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Abstract: Soil moisture is an important parameter required for agricultural drought monitoring and climate change models. 15 

Passive microwave remote sensing technology has become an important means to quickly obtain soil moisture over across 

large areas, but the coarse spatial resolution of microwave data imposes great limitations on the application of these data. We 

provide a unique soil moisture dataset (0.05°, monthly) for China from 2002-2018 based on reconstruction model-based 

downscaling techniques using soil moisture data from different passive microwave products (including the AMSR-E/2 JAXA 

Level 3 products and the SMOS-INRA-CESBIO (SMOS-IC) products) calibrated with a consistent model in combination 20 

with ground observation data. This new fine-resolution soil moisture dataset with a high spatial resolution overcomes the 

multisource data time matching problem between optical and microwave data sources and eliminates the difference between 

the different sensor observation errors. The validation analysis indicates that the accuracy of the new dataset is satisfactory 

(bias: -0.024, -0.030 and -0.016 -0.057, −0.063 to -0.027 m3/m3m3/m3, unbiased root mean square error (ubRMSE): 0.051, 

0.048 and 0.0420.056, 0.036 and 0.048, correlation coefficient (R): 0.82, 0.88, and 0.90 0.84, 0.85, and 0.89 on monthly, 25 

seasonal and annual scales, respectively). The new dataset was used to analyze the spatiotemporal patterns of soil water 

content across China from 2002 to 2018. In the past 17 years, China's soil moisture has shown cyclical fluctuations and a 

slight downward trend (slope=-0.167, R=0.750) and can be summarized as wet in the south and dry in the north, with increases 

in the west and decreases in the east. The reconstructed dataset can be widely used to significantly improve hydrologic and 

drought monitoring and can serve as an important input for ecological and other geophysical models. The data are published 30 

in the Zenodo at http://doi.org/10.5281/zenodo.4049958 (Meng et al., 2020) //doi.org/10.5281/zenodo.4738556 (Meng et al 

2021). 
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1 Introduction 

Soil moisture (SM), which is one of the key variables in the water cycle and atmospheric energy budget (Entekhabi et al., 35 

1999; Taylor et al., 2011; Shi et al., 2012; Guillod et al., 2015), has been widely used for flood forecasts (Bindlish, et al., 

2009), drought detection (Mao, et al., 2010), crop yield estimation (Chen, et al., 2011), weather prediction and hydrological 

modeling (Liu, et al., 2017). Therefore, accurately monitoring and assessing the dynamics of the spatiotemporal distribution 

of SM are crucial for understanding the hydrological, ecological, and biogeochemical processes associated with global and 

regional climate systems (Mao et al., 2008b; Seneviratne et al., 2010; Han et al., 2012; Wang et al., 2016). The most direct 40 

way to obtain SM is primarily from in situ measurements with SM measuring instruments at ground meteorological stations 

(Franz et al., 2012). SM networks based on ground stations have made great contributions to establishing long-term SM 

datasets (Srivastava 2016). The in situ SM observations from these networks have also been unified into a common database 

(Dorigo et al., 2011). However, the accurate measurements of SM are limited by the number of field sites around the world, 

and measuring SM at a single location does not necessarily represent the condition of the an entire region due to the large 45 

spatial heterogeneity of SM (Crow et al., 2002; Njoku et al., 2003). With the development of remote sensing technology, 

satellite-based SM measurements has become increasingly available, such as microwave observations from active and passive 

sensors, which is one of the most effective and rapid methods to obtain large-scale SM (Loew, et al., 2011; Petropoulos, et al., 

2015; Srivastava, et al., 2017). Microwave remote sensing, including active microwave and passive microwave, has become 

the most effective means of monitoring SM active microwave remote sensing technology measures the energy reflected from 50 

the surface of the land after actively transmitting microwave energy pulses, while passive microwave sensors measure the 

self-emitted energy emitted from the land surface (Schmugge et al., 1974; Moran, et al., 2004; Shi et al., 2006; Shen et al., 

2013; Bhagat et al., 2014), Both active and passive microwave remote instruments, particularly at low frequencies, which 

have been used to provide global coverage for surface soil moisture SM datasets (Njoku, 2003; Albergel, et al., 2013). The 

European Space Agency’s Water Cycle Multi-Mission Observation Strategy (ESA WACMOS) Support to Science Element 55 

(STSE) program has developed the first long-term SM data record from passive and active microwave data (Su et al. 2010). 

In 2012, the ESA’s Climate Change Initiative (CCI) program SM datasets were first publicized on the ESA CCI web portal 

(Su et al., 2010). This CCI product was generated by merging different microwave sensor observations and attempting to 

produce a complete and consistent long-term time series of SM datasets (Dorigo et al., 2017; Gruber et al. 2019). Since then, 

it has been constantly updated, and the latest release (v06.1)(v05.2) provides global SM data up to 2020-12-31 31-12-2019. 60 

These The long-term availability of SM products has been validated against extensive model simulations or in situ 

measurements (Albergel et al., 2012; Loew et al., 2013; Zeng et al., 2015; Dorigo et al., 2017, Preimesberger et al 2021). and 

Kang et al (2020) improved the algorithm for FY 3D microwave data and also produced a global SM product (Kang et al. 

2020), and the resolution is about 0.25-degree resolution covering 2017-2019. Chen et al. (2021) develop a novel spatio-
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temporal partial convolutional neural network (CNN) for AMSR2 soil moisture product gap-filling, and the resolution is about 65 

0.25-degree resolution covering 2003–2019.  

Although the SM datasets mentioned above can provide SM parameters for global climate change research, the resolution is 

relatively low (e.g., 10 km or 25 km),which is very difficult to meet local refined research, especially agricultural drought 

menitoring. In order to obtain a soil moisture data set with high spatial resolution, various methods have been proposed to 

downscale SM. these products are widely used for a range of soil moisture- SM related studies, such as climate model 70 

evaluation and drought monitoring. The mentioned SM datasets have a coarse spatial resolution (e.g., 25 km), whereas a high-

resolution SM product that can be directly used in hydrological process models (e.g., surface evapotranspiration models, land 

surface process models, and agricultural drought models) in regional-scale or local-scale studies is needed to provide 

additional monitoring details, unless a fine-resolution land surface SM product (e.g., from 1 to 10 km) is available. 

Downscaled SM data can help to solve the problem of coarse spatial resolution and are required for many regional agricultural 75 

and hydrological applications (Sandholt et al. 2002, Peng et al. 2015, Mohanty et al. 2017). To improve the spatial resolution 

of passive microwave SM data, various methods have been proposed to downscale SM. The basic principle of this most 

approaches is that to construct a statistical correlation or physical model relationship between coarse-resolution SM data and 

fine-resolution auxiliary variables to achieve scale conversion. The basic principle of most methods is that the drought index 

constructed using high-resolution visible light and thermal infrared data has a strong linear relationship with microwave soil 80 

moisture in local areas (Jin et al. 2017, Maltese et al. 2015, Wang et al. 2016). Some of these studies have tried to explore the 

relationship between optical remote sensing products with a relatively fine spatial resolution and microwave remote sensing 

SM data with a coarse spatial resolution (Maltese et al. 2015, Wang et al. 2016). Due to the difference in coverage between 

vegetation cover and bare soil, the sensitivity of land surface temperature (LST) to SM changes varies, and the shapes of 

plotted LSTs and normalized difference vegetation index (NDVI) data values are usually presented in a physical sense as in 85 

trapezoidal or triangular feature space (Carlson et al. 1994, Moran et al. 1994) if the data can represent the complete vegetation 

cover and soil water content. Based on the LST/ normalized difference vegetation (NDVI) feature space, the temperature 

vegetation dryness index (TVDI) has been developed to estimate the SM The temperature vegetation dryness index (TVDI) 

was developed to estimate the SM (Sandholt 2002), which is the most classic method and has been widely used for the 

downscaling of microwave SM and drought monitoring over different regions (Chauhan et al. 2003). Meanwhile, the TVDI 90 

has been widely used for the downscaling of microwave SM and drought monitoring over different regions (Chauhan et al. 

2003). However, a significant problem in the downscaling process is the time matching of different sensors, that is, the 

temporal gap between the coarse-resolution microwave product and the fine-resolution optical product Jing et al. (2018) 

proposed a two-steps reconstruction approach for reconstructing satellite-based soil moisture products (ECV) at an improved 

spatial 0.05-degree resolution covering 2001–2012. The reconstruction model implemented the Random Forests (RF) 95 

regression algorithm to simulate the relationships between soil moisture and environmental variables, and takes advantages 

of the high spatial resolution of optical remote sensing products (Jing et al, 2018). Most downscaling data sets are mainly for 
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a single sensor. Due to the limitation of the lifetime of satellite sensors, the time series is not long enough, and it is difficult 

to analyze the temporal and spatial changes of a long time series. Different satellite microwave sensors have differences in 

time and space, and the depth information of SM detected by the different frequencies of different microwave sensors is not 100 

consistent. In order to obtain a longer time sequence of SM dataset, we must eliminate the differences between different 

sensors (Peng et al., 2017). This interval can cause a lager large deviation between the downscaled products and original 

product, such as differences in daytime and nighttime surface temperatures, humidity, evapotranspiration, water and heat. 

