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Abstract. MAPM (Mapping Air Pollution eMissions) is a project whose goal is to develop a method to infer particulate mat-

ter (PM) emissions maps from in situ PM concentration measurements. In support of MAPM, a winter field campaign was

conducted in New Zealand in 2019 (June to September) to obtain the measurements required to test and validate the MAPM

methodology. Two different types of instruments measuring PM were deployed: ES-642 remote dust monitors (17 instruments)

and Outdoor Dust Information Nodes (ODINs; 50 instruments). The measurement campaign was bracketed by two intercom-5

parisons where all instruments were co-located, with a permanently installed Tapered Element Oscillating Membrane (TEOM)

instrument, to determine any instrument biases. Changes in biases between the pre- and post-campaign intercomparisons were

used to determine instrument drift over the campaign period. Once deployed, each ES-642 was co-located with an ODIN. In

addition to the PM measurements, meteorological variables (temperature, pressure, wind speed and wind direction) were mea-

sured at three automatic weather station (AWS) sites established as part of the campaign, with additional data being sourced10

from 27 further AWSs operated by other agencies. Vertical profile measurements were made in two intensive radiosonde sub-

campaigns and were supplemented with measurements made with a mini micropulse lidar and ceilometer. Here we present

the data collected during the campaign and discuss the correction of the measurements made by various PM instruments. We

find that for while for the ODINs a correction based on environmental conditions is beneficial, this results in over-fitting and

increased uncertainties when applied to the measurements obtained using the more sophisticated ES-642s. We also compare15

PM2.5 and PM10 measured by ODINs which, in some cases, allows us to identify PM from natural and anthropogenic sources.

The PM data collected during the campaign are publicly available from https://doi.org/10.5281/zenodo.4023402 (Dale et al.,

2020b), the data from other instruments are available from https://doi.org/10.5281/zenodo.4021685 (Dale et al., 2020a).
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1 Introduction20

Airborne particulate matter (PM) comprises particles that can be solid, liquid or a mixture of both. The solids comprising PM

can include both organic and inorganic constituents, such as sea salt, dust, pollen, and soot. Particle sizes and composition

vary with location, origin and in situ chemical processes (Adams et al., 2015). There are health concerns associated with PM

emissions, as PM remains suspended in the air where, if it is inhaled, the risk of developing cardiovascular and lung-related

diseases increases (Anderson et al., 2012; Pizzorno and Crinnion, 2017). The World Health Organization estimates that PM25

air pollution contributes to approximately 800,000 premature deaths each year, ranking it the 13th leading cause of mortality

globally (Anderson et al., 2012). Pope et al. (2009) show that by decreasing the ambient PM2.5 concentration by 10 µgm−3 life

expectancy can be increased by 0.6 years. PM can be described by its aerodynamic equivalent diameter (AED) and particles

are generally subdivided according to their size: < 10, < 2.5, and < 1 µm (PM10, PM2.5, and PM1, respectively). Particles with

a diameter greater than 10 µm have a relatively small suspension half-life and are largely filtered out by the nose and upper30

airway if inhaled. Particles with diameters between 10 and 2.5 µm (PM10−2.5) are referred to as ‘coarse’, less than 2.5 µm as

‘fine’, and less than 1 µm as ‘ultrafine’ particles. It is important to note that PM10 encompasses ultrafine (PM1), fine (PM2.5−1),

and coarse (PM10−2.5) fractions.

During winter, towns and cities in New Zealand suffer from elevated levels of PM resulting from the burning of wood and

coal for home heating (Ministry for the Environment & Stats NZ, 2018). Poor air quality is a more frequent problem in cities35

and towns that are located in the South Island. This reflects the climatologically colder winters, that occur in the South Island,

resulting in greater use of solid fuel for home heating and the formation of capped boundary layers that restrict the dispersion of

pollutants being more likely. This study presents measurements of PM made during a winter field campaign in Christchurch in

2019. Christchurch is New Zealand’s third largest city (population of 385,500 as at June 2019) and is one of the most polluted

cities in New Zealand.40

To provide regional councils with legislative tools to address poor air quality, the New Zealand government defined national

environmental standards (hereafter NES) for air quality in 2004 and updated these in 2011. The standards include five main

air contaminants, viz. PM10, sulphur dioxide (SO2), carbon monoxide (CO), nitrogen dioxide (NO2), and ozone (O3). Each

contaminant is monitored in 89 geographical regions surrounding urban areas known as airsheds, Christchurch lies within a

single airshed (Fig. 2). Within each identified airshed, a limited number of PM10 exceedances of a daily mean limit of 50 µgm−345

are permitted each year (one for some airsheds, three for others). However, the PM standard is currently under review with

the expectation that the primary standard for PM pollution will shift from PM10 to PM2.5 in recognition of PM2.5 being more

relevant for assessing health impacts, since it penetrates deeper into the lungs than PM10. This proposed change will bring New

Zealand’s air quality standards up to those suggested by the World Health Organization (WHO Regional Office for Europe,

2017). As such, while PM10, PM2.5 and PM1 were measured during the field campaign, this paper focuses primarily on PM2.5.50
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1.1 The Mapping Air Pollution eMissions (MAPM) project

The goal of the MAPM project, funded through the New Zealand Ministry of Business, Innovation and Employment, is to

develop a method for inferring daily, high spatial resolution (< 100 m) PM2.5 emissions maps for cities. The MAPM method

uses an inverse model that takes as input in situ PM2.5 mass concentration measurements and the meteorological data re-

quired to calculate trajectories from sources to receptors (instrument locations) and generates PM2.5 emissions maps and their55

uncertainties. Several linked lines of development, conducted in parallel, form the basis of the MAPM research:

1. A field campaign to generate the data required to test and validate the MAPM methodology. The purpose of this paper is

to describe in detail this field campaign and the resultant data.

2. A forward model that simulates the local meteorology over the duration of the campaign. This model is used to drive

Lagrangian particle dispersion trajectories and produce source-receptor relationships between the PM2.5 sensors and the60

emissions sources.

