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Abstract.

We present version 1.0 of a global catalog of NOx emissions from point sources, derived from TROPOMI measurements

of tropospheric NO2 for 2018-2019. The identification of sources and quantification of emissions are based on the divergence

(spatial derivative) of the mean horizontal flux, which is highly sensitive for point sources like power plant exhaust stacks.

The catalog lists 451 locations which could be clearly identified as NOx point source by a fully automated algorithm, while5

ambiguous cases as well as area sources such as Megacities are skipped. 242 of these point sources could be automatically

matched to power plants. Other NOx point sources listed in the catalog are metal smelters, cement plants, or industrial areas.

The four largest localized NOx emitters are all coal combustion plants in South Africa. About 1/4 of all detected point sources

are located in the Indian subcontinent and are mostly associated with power plants.

The catalog is incomplete, mainly due to persisting gaps in the TROPOMI NO2 product at some coastlines, inaccurate or10

complex wind fields in coastal and mountainous regions, and high noise in the divergence maps for high background pollution.

The derived emissions are generally too low, lacking a factor of about 2 up to 8 for extreme cases. This strong low bias results

from combination of different effects, most of all a strong underestimation of near-surface NO2 in TROPOMI NO2 columns.

Still, the catalog has high potential for checking and improving emission inventories, as it provides accurate and independent

up-to-date information on the location of sources of NOx, and thus also CO2.15

The catalog of NOx emissions from point sources is freely available at https://doi.org/10.26050/WDCC/Quant_NOx_

TROPOMI (Beirle et al., 2020).

Copyright statement. This work is distributed under the Creative Commons Attribution 4.0 License.

1 Introduction

Nitrogen oxides (NOx=NO+NO2) are key species in air pollution and tropospheric chemistry (Seinfeld and Pandis, 2006).20

For the prediction of air quality with regional atmospheric chemistry models, accurate and up-to-date NOx emissions on high
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spatial resolution are essential (Bouarar et al., 2019). Such data is often difficult to gain for countries with restrictive information

policy. In addition, bottom-up emission inventories take several years to be compiled and are thus generally outdated for

countries with quickly developing industrial activities.

Spectrally resolved satellite measurements of solar backscattered radiation allow for the quantification of NO2 and other25

trace gases absorbing in the UV/vis spectral range by their characteristic spectral absorption structures (Platt and Stutz, 2008;

Richter and Wagner, 2011, and references therein). Tropospheric vertical column densities (TVCDs), i.e. concentrations of

NO2 integrated vertically across the troposphere, can be derived by removing the stratospheric contribution and applying

the so-called air mass factor (AMF) that depends on the NO2 profile shape as well as on viewing geometry, surface albedo,

aerosols, and particularly on clouds.30

NO2 TVCDs from satellite measurements provide independent information on the spatial distribution and strength of tro-

pospheric NO2 levels on global scale since the mid nineties, allowing for the identification of NOx sources and quantification

of NOx emissions (e.g. Leue et al., 2001; Martin et al., 2003; Mijling and van der A, 2012; Martin, 2008; Monks and Beirle,

2011, and references therein).

In October 2017, the TROPOspheric Monitoring Instrument TROPOMI (Veefkind et al., 2012) was launched as single35

payload of ESA’s Sentinel-5 Precursor satellite mission. TROPOMI provides NO2 TVCDs on unprecedented high spatial

resolution (7.2×3.6 km2 until 5 August 2019, 5.6×3.6 km2 thereafter) and with a high signal to noise ratio (Geffen et al.,

2020). Single TROPOMI overpasses clearly reveal NO2 plumes downwind from strong NOx sources like large power plants

(Beirle et al., 2019). In temporal mean NO2 TVCDs, however, the high spatial resolution is partly lost due to the averaging

over plumes with different directions (related to the variability of atmospheric winds).40

Beirle et al. (2019) thus proposed to average NO2 fluxes F = V u, i.e. TVCDs multiplied with horizontal wind components.

Upscaling NO2 to NOx and applying the continuity equation for steady state, this directly allows for the quantification of

NOx emissions from the divergence, i.e. the spatial derivative of the mean NOx flux:

D :=∇ ·F = E−S, (1)

with F being the mean NOx flux, E the NOx emissions, and S representing NOx sinks, i.e. the chemical loss of NOx.45

In Beirle et al. (2019), maps of D =∇ ·F and E =D+S have been derived and NOx emissions have been localized and

quantified exemplarily for Riyadh, South Africa and Germany. The sink term S was estimated assuming a constant lifetime

of τ =4 hours, as derived from the downwind decay of NO2 for Riyadh (Beirle et al., 2011). For spatially extended sources,

like megacities such as Riyadh, S contributes significantly to the derived emissions. For point sources, however, such as the

large power plants around Riyadh, emissions are dominated (≈90%) by the divergence term D directly: point sources show50

up as distinct peaks in the divergence map, which are much sharper than the corresponding peaks in mean TVCD maps, as the

NOx flux increases abruptly at the NOx sources, resulting in large values of flux derivatives.

Here we extend this study to global scale, with a particular focus on point sources. Note that due to TROPOMI’s spatial

resolution of about 5 km, “point sources” could be individual facilities, but also the merged emissions from industrial areas.

Point sources are identified and quantified based on peaks above local background in divergence maps D directly, rather than55
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emission maps E, which allows for clearer identification of point source peaks, as well as for the classification of ambiguous

cases by artifacts in D.

As the calculation of D from the derivative of mean fluxes requires gridding of TROPOMI data on high spatial resolution,

the data processing on global scale is demanding for I/O operations and working memory. Thus, the analysis is only performed

around stationary NOx sources, which are defined based on the magnitude as well as the temporal variability of TROPOMI60

TVCDs.

From the derived divergence maps, a catalog of NOx point sources is extracted by a fully automated algorithm.

The manuscript is organized as follows: In section 2, the input data sets used in this study are specified. The detailed data

processing is explained in section 3. Section 4 presents the NOx point source catalog. In sect. 5, the limitations and the potential

of the catalog are discussed, followed by an outlook and conclusions.65

2 Input data

2.1 Tropospheric NO2 column densities

The NOx point source catalog is based on NO2 TVCDs from TROPOMI for the years 2018-2019, using the offline product

(with successively increasing algorithm version from 0.11.0 on 1 January 2018 to 1.3.0 on 31 December 2019), as provided

by KNMI/ESA via copernicus.eu. Details of the TROPOMI tropospheric NO2 product are given in Geffen et al. (2019) and70

Geffen et al. (2020).

TROPOMI is flying on a sun-synchronous orbit with a local overpass time of about 1:30 p.m. The pixel size at nadir

was 7.2 km×3.6 km initially, and even improved to 5.6 km×3.6 km from 6 August 2019 on (Geffen et al., 2020). TROPOMI

provides daily global coverage, resulting in quite good statistics already for annual means.

2.2 Meteorological data75

Horizontal wind fields u and v as well as air pressure p and air temperature T are taken from reanalysis data from the European

Centre for Medium-Range Weather Forecasts (ECMWF). Wind fields are required for the calculation of fluxes. p and T are

needed for scaling NO2 up to NOx: T is used for parameterizing the reaction rate constant of NO+O3, and T and p are used

to convert O3 mixing ratios from a model climatology to O3 concentrations (see section 3.4).

