 4Earth Observatory of Singapore, Nanyang Technological University (EOS), Singapore
  • 5Institute of Environmental Physics, Heidelberg University, Germany
  • 6Servicio Nacional de Geología y Minería (SERNAGEOMIN), Chile
  • 7Servicio Geológico Colombiano (SGC), Colombia
  • 8Istituto Nazionale di Geofisica e Vulcanologia (INGV), Italy
  • 9Instituto Nacional de Sismología, Vulcanología, Meteorología e Hidrología (INSIVUMEH), Guatemala
  • 10Philippine Institute of Volcanology and Seismology (PHIVOLCS), Philippines
  • 11Instituto de Geofísica, Universidad Nacional Autónoma de México (UNAM), Mexico
  • 12Institut de Physique du Globe de Paris (IPGP), France
  • 13Center for Volcanology and Geological Hazard Mitigation (CVGHM), Indonesia
  • 14GEOMAR Helmholtz Centre for Ocean Research Kiel, Germany
  • 15Instituto Geofísico, Escuela Politécnica Nacional (IGEPN), Ecuador
  • 16Volcano Disaster Assistance Program, United States Geological Survey (VDAP/USGS), United States
  • 17Servicio Nacional de Estudios Territoriales (SNET), El Salvador
  • 18Möller Data Workflow Systems AB (MolFlow), Sweden
  • 19Instituto Nicaragüense de Estudios Territoriales (INETER), Nicaragua
  • 20Observatoire Volcanologique de Goma (OVG), DR Congo
  • Deceased
  • anow at: School of Earth, Atmospheric and Environmental Sciences, University of Manchester, United Kingdom
  • bnow at: Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Mexico

Abstract. Volcanic plumes are common and far-reaching manifestations of volcanic activity during and between eruptions. Observations of the rate of emission and composition of volcanic plumes are essential to recognize, and in some cases predict, the state of volcanic activity. Measurements of the size and location of the plumes are important to assess the impact of the emission from sporadic or localized events to persistent or widespread processes of climatic and environmental importance. These observations provide information on volatile budgets on Earth, chemical evolution of magmas and atmospheric circulation and dynamics. Space-based observations during the last decades have given us a global view of Earth’s volcanic emission, particularly of sulphur dioxide (SO2). Although none of the satellite missions were intended to be used for measurement of volcanic gas emission, specially adapted algorithms have produced time-averaged global emission budgets. These have confirmed that tropospheric plumes, produced from persistent degassing of weak sources, dominate the total emission of volcanic SO2. Although space-based observations have provided this global insight into some aspects of Earth's volcanism, it still has important limitations. The magnitude and short-term variability of lower-atmosphere emissions, historically less accessible from space, remain largely uncertain. Operational monitoring of volcanic plumes, at scales relevant for adequate surveillance, has been facilitated through the use of ground-based scanning-differential optical absorption spectrometers (ScanDOAS) since the beginning of this century, largely due to the coordinated effort of the Network for Observation of Volcanic and Atmospheric Change (NOVAC). In this study, we present a compilation of results of homogenized post-analysis of measurements of SO2 flux and plume parameters obtained during the period March 2005 to January 2017 on 32 volcanoes in NOVAC. This inventory opens a window into the short-term emission patterns of a diverse set of volcanoes in terms of magma composition, geographical location, magnitude of emission, and style of eruptive activity. We find that passive volcanic degassing is by no means a stationary process in time and that large sub-daily variability is observed in the flux of volcanic gases, which has implications for emission budgets produced using short-term, sporadic observations. The use of a standard evaluation method allows intercomparison between different volcanoes and between ground- and space-based measurements of the same volcanoes. The emission of several weakly degassing volcanoes, undetected by satellites, is presented for the first time. We also compare our results with those reported in the literature, providing ranges of variability in emission, not accessible in the past. The open-access data repository, introduced in this article, will enable further exploitation of this unique dataset, with a focus on volcanological research, risk assessment, satellite-sensors validation, and improved quantification of the prevalent tropospheric component of global volcanic emission. Data sets for each volcano are made available at https://novac.chalmers.se, under license CC-BY 4, or through the DOI-links provided in Table 1.

Santiago Arellano et al.

Interactive discussion

Status: open (until 29 Dec 2020)
Status: open (until 29 Dec 2020)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
[Subscribe to comment alert] Printer-friendly Version - Printer-friendly version Supplement - Supplement

Santiago Arellano et al.