3. An inverse model that takes the source-receptor relationships, in situ PM2.5 concentration measurements and a prior

emissions map as input to generate daily maps of sources of PM2.5 emissions and their uncertainties.

4. Several Observing System Simulation Experiments that are being used to explore the effects of different (i) instrument

configurations, and (ii) instrument types and associated measurement uncertainties.65

Because MAPM’s purpose is to infer PM2.5 emissions maps for cities, Christchurch was selected as a target to demonstrate

MAPM’s capability, as it is one of the largest cities in New Zealand and PM concentrations in Christchurch frequently exceed

the NES thresholds during winter.

1.2 Previous PM measurement field campaigns conducted in Christchurch

In addition to the three PM permanent measurement sites, that are installed for regulatory purposes in Christchurch, there have70

been several previous short-term PM measurement campaigns in Christchurch and surrounding area. During the winter of 2016,

19 ES-642 remote dust monitors (hereafter referred to as ES-642), (measuring both PM10 and PM2.5) were deployed across

the Christchurch airshed. This network was designed to have a high level of correlation with permanent reference instruments

operated by Environment Canterbury (ECan) and primarily focused on suburban PM concentrations, with some information

from local emissions.75

Between May and November 2017 an additional 10 low cost nephelometers units were deployed to focus on denser measure-

ment networks to investigate the prevalence of spikes and airshed boundary gradients using the 2016 spatial characterisation

of the airshed. Both the 2017 and the 2016 campaign found significant spatial and peak PM differences with the data from the

3 permanent monitoring sites.

Within MAPM, the measurements from the 2016 and 2017 measurement campaigns were combined using a regression model80

to create high resolution hourly PM2.5 maps for Christchurch, which were then used as input to an algorithm that selected
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Figure 1. The geographical context for Christchurch showing the Southern Alps to the west, Banks Peninsula to the east, and the Canterbury

Plains between the city and the Southern Alps. The inset shows a typical PM2.5 distribution around the city. Background image: © Google,

Maxar Technologies.

locations for the placements of Outdoor Dust Information Node (ODIN) and ES-642 instruments for the 2019 campaign

(Sect. 3).

Another measurement campaign was undertaken in autumn 2016 by Huggard et al. (2019). 18 ODIN nephelometers were

installed in Rangiora, a small town 20 km north of Christchurch. Data from these were compared to measurements made by85

a permanent TEOM also installed in Rangiora. Huggard et al. (2019) analysed several methods of correcting ODIN PM data

against a TEOM reference. They found little benefit in increasing the instrument co-location period beyond seven days and that

a correction based on relative humidity was optimal.

1.3 Description of Christchurch meteorology and sources of particulate matter

Christchurch is the main urban centre of the Canterbury region, which is situated on the east coast of New Zealand’s South90

Island. It is located on the eastern fringe of the Canterbury Plains that slope gently from the coast to the Southern Alps that

rise to elevations well above 3000 m. While Christchurch is situated on generally flat terrain, immediately south of the main

urban area, the Port Hills form the northernmost side of the volcanic landscape of Banks Peninsula, provide a local orographic

feature that reaches elevations of up to 450 m (Fig. 1).

Dwellings in the urban area of Christchurch are mainly single story houses and buildings higher than 5 stories are rare in the95

city centre. The current tallest building in Christchurch rises to 86 metres. Many of the high-rise buildings were demolished

following a series of major earthquakes in 2010 and 2011. Christchurch has a relatively low population density (270 km−2

compared to 1,510 km−2 for London, UK). In the centre of Christchurch is Hagley park with an area of 1.65 km2 in this area,

very little PM emissions occur.
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Christchurch has a temperate maritime climate with warm dry summers and winters in which it is common for temperatures100

to fall below 0◦C overnight. There are, on average, 70 days of ground frost per year. Snowfalls occur on average once or twice

a year on the Port Hills and about once every two years on the plains. The dominant topography that modifies the synoptic flow

around Christchurch are the Southern Alps which form a roughly perpendicular obstacle to the predominant westerly wind.

The resultant foehn-type winds lead to Christchurch having relatively low rates of rainfall that limit rainout of airborne PM

pollution. The second most common wind in Christchurch is an onshore easterly wind that flows parallel to the Port Hills,105

which also induces the majority of the rainfall.

During winter, the main source of PM2.5 emissions in Christchurch is burning wood and coal for home heating. Further minor

anthropogenic sources result from industry and transport with natural sources including dust and sea salt. ECan monitors

PM10 at two locations in Christchurch (Woolston and St Albans) to provide the data needed to detect exceedances of the

NES permitted thresholds. High pollution days can often be related to several precursor states occurring in concert such as110

meteorological conditions, topography influencing air mass movement, and short-term emission sources such as passing heavy

or poorly serviced vehicles (Mukherjee and Toohey, 2016).

In 2019, Christchurch reported seven days where the daily mean PM10 concentration exceeded the 50 µgm−3 NES permitted

threshold (i.e. four days more than is currently permitted; from 1 September 2020, only a single exceedance is permitted each

year). The proposed new limits for any airshed are: (i) no more than three exceedances of 25 µgm−3 for daily mean PM2.5115

and (ii) an annual mean PM2.5 concentration of no more than 10 µgm−3. During winter, 90 % of all particulates measured

as PM10 comprise particles smaller than 2.5 µm (Aberkane et al., 2010). A series of major earthquakes occurred in 2010 and

2011 in Christchurch, resulting in major structural damage, which substantially increased the reliance on woodburning for

home heating. This, together with intensive construction and demolition activities elevated several sources of PM pollution

(Tunno et al., 2019). On the other hand, major damage led to many homes being removed, people moving away and, older120

wood burners being replaced with lower emission burners or electrical heating, leading to reduced PM emissions.

