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 79 

 80 

Abstract 81 

 82 

The African continent is probably the one with the lowest density of hydrometric stations 83 

currently measuring river discharge, despite the fact that the number of operating stations 84 

was quite important until the 70s. This new African Database of Hydrometric Indices 85 

(ADHI) provides a wide range of hydrometric indices and hydrological signatures 86 

computed from different sources of data after a quality control. It includes 1466 stations 87 

with at least 10 years of daily discharge data over the period 1950-2018. The average 88 

record length is 33 years and 131 stations have complete records over 50 years. With 89 

this new dataset spanning most climatic regions of the African continent, several 90 

hydrometric indices have been computed, representing mean flow characteristics and 91 

extremes (low flows and floods), that are made accessible to the scientific community. 92 

The database will be updated on a regular basis to include more hydrometric stations and 93 

longer time series of river discharge. The ADHI database is available for download at: 94 

https://doi.org/10.23708/LXGXQ9 (Tramblay and Rouché, 2020). 95 

 96 

 97 

1. Introduction 98 

 99 

There is a growing need for large-scale streamflow archives (Addor et al., 2020; Hannah 100 

et al., 2011), that are extremely useful to evaluate continental land-surface simulations 101 

(Archfield et al., 2015; Newman et al., 2015; Ghiggi et al., 2019; Do et al., 2020), remote 102 

sensing data products (Beck et al., 2017; Brocca et al., 2019; Forootan et al., 2019; Satgé 103 

et al., 2020), develop operational flood or drought monitoring systems (Alfieri et al., 2020; 104 

Harrigan et al., 2020; Lavers et al., 2019; Thiemig et al., 2011), or evaluate aquifer 105 

outflows and characteristics (Dewandel et al., 2003, 2004). In Africa, the density of active 106 

monitoring networks is lower compared to other continents and there are challenges in 107 

the exchange of hydrometric data across countries (Mahé and Olivry, 1999; Viglione et 108 

al., 2010; Mahe et al., 2013; Stewart, 2015; Dixon et al., 2020).  109 

 110 

African countries are largely under-represented in large-scale databases such as the 111 

Global Runoff Data Center (GRDC) or the recent GSIM initiative (Do et al., 2018; 112 

Gudmundsson et al., 2018), and/or the time series are mostly not updated. At the African 113 

scale, there is still a lack of coordination for hydrological data collection and 114 

dissemination, despite the launch in 1975 of the UNESCO Intergovernmental 115 

Hydrological Program (IHP) dedicated to water research, water resources management, 116 

as well as education and capacity building. This initiative enhanced the set up and 117 

https://doi.org/10.23708/LXGXQ9
https://www.zotero.org/google-docs/?jl2XlN
https://www.zotero.org/google-docs/?jl2XlN
https://www.zotero.org/google-docs/?4OVXXk
https://www.zotero.org/google-docs/?gDSIKc
https://www.zotero.org/google-docs/?gDSIKc
https://www.zotero.org/google-docs/?6HXvc2
https://www.zotero.org/google-docs/?6HXvc2
https://www.zotero.org/google-docs/?WrGpPD
https://www.zotero.org/google-docs/?bmGvqI
https://www.zotero.org/google-docs/?bmGvqI
https://www.zotero.org/google-docs/?oroMNA
https://www.zotero.org/google-docs/?oroMNA
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management of international rainfall and runoff databases at the regional scale of the 118 

FRIEND programs (Van Lanen et al., 2014), but these are still largely not updated. There 119 

is still not enough partnership between the national hydrological services and in many 120 

countries licensing issues prevent the distribution of the data collected. 121 

 122 

The density of monitoring networks in Africa has been declining over time; a serious 123 

concern for hydrologists since data acquisition and experimental data analysis remain 124 

central to understand hydrological processes and their spatio-temporal variability 125 

(Hannah et al., 2011; Roudier et al., 2014; Blume et al., 2016; Beven et al., 2020). There 126 

are several reasons for this decline: the budgetary austerity measures imposed by the 127 

international financial institutions, the lack of permanent funding of national hydrological 128 

services, and the typically low number of well-trained technical staff in these departments 129 

(Bodian et al., 2016, 2020; Hannah et al., 2011). As a result, hydrological monitoring is 130 

now often dependent on research projects that cannot support long term observations. 131 

Studies focusing on regional river discharge variability are rare at the scale of Africa due 132 

to the lack of data. For instance, Conway et al. (2009) could only present a study on a 133 

reduced number of representative regional basins, and Roudier et al. (2014) compared 134 

only published anomaly results in their review of climate change impacts on the hydrology 135 

of West Africa.  136 

 137 

Since in many cases, there are strict conditions related to the redistribution of un-138 

processed data (Do et al., 2018), it is very often not possible to provide the complete time 139 

series of discharge data. To address these challenges, the focus has been shifted to 140 

publishing hydrological indices and signatures, which are useful to to characterize the 141 

behavior of different components of river discharge, from low flows, annual runoff to floods 142 