This problem requires obtaining SM and auxiliary optical/infrared (IR) data with relatively consistent time points. It is 

generally difficult to aggregated aggregate data from long-sequence multisource sensors while taking into account most of 105 

the sensors. Many methods have been proposed to handle these systematic differences among SM products from different 

microwave sensors (Zwieback, et al., 2016). Recent studies have exploited the utility of rescaling SM product methods 

(Brocca et al., 2013; Zeng et al., 2020). Linear regression rescaling of SM has proven to be a simple and effective method, 

and a review of these rescaling methods has been was published by Afshar et al. (2017). In addition, in the process of 

downscaling, optical and thermal infrared data should be synchronized with microwave soil moisture products as much as 110 

possible. To produce a soil moisture data set with high spatial and temporal resolution, the similarity of microwave sensors 

must be considered, and the high-resolution visible light and thermal infrared data must be synchronized as much as possible. 

Few satellites meet these conditions at the same time. The Aqua satellite, which is equipped with both the Advanced 

Microwave Scanning Radiometer-Earth Observing System (AMSR-E) and the Moderate Resolution Imaging 

Spectroradiometer (MODIS) sensors, can simultaneously provide coarse-resolution passive microwave SM and LST/NDVI 115 

data, providing a guarantee guaranteeing that the data were acquired at the same time. However, AMSR-E data alone are 

insufficient (the instrument stopped working in October 2011); and thus, we used its successor AMSR2 can be used to continue 

the data series. The missing data between AMSR-E and AMSR2 (from November 2011 to June 2012) is can also be 

supplemented by SMOS-IC data, which has have been verified validated with to have higher high accuracy by using in situ 

measurements across around the global world (Al-Yaari et al., 2019; Ma et al., 2019). 120 

In this study, in order to obtain a SM dataset with higher spatio-temporal resolution and higher consistency, all microwave 

SM data are based on AMSR-E Level 3 data, uniformly corrected to the same time and the same depth of detection using a 

linear regression method. In addition, ground station data are incorporated, and a large area of missing and invalid pixels is 

restored, so that the entire dataset is guaranteed to be complete in the Chinese region. A spatial downscaling method, namely, 

the spatial weight decomposition (SWD) model, was utilized to decompose the inconsistencies in soil depth and time in the 125 

coarse spatial resolution SM products with the TVDI into SM data with a 0.05° spatial resolution. The dataset covers the 

period from 2002 to 2018 and is comprehensively compared with in situ SM datasets.  

2 Study area 

Most of the areas in China, which China is located within the central and eastern parts of Asia, and is situated along the 

western coast of the Pacific Ocean, are is affected by the a monsoon climate, which and have significant has important 130 
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monsoon climate characteristics (Feng et al., 2003). Drought disasters in China have constantly increased over the past few 

recent years, and drought which has become one of the most serious types of natural disasters. Rapid increases in industrial, 

irrigation and domestic water use have resulted in dramatic increases in water resource consumption, which in turn have led 

to a significant increase in droughts in much of China, especially northern China (Zhao, et al., 2017). Thus, there is an urgent 

need to improve our knowledge about the spatial and temporal variability of SM in order to provide a basis for quantification 135 

and prediction, especially for the management of agricultural water (Liu, et al., 2012). Hence, it is necessary to constructing 

a set of high-precision and high spatial resolution SM datasets in China is necessary. 

To study improve the quality of SM dataset and explore the spatial and temporal patterns of SM throughout the various regions 

of China, we further divided China into six regions according based on conditions such as elevation, rainfall, topography and 

hydrogeology combining hydrogeologic features: Northeast Monsoon Region (NEM), North China Monsoon Region (NCM), 140 

South China Monsoon Region (SCM), Southwest Humid Region (SWH), Northwest Arid Region (NWA), and Qinghai-Tibet 

Plateau Region (QTP) (Liang, et al., 2017). The Northeast Monsoon Region NEM includes the areas to the south of the 

Heilongjiang River, to the east of the Daxinganling Mountain range and to the north of the Ming Great Wall (117-135 °E, 38-

53 °N), . The North China Monsoon Region, which extends from the Inner Mongolia Plateau to the northern part of the 

Qinling-Huaihe River, east to the eastern part of the Yellow Sea and the Bohai Sea, and west to the eastern part of the Qinghai-145 

Tibet Plateau, has typical temperate monsoon climate characteristics (103-125 °E, 33-42 °N). The South China Monsoon 

Region includes the monsoon region to the east of the Yunnan-Guizhou Plateau and to the south of the Qinling Mountains-

Huaihe River; this region has abundant rainfall and dense river networks and is characterized by a typical subtropical monsoon 

climate (20-33 °E, 105-123 °N). The Southwest Wet Humid Region includes the Qinghai-Tibet Plateau and the Yunnan-

Guizhou Plateau to the south of the Huaihe River and the Sichuan Basin; precipitation is abundant in southwestern China (21-150 

34 °E, 97-104 °N). The Northwest Arid Region includes the Inner Mongolia Plateau to the east of the Greater Xing'an 

Mountains and the vast arid and semiarid regions of Northwest China in the Tarim Basin to the north of the Qinghai-Tibet 

Plateau (73–126 °E, 37–55 °N). The Qinghai-Tibet Plateau Region includes the southern part of the Kunlun Mountains-Altun 

Mountains-Qilian Mountains, the area to the west of the Hengduan Mountains, and the entire Qinghai-Tibet Plateau to the 

north of the Himalayas (73–104 °E, 27–40 °N), (Zhao and Chen 2011). The locations of the meteorological stations and six 155 

geographic-climatic regions in China are shown in Figure 1. For each region, we analyzed the current SM conditions and their 

changes over the past 17 years. 
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Figure 1: Overview of the study area, location of the meteorological stations and six geographic-climatic regions in China 

Note: More detailed information on dense sites can be found in Table S1. Base map The base map is derived from the Resource and 

Environment Science and Data Center of the Chinese Academy of Sciences (http://www.resdc.cn/, last access: 16 November 2019) 

3 Data and methodology 

3.1. Satellite-derived SM data 165 

Since satellite sensors have a finite working life limited lifespan, to obtain a longer sequence of SM data sets, we need to use 

different satellite sensors to generate unbroken SM products. The SM data are mainly derived from the AMSR-E/2 Level 3 

and SMOS-IC, which have moisture units of m3/m3 and with a spatial resolutions of 0.25°. Among these satellite sensors, 

AMSR-E is aboard the Aqua satellite (effective service period from May 2002 to October 2011) with transit times of 13:30 

and 01:30, and the orbit is a sun-synchronous near-polar orbit with an orbital height of approximately 700 km (Kim, et al., 170 

2012; Rüdiger et al., 2009). , which AMSR-E has six wavelengths in the microwave spectrum (6.925, 10.65, 18.7, 23.8, 36.5, 

and 89 GHz). The SM data utilized in the current research were obtained from the Japan Aerospace Exploration Agency 
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(JAXA) AMSR-E SM L3 product (Koike et al., 2004), and the time series ranges from July 2002 to September 2011. This 

product is based on the JAXA algorithm, and posted on with a 0.25° spatial resolution. First, a forward radiative transfer 

scheme is used to establish a brightness temperature dataset for a variety of frequencies and polarization-generated parameter 175 

values (soil and vegetation). Then, the brightness temperature dataset is used to create a lookup table (LUT). Finally, the SM 

and vegetation water content are estimated by using the microwave polarization difference index (MPDI) at 10.65 GHz and 

the index of soil wetness (ISW) at 36.5 GHz and 10.65 GHz horizontal channels (Koike et al. 1996, 2004). The JAXA 

algorithm assumes that the optical depth of vegetation is linearly related to the vegetation water content and that the vegetation 

water content can be determined by the NDVI. Based on the verification of with the ground monitoring network, JAXA 180 

products provide acceptable SM results (Zeng et al. 2015). 

The AMSR2 sensor is mounted on the Japanese Global Change Observation Mission – Water Satellite 1 (GCOM-W1) and was 

launched in May 2012. As a follow-up to AMSR-E, AMSR2 has a larger antenna reflector diameter, increasing from 1.6 m to 2.0 

m. Moreover, AMSR2 includes an extra C-band channel (with a frequency of 7.3 GHz) to mitigate radio frequency interference 

(RFI). The transit times are still 13:30 and 01:30. The data were derived from the JAXA SM products, which were released in real 185 

time, and the time span ranges from July 2012 to December 2018. As a continuation of the AMSR-E product, the AMSR2 L3 

product also uses an a LUT method to obtain SM retrievals, providing two products with spatial resolutions of 0.1° and 0.25°. 