On the 1 January 2019 the use of ‘old style’ wood burners was banned on any property smaller than 2 ha within the

Christchurch Clean Air Zone (Fig. 2). After this date the installation of a burner that did not meet the ‘ultra low’ emissions

standard was also banned on properties smaller than 2 ha within the Christchurch Clean Air Zone. Ultra low emissions burners

must not exceed 38 mg of emissions per MJ of useful energy output and must have a thermal efficiency greater than 65 %.125

Sources of PM in Christchurch’s surrounding areas include agricultural fires and agricultural dust, as well as sea salt from

the nearby ocean. Agricultural fires occur predominantly between February and March and are often forbidden during summer

for safety reasons. Golders Associates (2014) investigated the impact of burning of crop residue and found that while agri-

cultural fires were not likely to cause an exceedance of the NES, large spikes in PM10 were possible at hourly timescales and

recommended that agricultural fires are not burned within 6 km of an urban area.130

This paper describes each of the instruments used in the campaign (Sect. 2), the algorithm used to decide where to locate

the sensors (Sect. 3), how the sensors were inter-calibrated and the QA/QC (Quality Assurance/Quality Control; Sect. 4), the

method used to derive the uncertainties on the PM2.5 measurements (Sect. 5), with a final description and presentation of the

data in Sect. 6. Concluding remarks regarding the intended use of the data are provided in Sect. 7.
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Figure 2. Locations of the instruments deployed during the MAPM field campaign and the AWSs operated by MetService and NIWA. The

solid black line indicates the boundary of the Christchurch Clean Air Zone, the black dotted line indicates the boundary of the Christchurch

Airshed. Locations of AWSs operated by members of the public are not shown. © OpenStreetMap contributors 2020. Distributed under a

Creative Commons BY-SA License.

2 Instruments135

The MAPM field campaign was conducted in Christchurch from 4 June to 9 September 2019 to collect PM concentration and

meteorological measurements required to develop and test the MAPM methodology. 50 ODIN and 17 ES-642 instruments

were distributed throughout the city, measuring PM concentration every minute at ground level (i.e. around 2 to 3 m above

the surface). Three automatic weather stations (AWS) that measured temperature, humidity, wind speed, and wind direction

were installed at the perimeter of the city (Fig. 2). Measurements from these AWSs were complemented by measurements140

from AWSs operated by the Meteorological Service of New Zealand (MetService) and the National Institute of Water and

Atmospheric Research (NIWA), as well as meteorological measurements made by the public and submitted to the United

Kingdom Met Office weather observation website (WOW; https://wow.metoffice.gov.uk/). A micropulse lidar and a ceilometer

installed on top of a building (45 m altitude above surface) measured vertical profiles of aerosol concentration. To investigate

the stability of the boundary layer, its height, and to identify the occurrences of temperature inversions, 12 balloon-borne145

radiosondes were also deployed during the field campaign.
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2.1 ES-642 remote dust monitor

The ES-642, produced by Met One Instruments, Inc., is a type of nephelometer which automatically measures real-time air-

borne particulate matter concentrations using the principle of forward laser light scatter. The sensor has a prescribed accuracy

of ±5 % and a sensitivity of 1 µgm−3 (Met One Instruments, Inc, 2019). Air is drawn into the sensor through a sharp-cut cy-150

clone to prevent particles larger than 2.5 µm entering the sensor. The accuracy of a nephelometer is hindered by water vapour

present within the sample air. As relative humidity increases above 50 % particles begin to aggregate and increase in size due to

water absorption (Di Antonio et al., 2018). To mitigate these effects, a 10 W inlet heater is used to warm the incoming air and

thereby lowering the relative humidity of the air entering the sensor, preventing the intake of water vapour. The heater turns on

when the ambient relative humidity reaches values above 40 %. The sampled air then passes through the laser optical module155

where the suspended particles in the air stream scatter the laser light through reflective and refractive properties. This scattered

light is collected onto a photodiode detector at a near-forward angle, and the resulting electronic signal is processed to derive

a continuous, real-time measurement of airborne PM concentrations.

The ES-642 instruments were provided by MOTE Ltd. and were coupled with data modems to transmit data in near real-time.

The instruments were deployed in two different configurations (referred to collectively as ES-642s hereafter): ’Dust Motes’160

(DM) consisting of a ES-642 module and ’Dust Met Motes’ (DMM) consisting of a ES-642 module and a sonic anemometer

which measures the airflow in the vicinity of the instrument.

Nine Dust Motes and five Dust Met Motes were deployed throughout Christchurch during the MAPM field campaign

(Fig. 2). A further three ES-642s are permanently installed and operated in Christchurch by ECan. Thus, 17 ES-642s were

running in Christchurch during the winter 2019 field campaign. As ES-642s require a mains power supply, most of them were165

installed in private residential properties owned by volunteers. Measurements were made at 1-second intervals and are then

averaged to one minute resolution by the internal software. Instruments were generally attached to available infrastructure such

as fence posts (Fig. 3).

2.2 Outdoor Dust Information Node (ODIN)

ODINs are low cost nephelometers that measure concentrations of PM1, PM2.5 and PM10 using readily available components170

(Olivares and Edwards, 2015). Each ODIN instrument consists of a plantower PMS3003 laser PM sensor and a SHT30 tem-

perature and relative humidity sensor regulated by a microcontroller that logs data to a Secure Digital (SD) memory card.

Although automatic data transmission can be enabled, this functionality was not used during the MAPM field campaign to

improve instrument reliability. Instead, data were periodically retrieved from the SD card. Power is drawn from an on-board

battery that is charged by a small solar panel, allowing for units to be installed in remote locations, independent of a power175

source.