(Addor et al., 2018; McMillan et al., 2017), and to assess the potential impact of climate 143 

change and human activities on river regimes (Mahe et al., 2013). They can be used for 144 

various purposes, including basin classifications, aquifer properties characterization, 145 

hydrological predictions in ungauged catchments (Westerberg et al., 2016, Gnann et al., 146 

2020) and to investigate long term trends for different hydrological processes (Do et al., 147 

2017; Nka et al., 2015). We introduce here the African Dataset of Hydrometric Indices 148 

(ADHI) that aims at giving access to an ensemble of hydrometric indices computed from 149 

an unprecedented large ensemble of stations with daily discharge data (Tramblay et al., 150 

2020, Tramblay and Rouché, 2020). Thus, useful information regarding the African rivers’ 151 

variability over the last 68 years can be shared with the international community, while 152 

respecting the confidentiality of the original records when these are not allowed to be 153 

publicly shared by the national authorities. 154 

 155 

 156 

2. Data sources and processing 157 

https://www.zotero.org/google-docs/?Q9yVaE
https://www.zotero.org/google-docs/?ndLmAl
https://www.zotero.org/google-docs/?JQ8KqA
https://www.zotero.org/google-docs/?rkBgH8
https://www.zotero.org/google-docs/?wIkips
https://www.zotero.org/google-docs/?SCg9v6
https://www.zotero.org/google-docs/?SCg9v6
https://www.zotero.org/google-docs/?8o4tpw
https://www.zotero.org/google-docs/?8o4tpw
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 158 

2.1 Data collection 159 

 160 

The database used in the present work is based on the collection of stations from the 161 

Global Runoff Data Center (GRDC) and the SIEREM database (Boyer et al., 2006; Dieulin 162 

et al., 2019). The hydro-climatological data contained in SIEREM is the legacy from the 163 

former Laboratoire d’Hydrologie of the Office de la recherche scientifique et technique 164 

outre-mer (ORSTOM, now Institut de Recherche pour le Développement, IRD, France). 165 

It must be noted that in addition to the daily data, the SIEREM database also contains 166 

instantaneous rainfall and discharge for hundreds of experimental small catchments 167 

mostly established in the 1950s and 1960s. The criterion to include a station in the ADHI 168 

database is to have a minimum of 10 full years, not necessarily consecutive, of daily 169 

discharge data between 1950 and 2018. Most of the hydrological stations in French-170 

speaking countries have been set up and managed for decades by the ORSTOM Institute 171 

(Mahe and Olivry, 1999). At the time the data were processed, the SIEREM database 172 

included a total of 1046 series, with several of them being duplicates of the same 173 

monitoring station but for different time periods. There are a total of 101 stations with 2 174 

times series, 42 stations with 3 time series, 24 stations with 4 time series and 7 stations 175 

with 5 time series. In most cases, one time series includes the longest record and that 176 

one was kept for the analysis in the present paper. For some stations, the different time 177 

series were differing substantially during the same period, due to different rating curves. 178 

A visual inspection of these series led to the elimination of erroneous or doubtful data. 179 

Only for 17 stations the time series were concatenated, after making sure the rating 180 

curve(s) applied on the different time periods to compute river discharge were adequate, 181 

by comparing daily runoff on a common period. Additionally, to these 1046 series, 933 182 

stations have been retrieved from the GRDC database. For 106 of these stations, there 183 

was a duplicate station in the SIEREM database with longer time series and the latter 184 

were selected. After this data quality processing step, 672 stations were kept for SIEREM 185 

and 794 for the GRDC database for a total of 1466 stations (Figure 1). The stations from 186 

SIEREM mostly cover the Western, Central and Northern African regions and stations 187 

from the GRDC the Eastern and Southern parts of Africa. Figure 2 depicts the number of 188 

stations available per year, showing a sharp decline at the end of the 1980s, and shows 189 

the number of stations having from 10 to 69 years of record. It can be seen that, for about 190 