To better match the available data, this paper selects the data with a spatial of 0.25° spatial resolution data. The accuracy of 

the JAXA AMSR2 product was verified to have a root mean square error (RMSE) of less than 0.06 m3/m3 (for a vegetation 

water content of ≤1.5 kg/m2, Kim, et al. 2015). 190 

The SMOS satellite was launched on 2 November 2, 2009., which This satellite travels along a sun-synchronous orbit with 

an average altitude of 758 km and a dip of 98.44°. The transit times are approximately 06:00 (ascending) and 18:00 

(descending) local time with a two- to three-day revisit frequency. The operating L-band (1.4 GHz), measured with a 

Microwave Imaging Radiometer with Aperture Synthesis (MIRAS), is used to observe SM (Kerr et al., 2012; Lacava, et al., 

2012; González-Zamora et al., 2015). This study uses the SMOS-IC V105 SM product contributions from the Centre Aval de 195 

Traitement des Données SMOS (CATDS), with a time series ranging from October 2011 to June 2012 and a spatial resolution 

of 25 km. The SMOS-IC algorithm was designed by the Institut National de la Recherche Agronomique (INRA) and Centre 

d’Etudes Spatiales de la BIOsphère (CESBIO) (Fernandez-Moran et al., 2017). The SMOS-IC product was further quality 

filtered and redivided based on the previous SMOS Level 2 SM user data product (SMDUP2) algorithm. That is, the values 

of the grid point data quality index (DQX) greater than 0.07, which were affected by RFI or SM, were discarded; then, the 200 

DQX reverse-weighted average was used to group the SMDUP2 data on a 0.25° equal-area grid and obtain SMOS-IC-grade 

products with a 25 km spatial resolution. Al-Yaari et al. (2019) and Ma et al. (2019) conducted comprehensive evaluation 

evaluations of the SMOS-IC SM product by using ground measurements worldwide. The results showed that the SMOS-IC 

SM product agreed better with in situ measurements than other SMOS products (SMOS L2 and L3). The SMOS-IC scientific 

data were as independent as possible from auxiliary data, and the data are available at 205 
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https://www.catds.fr/Products/Available-products-from-CEC-SM/SMOS-IC. The data are provided on a daily time scale to 

match the AMSR-E/2 L3 SM products at the same scale. The SMOS-IC SM data were aggregated to a monthly temporal 

resolution. 

3.2 MODIS LST and NDVI data 

In a downscaling model, it is critical to establishing the relationships between SM and other high-resolution surface variables 210 

is critical. Im et al. (2016) utilized the relationships between SM and MODIS-derived products to improve the resolution of 

the AMSR-E SM product. Wang et al. (2016) downscaled SM data from a 0.25° resolution to a 0.05° resolution using a similar 

approach. Zhao et al. (2018) used the vegetation-thermal relationship to establish a microwave-optical/infrared downscaling 

model to optimize the spatial resolution of SMAP SM products to a very good level of precision. All these land surface 

variables are available from the corresponding MODIS products. The MODIS sensor aboard the Aqua satellites passes over 215 

China at approximately 01:30 (descending) and 13:30 (ascending). MODIS has been widely used to monitor various 

environments, including land, oceans, and the lower atmosphere, due to its high temporal resolution and good data quality. In 

this study, two MODIS products were used, namely, the MODIS/AQUA monthly LST (MYD11C3) and NDVI (MYD1C2) 

products, which have 0.05° spatial resolutions, to ensure the same transit time as the microwave SM data. The MODIS 

products were downloaded from the NASA Land Processes Distributed Active Archive Center (LPDAAC) from at the United 220 

States Geological Survey (USGS) (https://lpdaac.usgs.gov/). To be For consistency consistent with the SM data, all data were 

averaged by day and night products, and outliers were eliminated by the first-order difference method. Furthermore, null 

values were interpolated using the Savitzky-Golay filter. 

3.3 Meteorological and Auxiliary Data auxiliary data 

SM data from the China National Meteorological Station (CNMS) and China's agrometeorological and ecological observation 225 

network (http://data.cma.cn/, last access: 16 November 2019) were used to verify validate the downscaling downscaled SM 

products. We used the hourly in situ soil moisture SM data measured at 0-10 cm depth to investigate the accuracy of the 

satellite-derived surface SM estimates. Monthly products were obtained from the 2420 agrometeorological stations (including 

the Key station/National Climate Observatory, Basic station/National Meteorological Observatory and General-

station/regional meteorological station). Based on the nearest neighbor data during the daily satellite transit, and aggregated 230 

into monthly products through average averages to match the satellite downscaling soil moisture downscaled SM products; 

see Figure A1 for site space location locations. Take the The AMSR series satellites used in this research is taken as an example. 

The daily transit times of the satellites in China is are 13:30 and 1:30. Therefore, the ground soil moisture SM measurements 

at the in daytime (13:00 and, 14:00) and the nighttime (1:00 and, 2:00) are averaged. In the aggregation calculation, abnormal 

and unrepresentative data are eliminated to ensure that the selected data can reflect all the physical conditions that affect the 235 

remote sensing signal. The China Ecosystem Research Network (CERN) are has locations in different regions of the study 

area (Figure 1) and represent records different surface and climatic conditions, which were are used to validate validate the 

downscaled SM deviation in different land cover types.  

https://www.catds.fr/Products/Available-products-from-CEC-SM/SMOS-IC
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In addition to the above data, the Shuttle Radar Topography Mission (SRTM) Land Precesses Distributed Active Archive 

Center (LPDAAC) of the USGS (https://lpdaac.usgs.gov/) provides digital elevation model (DEM) data with a resolution of 240 

1 km resampled to 0.05°. These data were used to obtain terrain factors (e.g., elevation and slope) for the downscaling studies.  

The TRMM 3B43 precipitation and Chen et al. (2021) developed a global remote sensing-based surface soil moisture (RSSSM) 

dataset are used to assist in assessing the quality of downscaled products. Table 1 describes lists an overview of the main data 

sets and a description of the corresponding variables for each data set in this study. According to the seasonal division of 

weather, spring ranges from March to May, summer from June to August, autumn from September to November, and winter 245 

from December to February. 

Table 1: Overview of the data sets used in this study. 

Data sets Satellite Spatial/temporal 

resolution 

Dates Description 

AMSR-E L3 Aqua 0.25°/1 month 2002/07-2011/10 SM 

SMOS-IC SMOS 0.25°/1 month 2011/10-2012/06 SM 

AMSR2 L3 GCOM-W1 0.25°/1 month 2012/07-2018/12 SM 

MOD11C3 Aqua 0.05°/1 month 2002/07-2012/12 LST 

MOD13C2 Aqua 0.05°/1 month 2002/07-2018/12 NDVI 

TRMM 3B43 TRMM 0.25°/1 month 2002/07-2018/12 Precipitation 

RSSSM - 0.1/10 days 2003/01-2018/12 SM 

SRTM - Resample 0.05° - DEM, slope 

Station - 1 day 2002/01/01-2018/12/31 SM 

3.4 Methodology 

3.4.1 Calibration and restoration of the satellite-derived SM 

Microwave The microwave frequency and overpass time of the satellite are two important factors for deriving SM values 250 

(Cashion, et al., 2005). In theory, the surface SM data retrieved from different frequencies have different soil sampling depths 

(Njoku, et al. 2003). Because the The diurnal variations in SM and temperature may be considerable in some regions, so the 

the overpass time of the sensor can influence the retrieved SM. AMSR-E and AMSR2 have the same ascending/descending 

overpass times, i.e., 13:30 p.m. and 1:30 a.m. local time. The SMOS SM retrievals occur at dawn and nightfall, corresponding 

to the SMOS ascending/descending overpass times at 6:00 a.m. and 18:00 6:00 p.m. Differences in the overpass time and 255 

observed depth of the sensors could be serious issues when matching data, particularly when deriving long-term trends. Hence, 

the impact of differences among sensors is considered in this study. Despite soil moisture Although SM measurements 

retrieved from AMSR-E/2 and SMOS having have some differences absolute values, they show similar seasonal patterns, 

which provides the possibility for calibrating and rescaling to yield a long-term dataset. AMSR-E was selected as the reference 

in this study because it is associated with a relatively long time series. The monthly SM average is calculated from the use of 260 
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more than one and half months. The linear regression matching technique was chosen as the calibrating calibration method. 