Of the 50 ODINs that were deployed for the MAPM field campaign, 16 were co-located with the ES-642 instruments (one

ES-642 site was deemed not suitable for a solar powered ODIN). The remaining instruments were installed throughout the city
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Figure 3. Examples of typical co-located ES-642 and ODIN installs. Note the instrument on the left is a Dust Met Mote with an additional

sonic anemometer. An ODIN was co-located with every ES-642 instrument for intercomparison purposes.

attached to light-posts (Fig. 4). Data from two ODINs could not be retrieved as one was destroyed due to water ingress and one

was presumed to be stolen from the light-post.180

The ODINs took instantaneous measurements at 1-minute time intervals and reported PM values as the nearest integer

constraining the accuracy provided by the ODIN. While the ODINs were set to sample once every 60 seconds, this timing

was imprecise and measurements gradually drifted away from integer minutes. To conveniently compare ODIN measurements

with that of other instruments, ODIN measurements were linearly interpolated to integer minutes following the pre-screening

of data, described in appendix A.185

2.3 Tapered Element Oscillating Microbalance (TEOM)

Three Tapered Element Oscillating Microbalance Filter Dynamics Measurement System (TEOM-FDMS, hereafter referred

to as TEOM) instruments were running in Christchurch during the MAPM field campaign as part of the permanent observing

system installed by ECan and provided data at hourly resolution. The TEOM instruments were co-located with and ES-642 and

an ODIN instrument at the Woolston and St Albans sites and with an ES-642 at the Riccarton Road site (Fig. 2). The TEOM190

continuously measures PM2.5 and PM10 concentrations and are classified as equivalent to gravimetric measurements by the US

Environmental Protection Agency (Charron, 2004). Gravimetric measurements are based on weighing the mass of particulate

matter that accumulates on a filter after air has passed through the filter over a prescribed time period, generally 24 hours.

The TEOM measures PM concentration by passing air through an oscillating filter (Patashnick and Rupprecht, 1991). As PM

accumulates on the filter, the inertia of the filter and thus the frequency of oscillation of the filter changes. The instrument195

therefore measures particulate matter mass directly.

8

https://doi.org/10.5194/essd-2020-276

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 28 October 2020
c© Author(s) 2020. CC BY 4.0 License.



Figure 4. An example of a typical ODIN installation on a light-pole.

2.4 Automatic Weather Station (AWS)

Three temporary AWSs were installed specifically in support of the MAPM field campaign. These were deployed to supplement

measurements from AWSs operated by MetService, NIWA and by members of the public who made their data available through

the Weather Observation Website (WOW) maintained by the United Kingdom Met Office. While data from all of these AWSs200

(a total of 30 instruments) have been used in the MAPM project, only the three dedicated MAPM AWSs will be described

and here. Measurements were made using a Unidata LM34 temperature sensor, a Vector W200P Potentiometer wind vane to

determine the wind direction and a Vector A101 anemometer to measure wind speed. The data were logged using a Unidata

Starlogger 6004D-2, which averaged 3-second data to a 10-minute resolution and recorded the averages, the standard deviation

and the minimum and maximum values measured within the preceding 10 minutes.205

The instrument locations were chosen to complement the network of permanently installed AWSs. Observations at the

exterior of the city were preferred to provide information on any inflow of PM across the perimeter of the city. Two AWSs

were located in rural fields just outside the suburban city area, while the third was located in a park within the city. The

instruments were installed 2 m above the local foliage (one instrument was located in a field containing a 1.5 m tall crop so

was installed 3.5 m above the surface). All AWSs were installed at least 50 m from the nearest tall obstruction.210

Extensive quality control was performed on all AWS data, which is described detail in Sect. 4.
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2.5 Vertical profile measurements

The vertical stability of the atmospheric column has a strong effect on the distribution of aerosols. During night-time, radiative

cooling at the surface of the atmosphere causes temperature inversions to form in the lower layers of the atmosphere. These

regions of stable air prevent mixing of aerosol above the boundary layer. Therefore, to accurately simulate the transport of215

aerosol across a city, it is essential for any transport model to correctly represent the planetary boundary layer height (BLH).

To evaluate the ability of atmospheric transport models to represent the diurnal cycle of the BLH, vertical profile measurements

were made during the MAPM field using:

i a Sigma Space mini mini micro pulse lidar (miniMPL)

ii a Lufft CHM 15k ceilometer and220

iii radiosondes

The miniMPL and a ceilometer were ran in co-location. These instruments provided continuous profiling of the vertical

structure of the atmosphere above Christchurch and were complemented by two periods of intense radiosonde launches from a

nearby location.

2.5.1 Mini micro pulse lidar (miniMPL)225

A Sigma Space mini micro pulse lidar was installed on the roof of the Rutherford Regional Science and Innovation Centre at the

University of Canterbury (43.5225◦ S, 172.5841◦ E) at an altitude of 45 m above sea level. This building is approximately 30 m

high and is surrounded by several buildings of similar height. The university campus is otherwise surrounded by a residential

area of primarily single- and two-story houses. The miniMPL was installed on 17 July 2019 and operated by the University of

Canterbury until the end of the MAPM field campaign.230

The MiniMPL is a dual-polarisation micro pulse lidar operating at a wavelength of 532 nm at pulse repetition frequency of

2.5 kHz, with a maximum range of 30 km (Spinhirne et al., 1995; Campbell et al., 2002; Flynn et al., 2007). The MiniMPL

is an aerosol backscattering lidar and a detailed description of the lidar instrument can be found in Ware et al. (2016). The

MiniMPL operates similarly to other lidars and operates continuously with a temporal resolution of 2 minutes.

The instrument produces native binary files with backscatter and housekeeping meta-data, which can be converted to netCDF235

files using manufacturer supplied software (SigmaMPL). The measurements from this campaign have been used in Kuma et al.

(2020) to demonstrate the potential of a ground-based lidar simulator for model evaluation of cloud properties. The instrument

is also sensitive enough to measure aerosol backscatter on a continuous basis and can therefore be used to infer boundary layer

height.