100 stations, complete records are available over 50 years. 191 

 192 

2.2 Data quality 193 

 194 

Since the data collected are sometimes from manual records, they are subject to possible 195 

errors in the reporting of discharge values. For outlier detection, no single method can 196 

outperform visual inspection and local expert knowledge (Crochemore et al., 2020). 197 

https://www.zotero.org/google-docs/?srCvvg
https://www.zotero.org/google-docs/?srCvvg
https://www.zotero.org/google-docs/?Xl0Jhv
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Indeed, in rivers with a strong variability in the annual regime and extremes, the most 198 

important flood peaks may be wrongly reported as outliers. Consequently, we carried out 199 

a visual inspection of the data when the maximum value was exceeding 5 times the 200 

median discharge. For only a few data points in the discharge time series, some obvious 201 

errors were detected with daily discharge exceeding by several orders of magnitude the 202 

median flow. In these cases, the data has been reported as missing data in an absence 203 

of an objective criterion to correct the record. In addition, through visual inspection it was 204 

possible to identify stations where some gap filling methods have been applied (13 205 

stations) or where the data are suspicious (28 stations). A flag has been added in the 206 

metadata to identify these stations. It is worth noting that, for the stations of the SIEREM 207 

database, most of the data were analyzed and criticized prior to the inclusion in the 208 

database by the former ORSTOM hydrology laboratory, with therefore a reduced level of 209 

error in the archived data. 210 

 211 

In addition, to detect possible shifts in the data due to non-natural influences, such as an 212 

artificial drift in the monitoring devices, changing instrumentation, recalibration of the 213 

rating curve, or river regulation by dams or reservoirs, the Pettitt test (Pettitt, 1979) was 214 

applied to mean annual runoff series. We reported the cases when the null hypothesis of 215 

homogeneity was rejected, at the 5% significance level. 14 stations are reported with 216 

homogeneity breaks in the metadata and this result was consistent with a visual 217 

inspection. Since the possible causes of these changes in flow regime could be manyfold 218 

and should be investigated with a more detailed case-by-case analysis, we choose to 219 

keep these stations in the database, but to flag them accordingly. 220 

 221 

2.3 Climate characteristics 222 

 223 

This data collection results in the largest ever built database of daily discharge data in 224 

Africa. These stations belong to different climate zones (Figure 1), according to the 225 

Köppen-Geiger climate classification (Peel et al., 2007). The main climate zone 226 

represented is Savannah (class Aw) for 687 stations corresponding to west and central 227 

Africa basins. The second most represented climate zone is Steppe-hot (Bsh) for 207 228 

stations located in the Sahel region and southern Africa (Botswana, Namibia). The 229 

temperate with dry winter classes (Cwa and Cwb) include 187 and 125 stations, 230 

respectively located in southern Africa (Zambia, Angola, Rwanda, Mozambique, South 231 

Africa and Zimbabwe). The 98 stations belonging to the Desert-hot class (Bwh) are mostly 232 

located in the northern and southern boundaries of the Sahara Desert. 87 Stations under 233 

a temperate climate with dry hot summer, corresponding to Mediterranean climate (Csa) 234 

are found in North Africa and the southwestern part of South Africa. Thus, the selected 235 

river basins are representative of most of the climate zones in Africa. It must be noted 236 

that for large basins, such as the Congo, Niger or even the Orange rivers, the climate 237 

https://www.zotero.org/google-docs/?4kFOfU
https://www.zotero.org/google-docs/?rqMToS
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type at the outlet may not be representative of the whole catchment, that may span over 238 

diverse climate zones. 239 

 240 

To document the mean annual precipitation and evapotranspiration at the catchment 241 

scale, the CRU4 dataset has been considered (Harris et al., 2020). However, without 242 

long-term and homogeneous ground monitoring networks over the African continent, no 243 

best precipitation database could be identified for Africa as a whole (Sylla et al., 2013; 244 

Beck et al., 2017; Awange et al., 2019; Satgé et al., 2020). For some regions, such as 245 

Northern or Equatorial Africa, there are large differences between different remote 246 

sensing or gauged-based precipitation products (Gehne et al., 2016; Harrison et al., 2019; 247 

Nogueira, 2020), in particular for extreme precipitation events. This is the reason why we 248 

choose to provide only mean annual precipitation, evapotranspiration and temperature. 249 

This implies that the ADHI dataset does not provide metrics relying on time series of 250 

precipitation or evapotranspiration, such as the runoff ratio, streamflow-precipitation 251 

elasticity or catchment response time. To calculate these indices requiring climatic time 252 

series for a given catchment, the user is advised to check first the best available data for 253 

that area.  254 

 255 

2.4 Catchment delineation  256 

 257 

Station catchments areas have been delineated with the Hydroshed Digital Elevation 258 

Model (DEM) at 15 sec resolution using the TopoToolbox2 algorithm (Schwanghart and 259 