Similar matching approaches have been successfully used in the past (e.g., Crow and Zhan, 2007). Crow and Zhan (2007) 

rescaled satellite SM observations with a model by linear regression matching, and Brocca (2013) also established regression 

relationships between satellites and in situ observations for calibration of satellite SM observations of SM using regression 

matching. In general, the linear rescaling method is realized by considering the most general linear relationship between the 265 

reference dataset (X) and the original dataset (Y). In this study, the linear regression method was is applied cell by cell and its 

form is Eq. (1): 

𝑌𝑌∗ = 𝜇𝜇𝑋𝑋 − (𝑌𝑌+𝜇𝜇𝑌𝑌)𝐶𝐶𝑌𝑌                                    (1) 

where 𝜇𝜇𝑋𝑋 and 𝜇𝜇𝑌𝑌 are the average values of X and Y to calculate the sequence respectively,; 𝑌𝑌∗ is the scaled value of the 

original data Y,; and 𝐶𝐶𝑌𝑌 is a scalar scaling factor, .and in In this study, we eliminate the largest-smallest impact in the fitting 270 

process. Here is a linear method proposed by Yilmaz and Crow (2013) to determine the size of 𝐶𝐶𝑌𝑌 . The 𝐶𝐶𝑌𝑌  was is calculated 

via Eq. (2) 

 

𝐶𝐶𝑌𝑌 = 𝜌𝜌𝑋𝑋𝑌𝑌𝜎𝜎𝑋𝑋𝜎𝜎𝑌𝑌                                        (2) 

where 𝜌𝜌𝑋𝑋𝑌𝑌 is the correlation coefficient of X and Y, and 𝜎𝜎𝑋𝑋 and 𝜎𝜎𝑌𝑌 are the standard errors of X and Y, respectively. 275 

The calibration procedure was is applied to monthly averages of SMOS-IC data. The SMOS-IC values are plotted against 

the AMSR-E values for the overlapping period (07/2002 to 10/2011) to calculate calibrating calibrated parameters (linear 

equations). Second, Next, the calibrating equations derived from the previous step are applied to SMOS-IC data for the period 

from 2011 through 2012, producing calibrated SMOS data (SMOS reg refers to the calibrated values). The AMSR2 values are 

calibrated against the SMOS-IC values using data from the overlapping period. The equations derived from the previous step 280 

are used to calibrate the AMSR2 data from the period 2012 through 2018, producing AMSR2 reg. The AMSR-E, SMOS reg, 

and AMSR2 reg data are thus obtained from 2002 to 2018.  

3.4.2 Downscaling method of for SM 

Based on the identification of a negative correlation between the SM products and LST/NDVI, we construct a relatively 

simple and efficient downscaled downscaling process, in which the TVDI is a weighting factor for downscaling. First, we 285 

computed the fault and null value areas based on the Savitzky-Golay filter to eliminate the effects of clouds and water vapor 

on the MODIS LST/NDVI images. Then, we built build an LST terrain correction model to reduce the influence of terrain 

fluctuations on the surface temperature inversion results. In addition, we established establish a monthly TVDI distribution 

using the LST/NDVI inversion model based on LST and NDVI images acquired from MODIS with 0.05° spatial resolution. 

Finally, we constructed construct an SWD model to decompose the SM pixel by pixel and generate a monthly 0.05° SM 290 

gridded product. The structure A structural diagram of the method is given in Figure 2. 
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Figure 2: The flowchart for the fine SM dataset 

Since optical data will be are affected by clouds and harsh atmospheric conditions, there are missing and discontinuous 

visible light and thermal infrared remote sensing are greatly affected by clouds and harsh atmospheric conditions, there is a 295 

lack of continuous LST and NDVI data. To compensate for the error caused by insufficient MODIS data, the first-order 

difference method is used to eliminate outliers, and then the Savitzky-Golay (S-G) filter is then used to reconstruct the time 

series data from 2002 to 2018, and to interpolate the null values of the missing data. The specific method is shown in Eq. (3): 

 

     𝑌𝑌𝑗𝑗∗=∑
𝐶𝐶𝑖𝑖 ∗𝑌𝑌𝑗𝑗+1

𝑁𝑁
𝑚𝑚
−𝑚𝑚                                      (3) 300 

where 𝑌𝑌𝑗𝑗∗ represents the time series data after the supplementation; 𝑌𝑌𝑗𝑗+1∗  is equal to half the size of the smoothing window; 

𝐶𝐶𝑖𝑖  is the fitting coefficient of the Savitzky-Golay polynomial filter, i.e., the weight of the i-th value from the filter head; and 

N is the length of the data processed by the filter (the number of data points contained in the sliding window). 

Due to the large elevation variations in China, the influence of terrain on temperature must be corrected before the TVDI can 

be calculated. To reduce the influence of terrain fluctuations on the surface temperature data, Eq. (4) is used to correct the 305 

LST products acquired from MODIS, as described in previous studies (Molero et al., 2016): 

𝑇𝑇𝑚𝑚 = 𝑇𝑇𝑜𝑜 + ℎ × 𝜆𝜆                                     (4) 

where 𝑇𝑇𝑚𝑚 is the corrected surface temperature, 𝑇𝑇𝑜𝑜 is the surface temperature before correction, h is the elevation value at 

a certain pixel, and λ is the average influence coefficient of the elevation on the surface temperature inversion process 

(where the best value of λ is 0.006 °C/km). 310 

The TVDI calculation formula, which was proposed by Sandholt (2002), can adequately estimate the surface water 
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conditions of soil. Thus, the TVDI has been widely used in drought monitoring, and the TVDI expression is shown in Eq. (5), 

(6) and (7): 

TVDI= Ts-Ts min

Ts max-Ts min
                               (5) 

Ts max=a1+b1*NDVI                                   (6) 315 

𝑇𝑇𝑠𝑠 𝑚𝑚𝑖𝑖𝑚𝑚 = 𝑎𝑎2 + 𝑏𝑏2 ∗ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁                                (7) 

where Ts is the LST (°C) in the study area, Tsmin is the LST of the wet side, (a2, b2) is the simulation coefficient of the “wet 

edge” model, Tsmax is the surface temperature of the dry side and (a1, b1) is the simulation coefficient of the "dry edge" model. 

Based on the LST/NDVI feature space, many studies have shown that the TVDI exhibits a significant negative correlation 

with SM (Wang, 2016). The high-resolution TVDI distribution is used to weight the low-resolution SM data pixel by pixel; 320 

then, the weight is used to decompose the low spatial resolution SM product into 0.05°SM products. The SWD Eq. (8) is as 

follows is computed by Eq.(8): 

𝑆𝑆𝑀𝑀𝑖𝑖 = 𝑆𝑆𝑀𝑀𝑗𝑗 × 1−𝑇𝑇𝑇𝑇𝑇𝑇𝐼𝐼𝑎𝑎
1−𝑇𝑇𝑇𝑇𝑇𝑇𝐼𝐼𝑏𝑏

                                  

(8) 

where SMi represents the downscaled SM data used to generate the with 0.05° pixels, SMj represents the input low-resolution 

microwave SM data with 0.25° pixels, TVDIa is the TVDI value calculated using of the MODIS pixels corresponding to the 325 

SM in pixel a, and TVDIb is the TVDI average of the MODIS pixels corresponding to the SM in pixel b area of microwave 

observations of SM. 

3.4.3 Evaluation metrics of downscaled SM 

It is necessary to evaluate the SM downscaling results before further application. The accuracy of the fine spatial resolution 

SM is evaluated in terms of R, root mean square error (RMSE), bias and unbiased RMSE (ubRMSE) (Ma et al., 2019). For 330 

this purpose, the Taylor's diagram is used to statistically summarize the correlation coefficient, centered RMSE (E), and 

normalized standard deviation (SDV) of the simulation results from the site observations by a single point in two dimensions 

(2-D). The error metrics used in the study are defined as follows:  

                                   𝑅𝑅 = 1
𝑁𝑁−1

∑ (𝑇𝑇𝑖𝑖−𝑇𝑇
𝜎𝜎𝑇𝑇

)(𝐿𝐿𝑖𝑖−𝐿𝐿
𝜎𝜎𝐿𝐿

)𝑁𝑁
𝑖𝑖=1                            

(9)
 

                                   𝐵𝐵𝐵𝐵𝑎𝑎𝐵𝐵 = 1
𝑁𝑁
∑ (𝑇𝑇𝑖𝑖 − 𝐿𝐿𝑖𝑖)𝑁𝑁
𝑖𝑖=1                              

(10)
 335 

𝑅𝑅𝑀𝑀𝑆𝑆𝑅𝑅 = �1
𝑁𝑁
∑ (𝑇𝑇𝑖𝑖 − 𝐿𝐿𝑖𝑖)2𝑁𝑁
𝑖𝑖=1                      

    (11) 

𝑢𝑢𝑏𝑏𝑅𝑅𝑀𝑀𝑆𝑆𝑅𝑅 = √𝑅𝑅𝑀𝑀𝑆𝑆𝑅𝑅2 − 𝐵𝐵𝐵𝐵𝑎𝑎𝐵𝐵2                            (12) 

𝑅𝑅2 = 𝑆𝑆𝑁𝑁𝑁𝑁2 + 1 − 2𝑆𝑆𝑁𝑁𝑁𝑁 × 𝑅𝑅                        (13) 

Correspondingly, E can also be defined as: 
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        𝑅𝑅 = �𝑢𝑢𝑏𝑏𝑅𝑅𝑀𝑀𝑆𝑆𝑅𝑅2

𝜎𝜎𝐿𝐿
                              

(14)
 340 

where 

                                      𝑆𝑆𝑁𝑁𝑁𝑁 = 𝜎𝜎𝑇𝑇
𝜎𝜎𝐿𝐿

                                
(15)

 

where 𝑇𝑇𝑖𝑖 is the downscaled SM value in the i-th year, 𝐿𝐿𝑖𝑖 is the in situ SM value in the i-th year; T and L are the mean 

downscaled and in-situ SM values, respectively; N represents the total number of observations; and 𝜎𝜎𝑇𝑇  and 𝜎𝜎𝐿𝐿 represent the 

standard deviations of the downscaled and in-situ SM values, respectively. 345 

In the Taylor diagram, the SDV and R are expressed as the radial distance and the angle in the polar plot, respectively. 