2.5.2 Ceilometer240

A Lufft CHM 15k ceilometer was also installed on the roof of the Rutherford science and innovation centre next to the miniMPL

(Sect. 2.5.1), pointing vertically. The ceilometer operates at an infrared wavelength of 1064 nm. The maximum range of the
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instrument is approximately 15 km. The instrument provides vertical profiles of backscatter with a vertical resolution of 5 m in

the first 150 m and 15 m above, and a temporal resolution of 2 s. Variables such as cloud base height and planetary boundary

layer height are calculated by a built-in algorithm. The instrument was active from 1 June 2019 until the end of the MAPM245

field campaign.

2.5.3 Radiosondes

Radiosondes are small balloon-borne instruments that measure the vertical profile of temperature, relative humidity, and pres-

sure. Depending on the radiosonde type, pressure is either directly measured or inferred from the altitude of the instrument.

Altitude, wind direction and wind speed are calculated from the Global Positioning System (GPS) location of the sonde.250

As part of the MAPM field campaign 12 GRAW DFM-9 radiosondes were launched. The radiosonde measurements were

used to identify stable inversion layers that typically form during cold and calm periods, particularly at night-time. A thermistor

is used to measure the temperature with an accuracy of ±0.2 ◦C and a resolution of ±0.01 ◦C and a capacitive polymer sensor

measuring relative humidity with an accuracy of±4 % and a resolution of±1 % (GRAW Radiosondes, 2019). The atmospheric

pressure was calculated based on the GPS altitude of the radiosonde.255

Two 24 hour periods in which to launch the radiosondes were selected based on the weather conditions. In each 24 hour

period six balloons were launched. The first balloon was launched at 1400 NZST (UTC + 12), followed by a launch every four

hours until 1000 NZST the next day. By measuring six vertical profiles throughout the day, the depth of the boundary layer and

its diurnal cycle can be investigated. Temperature inversions near the top of the boundary layer form a stable barrier preventing

vertical mixing, constraining aerosol within the boundary layer. The first of two 24 hour launch periods took place on 25 of260

July 2019, a day that was characterised by clear, relatively cold conditions with decreasing wind speeds. Around 2200 NZST

dense fog formed which evaporated around 0830 NZST the next morning. The second launch period, which began on the 15

of August 2019, was characterised by reasonably clear conditions with decreasing wind speeds towards the night and no fog

occurring (Fig. 7). The primary goal of the balloon launches was to sample the air within the boundary layer. To increase

the sampling rate in the boundary layer, all balloons were underinflated with a target ascent rate of 3 ms−1 compared to the265

commonly used 5 ms−1.

3 MAPM Field campaign design

We sought an optimal set of 50 sites around Christchurch city whose pollution measurement times series would be as different

as possible from those at every other site. This philosophy would maximise the information content of the time varying PM

concentration field sampled at the 50 sites. To accomplish this we first developed a method for generating hourly spatially-270

resolved PM2.5 concentration maps over the domain from point source PM measurements and model output.
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3.1 Hourly concentration maps

The measurements used in the concentration maps were made by MOTE over the winters of 2016 and 2017 (Sect. 1.2),

extreme outliers were removed and hourly averages were then calculated. We fitted a least squares regression model to every

winter day over 2016, and 2017 separately using the hourly PM2.5 measurements. The basis functions in the regression model275

contained spatially resolved, modelled winter maximum and winter average concentrations expanded into six Fourier terms.

The modelled winter maximum and winter average of PM2.5 concentration fields were obtained from Golders Associates

(2016), and compromised 137x137 grid cells over Christchurch. For every hour the residuals of the fits were calculated and then

kriging was used to interpolate this field across the whole model domain, creating the delta map. Finally the regression model

was evaluated at each grid point, and combined with the delta map producing the gridded hourly maps of PM2.5 concentration280

over Christchurch during the 2016 and 2017 winters. These maps then guided the process for locating the instruments deployed

during the campaign.

3.2 Instrument placement

To select 50 sites for the PM instruments, we compiled a list of 32 properties of volunteers and 50,000 suitable light poles

around the city to choose from. Hourly PM2.5 concentration maps were derived from the regression model output described285

above at each site over June, July, and August of 2016 and 2017. In addition to these potential sites there were a number of

fixed sites: i) three permanent ES-642 installations that are maintained by ECan and ii) a site at the University of Canterbury

where a ES-642 was installed to be co-located with the miniMPL. Starting with the PM concentrations of these four fixed sites,

an algorithm was employed that selected the next instrument site out of the list of potential sites with the least correlation to the

other sites in the set of sites already chosen. First the sites for the ES-642s were selected out of the potential sites (ODINs were290

also installed at all except one of the ES-642 sites), as ES-642s were only able to be installed at the volunteer sites. Secondly

the sites for the remaining ODINs were selected. Because the majority of variation in the derived PM2.5 concentration estimates

at each site were induced by the measurements made during the 2016 and 2017 campaigns (Sect. 3.1), the algorithm tended to

cluster instruments close to the original measurement sites. To account for this an extra term was added to the algorithm which

maximises the distance between the sites. The adjusted algorithm preferentially suggested sites on the perimeters of the city,295

which was desirable for estimating the background PM2.5 concentrations flowing into the city.

4 Quality control and correction of measurements

4.1 Pre-screening of the measurements

A simple pre-screening process was applied to all data from all the instruments to remove erroneous values. Firstly missing

data were flagged as such, secondly a plausible range was defined for each variable and values outside this range were also300

flagged. The values used for these plausible ranges are listed in appendix A. Finally other values that were clearly erroneous
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were flagged, for example PM2.5 values measured by ES-642s were flagged if the air flow rate through the device fell outside

the acceptable range stated on the ES-642 datasheet (1.9 < flow rate < 2.1).

4.2 PM2.5 QA/QC and correction

All PM2.5 measurements were corrected using data collected during two co-location periods:305

i a pre-campaign co-location that ran from 6 June 2019 1700 NZST to 12 June 2019 1700 NZST

ii a post-campaign co-location that ran from 30 August 2019 1900 NZST to 8 September 2019 1900 NZST

For both co-location periods, all PM instruments together with the TEOM instrument were located at the Woolston site

(43.5572◦ S and 172.6811◦ E). The instruments were mounted on a scaffold approximately 3 m above the ground.