Data sets

SO2 flux of -ARENAL- volcano from the NOVAC data-base, v. 001 Avard, G., Arellano, S., De Moor, M., Duarte, E., Martínez, M., and Galle, B. https://doi.org/10.17196/novac.arenal.001

SO2 flux of -TURRIALBA- volcano from the NOVAC data-base, v. 001 Avard, G., Arellano, S., De Moor, M., Duarte, E., Martínez, M., and Galle, B. https://doi.org/10.17196/novac.turrialba.001

SO2 flux of -MAYON- volcano from the NOVAC data-base, v. 001 Bornas, A., Arellano, S., Costa, F., Fernandez, D., Barrington, C., Redabulla, R, Clarito, J., Taisne, B., Newhall, C., and Galle, B. https://doi.org/10.17196/novac.mayon.001

SO2 flux of -ISLUGA- volcano from the NOVAC data-base, v. 001 Bucarey, C., Arellano, S., Velásquez, G., and Galle, B. https://doi.org/10.17196/novac.isluga.001

SO2 flux of -LASCAR- volcano from the NOVAC data-base, v. 001 Bucarey, C., Arellano, S., Velásquez, G., and Galle, B. https://doi.org/10.17196/novac.lascar.001

SO2 flux of -LLAIMA- volcano from the NOVAC data-base, v. 001 Bucarey, C., Arellano, S., Velásquez, G., and Galle, B. https://doi.org/10.17196/novac.llaima.001

SO2 flux of -GALERAS- volcano from the NOVAC data-base, v. 001 Chacón, Z., Arellano, S., Burbano, V., Garzón, G., Laverde, C., and Galle, B. https://doi.org/10.17196/novac.galeras.001

SO2 flux of -NEVADO.DEL.RUIZ- volcano from the NOVAC data-base, v. 001 Chacón, Z., Arellano, S., Garzón, G., López, C., and Galle, B. https://doi.org/10.17196/novac.nevadodelruiz.001

SO2 flux of -FUEGO.GUATEMALA- volcano from the NOVAC data-base, v. 001 Chigna, G., Arellano, S., Cáceres, V., Sánchez, E., and Galle, B. https://doi.org/10.17196/novac.fuegoguatemala.001

SO2 flux of -SANTIAGUITO- volcano from the NOVAC data-base, v. 001 Chigna, G., Arellano, S., Cáceres, V., Sánchez, E., and Galle, B. https://doi.org/10.17196/novac.santiaguito.001

SO2 flux of -FUEGO.DE.COLIMA- volcano from the NOVAC data-base, v. 001 Delgado, H., Arellano, S., Rivera, C., Fickel, M., Álvarez, J., and Galle, B. https://doi.org/10.17196/novac.fuegodecolima.001

SO2 flux of -POPOCATEPETL- volcano from the NOVAC data-base, v. 001 Delgado, H., Arellano, S., Rivera, C., Fickel, M., Álvarez, J., and Galle, B. https://doi.org/10.17196/novac.popocatepetl.001

SO2 flux of -PITON.DE.LA.FOURNAISE- volcano from the NOVAC data-base, v. 001 Di Muro, A., Arellano, S., Kowalski, P., Staudacher, T., Garofalo, K., and Galle, B. https://doi.org/10.17196/novac.pitondelafournaise.001

SO2 flux of -COTOPAXI- volcano from the NOVAC data-base, v. 001 Hidalgo, S., Arellano, S., Vásconez, F., Arráis, S., Bourquin, J., Córdova, J., and Galle, B. https://doi.org/10.17196/novac.cotopaxi.001

SO2 flux of -TUNGURAHUA- volcano from the NOVAC data-base, v. 001 Hidalgo, S., Arellano, S., Vásconez, F., Arráis, S., Bourquin, J., and Galle, B. https://doi.org/10.17196/novac.tungurahua.001

SO2 flux of -SANGAY- volcano from the NOVAC data-base, v. 001 Hidalgo, S., Arellano, S., Vásconez, F., Arráis, S., Córdova, J., and Galle, B. https://doi.org/10.17196/novac.sangay.001

SO2 flux of -SINABUNG- volcano from the NOVAC data-base, v. 001 Kasbani, K., Arellano, S., Gunawan, H., Haerani, N., Kunrat, S., Kern, C., and Galle, B. https://doi.org/10.17196/novac.sinabung.001

SO2 flux of -UBINAS- volcano from the NOVAC data-base, v. 001 Masias, P., Arellano, S., Apaza, F., and Galle, B. https://doi.org/10.17196/novac.ubinas.001