Until August 2019, ERA-Interim data are used with a truncation at T255, corresponding to ≈0.7◦ resolution. Since Septem-80

ber 2019, ERA-5 data are used with a truncation at T639, corresponding to ≈0.3◦ resolution (Hoffmann et al., 2019). For both

data sets, a preprocessed dataset was created where the 6 hourly model output (0, 6, 12, 18 h UTC) was interpolated to a regular

horizontal grid with a resolution of 1°. For future processing, sampling will be based on finer temporal and spatial grids.
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Table 1. Processing settings in this study as compared to Beirle et al. (2019).

Section Procedure This study Beirle et al. (2019)

3.1 NO2 selection

Quality/clouds qa > 0.75, CF<0.3 qa > 0.75, CF<0.3

Time period 2018-2019 Dec 2017 - Oct 2018

Seasons SZA < 65° April to October (Germany)

Regions stationary sources within 61° S to 61° N Riyadh, South Africa, Germany

3.2 Grid 0.025° 0.027°

3.3 Interpolated wind fields 300 m above ground fixed vertical level at about 450 m

3.4 [NOx]/[NO2] photo-stationary state 1.32 ± 20%

3.5 Selection of fluxes w > 2 m/s w > 2 m/s

3.6 Background correction none 5th percentile

3.6 Lifetime correction none τ=4 h

3.7 AMF correction none up to factor 2 for Germany

3.8 Peak fit

Iteration automated semi-automated

Pre-classification multi step none

Fit function linear background + 2-D Gaussian linear background + 2-D Gaussian + rotation

Peak removal fitted peak ±2σ set to NaN fitted peak subtracted

2.3 Ozone climatology

Ozone mixing ratios, used for the scaling of NO2 to NOx, were taken from the Earth System Chemistry integrated Modelling85

(ESCiMo) project (Jöckel et al., 2016), using the RC1SD-base-10a simulation for the years 2000-2010. The monthly mean

climatology was calculated from the model fields sampled online along the OMI-Aura overpass time (which is close to the

TROPOMI overpass time) using the MESSy SORBIT submodel (Jöckel et al., 2010). As the divergence is sensitive for the

added NOx at the source, the relevant NOx/NO2 ratio is that close to ground. We thus took O3 concentrations from the lowest

model layer.90

2.4 Power plant database

The Worlds Resources Institute provides an open access Global Power Plant Database (GPPD) (Byers et al., 2019). We use

this database in order to automatically identify NOx point sources corresponding to power plants.

The GPPD lists almost 30,000 power plants of all kinds, including solar-, nuclear-, and hydro power. For our purpose, we

created a subset of those power plants using coal, gas, or oil as primary fuel. In addition, power plants with capacities below95
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100 MW are skipped. The resulting subset of GPPD comprises 4654 power plants of which 2013, 2265, and 376 use coal, gas,

and oil as primary fuel, respectively.

3 Data processing

In this section we describe the data processing step by step. Table 1 summarizes the main steps and also lists similarities and

differences to the procedure described in Beirle et al. (2019).100

3.1 NO2 selection

For this study, we select TROPOMI tropospheric NO2 column densities VNO2
for the years 2018-2019 with values of the data

quality indicator (“qa value”) above 0.75, as recommended in Geffen et al. (2019), and effective cloud fractions (CF) below

0.3. These selection criteria are the same as in Beirle et al. (2019).

In addition, we skip measurements with SZA above 65◦ for the calculation of fluxes. This strict criterion removes obser-105

vations for sun being low, and implicitly results in a gradual removal of wintertime measurements for mid-latitudes, while in

Beirle et al. (2019), winter months have been skipped explicitly for Germany. Wintertime measurements are skipped in order

to avoid unfavorable viewing conditions, snow covered scenes, and stronger interference with aged plumes due to longer life-

times. Moreover, the SZA restriction allows to simply parameterize the NO2 photolysis as function of the SZA (see section

3.4).110

Since large parts of the globe are free from stationary NOx point sources, in particular oceans, deserts and forests, the

processing focusses on potentially stationary sources. For this purpose, a selection mask is defined (Fig. 1), which is based on

magnitude as well as the temporal variability of TROPOMI NO2 TVCDs. The constrution of the selection mask is explained

in detail in the Supplement.

3.2 Grid115

In order to have maximum sensitivity for point sources, the TROPOMI observations have to be oversampled, requiring a fine

grid resolution of less than 3 km. For each TROPOMI orbit, VNO2
are thus gridded to a regular longitude/latitude grid with

0.025° resolution for 61° S to 61° N. Note that there are a few small NOx sources North of 61°, but due to the strict SZA

threshold of 65°, the flux statistics would be poor for higher latitudes.

Gridding is done per orbit based on linear 2D interpolation of TROPOMI pixel centers using the griddata function from the120

Python module SciPy (Virtanen et al., 2020). This approach allows for fast gridding. In addition, there are no discontinuities at

the TROPOMI pixel borders, which would lead to extremely high (positive and negative) values of the derivative.

All missing values (qa<0.75) as well as the outermost pixels on each side of the TROPOMI swath (i.e. the pixels with the

highest viewing zenith angles) are set to not a number (NaN). This is necessary in order to restrict the area of interpolated

TVCDs to the actual area covered by measurements.125

Hereafter we denote the longitude and latitude dimensions as x and y, respectively, in vector indices as well as in the text.
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Figure 1. (a) Mean tropospheric NO2 column density for 2019. (b) Mask M for the selection of pixels investigated in this study. The

construction of M is described in the Supplement. Boxes indicate the regions as defined in table 2.

3.3 Meteorological data

The meteorological datasets u, v, p, and T are extracted from ECMWF input data by linear interpolation in three steps:

1. in vertical dimension to an altitude of 300 m above ground for each ECMWF input dataset with 6 hourly resolution.

As the focus of this study are emissions from point sources, we consider wind fields representative for the transport of130

freshly released NOx emissions from stacks. The choice of altitude of wind fields is further discussed in sect. 5.2.3.

Only pixels with the mask M ≥ 1 are extracted.

2. in time dimension to the orbit time stamp of each TROPOMI orbit, as given in the orbit filename. The actual TROPOMI

overpass lags the orbit time stamp by about 33 and 67 minutes at 60° S and 60° N at solstice ± 7 minutes for sum-

mer/winter. Thus the orbit time stamp reflects the wind conditions for recent plume histories.135
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Table 2. Definition of regions used for the regional statistics shown in table 3 and for regional figures shown in the Supplement.

Label Region1 lon [°E] lat [°N]

NAm North America -124 to -69 10 to 58

SAm South America -79 to -38 -40 to -10

Eur Europe -11 to 25 36 to 61

WAf West Africa -19 to 25 4 to 36

SAf South Africa 11 to 50 -35 to 0

WRu West Russia/East Europe 25 to 75 45 to 61

SbM Siberia/Mongolia 75 to 123 45 to 61

MdE Middle East 25 to 63 7 to 45

Ind Indian subcontinent/West China 63 to 93 7 to 45

Chn East China/South East Asia 93 to 123 7 to 45

EAs East Asia 123 to 145 30 to 58

IdM Indonesia/Malaysia 100 to 115 -9 to 6

Aus Australia 113 to 155 -40 to -20

NwZ New Zealand 168 to 177 -45 to -35

1Note that the regions are defined such that all considered pixels are covered by a limited

number of figures with similar area as far as feasible. Region names are mostly based on

continents. For Asia, regions are labeled after the countries dominating the detected point

sources, gaining tangibility while condoning some inaccuracies in actual country borders.