4.2.1 Smoke barrel tests310

Smoke barrel tests were performed on all the ES-642 instruments before the initial co-location and after the final co-location.

For these tests groups of six ES-642s were set up so that their inlets were drawing air from a closed barrel. Fans were used

inside the barrel to ensure the air inside was well mixed. Wood smoke was introduced to the barrel and the concentration

of PM2.5 was measured by each ES-642 as the smoke gradually dissipated. These measurements were made as a potential

alternative to the co-location periods as a method of calibration.315

However, the measurments made during the co-locations were used for the correction of PM2.5 measurements instead of the

smoke barrel tests because;

– The co-location periods were considerably longer than the smoke barrel tests, allowing for a more statistically certain

calibration.

– The co-location periods occurred over a larger range of meteorological conditions, allowing for a more sophisticated320

correction to be applied.

– The smoke barrel tests were composed of three separate tests. This would result in three groups of ES-642s that may be

calibrated well against each other, but there would be potentially large, unknown variations between the three separate

groups.

– By using the co-locations as our method of correction we are able to apply the same methodology to the ODINs and the325

ES-642s ensuring consistency between the two instrument types.

– While the smoke barrel tests only ensure internal consistency among ES-642s, using the co-location periods allows us

to correct the ES-642 measurements against the TEOM instrument ensuring we have consistency with a gravimetric

equivalent reference.
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A potential downside of using the co-location periods over the smoke barrel tests is that the co-locations only cover a limited330

range of PM concentrations. This means that for periods of high PM concentration during the deployment period the calibration

may have to use an extrapolation. This is of particular concern as the initial co-location period coincided with a period of low

PM2.5 concentrations. The smoke barrel test however, would span PM values from zero to much greater than would be expected

to occur during the campaign period.

4.2.2 ODIN time retrievals335

The ODIN instruments had no built in absolute reference for time. The time was set each time the instrument was installed

and the instrument required constant power to the board in order to keep time. This meant that if an ODIN restarted during the

campaign the time on the instrument would reset to the time that the instrument was originally started at. During the campaign

ODINs restarted for a variety of reasons, presumably due to either low battery voltage (and then restarting once the solar panel

recharged the battery), or due to a short on the circuit board due to ingress of debris or moisture. This resulted in several large340

sections of data being recorded that were unusable due to the timing of the data being unknown.

Cross correlation analysis was performed to retrieve these missing data. This retrieval method was only applied to sections

of missing data containing at least 12 hours of continuous measurements. PM2.5, temperature, and relative humidity from the

missing section of data were cross correlated, over a range of plausible times, against the median value from all operating

ODINs within 5 km of the instrument being corrected. The peak in the product of these three cross correlation curves was then345

found, if this peak was greater than 0.8 this was identified as the time offset and the section of data was corrected to match the

time of this peak. Data that was retrieved using this method was flagged in the netCDF files as such.

4.2.3 Correcting PM2.5 measurements

PM2.5 measurements were corrected to: (i) ensure that the measurements made during the main deployment period were

consistent between instruments, of either the same or different types; (ii) ensure that the measurements made during the main350

deployment period by each individual instrument were consistent through time. As the ’true’ value for PM2.5 is unknown, we are

unable to correct the measurements to be closer to reality but rather aim to make the resultant data set spatially and temporally

consistent. To achieve this, biases between the measured values and a known reference, in this case the measurements made by

the TEOM instrument are minimised by applying the following method:

1. Calculate hourly means of all valid ES-642 and ODIN measurements for each individual instrument. If fewer than 50355

valid measurements are present in a given hour that hour is excluded. If a instrument recorded data for less than 80 % of

a given co-location period the instrument was instead corrected against the other co-location period.

2. Apply a regression model to each individual ES-642 and ODIN in the form of:

PM2.5; TEOM = a×PM2.5; raw + b (1)
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where PM2.5; TEOM are the hourly PM2.5 concentrations measured by the reference instrument, PM2.5; raw are the360

hourly PM2.5 concentrations measured by each individual instrument, and the a and b values are the fit coefficients. This

regression model was applied to each co-location separately resulting in two sets of fit coefficients per instrument.

3. Use the fit coefficients to correct the raw data from each instrument at a one minute time resolution. For each instrument

a separate time-series was made using the two sets of coefficients for each co-location period. These two times series

were then combined using a weighted average:365

PM2.5; corrected(t) = x(t)×PM2.5; coloc 1(t) + y(t)×PM2.5; coloc 2(t) (2)

where PM2.5; corrected(t) is the final corrected PM2.5 concentration time-series, PM2.5; coloc 1(t) and PM2.5; coloc 2(t)

are the times series formed when using the coefficients from the pre- and post-campaign co-location periods respectively,

and x(t) and y(t) are the weighting coefficients which evolve linearly with time and have the following boundary

conditions:370

x(t0) = 1 (3)

x(tf ) = 0 (4)

y(t0) = 0 (5)

y(tf ) = 1 (6)

where t0 and tf are the start and end of the main deployment period respectively.375

These steps were repeated using a new set of basis functions in place of equation 1:

PM2.5; TEOM = a×PM2.5; raw + b×PM2
2.5; raw + c + d×RH + e×RH2 (7)

where RH is the time-series of relative humidity measured by the instrument and a, b, c, d, and e are fit coefficients. This

produced a second version of the corrected data referred to as version 2. This second version consists of a more complex

correction and adds additional factors to correct for errors caused by relative humidity.380

4.3 Automatic weather station (AWS)

After applying coarse limit tests on each of the AWS data streams (Appendix A), measurements of

i air temperature

ii relative humidity

iii wind speed385

iv wind gust speed
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v air pressure

from the 30 AWSs were tested for internal consistency. The purpose of the tests was to identify data that was recorded erro-

neously. Before conducting these internal consistency checks, for air temperature, all measurements were reduced to sea-level

temperatures assuming a moist adiabatic lapse rate of 6 ◦Ckm−1. For air pressure, the values were reduced to sea-level using390

the hydrostatic approximation assuming a layer mean temperature of 9.85 ◦C. For air temperature and wind speed, com-

parisons between sites were challenged by some sites providing measurements as 1-minute means and other sites providing

measurements as 10-minute means. As such, 10-minute ’synchronised’ means were calculated for all data across all locations,

i.e. means were calculated in common 10-minute blocks centred on 5, 15, 25, 35, 45 and 55 minutes past the hour.