Therefore, E represents the distance of the point "observed" on the Taylor diagram. The shorter the distance, the better the 

consistency between the tested LST product and the reference LST observation. Only significant correlations were considered 

in this study (p-value < 0.05). 

4 Results 350 

4.1 Verification of the downscaled soil moisture datasets 

Figure A2 shows the soil moisture SM images before and after downscaling in June 2002 and the value of a cross-sectional 

pixel. The results of downscaled SM products using spatial weights better retain the spatial distribution of the original images. 

Specifically, the spatial details of the soil moisture SM data after downscaling are more delicate finer. It is very important to 

validate the SM product before application. Because monthly products were produced in this study, we verified validated 355 

these products on monthly, seasonal and annual scales. Based on a comparison of the remote sensing data with the ground 

agricultural meteorological stations data, the validation reveals that the downscaled SM products boast a high accuracy at the 

monthly, seasonal and annual scales (Figure 3). Before applying the downscaled SM products, the high-spatial resolution 

downscaled SM productions are first validated against the in situ observations of CNMS over China, at three temporal scales. 

The values of the ground-measured SM were all slightly higher than those of the downscaled SM. However, due to the high 360 

variability in the SM at the seasonal scale, measurements at the monthly and seasonal temporal scales did not show the 

temporal SM trends or the yearly averaged SM values. When compared with the ground measurements, the downscaled SM 

data underestimated the ground observations at all three temporal scales, especially the monthly scale. We calculated the 

correlation coefficients (R) between the in situ and remotely sensed SM values; the R value was particularly high at the yearly 

scale. Specifically, at the monthly, seasonal and annual scales, the R values were approximately 0.84, 0.85, and 0.89 365 

respectively; the corresponding ubRMSE were 0.051, 0.048 and 0.042 m3/m3 respectively. Additionally, the bias value was -

0.016 m3/m3 on the annual scale, while the monthly and seasonal biases were -0.024 and -0.030 m3/m3, respectively. Figure 

3(a) displays the scatterplots between monthly downscaled SM and measured SM. It can be easily seen that the The 

downscaled SM agrees well with the ground-measured SM with a correlation coefficient (R) of 0.84, and the bias and 

ubRMSE are -0.057 m3/m3 and 0.056 m3/m3 respectively. Moreover, the comparisons at seasonal and annual temporal scales 370 

are also carried out (as shown in Figure 3 (b) and (c), respectively). Slightly better than monthly scale results are observed 



16 
 

with R, bias, and ubRMSE, ranging from 0.85 to 0.89, from −0.063 m3/m3 to -0.027 m3/m 3, and from 0.036 m3/m3 to 0.048 

m3/m3, respectively. 

   

         (a)                                       (b) 375 

 

(c) 

   Figure 3: Correlations between the downscaled SM and in situ SM measurements at the (a) monthly, (b) seasonal and (c) annual scales. The 

solid lines are the trend lines, and the dashed lines are the y=x reference lines. 

The ubRMSE, bias and R results for the SM products in different areas were calculated using in situ SM data. Although the 380 

downscaled SM products show a high accuracy level overall, we still need to further analyze the consistency of the downscaled 

SM and ground-measured SM in different regions. In Figure 4, the box plots present the median of for each indicator (the 

horizontal line within each box) and the first (Q1) and third quantiles (represented by the bottom and top of the box, 

respectively). The downscaled SM is strongly correlated with the in situ measurements, with mean R > 0. 64 during 12 months 

in the subregions. with R> 0.52 at most times during the 12-month period. Specifically, the downscaled SM products had have 385 

the lowest R and the highest bias and ubRMSE in December (possibly attributable to ice and snow cover in winter). The 

downscaled SM products displayed display the best correlation with in situ measurements in September (weaker vegetation 

Monthly
0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.1 0.2 0.3 0.4 0.5 0.6

D
ow

ns
ac

al
ed

 S
M

 (m
3 /m

3 )

In situ SM (m3/m3)

R: 0.79
Bias: -0.057 m3/m3

ubRMSE: 0.056 m3/m3

y=0.727+0.03

Seasonal
0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.1 0.2 0.3 0.4 0.5 0.6
In situ SM (m3/m3)

R : 0.85
Bias: -0.063 m3/m3

ubRMSE: 0.036 m3/m3

y = 0.766x + 0.027

Annual
0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.1 0.2 0.3 0.4 0.5 0.6

D
ow

ns
ca

le
d 

SM
 (m

3 /m
3 )

In situ SM (m3/m3)

R: 0.89
Bias: -0.027 m3/m3

ubRMSE: 0.048 m3/m3

y=0.896x + 0.01



17 
 

impact). Compared to the values of in the North China Monsoon and Northeast Monsoon Regions, the deviation values of in 

the South China Monsoon and the Qinghai-Tibet Plateau Regions are more variable. The reasons for this variability is are not 

the same; on the Qinghai-Tibet Plateau, some regions is are covered by snow and ice around the year, while South China 390 

features dense surface water networks and abundant rain. Please note Note that, the soil moisture SM data of for the frozen 

soil region is are somewhat questionable. In order to To maintain the integrity of the data and because a previous study 

demonstrated that the JAXA AMSR-E/2 products still have some capability ability to capture the temporal tend trend of soil 

moisture SM in frozen seasons (Zeng et al., 2015), we keep it retain these data. Therefore, the follow-up verification and 

analysis process also follow this criterion.  395 
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 400 

 
Figure 4: Box plots of the RMSE, bias and R (p<0.05) of comparison between downscaled SM and in situ SM in each region. 



19 
 

 

Figure 5 Time series of the area mean downscaled SM, RSSSM and TRMM precipitation during the study period from 2003 to 2018. 

In addition, the time series of downscaled SM, RSSSM and TRMM precipitation are also explored. The analysis of Figure 5 405 

shows that although the two groups of SM products differ greatly in absolute values due to their own algorithmic characteristics, 

they have a high degree of consistency in relative changes and are consistent with precipitation trends. Overall, the above results 

further demonstrate the validity of the downscaled SM, implying that the downscaled SM values are applicable for high-

precision hydrology and drought monitoring applications. 

As a complement to the evaluation presented in the previous section, the performance of the downscaled SM product was 410 

evaluated against in situ surface SM observations from stations in different land cover areas. The performance of the 

downscaled SM at the selected stations is provided, and the performance criteria (including R, SDV and center RMSE) 

estimated between the downscaled SM and in situ observations are also reported in Taylor diagrams in Figure 5. In general, 

the dots (stations) are unevenly distributed in the Taylor diagrams for all regions, indicating that the downscaled SM accuracy 

varies from one station to another. Forest land estimates more frequently plot outside of one normalized SDV circle than other 415 

estimates, indicating that SM associated with higher vegetation is more variable. 

In eastern China (the Northeast Monsoon, North China Monsoon, and South China Monsoon Regions), the downscaled 

SM products are in good agreement with the ground observations, although the variability of a few stations is large. Most of 

the correlation (R) values between the downscaled SM and the in situ observation range between 0.6 and 0.9. In western 

China, i.e., the Qinghai-Tibet Plateau and the Northwest Arid Regions, the downscaled products have poor correlations with 420 

the in situ observations, but higher correlation values were generally obtained in low vegetation areas. 
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Figure 5: Taylor diagrams illustrating a statistical comparison between downscaled SM and in situ measurements in each region. 
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4.2 Spatiotemporal change changes in of SM in different natural regions of China 

Over the past 17 years, the national average SM content was approximately 0.093m3/m3 and exhibited an overall decreasing 425 

trend (b = -0.167, R = 0.750, P = 0.05). This result also explains the increase in temperature, which resulted in an increase in 

evaporation and thus a decrease in SM in the context of global warming. From 2002 to 2012, there were slight fluctuations, 

but after 2013, the SM content sharply decreased. In addition, the years with the highest and lowest SM contents were 2004 

(11.07%) and 2016 (7.31%), respectively. From the annually averaged SM content of each subregion over the past 17 years, 

the SM values in the South China Monsoon Region were much higher than those in the other regions (average of 16.46%). In 430 

this region, the values of 2002-2011 were consistent with the national average (Similar trend or similar values), and the values 

of 2011-2013 were higher than the national average. The significant decline in SM in this region shows that it was more 

affected by the monsoon than the other regions in China. In contrast, the average annual trends of the North China Monsoon 

Region and Northeast China Monsoon Region, which are also affected by the monsoon, were relatively stable. The Southwest 

Wet Region ranked second, with an average SM of 9.16%, followed by the Northeast Monsoon Region and the North China 435 

Monsoon Region, with average SM values of 8.69% and 8.44%, respectively. Furthermore, the Northwest Arid Region and 

the Qinghai-Tibet Plateau Region displayed consistently low SM averages of 6.87% and 6.34%, respectively. The accuracy 

of the SM products in the Qinghai-Tibet Plateau Region was relatively low, mainly due to the greater impact of snow cover. 