3. in lat/lon to the 0.025° grid.

3.4 Up-scaling of NO2 to NOx

In this study we scale the measured NO2 TVCD to a NOx TVCD for each TROPOMI pixel. The conversion factor L is

calculated according to the photostationary steady-state

L :=
[NOx]

[NO2]
= 1 +

[NO]

[NO2]
= 1 +

J

k[O3]
(2)140

The impact of VOCs is neglected here as the focus is put on NOx point sources and thus generally high NOx concentrations.

The photolysis frequency of NO2 J is parameterized as function of the SZA θ by

J = 0.0167 exp(−0.575/cosθ) s−1 (3)

as proposed by Dickerson et al. (1982). This parameterization is “accurate to about 10% for mostly sunny conditions” for

SZA < 65° (Dickerson et al., 1982).145

The reaction rate constant k for the reaction of NO with O3 is parameterized as function of temperature (in Kelvin) by

k = 2.07× 10−12× exp(−1400/T ), (4)
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Figure 2. Effective NOx/NO2 ratio, i.e. mean tropospheric NOx (as derived by assuming photostationary state according to Eq. 2 for each

TROPOMI pixel) divided by the mean NO2 column density for 2018-2019. Note that only cloud free observations with SZA<65° are con-

sidered, thus wintertime measurements at mid to high latitudes are skipped, and the expected latitudinal dependency of the NOx/NO2 ratio

is suppressed. The spatial variability is a consequence of the dependency of the photostationary state on actinic flux, Ozone concentration,

and temperature (Eq. 2).

following the recommendations from Atkinson et al. (2004) and IUPAC (2013).

Near-surface Ozone mixing ratios are taken from a climatology based on the ESCiMo model simulation (2.3) and converted

into concentrations based on T and p from ECMWF.150

The derived values for L represent conditions for surface-near pollution. For background NOx in the upper troposphere,

the partitioning would be shifted towards NO. However, any additive background is automatically removed by the calculation

of the divergence. Thus, the partitioning derived for near-surface concentrations is appropriate also for correcting the added

column caused by a point source.

Fig. 2 displays the ratio of temporal means of NOx and NO2 TVCDs. Global mean is 1.35 with a SD of 0.08. Values for155

Riyadh, South Africa and Germany are 1.22, 1.36 and 1.41, respectively, in agreement with the value of 1.32±0.26 applied

in Beirle et al. (2019), which was based on the number given in Seinfeld and Pandis (2006) for polluted conditions around

noontime.

Note that the actual [NOx]/[NO2] ratio close to a point source might be different in case of high NO concentrations causing

O3 titration. In this case, however, the divergence method would detect the emitted NOx downwind from the source as soon as160

the NO is converted to NO2 after mixing with ambient air. This results in a spatial smearing of the peak in the divergence map,

leading to broader peaks, but the same integral (and thus emissions) for the peak fitting algorithm (section 3.8.2). For the final

budget of NOx emissions, which are determined from the integrated peaks, the final photostationary state is thus still adequate.
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3.5 Gridded fluxes and divergence

From gridded NOx columns and gridded wind fields, the gridded NOx flux in both x and y direction is derived for each165

TROPOMI orbit. Mean fluxes are calculated for the period 2018-2019, where calm wind conditions (w < 2m/s) are skipped.

For grid pixels with less than 25 measurements, fluxes are set to missing values due to poor statistics. Note that we do not

explicitly skip winter months for midlatitudes, as in Beirle et al. (2019) for Germany, but they are removed implicitely by the

strict SZA threshold of 65◦.

From the mean zonal and meridional flux maps, the divergence map D =∇ ·F is calculated, which is the basis for the170

identification and quantification of point sources below.

3.6 Lifetime and background corrections

In Beirle et al. (2019), emission maps were derived by adding the sink term S = V/τ to the divergence map. For this, a constant

lifetime of τ = 4 h was applied, as derived from OMI data for Riyadh (Beirle et al., 2011). In addition, V was corrected by

subtracting the regional background, as the lifetime estimate was derived for freshly released, surface near pollution, while175

upper tropospheric background NO2 generally has a longer lifetime.

As discussed in Beirle et al. (2019), the inclusion of the sink term has significant impact on area sources; it contributes about

50% of integrated emissions for Riyadh urban area. For point sources, however, the emission signal is by far dominated by the

divergence term, for instance accounting for 87% of the emissions from power plant "PP9" in Beirle et al. (2019).

Within this study, we do not correct for the sink term S for the following reasons:180

– The NOx lifetime is expected to be different for the diverse conditions in the considered regions, covering a large

variability of temperature, humidity, actinic flux, volantile organic compounds (VOC) levels, and NOx levels. Note that

the expected strong dependency of mean lifetime on latitude is again suppressed here due to the selection of SZA<65°.

– NOx lifetimes simulated from global models cannot resolve the nonlinearities caused by point sources. In addition,

emission inventories used as input to model runs generally have a time lag, thus emissions are outdated for quickly185

developing countries. Consequently, modeling the NOx lifetime for the investigated point sources is challenging and

uncertain.

– Identifying point sources in the divergence mapD directly is more immediate than inE =D+S, as point sources reveal

sharper peaks in D than in E (Fig. 2 in Beirle et al., 2019). In addition, the identification of ambiguous candidates as

e.g. caused by inaccurate wind fields is clearer based on D directly (sect. 3.8.1).190

The resulting low bias of point source emissions caused by the missing lifetime correction is discussed in sect. 5.2.2.

Since no lifetime correction with S = V/τ is performed, also the background correction for V , which was performed in

Beirle et al. (2019) in order to exclude upper tropospheric NOx with longer lifetime and different L, is omitted in the current

study. Note that the local background of V , as well as any potential offset due to e.g. stratospheric correction, would affect the

lifetime correction, but have no impact on D, as any additive term is lost by the calculation of the derivative.195
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3.7 AMF correction

Tropospheric column densities of NO2 are derived from the total slant column by subtracting the stratospheric column and

applying the so-called air mass factor (AMF). The AMF can be derived as sum of height-dependend "box AMFs", representing

the vertical measurement sensitivity, weighted by the relative profile (Wagner et al., 2007). In the operational TROPOMI

NO2 product, averaging Kernels (AKs) are provided that are proportional to box-AMFs and allow to correct the AMF for a200

different vertical profile (Eskes et al., 2003).

Validation studies report on a general low bias of NO2 TVCD from TROPOMI of a factor of 2 and more for polluted sites

(e.g. Verhoelst et al., 2021; Judd et al., 2020), caused by a high biased AMF. Part of this bias seems to be related to the a-priori

profiles which do not resolve the pollution profiles close to sources. In addition, there are indications that the cloud heights

used for the TVCD retrieval are biased low (Compernolle et al., 2021) and the albedo maps used are biased high (Griffin et al.,205

2019), resulting in biased AKs.

In Beirle et al. (2019), an AMF correction was performed for South Africa and Germany by applying the provided AK to

a surface-near profile. In this study, we do not apply such an AMF correction, as the effects of biased input albedo and cloud

height cannot be corrected a-posteriori based on the provided AKs, but require a reprocessing of the TROPOMI NO2 product.