The data are tested using a iterative method using three individual passes. On the first pass, a ‘proxy’ 10-minute value is395

estimated for each site. These proxy values are intended to be a best estimate of the value of the target variable at that site

and are calculated as follows: for each AWS site, the closest other site in each of four quadrants (NE, NW, SE, SW) with a

valid 10-minute mean is identified and a weighted mean (weighted by the inverse distance squared between the sites) of the

four values (noting that it can be fewer than four) is then calculated. We note that these proxy values may be contaminated

by erroneous data that were not excluded in the coarse data screening, but were used in the calculation of the proxy means.400

Therefore, on the second pass, only data that did not receive a ‘D grade’ in pass 1 (see below), were used to calculate the

10-minute proxy values. On the third pass, only data that did not receive a ‘D grade’ in passes 1 or 2, were used to calculate

the 10-minute proxy values.

On each pass, differences between 10-minute means and their associated 10-minute proxies are calculated. An example of

a histogram of these differences for air temperature is shown with selected percentiles and their associated ’grading’ (A, B,405

C, or D) in Fig. 5. Each 10-minute mean receives an A, B, C, or D grade depending on the difference from its associated

10-minute proxy value in the context of the distribution shown in Fig. 5. Each measurement in the associated 10-minute time

interval receives that grade. On the second pass, the 10-minute proxies are recalculated but now using only measurements that

received an A, B, or C grade from pass 1. As in pass 1, those 10-minute proxies are used to derive new differences and a new

histogram is used to give each measurement a revised grading. In this second pass we are more confident in the robustness410

of the proxy values as they are now less likely to be contaminated by erroneous values - indeed the histogram of absolute

differences on the second pass (not shown) shows tighter limits on the A, B, and C gradings. Each measurement then receives a

second A-D grading. The process is repeated a third time resulting in each measurement receiving a QA/QC label comprising

three letters arising from each consistency check. The poorest quality measurements (receiving a D grade on the third pass)

are then excluded from the ‘recommended’ time series for each instrument. This results in 12.5 % of the data being eliminated415

from each data set across all 30 sites, noting that for any single site, this could result in a majority of the data at the site not

being used.

An example of the QA/QC labelling of the temperature measurements at the Belfast site (ALS1139) is shown in Fig. 6.

During the first period (upper panel, when the quality of the measurements was good, the three proxy series are almost

identical and the majority of the data receive a final A grade. During the second period shown in the lower panel of Fig. 6,420

when the measurements were affected by hardware failures, the iterative revision of the proxy time series leads to increasingly
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Figure 5. A histogram of the absolute differences between measured and proxy 10-minute air temperatures (scaled to sea-level) across all

sites across the entire campaign.

Figure 6. two selected periods of temperature measurements at the Belfast AWS site (ALS1139) and the QA/QC label ascribed to each of

the values. For clarity, only every 10th label is shown. The 10-minute proxy mean time series from each of the passes (brown=1, orange=2,

yellow=3) are also shown.

robust QA/QC assessment of the quality of the measurements with the outliers frequently receiving a D grade (in some cases

after receiving an A grade on the first pass). A similar QA/QC procedure was applied to the five variables listed above. Time
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series of recommended values, where the final grade was A, B, or C, are provided in the associated measurement AWS data

files.425

At three of the sites, 10-minute maximum and 10-minute minimum temperatures were also recorded. QA/QC was applied

to these time series by screening out any 10-minute maximum values that were more than 5 ◦C above the 10-minute mean

recommended value or were below the 10-minute mean. 10-minute minimum values more than 5 ◦C below the 10-minute

mean or above the mean were also screened out.

5 Uncertainties430

To add to our understanding of the PM2.5 measurements, an estimate of the uncertainty on each measurement obtained from

the ES-642 and ODIN instruments was determined. The overall measurement uncertainty is made up of two components: (i)

the uncertainty resulting from the intra-instrument variability and (ii) the uncertainty resulting from the instrument type. The

total uncertainty is therefore formulated as:

εx = εx,x + εx (8)435

where

– εx is the total uncertainty of a measurements from an instrument x,

– εx,x is the uncertainty of the device x relative to the average of instruments of the same type (intra-instrument variability)

and

– εx is the uncertainty resulting from the difference between the average of the measurements of all instruments of the440

same type and a chosen reference instrument (instrument type accuracy). Here the reference instrument is the TEOM

installed at the Woolston co-location site.

Measurements from the pre- and post-campaign co-locations were used to determine εx,x and εx for each measurement from

each instrument. In the absence of further co-location data, a simple linear interpolation between the uncertainties derived from

the pre-campaign co-location data and the uncertainties derived from the post-campaign co-location data was used to estimate445

the uncertainties on each measurement made during the deployment period.

5.1 Data processing before analysis

The raw data from the ES-642 and ODIN instruments required some processing before they could be used to derive uncertain-

ties. First, the flagged data were removed as described in Sect. 4.1. Then, as the measurements were lognormally distributed,

any zeros in the measurement time-series were replaced with the detection limit of the instrument, i.e. for the ES-642s all zeros450

were replaced by 0.1 µgm−3 and for the ODINs by 1 µgm−3. Negative and zero measurements were also replaced in the hourly

TEOM concentration data. This allowed all analysis and statistics to be calculated on the natural log of the concentration data,

enabling the use of standard inferential statistics.
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An important difference between the two uncertainty estimates is the temporal resolution at which they can be derived. The

intra-instrument variability (εx,x, instrument type accuracy) is derived from the native 1 minute resolution of the ES-642 and455

ODIN measurements. On the other hand, the the uncertainty resulting from the instrument type (εx) can only be obtained for

a time resolution compatible with that of the TEOM measurements which are provided hourly.