This analysis shows that the SM contents of monsoon-affected areas (i.e., the Northeast China Monsoon Region, North China 

Monsoon Region and South China Monsoon Region) are more sensitive than those of inland areas (Northwest Arid Region 440 

and Southwest Wet Region). The average SM content was highest in the South China Monsoon Region, which also showed 

the most significant change. This region displayed a decreasing trend throughout the study period. The rate of decline in this 

region is defined by (b= -0.246, R=0.570, P=0.01) and is much higher than the rates in the other monsoon regions. The North 

China Monsoon Region has experienced numerous droughts in the past and is currently exhibiting a decreasing trend (b=-

0.383, R =0.621, P=0.05). Thus, it is predicted that the drought in North China will further intensify and even trigger a series 445 

of agricultural disasters. The SM contents in the Southwest Wet Region and the Northeast China Monsoon Region have 

slightly decreased over the past 17 years, but the Northwest Arid Region has shown a slight increasing trend (b=0.04, R=0.651, 

P=0.05). The drought situation in the northwestern part of the study area has positive significance for ecological, agricultural 

and livestock production in the Northwest Arid Region of China.   

Figure 6 (a) shows that downscaled SM can represent the typical seasonal variations well, with minimum SM in winter and 450 

maximum SM in summer affected by the monsoon in China. The figure also illustrates that the downscaled SM captures the 

extreme drought events occurring in 2009, 2011 and 2015 well.  
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Figure 6: Time series of the area mean downscaled SM during the study period from June 2003 to December 2018.  455 
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Figure 6: Interannual variations in the average annual SM of the six geographic regions 

Note: Due to the lack of data from January to June of 2002, the annual averages are calculated from the average of only the second half; the 

same procedure applies to the analyses below.460 

4.2 Characteristics of the spatiotemporal variations in SM 

To obtain the overall long-term annual, seasonal and monthly variations of in the downscaled surface SM in spatial detail, a 

linear regression slope is was conducted at the pixel level from 2002 to 2018. The slope is used to represent the variation rate 

of the downscaled SM. If the slope value is greater than 0, the downscaled SM an increasing trend becomes increasingly wet 

with the passage of time in the past 17 years, with a higher value indicating a more pronounced change; when the Slope value 465 

is less than 0, the surface soil water tends to become dry with the passage of time in the past 17 years, with a lower value 

indicating a more pronounced change; and a slope=0 indicates no change. Figure 7 (a) (left) is a map of the spatial trend 

change (slope) of SM and Figure 7 (b) is propensity slope trend values at 90% confidence level. distribution map of the slope. 

On the whole, most areas in northwestern China tend to become slightly wetter, while some parts of the eastern region become 

dry and some parts become slightly wetter. This result also just verified the view that people have been discussing the gradual 470 

wetness of Northwest China in recent years (Cong, et al., 2017). We think that the main reason is that global warming has 

promoted the intensification of the water cycle, which is the root cause of climate warming and humidification in the 

Northwest. For the Northwest region, water vapor mainly comes from the Arabian Sea and the Indian Ocean. As the Arctic 

warms, water vapor from the Arctic Ocean increases. Under the influence of air currents, the water vapor of the three places 

concentrated in the northwest, and the precipitation in the northwest increased rapidly, resulting in an increase in soil moisture. 475 

In the eastern monsoon region, including a small part of Inner Mongolia, the junction of Jilin and Liaoning, the North China 

Plain, southern Shaanxi, eastern Shanxi, and most part of Henan, Hebei and Shandong, there is a tendency to become dry, 

which have been reported in some studies (Liang, et al., 2017). Especially in the Huai River Basin, that is, the SCM, including 

Jiangsu and Zhejiang, showing a trend of drying up. In southern Guangdong, the mountainous areas of Fujian and parts of 
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Jiangxi show a trend of getting wet. In SWM, the Sichuan Basin is expected to become dry, and the Yunnan-Guizhou Plateau 480 

is also facing a relatively dry situation. The main reason for this phenomenon is that during this period, the southwestern 

region experienced high temperatures leading to a large amount of evaporation, which caused the soil moisture to decrease. 

This result indicates that the agricultural drought risk in SWM will increase in the future. As shown in Figure 6(b), the 

distribution of significant dryness changes (satisfying the 90% confidence interval) is relatively scattered, accounting for 

about 13% of the total pixels, mainly distributed in Horqin Sandy Land, North China Plain, Henan, Jianghuai Region, 485 

Hanjiang Plain, Dongting Lake Plain, eastern Tibet and other places. The significant wetness area is about 10% of the total 

pixels, mainly distributed in northwestern Qinghai and eastern Xinjiang. The main areas that become dry and wet are basically 

consistent with the boundary between the boundary between the first and second steps of elevation in Figure 1 and the Hu's 

line (the black dotted line in Figure 6). This is an interesting phenomenon, which means that precipitation and topography not 

only affect the spatial distribution of soil moisture, but also affect the change of SM. 490 

In general, the changes in surface soil water trend from northwest to southeast, and the distribution pattern is wetter-drier.  

correlation coefficients, and Figure 7 (right) shows the changes in slope corresponding to the correlation coefficients. The SM 

changes in China have exhibited obvious geographical and seasonal differences over the past 17 years. Different slopes 

indicate different trends. Specifically, a slope >0 indicates an increasing trend, with a higher value indicating a more 

pronounced change; a slope <0 indicates a decreasing trend, with a lower value indicating a more pronounced change, and a 495 

slope=0 indicates no change. The SM changes in China have exhibited obvious geographical and seasonal differences over 

the past 17 years. Based on the annual SM content, the overall SM content in China has shown a slight decreasing trend, with 

the area of significant reduction accounting for 45.9% of the total area and the area of significant increase accounting for 49.2% 

of the total area. In the arid areas of the northwest, including northern Inner Mongolia and most of Xinjiang, Qinghai, and 

western Tibet, there is a trend of becoming wet; The trend of dry and wet changes in Qinghai and Tibet is basically the same 500 

as the trend of lake elevation changes in the region From the perspective of the different regions, in the arid areas of the 

northwest, there is a trend of getting wet, including northern Inner Mongolia, most of Xinjiang, and northern and western 

Qinghai-Tibet; among these regions, the margin of the Tarim Basin in Xinjiang has a trend of becoming dry. The conditions 

will become more humid, which will alleviate the current drought situation in northwestern China (Cong, et al., 2017). In the 

eastern monsoon region, including the junction of Inner Mongolia, Jilin and Liaoning, the North China Plain, eastern Shanxi, 505 

southern Shaanxi, and most of Henan and Hebei, except for Shandong in the coastal area, there is a drying trend. These results 

are in accordance with those reported Similar findings have also been reported in previous studies (Liang, et al., 2017). The 

monsoon area south of the Huai River, that is, the SCM including Jiangsu and Zhejiang, shows a drying trend. Regions in 

southern Guangdong, the mountainous areas of Fujian and parts of Jiangxi show a wetting trend. In SWM, in addition to the 

Sichuan Basin that tends to become dry, the Yunnan-Guizhou Plateau is also facing drier conditions. relatively obvious 510 

decreasing trends are present in the plain areas west of the Changbai Mountains in the Northeast China Monsoon Region, the 

Liaodong Peninsula and Shandong Peninsula in the North China Monsoon Region, the eastern coastal areas and the middle 
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and lower reaches of the Yangtze River Basin and the Sichuan Basin in the Southwest Wet Region, and the forest areas in the 

southern Qinghai-Tibet Plateau Region, and the slopes of these changes exceed 0.3 (R<-0.6). This phenomenon occurred 

mainly because during this period, Southwest China experienced high temperatures and extensive evaporation, and these 515 

conditions contributed greatly to a regional water deficit for plants. In contrast, the SM contents in the southern Hexi Corridor, 

the southern part of Xinjiang and the northern part of the Qinghai-Tibet Plateau in the Northwest Arid Region increased 

significantly, with slope values of 0.2, which is less than R>0.5. From 2002 to 2018, the SM contents in most parts of China 

showed a decreasing trend (except for the Northwest Arid Region), which is consistent with the analysis in Figure 6. This 

result shows that drought risk will increase throughout the country in the SWM in the future. In the Northwest Arid Region, 520 

the conditions will become more humid, which will alleviate the current drought situation in northwestern China (Cong, et 

al., 2017). Furthermore, effectively improving the ecological environment in the Northwest Arid Region of China has positive 

significance for western China's development and the Belt and Road Initiative. 

  
(a) (b) 525 
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Figure 7: The interannual variability rates (slope, left) and correlation coefficients (R, right) of the seasonal and annually averaged SM contents 

from 2002 to 2018; the dashed lines divide areas of high and low slope values. 530 

Spatial distribution of annual SM variability in slope based on downscaled data from 2002 to 2018, (a) slope trend values of all pixels (b) 

propensity slope trend values at 90% confidence level; the black dotted line is the dividing line between wet and dry changes. 