Scherler, 2014). The map of the catchments is shown in Figure 3. Despite a careful check 260 

of the geographic coordinates of the stations, this type of automatic catchment delineation 261 

procedure is prone to some errors, in particular in regions with low elevation and flat 262 

terrain properties. This is particularly the case of catchments with endoreic areas, such 263 

as the Niger, Chari and Logone basins, where the precision of the DEM is crucial to 264 

identify these areas. Since the gauge locations are not necessarily located on the streams 265 

derived from the DEM, The TopoToolbox2 makes possible to re-locate automatically the 266 

gauges on the nearest river stream. However, this procedure did not work for 61 267 

catchments, with a catchment area error exceeding 10% compared to the available 268 

metadata. For these basins, a manual procedure with the Arcmap® software has been 269 

implemented to delineate the catchment boundaries from flow direction maps. In addition, 270 

for several hundred of catchments it was possible to compare the results of the catchment 271 

delineation procedure with the catchment areas available in the SIEREM database and 272 

the ORSTOM reports (available online at the adress: 273 

https://horizon.documentation.ird.fr), which have been most often individually delineated 274 

and carefully checked from ground knowledge over the years (Dieulin and Boyer, 2005).  275 

 276 

https://www.zotero.org/google-docs/?60G03q
https://www.zotero.org/google-docs/?60G03q
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From the catchment delineated, the mean, maximum and minimum altitude from the 277 

Hydroshed DEM have been extracted and included in the metadata. In addition, the 278 

European Space Agency Climate Change Initiative Land cover data (ESA-CCI LC) (ESA, 279 

2017) has been extracted for each catchment for the year 2015. This database contains 280 

land cover maps at a 300m spatial resolution for 38 classes, compliant with the UN Land 281 

Cover Classification System (LCCS). The classes have been grouped into 8 new classes: 282 

forest, urban areas, cropland, irrigated croplands, grassland, shrubland, sparse 283 

vegetation and bare land. Overall, the basins are characterized by a low proportion of 284 

urban areas, a large proportion of forests, especially in the intertropical zone (mean = 285 

41%, median = 37%), and a majority of non-irrigated cultivated area, on average covering 286 

31% of the total area of the basins. Indeed, the irrigated crops represent only 0.43% on 287 

average. 288 

 289 

2.5 River regulation 290 

 291 

Dams and reservoirs have also been extracted and added in the metadata of the stations. 292 

The Global Reservoir and Dam Database (GRanD) v1.3 (Lehner et al., 2011) has also 293 

been considered to identify regulated basins. The number of dams included in each river 294 

basin has been extracted using the catchment boundaries. As shown in the metadata of 295 

GRanD, most of the dams in Africa basins have been constructed around the 1970s 296 

(Figure 4). The rivers could be considered regulated if at least one dam exists in the 297 

catchment area, otherwise the river is considered natural (Figure 5). However, the 298 

influence of dams and reservoirs on the flow regime are linked to the location of the 299 

regulation structure, the portion of the basin controlled, and the management strategies. 300 

For instance, in a large basin with only one dam located on a small headwater catchment, 301 

its influence may not be distinguishable at the river outlet. On the other hand, a station 302 

located immediately downstream a dam outlet may have its flow regime strongly impacted 303 

by dam operations. It should be also noted that other regulation structures like small dams 304 

or water diversion channels that may not be included in the GRanD database could be 305 

present in the catchments considered natural (Lehner et al., 2011; Pekel et al., 2016). 306 

This is particularly the case in semi-arid areas where earthen-made channels, often 307 

informal, draw their water supply from the river itself, by building small diverting structures 308 

(Underhill, 1984; Kimmage, 1991). They can represent a large number of structures, but 309 

a variable amount of water withdrawal at the basin scale (Barbier et al., 2009; Bouimouass 310 

et al., 2020). Similarly, no data is available yet on the importance and impact of 311 

groundwater abstraction, if any, on the flow regime measured at the stations. 312 

 313 

3. Hydrometric indices 314 

 315 

https://www.zotero.org/google-docs/?Jnfcpy
https://www.zotero.org/google-docs/?iVy1m9
https://www.zotero.org/google-docs/?8MMIjC
https://www.zotero.org/google-docs/?AktCQu
https://www.zotero.org/google-docs/?AktCQu
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Here is presented the list of indices computed from daily discharge data. While 316 

hydrological indices refer to standard statistical metrics, such as the mean, maximum, or 317 

percentiles computed from time series of discharge data, hydrological signatures can be 318 

defined as metrics describing the hydrological behavior and the dominant processes in a 319 

river basin (Addor et al., 2018). Most of the indices are computed with the Toolbox for 320 

Streamflow Signatures in Hydrology (TOSSH, available at the address: 321 

https://github.com/TOSSHtoolbox/) (Gnann et al., 2021). The indices and signatures 322 

selected spans a large variety of runoff characteristics from high to low flows, from 323 

previous literature (Poff et al., 1997; Richter et al., 1996; Baker et al., 2004; Yadav et al., 324 

2007; Clark et al., 2009; Estrany et al., 2010; Sawicz et al., 2011; Euser et al., 2013; 325 

Safeeq et al., 2013; Addor et al., 2018; McMillan, 2020).  326 

 327 

3.1 Available streamflow signatures and indices derived from daily discharge 328 

 329 

Several signatures charactering baseflow rely on the application of a base flow filter. 330 