Consequently, the low bias of TROPOMI TVCDs is directly transferred into the NOx emissions listed in the catalog, as210

discussed in detail in sect. 5.2. The low bias is expected to be improved with an updated NO2 product, which will then be used

for deriving an updated version of the point source catalog.

3.8 Iterative peak fitting

We apply a fully automated iterative peak fitting algorithm in order to detect NOx point sources. The goal is to identify clear

point source peaks in the divergence map, where a robust quantification of emissions is possible, while ambiguous cases are215

skipped. Thus, the resulting catalog of point sources is incomplete; a detailed discussion on various reasons for missing point

sources is given in section 5.1. But the remaining point sources listed in the catalog correspond to actual NOx sources with

high confidence.

In each iteration, the following procedure is executed:

1. The grid pixel with highest value of the divergence is considered as point source candidate.220

2. Each candidate is classified into different categories, and skipped if ambiguous (sect. 3.8.1).

3. For a promising candidate, a 2-D Gaussian is fitted to the divergence peak, and successful fits are included in the catalog

(sect. 3.8.2).

4. The candidate is removed from the divergence map before searching for the next highest D value (sect. 3.8.3).

The iteration stops as soon as the maximum value of the divergence is less than 0.2 µg m−2 s−1, which is < 4% of the initial225

maximum value of the first iteration. Below this threshold, almost no further point sources could be detected which meet the
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Figure 3. Zooms of the mean divergence (2019-2020) showing examples for the different categories of point source candidates checked

during pre-classification. White indicates missing data. The location of power plants from GPPD as well as cities is indicated by green

markers. (a) “Gap” candidate near Jebel Ali/Dubai. (b) “Negative” candidate near Tehran. (c) “Area source” around Baghdad. (D) “Area

source” candidate covering several power plants (with Vindhyachal and Anpara being the largest) in India.

quality criteria listed below. For future versions, the availability of several years of TROPOMI data is expected to decrease

the noise in divergence maps and will probably allow to decrease this threshold and investigate additional small NOx point

sources.

3.8.1 Pre-classification of candidates230

Point source candidates are iteratively defined as the location of maximum divergence in the global map. Before fitting a

Gaussian peak, and quantifying emissions, however, artifacts and ambiguous cases have to be excluded.

For this, a pre-classification is done based on zooms of the divergence map 30 km around the candidate. As soon as the

candidate is classified in one of the following categories, the pre-classification stops. In Fig. 3, examples for each category are

shown.235

1. Category gap:

If more than 25% of grid pixels are missing within 8 km around the candidate, it is classified as “gap”. Gaps were found

primarily at sandy coastlines and are caused by persistent cloud coverage above threshold, which is probably an artifact

of the coarse resolution of the albedo map used for the cloud retrieval. In the later stage of the iteration, gaps also occur

in the vicinity of strong point sources which have been already removed from the divergence map. Figure 3(a) displays240

an example for a candidate of category “gap” around Dubai, where the global maximum of divergence was found, but

missing data does not allow for further quantifications.

2. Category negative:

If the minimum divergence within the 30 km zoom is negative with an absolute value larger than 50% of the maximum

value, the candidate is “negative”.245

Negative values of the divergence generally indicate NOx sinks. Thus values of D < 0 have to be expected downwind

from sources. But absolute values should be far lower than the positive values at the place of emissions, as the NOx re-
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moval is taking place over large distances (at wind speed of 5 m/s, a lifetime of 4 hours corresponds to an e-folding

distance of 72 km).

High absolute values of negative divergence thus cannot be explained by chemical loss of NOx (except for very short250

lifetimes), but indicate an inappropriate simplification of the complex 3D wind fields by a 2D wind vector on rather

coarse spatial resolution. Also changes of NOx emissions or wind patterns on temporal scales of some hours (whereas

Eq. 1 assumes steady state, i.e. neglects the temporal derivative of V ) can cause high negative values of D.

Figure 3(b) displays an example of high negative divergence around Tehran. Obviously, the divergence method fails

here, even though TVCDs show a hotspot of very high NO2 around Tehran that can even be spotted in the global map255

(Fig. 1(a)). Reason for the noisy divergence is the location of Tehran next to the Alborz mountains, where actual wind

patterns are not described appropriately by the low-resolution wind fields.

3. Category area source:

If the candidate is neither classified as “gap” nor as “negative”, sections of zonal and meridional means are calculated

in order to allow for a quick check of the spatial extent of the divergence peak. For both sections, the full width half260

maximum (FWHM)Wfirst guess is determined by checking for the first occurrence of a value below half of the maximum in

both directions. For point sources, a FWHM of about 12 km has been reported in Beirle et al. (2019). Values ofWfirst guess

above 17 km in both x and y thus indicate a NOx source which cannot be categorized as single point source, but an area

source, which could be a large city or an extended industrial area with several point sources nearby. Figure 3(c) and (d)

display two examples for candidates classified as area source. (c) shows the city of Baghdad. In (d), an “area source”265

consisting of several point sources close to each other is shown, primarily the coal fired power plants Vindhyachal (5

MW) and Anpara (2 MW) in India.

3.8.2 Gaussian fit

If a candidate passes all pre-classification checks, a 2-D Gaussian on top of a linear background is fitted to the peak in the

divergence map:270

G(x,y) =
A

2πσxσy
exp

(
−(x−∆x)2

2σ2
x

)
exp

(
−(y−∆y)2

2σ2
y

)
+mxx+myy+ b, (5)

with the fit parameters A being the peak integral, σx,σy the width of the Gaussian, ∆x,∆y the shift of the peak maximum

(relative to the first guess candidate location corresponding to the highest D value), and mx,my and b describing a linear

background.

In contrast to Beirle et al. (2019), no rotation of the peak is allowed in order to make the fit fast and stable, and in order to275

be able to interpret the widths σx,y as actual distance in latitudinal and longitudinal dimensions.

The parameters are determined by a least-squares fit of G to the divergence map within 22 km around the candidate. As

starting values, σx,y are set to Wfirst guess/2.355 for both x and y. But since the fit yields a more robust measure of the peak
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width than the simple FWHM estimate determined during pre-classification, the candidate is again classified as area source, if

Wfit := 2.355×σx,y exceeds 17 km for x or y.280

Otherwise, the candidate is considered to be a point source, where the fitted parameter A of the Gaussian peak represents the

corresponding point source emissions. However, in order to only keep robust emission estimates in the point source catalog,

cases with emissions below 0.03 kg/s (which has been derived in Beirle et al. (2019) as detection limit for optimal conditions)

or a relative fit error above 30% are categorized as “uncertain”.

3.8.3 Candidate removal285

The candidate has to be removed from the global map before the next iteration step. Removal is implemented by setting the

divergence values around the maximum to NaN. Note that in Beirle et al. (2019) the fitted peaks were subtracted instead.

However, this would introduce a highly structured residue in the divergence map, which would create several new artificial

candidates for the fully automated peak search algorithm. Removing candidates by setting D to NaN avoids such artificial

point sources and prevents any later interferences from fit residues from neighboring sources.290

Depending on the classification, the following procedure is applied:

– For point sources, an ellipse with 2×σx,y as semi major/minor axis is removed, with σx,y from the Gaussian fit.