To better understand the SM changes throughout China, the spatial distributions of the annual variations in the SM for 

different regions in different seasons were are analyzed. As shown in Figure 8, the overall changes in the SM throughout 
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China over the past 17 years exhibited obvious seasonal characteristics. Figure 8 shows the pixel-level trend of SM data in 535 

each season. We found that the changes in soil moisture in spring (Figure 7 a) and autumn (Figure 7 c) are generally similar 

to the annual trend, while the soil moisture in most areas tends to become dry in summer (Figure 7b). Soil moisture except 

for a few areas in southeast China that become dry, most areas of China become wet in winter (Figure 7d). 

. In spring, the rate of the decrease in SM was relatively high, except in some areas of the Northeast Plain, the Three Gorges 

Reservoir area, and the area surrounding the Central Gobi region. More than 80% of the South China Monsoon Region showed 540 

different decreasing trends, especially in the Jiang-Huai region, and the value of the slope reached as high as -0.3 (R<-0.7). 

Another severe decline occurred in the Sichuan Basin during spring. In addition, in the Liaodong Peninsula, the Shandong 

Peninsula, and the eastern part of the Kunlun Mountains in the North China Monsoon Region, a decreasing trend predominated 

with a negative slope of less than -0.2 (R<-0.5). In summer, the heterogeneity of the SM among the six subregions was obvious: 

large change trends occurred in the northwestern Heilongjiang region of the Northwest Arid Region, the Yunnan-Guizhou 545 

Plateau in the Southwest Wet Region, and the Yangtze River plain in the South China Monsoon Region; the slope was less 

than -0.4 (R<-0.7). Generally, due to the large changes in the interannual hydrothermal and monsoon precipitation, the area 

affected by the monsoon in the east varied greatly. From spring to summer, the range of fluctuation in the SM content in the 

South China Monsoon Region was significantly enhanced. Usually, shifts in precipitation belts occur during the rainy season; 

these shifts are governed by the summer monsoon and occur during the rainy season in the Pearl River Delta and Yangtze 550 

River Delta (Zhou et al., 2010). In the spring and autumn season, the line of dry and wet changes is distributed from the east 

to the west. The overall situation is that the east becomes drier and the west becomes wetter. The difference is that the Sichuan 

Basin becomes drier and the middle reaches of the Yangtze River wetter. Generally, due to the large changes in the interannual 

hydrothermal and monsoon precipitation, the area affected by the monsoon in the east varied greatly. From spring to summer, 

the range of fluctuation in the SM content in the South China Monsoon Region was significantly enhanced. Usually, shifts in 555 

precipitation belts occur during the rainy season. These shifts are governed by the summer monsoon and occur during the 

rainy season in the Pearl River Delta and Yangtze River Delta (Zhou et al., 2010). During the rainy season, the total rainfall 

was approximately 80% of the annual rainfall (Yan et al., 2015). However, in summer, there are more pixels become dry than 

become wet, which means of the vegetation is vulnerable to drought during the main growing season.. The SM contents in 

the Heilongjiang region in the Northeast Monsoon Region in autumn showed an extreme downward trend with a slope of less 560 

than -0.4 (R< -0.7). This trend extended to the northern part of Inner Mongolia in the Northwest Arid Region (slope<-0.4, R<-

0.5), and a significant downward trend was also apparent in the hilly area of Chongqing, which is on the border between the 

Southwestern Wet Region and the South China Monsoon Region, with values that decreased to less than -0.3 (R < -0.5). In 

addition, in the Yellow-Huai River area of the North China and South China Monsoon Regions, the SM in the middle and 

lower reaches of the Yangtze River and the Sichuan Basin in the Southwest Wet Region showed a significant decreasing trend, 565 

and the slope in the main area decreased to less than -0.4 (R<-0.5). In summer and autumn, the trends in the monsoon regions 

were are obvious. Although many rainfall events occur in the summer and autumn monsoon regions, the spatial and temporal 
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distributions of precipitation were are not balanced. In addition, the middle and lower reaches of the Yangtze River are mainly 

dominated by a subtropical high-pressure system in summer, during which and a large amount of evaporation takes place, 

which may have been be the main cause of the observed decline decrease. The change in SM in winter was is not as significant 570 

as that those in other seasons. The decline occurred mainly in Southwest China (such as Yunnan and western Guangxi), as 

was also detected in previous studies (Mao, et al. 2012). The precipitation in autumn was generally low, except in the 

vegetation areas in the south, and there was a rising slope (slope>0.4, R>0.7) in the Three Gorges Dam in the upper reaches 

of the Yangtze River. The appearance of a decreasing slope (slope<-0.4, R<-0.7) is very noteworthy: it is very likely that the 

Three Gorges Dam will have a significant impact on the local SM variations after storage. The slopes during the four seasons 575 

in the Bohai Rim region of the North China Monsoon Region and the Yangtze River Delta region in the South China Monsoon 

Region were extremely high, which may have been caused by the rapid increase in the area of impervious surfaces attributable 

to extensive urbanization. Conversely, the SM content increased increases in areas affected by monsoons, such as the Qinghai-

Tibet Plateau Region (South southern Tibet) and the Northwest Arid Region (East eastern Inner Mongolia) Although many 

rainfall events occur in the summer and autumn monsoon regions, the spatial and temporal distributions of precipitation were 580 

not balanced. In addition, the middle and lower reaches of the Yangtze River are mainly dominated by a subtropical high-

pressure system in summer, during which a large amount of evaporation takes place, which may have been the main cause of 

the observed decline. The change in SM in winter was not as significant as that in other seasons. Conversely, the SM content 

increased in areas affected by monsoons, such as the Qinghai-Tibet Plateau Region (southern Tibet) and the Northwest Arid 

Region (eastern Inner Mongolia). 585 

 
(a)                                            (b) 
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 590 
(e)                                             (f) 
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(g)                                                 (h) 

Figure 8 The interannual variability rates (slopes) and correlation coefficients (R) of the monthly average SM contents from 2002 

to 2018. 595 

We performed an analysis of the spatiotemporal changes in SM on the monthly scale in different years (Figure 8). The 

monthly average variability was more volatile than the variability at the seasonal and annual scales, especially in January and 

July. In January, northern China is under the influence of the Eurasian high-pressure center, and the monsoon in July is under 

the control of the subtropical Pacific high-pressure system. The South China Monsoon Region is particularly susceptible to 

extreme weather events (e.g., El Niño occurred in 2006 and 2015), resulting in weak summer monsoons and southerly 600 

monsoon rains in central China or south of the Yangtze River. In the northern regions, droughts and high temperatures are 

prone to occur in summer, and low temperatures and floods are prone to occur in the south. The low and high temperatures 

and heavy precipitation caused by these climatic conditions may also have been important causes of the sudden changes in 

SM. 

 605 
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Figure 8: The interannual variability rates (slopes) and correlation coefficients (R) of the monthly average SM contents from 2002 to 2018. 

(Note: Due to the lack of data for the spring seasons of 2002 and 2018, these two phases of data are not included in the calculations.)

5 Data availability 

The fine-resolution SSM dataset presented in this article Creative Commons Attribution 4.0 International is available under the Creative 610 

Commeons Attribtion 4.0 International at the following link: http://doi.org/10.5281/zenodo.4049958 (Meng et al., 2020) 

doi.org/10.5281/zenodo.4738556 (Meng et al 2021). It This dataset covers all of China China’s land area at a monthly temporal resolution and a 

0.05º spatial resolution from July 2002 to December 2018.  

6 Discussion and conclusions 

Global climate change has modified the spatial and temporal distributions of China's hydrologic resources, which in turn have 615 

led to changes in the Earth's biochemical cycle. SM is an important component of the Earth's biochemical cycle and not only 

is an important driver of the global water cycle but also potentially affects global atmospheric circulation. Access to 

quantitative SM information enhances not only water management, agricultural productivity, and drought monitoring 

capabilities but also climate prediction. Studying the high-resolution spatial and temporal characteristics of SM is of great 

significance for practical applications, such as water resource management, agricultural estimations, drought monitoring and 620 

climate change. Based on the 25-km spatial resolutions of the AMSR-E, SMOS, and AMSR2 microwave products, an SWD 

model was established using the negative correlation between the SM and TVDI for spatial data fusion to generate 0.05°-

resolution long-sequence continuous SM products. The accuracy of the verified data set is satisfactory (bias: -0.024, -0.030 

and -0.016 m3/m3, ubRMSE: 0.051, 0.048 and 0.042, correlation coefficient (R): 0.82, 0.88, and 0.90 on monthly, seasonal 

and annual scales, respectively). The data were used for a comprehensive spatial and temporal analysis of the SM status, 625 



33 
 

which revealed the characteristics and differentiation of SM in China's natural regions from 2002 to 2018. Downscaled 

products were used to analyze the spatial and temporal differences in SM among the six natural regions in China over the past 

17 years, the results of which indicated that the SM changes in China have obvious regional and seasonal characteristics. 