Since the choice of the baseflow separation method can introduce uncertainties in the 331 

calculation of these signatures (Su et al., 2016), two baseflow filtering methods are 332 

compared: the Lyne and Hollick recursive digital filter (Ladson et al., 2013), with the 333 

default values for the filter parameter (0.925) and the number of passes (3), and 334 

alternatively the UKIH smoothed minima method (UKIH, 1980), that does not require any 335 

calibration parameter. The base flow index (BFI) is the ratio between the baseflow volume 336 

and the total streamflow volume. The baseflow recession (BaseflowR) is the baseflow 337 

recession constant assuming an exponential recession behavior (Safeeq et al., 2013). 338 

The base baseflow magnitude calculates the difference between the minimum and the 339 

maximum of the baseflow regime, defined as the average baseflow on each calendar day. 340 

The two base flow separation method compared to compute the baseflow-related indices 341 

provide very similar results, with a correlation above 0.9 for all indices obtained with the 342 

two approaches.        343 

 344 

To compute the mean half flow date and the mean half flow interval, the beginning of the 345 

hydrological year has been defined as the month following the month with the minimum 346 

average runoff. Indeed, the hydrological year has different starting dates across the 347 

African continent, in North Africa the hydrological year usually starts in September, in 348 

western Africa around March-April and in January for southern Africa. The mean half flow 349 

date is the day when the cumulative discharge reaches half of the annual discharge. The 350 

mean half flow interval is the time span between: i) the date on which the cumulative 351 

discharge since the start of water year reaches a quarter of the    annual discharge and 352 

ii) the date on which the cumulative discharge since the start of water year reaches three 353 

quarters of annual discharge. 354 

 355 

https://github.com/TOSSHtoolbox/
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Some metrics are derived from the calculation of the Flow duration Curve (FDC), such as 356 

its slope between the 33rd and 66th flow percentiles (McMillan et al., 2017), the peak 357 

distribution, the slope between the 10th and the 50th percentiles of the FDC constructed 358 

only with hydrographs peaks (Euser et al., 2013) and the variability index, the standard 359 

deviation of the logarithms of discharge from 10th to the 90th percentiles of the FDC 360 

(Estrany et al., 2010). It must be noted that 194 rivers have more than 50% of days with 361 

zero-flow and for these stations, but also all the others with an intermittent regime, several 362 

metrics derived from the Flow Duration Curve (FDC) are not adapted. For these basins, 363 

specific methods to estimate the FDC should be applied (Rianna et al., 2013). Similarly, 364 

there is no baseflow in these basins. Consequently, the indices relying to base flow or the 365 

flow duration curve are not computed for these basins.  366 

 367 

In addition, different hydrological signatures describing the hydrologic responses of the 368 

basins are also provided. The flashiness index is defined as the sum of absolute 369 

differences between consecutive daily flows (Baker et al., 2004), it reflects the frequency 370 

and rapidity of short term changes in streamflow, especially during high runoff events. 371 

The number of master recession curves (MRC) is computed from the changes in 372 

recession slopes, and represent different reservoirs contributing to the runoff response 373 

(Clark et al., 2009; Estrany et al., 2010). This signature can help to understand the 374 

functional forms of storage–discharge relationships and identify model structures adapted 375 

to represent it. The rising limb density is the ratio between the number of rising limbs and 376 

the total amount of timesteps in the hydrograph (Sawicz et al., 2011). It is a descriptor of 377 

the hydrograph shape and smoothness, without consideration for the flow magnitude. 378 

Small values of the rising limb density indicate a smooth hydrograph. 379 

 380 

From the supplied indices, some other useful indicators could be derived. For example, 381 

for hydrogeology applications it would be interesting to compute the low stage specific 382 

discharge that is the ratio between the low-stage discharge and the area of the watershed. 383 

This can be an indicator of aquifers’ contribution to river discharge. The main issue is 384 

related to the definition of the low-stage discharge. From the indices proposed in the 385 

present database, it could be 5th percentiles of daily streamflow or the minimum of 7-386 

days consecutive streamflow, per year. Similarly, the low-flow index could be computed 387 

from the ratio of the 90th and 50th percentiles of daily streamflow (Smakhtin, 2001). 388 

 389 

3.2 Indices computed on the whole record 390 

 391 

These indices have been computed using the whole time series available for each 392 

station. Consequently, they are computed on different base periods depending on the 393 

stations, with the period of record for each station being made available in the 394 

metadata. These indices are listed in table 1. 395 

https://www.zotero.org/google-docs/?dlBU7M
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 396 