– For categories “gaps” and “uncertain”, all pixels within 22 km around the maximum are removed.

– For category “negative”, a larger area (30 km around the maximum) is removed, as negative artifacts generally occur not

at, but next to the sources.295

– For area sources, also 30 km around the maximum are removed, if classified based on Wfirst guess. If the area source was

classified based on Wfit, an ellipse with 2×σx,y is removed as for point sources.

3.9 Identification of point sources associated with power plants

We perform an automated match of the point source catalog with the combustion power plants listed in GPPD. For each point

source, we search for GPPD entries within 5 km radius. In the point source catalog, we add300

– the integrated capacity of all power plants within 5 km,

– a complete list of the names of all power plants within 5 km, and

– the primary fuel of the power plant with highest capacity within 5 km.

4 Results
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Table 3. Number of candidates and their respective classification found for the regions defined in table 2. The number of point sources in

brackets refers to the point sources associated with power plants.

Label Region Candidates thereof: point source (power plant) "gap" "neg" "area" "uncertain"

NAm North America 880 47 (32) 171 601 41 20

SAm South America 172 8 (2) 32 117 11 4

Eur Europe 1558 24 (11) 499 1013 20 2

WAf West Africa 116 19 (6) 30 54 10 3

SAf South Africa 171 16 (9) 43 97 9 6

WRu West Russia/East Europe 469 41 (23) 84 319 19 6

SbM Siberia/Mongolia 186 9 (6) 45 123 5 4

MdE Middle East 721 107 (40) 245 305 43 21

Ind India/Pakistan/West China 493 114 (76) 129 198 36 16

Chn East China/South East Asia 1766 34 (16) 678 1013 36 5

EAs East Asia 561 19 (10) 139 378 20 5

IdM Indonesia/Malaysia 65 5 (4) 25 34 1 0

Aus Australia 66 7 (7) 16 34 7 2

NwZ New Zealand 11 0 (0) 1 10 0 0

Glb Global 7250 451 (242) 2139 4308 258 94

4.1 Candidate classification305

The iterative peak fitting algorithm yields 7250 candidates, of which 451 are classified as point sources. For 242 of these point

sources, a match with GPPD power plants was found. Table 3 lists the classification statistics for the regions defined in table 2.

Figure 4 displays regional maps of color-coded D for zooms of selected regions. The respective maps for all regions listed

in table 2 are provided in the supplement in pdf format allowing for loss free zooming.

The candidate classifications are indicated by symbols, where point sources with/without a power plant match are displayed310

as triangles in magenta/dark grey, respectively. Non-point sources are shown in light grey. For sake of clarity, they are only

displayed for high divergence values (Dmax > 1µg m−2 s−1 or integrated D > 0.1 kg s−1), as they would otherwise dominate

the figure for some regions like Europe, where 499 candidates are classified as “gap” and 1013 as “negative” (table 3).

The map of the Middle East (a) contains most of the non-point source examples shown in Fig. 3. Several more gaps occur

all along the Persian Gulf coastline, and further negative candidates are found in mountains as well as along the coastlines.315

Several large cities like (a) Cairo and Jeddah, (b) Paris and Madrid, (c) Delhi and Mumbai, or (d) Moscow and Saint

Petersburg are categorized as area source. However, there are also some candidates categorized as area source which do not

correspond to a megacity. In particular the candidate corresponding to the maximum divergence over India, which is caused by
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Figure 4. Divergence D (color coded) and point source classification (symbols) for (a) the Middle East, (b) India, (c) Europe, and (d)

Ukraine/Western Russia. Triangles display the point sources listed in the catalog, where matches to GPPD power plants are indicated in

magenta. Regions are zoomed for clarity. Respective maps for all regions defined in table 2 are provided in the Supplement (Figures S2-S14).

Also for sake of clarity, non-pointsources are only shown for candidates withDmax > 1µg m−2 s−1 or the integrated divergence within 30 km

exceeding 0.1 kg s−1.
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the coal-fired 5 GW Vindhyachal Super Thermal Power Station, was categorized as area source, as it interferes with the 4 GW

Anpara power plant about 16 km Northeast (Fig. 3 d). Such sources could still be investigated in detail based on the divergence320

map. However, for interfering sources such close to each other, a quantification by a fully automated algorithm is challenging.

For Riyadh, the power plants PP9 and PP10 northeast and southeast of the city center are identified as point sources (compare

Beirle et al. (2019)). In contrast to Beirle et al. (2019), PP8 west of Riyadh is not identified as point source as it could not be

separated from Riyadh city, as a consequence of the strict pre-selection of candidates and the slightly larger fit interval, which

were necessary in order to run the algorithm fully automated globally.325

Several point sources are detected in the Middle East. There is a remarkable cluster of several point sources detected south of

Baghdad. Note that there was even a point source detected within the Persian Gulf, which corresponds to the Zakum offshore

oilfield.

The Indian subcontinent reveals the highest number of point sources of the investigated regions, contributing 1/4th of the

global number. This reflects the quickly growing industrial activities, while measures for emission reduction still need to catch330

up. In addition, the divergence method obviously works very well for India, as the noise in divergence is quite low. This might

be related to the dry season providing very good observation conditions without gaps, thereby suppressing sampling effects

(compare sect. 5.1.1).

In Europe, only very few point sources are detected, like the world’s largest charcoal power plant Belchatow in Poland, the

German charcoal power plants Jänschwalde, Boxberg, and Neurath/Niederaußem (compare Beirle et al., 2019), or Europe’s335

largest steel plant in Taranto/South Italy. Remarkably, almost no point sources are detected for England and the Benelux

countries, where the mean TVCD has a local maximum (Fig. 1 a). Instead, there are several candidates classified as gaps and

negative, which is related to the high noise observed in the divergence map. A similar situation is found for China, where TVCD

is highest globally (Fig. 1 a), but noise in D is large (Fig. S11 in the Supplement) such that the number of negative candidates

is high (1013), but only few (34) point sources could be clearly identified. In Ukraine and West Russia, where mean TVCD340

levels are moderate, several point sources could be clearly identified. These striking regional differences in the performance of

the automated point source detection will be discussed in detail in sect. 5.1.

4.2 Catalog of point sources

We derive a global catalog of NOx emissions from the 451 peaks categorized as point sources by sorting them according to

the fitted emissions. A complete list of all detected point sources, including lat/lon and the estimated emissions, is provided in345

csv format at https://doi.org/10.26050/WDCC/Quant_NOx_TROPOMI (Beirle et al., 2020) and also added as data file to the

supplementary material.

Table 4 lists a selection of the identified point sources with some additional information on the respective NOx source. It

contains the top ten emitters of the catalog. In addition, every 100th rank is included in order to illustrate conditions for lower

divergence levels. Divergence maps for the same selection are shown in Fig. 5, where also external information on NOx sources350

have been added. In the Supplement, respective zooms of the divergence maps and tables of regional top emitters, are shown

for all considered regions.
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Most of the point sources listed in table 4 can actually be associated to single or groups of power plants. Overall, a GPPD

match was found for 242 point sources. The median distance between GPPD and point source locations was found to be 1.6 km,

which is better than TROPOMI resolution. For the selection in table 4, we did some additional inquiry and could identify the355

power plants Medupi (#3) and Presidente Vargas (#300), both missing in GPPD, as probable NOx source.