SO2 flux of -SABANCAYA- volcano from the NOVAC data-base, v. 001 Masias, P., Arellano, S., Apaza, F., Kern, C., and Galle, B. https://doi.org/10.17196/novac.sabancaya.001

SO2 flux of -SAN.MIGUEL- volcano from the NOVAC data-base, v. 001 Montalvo, F., Arellano, S., Conde, V., Escobar, D., Barahona, F., Olmos, R., and Galle, B. https://doi.org/10.17196/novac.sanmiguel.001

SO2 flux of -SANTA.ANA- volcano from the NOVAC data-base, v. 001 Montalvo, F., Arellano, S., Conde, V., Escobar, D., Barahona, F., Olmos, R., and Galle, B. https://doi.org/10.17196/novac.santaana.001

SO2 flux of -CONCEPCION- volcano from the NOVAC data-base, v 001 Saballos, A., Arellano, S., Mendoza, E., Álvarez, J., Muñoz, A., and Galle, B. https://doi.org/10.17196/novac.concepcion.001

SO2 flux of -MASAYA- volcano from the NOVAC data-base, v. 001 Saballos, A., Arellano, S., Mendoza, E., Álvarez, J., Muñoz, A., and Galle, B. https://doi.org/10.17196/novac.masaya.001

SO2 flux of -MOMOTOMBO- volcano from the NOVAC data-base, v. 001 Saballos, A., Arellano, S., Mendoza, E., Álvarez, J., Muñoz, A., and Galle, B. https://doi.org/10.17196/novac.momotombo.001

SO2 flux of -SAN.CRISTOBAL- volcano from the NOVAC data-base, v. 001 Saballos, A., Arellano, S., Mendoza, E., Álvarez, J., Muñoz, A., and Galle, B. https://doi.org/10.17196/novac.sancristobal.001

SO2 flux of -TELICA- volcano from the NOVAC data-base, v. 001 Saballos, A., Arellano, S., Mendoza, E., Álvarez, J., Muñoz, A., and Galle, B. https://doi.org/10.17196/novac.telica.001

SO2 flux of -ETNA- volcano from the NOVAC data-base, v. 001 Salerno, G., Arellano, S., Burton, M., and Galle, B. https://doi.org/10.17196/novac.etna.001

SO2 flux of -COPAHUE- volcano from the NOVAC data-base, v. 001 Velásquez, G., Arellano, S., Bucarey, C., and Galle, B. https://doi.org/10.17196/novac.copahue.001

SO2 flux of -PLANCHON.PETEROA- volcano from the NOVAC data-base, v. 001 Velásquez, G., Arellano, S., Bucarey, C., and Galle, B. https://doi.org/10.17196/novac.planchonpeteroa.001

SO2 flux of -VILLARRICA- volcano from the NOVAC data-base, v. 001 Velásquez, G., Arellano, S., Bucarey, C., Hansteen, T., Bredemeyer, S., and Galle, B. https://doi.org/10.17196/novac.villarrica.001

SO2 flux of -VULCANO- volcano from the NOVAC data-base, v. 001 Vita, F., Arellano, S., Inguaggiato, S., and Galle, B. https://doi.org/10.17196/novac.vulcano.001

SO2 flux of -NYIRAGONGO- volcano from the NOVAC data-base, v. 001 Yalire, M., Arellano, S., Kasareka, M., Karume, K., and Galle, B. https://doi.org/10.17196/novac.nyiragongo.001

Santiago Arellano et al.

Viewed

Total article views: 243 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
187 51 5 243 14 2 2
  • HTML: 187
  • PDF: 51
  • XML: 5
  • Total: 243
  • Supplement: 14
  • BibTeX: 2
  • EndNote: 2
Views and downloads (calculated since 03 Nov 2020)
Cumulative views and downloads (calculated since 03 Nov 2020)

Viewed (geographical distribution)

Total article views: 170 (including HTML, PDF, and XML) Thereof 169 with geography defined and 1 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Saved

No saved metrics found.

Discussed

No discussed metrics found.
Latest update: 27 Nov 2020
Download
Short summary
This study presents a detailed global data-set of volcanic sulphur dioxide (SO2) emissions during the period 2005–2017. Measurements were obtained by scanning-DOAS instruments of the NOVAC network at 32 volcanoes, and processed using a standardized procedure. We reveal the daily statistics of volcanic gas emissions under a variety of volcanological and meteorological conditions. Our results are compared with yearly averages derived from measurements from space and with historical inventories.
This study presents a detailed global data-set of volcanic sulphur dioxide (SO2) emissions...
Citation