Table 1: Hydrometric indices in the ADHI database 397 

Hydrological regime 

Mean daily streamflow, the arithmetic mean 
of daily data 
Standard deviation of daily streamflow 
Minimum daily streamflow 
Maximum daily streamflow 
Mean monthly streamflow (12 values from 
January to December) 
5th, 10th, 25th, 50th, 75th, 90th, 95th and 
99th percentiles of daily streamflow 
Frequency of zero-flow days 

Baseflow 
Baseflow index 
Baseflow magnitude 
Baseflow recession 

Seasonality 
Mean half flow date 
Mean half flow interval 

Variability 

lag-1 autocorrelation of flow 
lag-7 autocorrelation of flow 
Slope of flow duration curve 
Coefficient of variation of runoff 
Peak distribution 
Variability index 
Variance of runoff 

Hydrological response 

Richards-Baker flashiness index 
Skewness of runoff 
Rising limb density 
Number of master recession curves 

 398 

 399 

The basins included in the ADHI database include a wide range of catchment areas, from 400 

a few square kilometers to several hundred thousand, in the case of large rivers such as 401 

the Congo, Niger, Orange, Zambezi, Senegal, Okavango and Volta. As shown in Figure 402 

6, the average runoff is generally well correlated to the size of the basins with 403 

nevertheless a variability linked to local climatic and geological conditions. The mean 404 

annual precipitation is one of the explanatory factors of the observed ranges of mean river 405 

runoff, but also strongly modulated by local conditions. A large number of basins have an 406 

aridity index (ratio between precipitation and potential evapotranspiration) of less than 407 

0.60, indicative of arid to semi-arid conditions (figure 7a). The varying degrees of aridity 408 

encountered in the basins are an important explanatory factor for the hydrological 409 

response at the African scale. For instance, the coefficient of variation of runoff (figure 410 

7b) or the flashiness index (figure 7c) have greater values under conditions of increasing 411 

aridity. 412 

 413 

3.3 Indices computed on monthly or annual basis 414 
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 415 

These indices have been computed for each calendar year, for consistency with other 416 

databases such as GSIM (Do et al., 2018; Gudmundsson et al., 2018). These indices 417 

have been computed for the years with less than 5% missing data:  418 

 419 

1. Mean annual runoff 420 

2. Minimum of 7-days consecutive streamflow, per year, and corresponding date 421 

3. Annual maximum runoff, and the corresponding date 422 

4.  Annual values for the 5th, 10th, 25th, 50th 75th, 90th, 95th and 99th percentiles 423 

of daily streamflow 424 

 425 

In addition to these annual series, the monthly time series contains for each month the 426 

mean, maximum and minimum runoff, the last column being the number of missing days 427 

per month. There is one file per station. It is advised to consider the monthly values only 428 

for the months with no missing values, or missing values less than 10% or 5%.  429 

 430 

These time series make it possible to analyze the long-term evolution of mean and 431 

extreme runoff (Tramblay et al., 2020), but can also be useful to validate hydrological 432 

modelling results. Focusing on extreme high and low runoff, very different seasonal 433 

patterns of occurrence could be observed for different regions of Africa. On figure 8 are 434 

plotted the mean dates of annual maximum runoff and the annual minimum of 7-day 435 

runoff. This seasonal analysis has been performed with directional statistics (Burn, 1997; 436 

Mardia et al., 2015): the dates of occurrence were converted into angular values to 437 

compute the mean date of occurrence (θ) together with the concentration index (r), which 438 

is a measure of the flood occurrences variability around the mean date. The annual 439 

maximum runoff shows three distinct patterns (Figure 8): First, stations with floods 440 

occurring during December-February in northern and southern Africa, with a strong 441 

variability of their date of occurrence. Second, the stations in western Africa with floods 442 

occurring during summer and a low seasonal variability. Third, the stations in central-443 

south Africa, with floods occurring in boreal spring and early summer with various degrees 444 

of variability depending on the sub-region considered and the level of aridity. For annual 445 

minimum runoff, the patterns are usually reversed, with the low flow period spanning on 446 

average during June to October in North Africa, January-March in western Africa, and 447 

between September and November in southeast Africa. Yet this global picture hides local 448 

behaviors such East-West contrast in southern Africa or the North-South gradient in West 449 

Africa (Mahe et al., 2013). Similarly, the observed variability even for some neighboring 450 

catchments reflects the local influences of topography, soils and land cover. As noted 451 

previously, the seasonal variability of extreme high or low runoff events is also strongly 452 

related to the catchment aridity. 453 

 454 

https://www.zotero.org/google-docs/?ndo0XO
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4. Data availability 455 

 456 

The ADHI database is available for download at: https://doi.org/10.23708/LXGXQ9 457 

(Tramblay and Rouché, 2020). Different files are supplied in the AHDI database. The 458 

ADHI_stations.tab file contains the station metadata (Table 2) and the 459 

ADHI_summary.tab file contains for each station the variables described in table 3. 460 