Other point sources are the Secunda CTL coal liquifying facility (#2), steel work facilities (#6, #10), and a cement plant

(#100). Point source #7 is located in Ulsan, an industrial hotspot in South Korea. Here, however, we could not identify a single

dominating NOx point source. For the Hermosillo power plant, the peak fit is probably affected by Hermosillo city nearby

(0.7 M inhabitants).360

The four highest point source NOx emissions are all found for South African coal power plants, which have already been

presented in Beirle et al. (2019). Note that the emissions in table 4 are lower than those given in Beirle et al. (2019) for various

reasons, as discussed in detail in section 5.2.6, mainly due to the missing AMF and lifetime corrections in the current study.

The thresholds for artifacts in divergence have been defined rather strictly. Consequently, the remaining locations listed in

the catalog actually indicate stationary NOx emissions. In the spot tests investigated exemplarily, we found no indication for365

false signals in the catalog.

4.3 Comparison to Power Plant database

Fig. 6 (a) provides a scatter plot of power plant capacity and point source emissions. Respective regional figures for all consid-

ered regions are provided in Fig. S15 in the Supplement.

Note that a perfect correlation between power plant capacity and NOx emissions cannot be expected, as the emissions per370

capacity strongly depend on fuel type and technology, and are particularly modified if emission control measures like selective

catalytic reduction (SCR) are applied. High emissions for power plants with low capacity probably indicate other dominating

NOx sources nearby, like for Baotou (#6), where a 0.2 GW power plant was matching the point source location, but emissions

are probably mainly caused by the metal smelting facilities. Low emissions from high capacity power plants probably indicate

the installation of SCR or a recent reduction in capacity.375

High correlations can be observed for some regions like South Africa and Australia. This is probably indicating that the

GPPD entries are reliable for these regions, the level of power plant technology is regionally similar, and the divergence

method works well here. Fig. 6 (b) displays the scatter plots for coal-fired power plants for Australia, Europe, and South

Africa. The slopes indicate clear regional differences in the emissions per capacity ratio.

5 Discussion380

In this section we discuss the limitations as well as the potential of the presented point source catalog, give an outline on

possible applications, and an outlook on improvements of the catalog in a future update.
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Table 4. Extract of the point source catalog for the top ten and every 100th rank. Power plant capacity, fuel type and facility names are added

for matches to GPPD. The last two columns are not part of the catalog, but have been added manually for the presented selection in order

to provide information on the likely NOx source where no (or insignificant) GPPD match has been found. Zooms of the divergence map for

the same selection are displayed in Fig. 5. As discussed in detail in section 5.2.6, the given emissions are biased low. Respective tables for

regional top emitters are listed in the Supplement for all considered regions.

from point source catalog: additional information:

Rank Lat Lon Emissions Capacity Fuel1 Name(s)2 Country Other sources

[° N] [° E] [kg/s] [GW]

1 -26.284 29.176 0.886 6.600 Coal Matla; Kriel South Africa

2 -26.566 29.181 0.679 South Africa Secunda CTL coal liquifyer

3 -23.686 27.594 0.669 3.990 Coal Matimba South Africa Medupi power plant3

4 -27.104 29.788 0.668 4.110 Coal Majuba South Africa

5 22.397 82.692 0.588 4.830 Coal Korba India

6 40.637 109.739 0.528 0.200 Coal Baotou China Steel works

7 35.502 129.303 0.523 South Korea Ulsan industrial area

8 -26.777 29.379 0.474 3.654 Coal Tutuka South Africa

9 28.696 48.334 0.460 6.905 Gas Az Zour Kuwait

10 34.930 127.723 0.460 1.330 Gas Gwangyang South Korea Steel works

100 29.009 31.216 0.151 Egypt Cement plant

200 44.669 89.089 0.093 7.000 Coal Wucaiwan China

300 -22.537 -44.121 0.062 Brasil Presidente Vargas power plant3

400 29.099 -110.988 0.040 0.250 Gas Hermosillo Mexico City of Hermosillo

1 Primary fuel of the GPPD match with highest capacity within 5 km
2 GPPD names have been shortened
3 Missing in GPPD

5.1 Limitations

When interpreting the presented point source catalog, the following limitations have to be kept in mind:

5.1.1 Missing point sources385

The catalog is incomplete, as point sources might be missing due to the following reasons:

1. Considered pixels:

Only latitudes between 61° N/S are considered, as for higher latitudes, the strict SZA threshold of 65° would result in

poor statistics. In addition, the criteria for defining the selection mask are quite strict in order to reduce the amount of data

to be processed. There might thus be NOx point sources not included in the selection mask. However, based on maps of390
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Figure 5. Divergence maps for the selected point sources listed in table 4. In addition to the location of the fitted Gaussian peak (grey), also

some external information on GPPD power plants as well as industrial facilities and cities is added (green).

the mean TVCD, we see no indication for strong point sources outside the considered area defined by M (compare Fig.

1(a) and (b)).

2. Gaps in input data:

The mean divergence map reveals persistent gaps at some coastlines, in particular around the Persian Gulf. These gaps

are caused by the cloud algorithm, as cloud retrievals are challenging for the transition of dark ocean to bright sand.395

The situation will improve for an updated cloud product which will be based on a ground albedo with higher spatial

resolution.

3. Artifacts in divergence:

In case of inaccurate wind fields, as over mountainous terrain, as well as for systematic violation of the steady state

assumption, like systematic diurnal cycles of wind direction, the divergence map reveals artifacts, i.e. patterns of high400

negative values for D which cannot be explained by the loss term S. These cases are classified as negative, and are thus

missing in the catalog.
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Figure 6. Correlation between point source emissions and power plant capacity. (a) Scatter plot for all matches globally, with color coding

primary fuel. (b) Scatter plot for coal-fired power plants in Australia, Europe, and South Africa.

4. Noise in divergence:

The noise level of the divergence map reveals large regional differences, causing respective differences in the perfor-

mance of the peak fit algorithm. Noise levels are particularly high over regions with generally high TVCD levels, like405

Eastern China or Western Europe. This is caused by sampling effects: For high TVCD levels, also fluxes are generally

high. As the daily flux maps have gaps due to cloud masking, the mean fluxes reveal “jumps”. This effect is probably

intensified by the gridding by interpolation, where a gap (=missing value) in the input data results in gaps for a substan-

tially larger area in the gridded data, as interpolation requires information from all surrounding pixels. Note that due to

day-to-day changes of wind directions, a far higher amount of data would be needed in order to get smooth flux maps410

than to overcome the respective sampling issues in mean TVCDs. As the spatial derivative amplifies these jumps, the

divergence is generally noisy over regions with high TVCD. Consequently, only few point sources are identified for the

highly polluted regions in Western Europe or Eastern China, while many candidates are classified as negative due to the

high noise levels.

5. Interfering sources:415

Point sources cause peaks in the divergence map which can be described by a Gaussian. Typical widths are σx, y ≈ 5 km,

in accordance to the spatial resolution of TROPOMI. Thus, point sources within a distance of less than about 20 km

cannot be clearly separated by the automated algorithm. In case of point sources close to each other, they are identified

and quantified as one single point source (see next section), and their emissions are just added. If the distance is about

15-20 km, however, the joined peak from both sources is still processed as a single candidate, but classified as area420
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source due to the large width of the peak. For example, the Indian power plants Vindhyachal and Anpara located within

16 km (Fig. 3 d) or PP8 at the western edge of Riyadh Megacity (compare Fig. 2 in Beirle et al., 2019), are classified as

area source and thus missing in the catalog.