SM showed an overall decreasing trend, and there were some fluctuations in SM in China over the past 17 years; these 

fluctuations can be divided into a slow growth phase from 2002 to 2011 and a strong declining phase from 2011 to 2013. 630 

From 2014 to 2018, the SM steadily increased, and a slow decreasing phase occurred in 2010. These findings mean that SM 

is currently slightly decreasing, and in the next few years, China will face the risk of increased drought (especially during 

summer in the Southeast Monsoon Region and the North China Monsoon Region). Rapid decreasing trends occurred in the 

North China Monsoon Region, the South China Monsoon Region, the Yangtze River Delta region and the Bohai Sea region, 

while significant increasing trends occurred in the southern part of the Northwest Arid Region (in the northwestern Qinghai-635 

Tibet Plateau). These trends can be summarized as wet in the south and dry in the north, with increases in the west and 

decreases in the east. In the different seasons, although the overall trends were still declining, the SM changed significantly 

from spring to winter. The SM was relatively evenly distributed throughout the six subregions in spring, while the SM 

decreased in the eastern monsoon region (the Northeast Monsoon Region, North China Monsoon Region, and South China 

Monsoon Region) in summer and autumn. Moreover, the inland areas (some areas in the Northwest Arid Region, the Qinghai-640 

Tibet Plateau Region, and the Southwest Wet Region) showed an opposite trend, indicating the significant impact of summer 

monsoon precipitation on SM. In autumn, the SM was significantly reduced in the northeastern part of China, and grasslands 

dried out. Overgrazing and grassland reclamation exacerbated desert conditions. These conditions may have led to the rapid 

decline in SM. The monthly average change was basically the same as the seasonal average variation, but the changes were 

more severe. Increasing urbanization has a significant impact on SM, especially in areas with relatively rapid urbanization, 645 

such as the middle and lower reaches of the Yangtze River, the Pearl River Delta and the Bohai Rim, but not areas influenced 

by the monsoon. One of the factors that cannot be ignored is the decline in SM caused by the rapid expansion in the area of 

impervious surfaces caused by rapid urbanization.  

Although there are many soil moisture algorithms and products, and different algorithms have their own advantages and 

disadvantages, and their accuracy performance is inconsistent in different regions. The main reason is that the resolution of 650 

passive microwave is too low, and the theoretical model of large-scale (mixed pixels) pixels is not very mature. Deep learning 

algorithms have certain advantages, but their accuracy depends on training and test data. Especially in areas with a lot of 

vegetation and rainfall, the accuracy performance is inconsistent for different algorithms. For example, in vegetation coverage 

areas, single albedo and optical thickness coefficient values are obtained differently for different retrieval algorithms, which 

result in some difference in soil moisture retrieval. Another difference is the treatment of heavy rainfall. When there is heavy 655 

rainfall, the retrieval error of microwave soil moisture is very large. Some retrieval algorithms determine that when there is 

heavy rainfall, the retrieval soil moisture is an invalid value or a null value, but some algorithms directly set the soil moisture 
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saturation value as the soil moisture value. We need to overcome the above problems as much as possible and improve the 

accuracy of data products based on the observation data of SM at the site. 

The global soil moisture dataset is constantly being produced, especially in recent years, the frequency of updates is getting 660 

faster and faster. Each soil moisture dataset and method of producing SM has its own advantages and disadvantages. Our SM 

dataset is mainly concentrated in China. Two similar sensors mounted on different satellites are used to produce a set of SM 

datasets that are continuous in time and space in China. For the missing part in the middle, a relatively reliable sensor was 

used to make up for it. In order to ensure the consistency of the time and depth of the observation data of the three instruments, 

we have made corrections through building reconstruction model. In particular, we took advantage of ground observation site 665 

data to make local improvements. To meet the needs of research such as agricultural drought monitoring, we downscaled the 

soil moisture products and obtained a higher resolution dataset. 

Based on the inversion of soil moisture products using microwave sensors mounted on three different satellites, two models 

were established to eliminate the difference between observation time and observation depth, and a time-continuous soil 

moisture data set was generated for the period from 2002 to 2018. In order to further meet the needs of local monitoring and 670 

research, a downscaling model was constructed using visible light and thermal infrared data, and then the soil moisture data 

set was downscaled to generate a set of soil moisture data sets with spatial resolution of 0.05°. A detailed comparison and 

analysis with the in situ measurements shows that the reconstruction results have high precision, the bias are -0.057, −0.063 

to -0.027 m3/m3, and unbiased root mean square error (ubRMSE) are 0.056, 0.036 and 0.048 m3/m3, and correlation 

coefficient (R) are 0.84, 0.85, and 0.89 on monthly, seasonal and annual scales, respectively). The data are freely available at 675 

http://doi.org/10.5281/zenodo.4738556 (Meng et al 2021). In order to cross-validate with the low-resolution soil moisture 

data set (RSSSM data, Chen et al. 2021), we upscaled the soil moisture data set and then did a cross-validation analysis. The 

analysis results show that the two data have a high consistency in time and space, which indirectly shows that our soil moisture 

data set is available. The change of soil moisture is greatly affected by rainfall, and we further analyzed the relationship 

between the temporal and spatial changes of soil moisture and rainfall, showing that there is a high consistency between them. 680 

The high spatial resolution monthly SM dataset constructed for China provides a detailed perspective of the patterns of the 

spatial and temporal changes in SM. The SM dataset was used to analyze the regional characteristics and capture the variations 

in SM at the annual, seasonal and monthly scales.  

 The high spatial resolution monthly SM dataset constructed for China provides a detailed perspective of the patterns of 

the spatial and temporal changes in SM. The SM dataset was used to analyze the regional characteristics and capture the 685 

variations in SM at the annual, seasonal and monthly scales. Our results showed that the soil moisture in China has been 

shown generally exhibits cyclical fluctuations, which can be summarized as a slight downward trend in the southeast and a 

slight upward trend in the northwest. Most areas have a drying trend in summer, while most areas have the opposite in autumn. 

The main reason for soil moisture in Northwest China may be that global warming drives the intensification of the water cycle, 

which is the fundamental reason for the warming and humidification of the climate in Northwest China. For the Northwest, 690 
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water vapor mainly comes from the Arabian Sea and the Indian Ocean. As the Arctic warms, water vapor from the Arctic 

Ocean increases. Under the action of air currents, water vapor in the three places concentrated in the northwest, and 

precipitation in the northwest increased rapidly, which leads to an increase in soil moisture. The dryness of southeastern China 

is mainly due to the increase in evaporation caused by the increase in temperature, which leads to the decrease of soil water. 

Of course, it may also be affected by more factors, such as El Nilo and La Niña, which requires further research in the future. 695 

The increasing precipitation and artificial afforestation in the Northwest Arid Region of China have led to an increase in 

SM throughout this region. Surface temperatures can not only affect the evapotranspiration of SM but also indirectly affect 

SM by affecting influencing the transpiration of vegetation. Therefore, temperature also has a significant impact on the 

changes in SM. All these analyses indicate that it is very important to analyze analyzing the spatiotemporal characteristics of 

SM is very important for local climate change research. We admit that the data set is not particularly perfectly at present. We 700 

have attempted various means to improve its applicability for users. We are working on new version, which will be friendlier 

to users. The availability of the data set will also be improved in the new version. 

Appendix A:  
1 In situ SM measured stations 

The SM data provided by national agricultural gas stations (shown in Figure A1) includes relative soil humidity (%). The shallowest 705 
observation depth of the site is 10 cm to better match the surface SM. The remote sensing inversion data is expressed in volumetric water content 

in m3/m3. Before comparison and verification, it is necessary to perform unit conversion on the measured soil moisture site data to achieve the 

same amount, the formula  (A1) can be used to convert the relative humidity of the site soil to the soil volumetric water content: 

𝑁𝑁𝑆𝑆𝑀𝑀 = 𝑀𝑀𝑣𝑣 ∗ 𝑁𝑁 ∗ 𝜌𝜌𝑠𝑠                                                   (A1)  

where 𝑁𝑁𝑆𝑆𝑀𝑀 is the soil volumetric water content (%), 𝑀𝑀𝑣𝑣 is the relative humidity of the soil, 𝑁𝑁 is the field water holding capacity, and 𝜌𝜌𝑠𝑠 is 710 
the soil density. 
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Figure A1: Distribution of agricultural meteorological stations (general station, basic station, and key station)  

2 Downscaled results 

Figure A2 display the original and downscaled fine resolution SM products of China, it can be seen that the downscaled SM estimates can 715 
present much more spatial details while maintaining the trend when compared with the original SM product.  

  
Figure A2: Comparison of downscaled SM images and original images   

 

Appendix B: 720 
Scatterplots of between RSSSM with downscaled SM in the six subregions are shown in Figure B1. In general, good agreements 
between RSSSM and downscaled SM products can be found at six subregions. It can also be observed that the overall value of 
downscaling products is lower compared with RSSSM, which are similar results of JAXA production reported by published studies 
(Zeng et al. 2015, Cui et al. 2018).  

 725 
(a)                                                   (b)
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(c)                                                   (d)

 
(e)                                                  (f) 730 

Figure B1: Scatter plot sand fitting of the RSSSM and downscaled SM dataset in six subregions 

Supplement. The supplemental material related to this article is available online at: https://doi.org/10.5194/essd-10-2097-2020-supplement.  
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