 461 

Table 2: Catchment metadata in the file ADHI_stations.tab 462 

 463 

Catchment characteristics  Description 

Unique identifier for each station  

Station code native code from the original data source 

Station Name  

Data source SIEREM or GRDC 
Catchment area (km²) Computed from HydroShed DEM 

Mean Altitude (m) Computed from HydroShed DEM 

Maximum Altitude (m) Computed from HydroShed DEM 

Minimum Altitude (m) Computed from HydroShed DEM 

Mean annual precipitation (mm) CRU4 

Mean annual evapotranspiration (mm) CRU4 

Mean annual temperature (°C) CRU4 

Forest cover (%) ESA-CCI Land Cover 2015 

Urban areas (%)   ESA-CCI Land Cover 2015 

Cropland (%) ESA-CCI Land Cover 2015 

Cropland, irrigated (%) ESA-CCI Land Cover 2015 

Grassland (%) ESA-CCI Land Cover 2015 

Shrubland (%) ESA-CCI Land Cover 2015 

Sparse vegetation (%) ESA-CCI Land Cover 2015 

Bare land (%) ESA-CCI Land Cover 2015 

Starting year of the data records  

Ending year of the data records  

Longitude of the station (WGS84)  

Latitude of the station (WGS84)  

Number of dams GrandD v1.3 

Country  

Flag 0: no identified data issue, 1: some gap 
filling detected, 2: suspicious data, 3: 
Obvious regime break 

 464 

Table 3: Hydrometric indices in the file ADHI_summary.tab 465 

 466 

Variable Name Description 

Mean_q Mean daily streamflow (m3/s) 
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Std_q Standard deviation of daily streamflow 

Mini_q Minimum daily streamflow  
Maxi_q Maximum daily streamflow 

Jan_q, Fev_q... Dec_q Mean monthly streamflow (12 values 
from January to December) 

q5th, q10th, q25th, q50th q75th, q90th, 
q95th and q99th 

Percentiles of daily streamflow 

BFI_LH Baseflow index, with the Lyne and Hollick 
baseflow separation method 

BFI_UKIH Baseflow index, with the UK Institute of 
Hydrology baseflow separation method 

BaseflowR Baseflow recession 

BaseflowM_LH Baseflow magnitude, with the Lyne and 
Hollick baseflow separation method 

BaseflowM_UKIH Baseflow magnitude, with the UK 
Institute of Hydrology baseflow 
separation method 

CoV Coefficient of variation of runoff 
HFD_mean Mean half flow date 

HFI_mean Mean half flow interval 
AC1 Lag-1 autocorrelation of flow 

AC7 Lag-7 autocorrelation of flow 

FDC_slop Slope of flow duration curve 
 

PeakDistri Peak distribution 

FlashI Richards-Baker flashiness index 

MRC_num Number of master recession curves 

Q_skew Skewness of runoff 
Q_var Variance of daily runoff 
RLD Rising limb density 

VariI Variability index 

Freq_0 Frequency of zero-flow days 

 467 

 468 

The compressed folders AnnualMean.zip, AnnualMax.zip, Annual7DayMin.zip, 469 

AnnualPercentiles.zip contains time series for mean annual runoff, annual maximum 470 

runoff, annual minimum of 7-day discharge and annual values for the 5th, 10th, 25th, 471 

50th 75th, 90th, 95th and 99th percentiles of daily streamflow. There is one file per 472 

station. 473 

 474 

The compressed folder MonthlySeries.zip contains for each month the mean, maximum 475 

and minimum runoff, the last column is the numer of missing days per month. There is 476 

one file per station. 477 
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 478 

The compressed folder Plots.zip contains for each station a plot of the daily discharge 479 

data available. 480 

 481 

The compressed folder Catchment_boundaries.zip contains the catchment boundaries 482 

in the shapefile format (one .shp file per basin). 483 

 484 

The compressed folder Catchment_plots.zip contains for each basin a plot of the 485 

catchment area in .PNG format. 486 

 487 

5. Conclusions and perspectives 488 

 489 

This new hydrological database brings together the largest number of African river flow 490 

measurement stations, in comparison with other previously published datasets. In this 491 

ADHI dataset, we included a total of 1466 stations with at least 10 years of discharge data 492 

between 1950 and 2018, for a mean record length of 33.3 years. Half of the stations have 493 

more than 30 years of data. By comparison, the recent GSIM database contains 979 494 

stations in Africa, with a record length varying from 1 year to 110 years until 2015, and a 495 

mean record length of 33.8 years. This ADHI database results from a pooling of the GRDC 496 

and SIEREM databases, built from contributions of several agencies in African countries 497 

in charge of the management of hydrological measurement networks. This database will 498 

be regularly updated with data from SIEREM and GRDC. Since most of the pre-499 

processing steps have been automated, it would be possible to increase the number of 500 

stations considered or the length of the data series, if more data would become available. 501 