5.1.2 Multiple sources

Due to the spatial resolution of TROPOMI, sources within about 10 km cannot be separated by the automatic peak finding425

algorithm, and power plant stack emissions would automatically be merged with emissions from on-site activities such as

heavy-duty diesel around the power plant. Several entries in the catalog contain multiple sources, like #1 (power plants Matla

and Kriel within 5 km) or #3 (power plants Matimba and Medupi within 7 km). Similarly, the emissions from large industrial

complexes, like the Ulsan industrial area, cannot be further specified. Thus the term “point source” means with respect to the

TROPOMI spatial resolution. This is however still better resolved than many bottom-up inventories and typical horizontal430

resolutions of regional chemical transport models (CTMs). Thus, for emission inventories, also multiple and extended sources

could appropriately be treated as point source emissions if used for models with a spatial resolution coarser than that of

TROPOMI.

5.2 Uncertainties and accuracy

The main goal of v1.0 of the point source catalog is the identification rather than the quantification of NOx point sources. Still435

we discuss and try to quantifiy the various sources for uncertainties of the derived point source emissions:

5.2.1 Gridding

Gridding is done by 2D linear interpolation, which avoids abrupt jumps at the satellite pixel edges. Such jumps would cause

large response in the divergence, i.e. the spatial derivative.

For narrow plumes, however, linear interpolation carries the risk of introducing a low bias. We have investigated this exem-440

plarily for the power plant plume of PP9 northeast of Riyadh on 17 December 2017 (Beirle et al., 2019, Fig. 1a therein). The

average plume TVCD from interpolation yields almost the same value than for conventional gridding (1% lower). For the peak

maximum, however, which is more relevant for the divergence than the mean, interpolation is 6% lower. Thus, there is a low

bias caused by linear interpolation, which is however small compared to the other effects discussed below.

5.2.2 Lifetime445

The quantification of NOx emissions is based on the peak inD, ignoring the chemical loss of NOx during downwind transport.

We estimate the impact of neglecting the lifetime correction by comparing the catalog emissions to the respective emissions

based on E (assuming a lifetime of 4 h). On average, the latter were higher than those based on D by about 25%, which is

quite small compared to other effects, in particular the AMF (see below).

21



In case of much shorter lifetimes, like 1.5 h, as reported by Goldberg et al. (2019) for the Colstrip power plant in the USA450

(Fig. 1 therein), the emission estimates after lifetime correction would be higher by a factor of 1.73 on average.

5.2.3 Wind fields

As discussed in Beirle et al. (2019), different effects on wind field uncertainties have to be considered:

– Errors of the wind direction (both random and systematic) result in a underestimation of the flux, and thus the estimated

emissions, as any mismatch in wind direction leads to a low bias of the wind speed component projected to the actual455

wind direction. The underestimation is thus proportional to the cosine of the wind direction. For wind direction errors of

25°, it is about 10%.

Larger systematic errors in wind direction would cause visible artifacts in the divergence map and would thus be captured

and removed by the check for negative divergence during candidate classification. In case of larger random effects, the

artefacts of individual days would at least partly cancel in the mean flux. But the wind speed component in the actual460

wind direction would be significantly underestimated, as well as the resulting divergence.

– The calculated fluxes, and thus the divergence map, are proportional to wind speed. The choice of the altitude of input

wind fields thus affects the resulting emissions, as wind speeds are generally higher for higher altitudes. In Beirle et al.

(2019), the effect for taking wind fields from 250 or 730 m rather than from 450 m on emissions was quantified as about

10%.465

In this study, the focus was set to the clear identification of point sources. Thus, winds from a lower altitude (300 m) com-

pared to Beirle et al. (2019) (450 m) were chosen in order to have optimal wind direction data close to the NOx emission

source. As discussed below, this choice removes the artifacts of divergence around the Matimba/Medupi power plants

seen in Beirle et al. (2019).

5.2.4 Peak fit470

The fitted emissions depend on the settings for fit radius and the forward model function. The fit window of 22 km around

the source was chosen as compromise in order to cover the peak caused by a point source as far as possible while avoiding

interference with neighboring sources. Variations of the fit settings within reasonable limits cause an uncertainty of about 20%

in the fitted emissions (Beirle et al., 2019).

5.2.5 AMF475

Validation studies report on NO2 TVCDs from TROPOMI being biased low for polluted sites (Verhoelst et al., 2021). This

is probably due to the a-priori vertical profiles, the cloud height product being biased low (Compernolle et al., 2021), and the

surface albedo being biased high (Griffin et al., 2019), all resulting in high biased AMFs.
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In Beirle et al. (2019), a correction of the low bias was applied by assuming the NOx profile close to point sources being

completely in the lowest layer. Note that since the divergence is sensitive for the change of the NOx flux due to the point source480

emissions, the required AMF correction has to be applied to the profile of the added rather than the total NOx.

Still, we do not apply such a correction here, since there are indications that the cloud heights and surface albedo used for

the NO2 retrieval are systematically biased. Thus, also the provided AKs are biased and a simple a-posteriori correction of

TVCDs is not possible.

For Germany, the AMF correction applied in Beirle et al. (2019) was a factor of 2 due to profile shape. In combination with485

a bias in the cloud height and ground albedo used for the TVCD retrieval, even higher factors have to be expected. The actual

number will depend on surface albedo, aerosols, and cloud statistics (within the selection of low effective cloud fractions) and

is high over dark surfaces and frequent cloud contamination, but low over bright surfaces and few clouds (like for Riyadh).

For partly clouded scenes, the AMF for the added NO2 column could be easily too high by an order of magnitudes, if the real

cloud is above the plume, but the retrieved cloud is below. Consequently, the added NO2 would be biased low by an order of490

magnitude. This issue was improved in a recent update of the TROPOMI NO2 L2 processor now using improved albedo and

cloud products, and thus more appropriate AKs. However, so far, no reprocessed NO2 timeseries is available.

5.2.6 Low bias

As listed above, many effects contribute to the uncertainty of emission estimates from the divergence of mean NO2 fluxes.

Several of these effects are systematic in nature, resulting in an overall low bias of the derived emissions. In particular the495

effects of biased cloud height and inaccurate a-priori profiles are expected to reveal large regional dependencies. Consequently,

the low bias is hard to quantify for the global catalog. Thus we decided not to try to correct for the low bias of catalog emissions

in this study, but present the low biased estimates as they are with a clear disclaimer that the given emission estimates are biased

low.

Accordingly, the emission estimates for South Africa reported in Beirle et al. (2019) were higher than the values listed in500

table 4 by a factor of about 1.87 (for Matla/Kriel) up to 2.56 (for Medupi/Matimba). This discrepancy is a consequence of the

missing AMF correction (factor 1.35 applied in Beirle et al. (2019)), the missing lifetime correction (factor 1.1), the wind input

data from lower altitudes (factor 1.1), and differences in grid definition, fit function (no rotation), and fit settings (factor 1.2),

which together explain a factor of 1.9 as found for Matla/Kriel.

For Medupi/Matimba, the reason for the remaining discrepancy is the difference in input wind fields. The winds from higher505

altitudes (450 m) used in Beirle et al. (2019) cause a pattern of high negative D southwest of the power plants, indicating a

mismatch of wind direction (see Fig. S2B in the Supplement of Beirle et al., 2019). Even in E, after applying lifetime correc-

tion, the negative values southwest remain in maps of E (Fig. 4A in Beirle et al., 2019). Consequently, the fit function finds a

low background with a linear increase from southwest to northeast, and the emissions fitted on top of this low background are

biased high.510

In the current study, this artifact is not present (see point source #3 in Fig. 5), indicating that the wind direction from lower

altitude (300 m) matches better to the actual NOx transport of Medupi/Matimba emissions.

23



In the Supplement, catalog emissions are exemplarily compared to emissions reported by EPA for the top 10 emitters of

the USA. 7 of these 10 emitters are listed in the catalog, with correct naming found from the merging of GPPD. The other

3 emitters were also found as candidates, but were classified as ‘negative’. EPA emissions were found to be higher than the515

emissions listed in the catalog by a factor of 3 (Navajo) up to 8 (Hunter). These power plants, however, are quite remote from

large cities. Thus, in absence of other significant NOx sources, the modelled profiles used as a-priori for the calculation of

AMFs do not reflect the near-surface power plant plume due to the coarse model resolution. In addition, the cloud altitude used

for the calculation of averaging kernels is biased low (Compernolle et al., 2021), causing high biased AMFs and low biased

columns. The impact of this bias can easily reach one order of magnitude for cases where the retrieval assumes a cloud below520

the plume, while it is actually above. For these reasons, we have to expect that the low bias of the partial column added by a

point source close to the ground is considerably larger than that of the complete tropospheric column, where validation studies

report typical low biases of a factor of 2 for polluted sites. We will focus on this issue more quantitatively when preparing an

update of the catalog, which we plan to process after reprocessing of the TROPOMI NO2 product based on improved albedo

and cloud products and thus more appropriate AKs.525

5.3 Potential

Though the catalog is incomplete and the derived emissions are biased low, it still has the potential to improve our knowledge

on NOx emissions. Here we discuss the benefits of the divergence approach and the point source catalog and propose future

applications:

5.3.1 Localization of NOx and CO2 sources530

The Gaussian fit determines the location of the peak maximum. For all catalog locations which were inspected manually (i.e. all

point sources listed in table 4 or labeled in Fig. 4), Google Maps quickly reveals a plausible origin of the emissions close to

the fitted peak location. For the examples shown in Fig. 5 which are related to power plants, the fitted point source location

agrees to the actual power plant locations within about 2-3 km. Thus, the point source catalog accurately lists the location of

NOx point sources. As these sources are all related to combustion, this also provides valuable information on the location of535

CO2 sources, which may also help to quantify CO2 emissions from NO2 measurements (Liu Fei et al., 2020) and current and

future satellite measurements of CO2.

5.3.2 Spatial patterns

Within a regional focus, the catalog reflects the spatial distribution and relative importance of point sources. Regionally, high

correlation between NOx emissions and power plant capacity was observed (Fig. 6). Thus, it might be possible to re-distribute540

emissions from bottom-up inventories regionally according to the location of point sources in the catalog.

In addition, striking discrepancies between bottom-up inventories and the catalog, like strong point sources present in one

but missing in the other, might be investigated in more detail and should result in improved emission inventories.
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5.3.3 Up-to-dateness

Bottom-up inventories based on fuel consumption statistics have to collect and process input data from national reports. Thus,545

they have a time lag and are outdated when released for countries with high dynamics in industrial activities. Based on the

divergence of NO2 fluxes, single power plants can be identified and quantified e.g. on annual basis. This would allow to detect

short-term trends and power plants being switched on or off even in the vicinity of polluted cities such as Riyadh.

5.4 Outlook

This manuscript describes v1.0 of the NOx point source catalog. We plan to update the catalog as soon as a reprocessed550

TROPOMI NO2 product is available. We expect that some of the persistent gaps along coastlines, e.g. around Dubai, can be

closed in future, as soon as the cloud information is based on high resolution maps of the surface albedo, and thus NO2 TVCD

becomes available there. In addition, improved surface albedo, cloud height and a-priori profiles are expected to improve the

TVCD and (at least partly) remove the low bias.

In addition, we plan to use meteorological data from ERA-5 on higher spatial and temporal resolution. Currently, 6 hourly555

model output of ECMWF meteorological data was interpolated to a regular horizontal grid with a resolution of 1°. Case studies

will be performed in order to find out which is the best compromise between spatio-temporal sampling and processing time.

6 Conclusions

The high spatial resolution provided by TROPOMI allows for the detection and quantification of strong NOx "point sources"

like large power plants, metal smelters, cement plants, or industrial areas. We present v1.0 of a global catalog of NOx point560

sources derived from the divergence of the mean NO2 flux 2018-2019 by a fully automated iterative algorithm, yielding 451

point sources. 242 of these point sources could be matched to combustion power plants from a global database, with a median

distance of 1.6 km. Top 4 point source emissions are all located in South Africa and related to coal burning. About 1/4 of all

point sources were found over the Indian subcontinent, where the method works quite well due to low noise levels.

The catalog is incomplete and misses point sources due to gaps in the divergence map (caused by gaps in the cloud product),565

artifacts in the divergence map (caused by non-steady state and inaccurate wind fields), noise in the divergence map (caused by

sampling effects for regions with high background TVCD like Western Europe or China), and interference of sources within

about 10-20 km distance.

The listed emissions are biased low mainly due to a low bias of input TVCDs from TROPOMI. As this bias is expected to

vary regionally and is hard to quantify, it is not corrected for v1.0 of the catalog. Exemplary comparisons to emissions reported570

from in-situ monitoring reveals a low bias which can be as high as a factor of 8 for some power plants, which is probably

caused by inappropriate a-priori profiles and a low bias in the cloud height.

Still, the catalog has high potential for checking and improving emission inventories, as it localizes NOx (and also CO2)

sources, provides spatial patterns of the distribution of sources, and yields up-to-date emission data.
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İ., Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A., Harris, C. R., Archibald,

A. M., Ribeiro, A. H., Pedregosa, F. and van Mulbregt, P.: SciPy 1.0: fundamental algorithms for scientific computing in Python, Nature

Methods, 17(3), 261–272, doi:10.1038/s41592-019-0686-2, 2020.

Wagner, T., Burrows, J. P., Deutschmann, T., Dix, B., von Friedeburg, C., Frieß, U., Hendrick, F., Heue, K.-P., Irie, H., Iwabuchi, H., Kanaya,680

Y., Keller, J., McLinden, C. A., Oetjen, H., Palazzi, E., Petritoli, A., Platt, U., Postylyakov, O., Pukite, J., Richter, A., van Roozendael, M.,

Rozanov, A., Rozanov, V., Sinreich, R., Sanghavi, S., and Wittrock, F.: Comparison of box-air-mass-factors and radiances for Multiple-

Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) geometries calculated from different UV/visible radiative transfer

models, Atmos. Chem. Phys., 7, 1809–1833, https://doi.org/10.5194/acp-7-1809-2007, 2007

29