The data from the SIEREM database is already regularly updated from contributions of 502 

different institutes. In the future, individual contributions from researchers or institutes will 503 

be also welcome to increase the spatio-temporal coverage of the data. The FRIEND 504 

program (UNESCO/IHP) will also contribute to increase the number of stations through 505 

coordinated efforts at the regional level. The dataset provides a series of indices that 506 

describes a wide range of mean and extreme runoff properties, allowing the 507 

characterization of the hydrological regime and applications linked to the management of 508 

water resources and hydrological risks. This database includes different catchment sizes 509 

and rivers with different hydrological regimes that makes possible to analyze the behavior 510 

of rivers in very different contexts for a wide range of scales.  511 

 512 

More broadly, this ADHI database could contribute to a better knowledge on African 513 

hydrology. For instance, the impacts of dams on river discharge remains largely 514 

unquantified at the scale of Africa (Biemans et al., 2011). From these indices, various 515 

applications can be sought. For example, the percentiles of the daily streamflow could be 516 

useful to calibrate hydrological models using the flow duration curve (McMillan et al., 517 

https://www.zotero.org/google-docs/?zSLXXA
https://www.zotero.org/google-docs/?lxqhLH
https://www.zotero.org/google-docs/?lxqhLH
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2017) and to constrain model outputs (Tumbo and Hughes, 2015; Ndzabandzaba and 518 

Hughes, 2017). Flow duration curves are also useful for catchment classification 519 

according to their rainfall-runoff response (Cheng et al., 2012). In the recent years, global 520 

runoff simulations have been provided by the Global Flow Awareness System, with land 521 

surface or global hydrological model driven by reanalysis data (Alfieri et al., 2020; 522 

Harrigan et al., 2020). Yet, due to the small number of stations representing African basins 523 

in the currently available databases preventing a robust calibration of the models, the 524 

hydrological simulations have a poor performance (Harrigan et al., 2020). More generally, 525 

this new ADHI database could open perspectives to apply hydrological models in African 526 

basins, in particular combined with recent remote sensing data products (Brocca et al., 527 

2019; Satgé et al., 2020). Beside deterministic hydrological modelling approaches, 528 

several statistical methods to estimate the return levels of floods have been proposed, in 529 

order to safely design dams, reservoirs, sewers or other water regulation structures. 530 

Regional frequency analysis methods have been applied to estimate floods in ungauged 531 

basins in several African countries such as Morocco (Zkhiri et al., 2017), Tunisia (Ellouze 532 

and Abida, 2008), South Africa (Nathanael et al., 2018; Smakhtin et al., 1997), or the 533 

Volta basin (Komi et al., 2016). However studies at a larger regional scale remain very 534 

scarce (Farquharson et al., 1992; Padi et al., 2011) while there is a strong need to improve 535 

the knowledge on hydrological hazards in African countries (Di Baldassarre et al., 2010). 536 

With this recent database becoming available, it could be possible to develop regional 537 

frequency analysis techniques for floods or low flows tailored for the African context, 538 

taking also into account the impacts of global changes. 539 

 540 
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Figures 865 
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 867 

 868 

 869 

Figure 1: Map of the selected stations for the ADHI database from the SIEREM and 870 

GRDC datasets. The different colors represent the main climate zones in Africa from the 871 

Köppen-Geiger climate classification (Peel et al., 2007) 872 
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 889 

Figure 2: Number of available stations per year with less than 5% missing data (left) and 890 

number of stations available for different record lengths (right) 891 
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 896 

Figure 3: Map of the delineated catchment boundaries in black, with elevation from 897 

HydroSheds digital elevation model (https://www.hydrosheds.org/). 898 
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 908 

Figure 4: Years of building date for dams located in the catchment database (data from 909 

the Global Reservoir and Dam Database v1.3) 910 
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 913 

 914 

Figure 5: Map of stations with a natural or regulated flow regime. Basins are considered 915 

regulated if they contain at least one dam or reservoir from the GRanD database 916 

(Lehner et al., 2011). Mean annual precipitation between 1970 and 2000 is provided 917 

from the WorldClim database (Fick and Hijmans, 2017).   918 
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 926 

Figure 6: Relationship between mean daily river discharge and catchment area (left) 927 

and mean annual precipitation (right) 928 
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 932 
Figure 7: histogram of the aridity index per basin (A), relationship between the aridity 933 

index and the coefficient of variation of runoff (B), relationship between the aridity index 934 

and the flashiness index (C) 935 
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 937 

 938 
Figure 8: Mean date of occurrence (left) of annual maximum runoff and annual minimum 939 

of 7-day runoff, together with the variability around the mean date (right) represented by 940 

the concentration index 941 