5.2 Intra-instrument variability

The first component of the measurement uncertainty corresponds to answering the question of: "What confidence interval

should we apply to the measurements to have a 68% confidence that the interval includes the mean from the ensemble of460

instruments of the same type?".

Given a set of similar instruments sampling the same air, it is possible to define, for each instrument, the distribution of

the anomalies of these measurements relative to the group’s average. These distributions can be understood as the uncertainty

profile of the instruments and therefore confidence intervals can be calculated as the sum of the mean anomaly and the standard

deviation of these anomalies.465

The calculated intra-instrument variabilities showed very weak correlations with temperature or relative humidity and only

the magnitude of PM2.5 showed any predictive power for the uncertainty estimates. Therefore, the uncertainty estimates were

parameterised in terms only of the PM2.5 for both the first and second co-locations. The deployment uncertainties were es-

timated as a linear interpolation between those estimated using the parameters obtained from the first co-location and those

using the coefficients from the second co-location.470

It is beyond the scope of this work to explore more in detail the relationships between the uncertainty estimates and the

ambient conditions which will be analysed further in a forthcoming article.

5.3 Instrument type accuracy

The second component of the measurement uncertainty corresponds to answering the question of: “How likely is it that the

average of measurements taken by the ensemble of all instruments of the same type are the same as the measurement from a475

reference instrument?”.

To derive the second component of the overall uncertainty on a measurement (εx), the differences between the expected

measurements of an instrument type (or the average of the individual instrument measurements - the cohort average) and the

measurements from a reference instrument, in this case the TEOM, were calculated. With these differences the dependencies

with environmental factors can be determined.480

There was no strong correlation in the instrument type accuracy of either the ODINs or ES-642s with either hourly mean

temperature or relative humidity, nor was there any correlation of the uncertainty estimates with higher measured concentra-

tions. As a result, this second component of the measurement uncertainty can be added as a constant to the more dynamic

intra-instrument variability. The instrument type accuracies from pre- and post-campaign co-location data were again slightly

different. Therefore, this uncertainty type was interpolated over the deployment period, but was the same for any date-time for485

each instrument of type ODIN or type ES-642 respectively.
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Figure 7. (a) Normalised relative backscatter (NRB) curtain taken by the miniMPL between 2200 NZST 14 August and 0200 NZST 16

August 2019, the dashed, green lines indicate the timing of the six radiosondes launched in this period with temperature inversions highlighted

in pink. (b-g) Relative humidity and temperature profiles measured with GRAW DFM-9 radiosondes during the same period, shown in

chronological order.

6 Data and analysis

Temperature and relative humidity profiles were measured on 12 radiosonde flights during the two intensive sub-campaigns as

detailed in Sect. 2. The boundary layer is of specific interest as its stability influences the concentration of pollutants such as

PM2.5 at the ground level. Figure 7(b-g) shows the temperature and relative humidity profiles between the ground and 1500 m490

for all launches between 1400 NZST 15 August and 1000 NZST 16 August 2019. The temperature profiles show a strong

temperature inversion forming below 250 m as the night progresses and the surface cools radiatively. This inversion reaches

its peak at 0600 NZST on 16 August (Fig. 7(f)) with a strength of 5 ◦C. Inversion layers such as this cause the air to have a

strong static stability. This prevents vertical mixing of air, constraining pollutants to the lower layer of the atmosphere. Thus,

inversions play a large role in enhanced PM levels at the ground.495

The ODIN instruments measured both PM2.5 and PM10. Although the goal of the campaign was to measure PM2.5, the

PM10 data were used as a diagnostic tool for the PM2.5 measurements. We define the dimensionless value R as the ratio of

PM2.5/PM10.

In Fig. 8, R derived from measurements as two ODIN sites is compared: ODIN 172, a site near the centre of the city (Fig. 8b;

43.517◦ S, 172.615◦ E) and ODIN 156, a site on the eastern coastline (Fig. 8d; 43.498◦ S, 172.728◦ E). The distribution of cal-500
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Figure 8. A comparison of R derived from measurements by two ODIN sites under different wind directions. (a) An angular histogram of

hourly wind mean direction measured by the Kyle Street AWS, the colours indicate the quadrants used in panel b. The ‘bars’ are scaled for

area rather than length. (b) Histograms of the R derived from measurements made with ODIN 172. The data are split into four histograms

based on the wind direction in panel a. Panels c and d As for a and b but instead using the New Brighton Pier AWS for the wind direction

and ODIN 156 for the PM values used to calculate R.

culated R values measured at these sites was divided into four histograms based on the wind direction at nearby AWS stations:

the Kyle street AWS (Fig. 8a; 43.531◦ S, 172.608◦ E) and the New Brighton Pier AWS (Fig. 8c; 43.506◦ S, 172.734◦ E). The

histograms of R for the city centre site (ODIN 172; Fig. 8b) show that under all wind directions the distribution of R had

a mode of approximately 0.8 with values of R rarely falling below 0.6. This indicates that the majority of particles smaller

than 10 µm were measured to also be smaller than 2.5 µm. PM sources such as home heating and transport primarily produce505

particles smaller than 2.5 µm. The histograms of R for the coastal site (ODIN 172; Fig. 8d) show that R has large variations

that are dependent on the wind direction. During periods of westerly, offshore winds (red and green) the R distributions closely

resemble to those at the city centre site with modes of approximately R = 0.8. However, during periods of easterly, onshore

wind (blue and orange) the distribution of R has a mode of approximately 0.45 with R exceeding 0.6 less than 10.0 % of the

time. This is consistent with a population of larger particles, primarily made up of natural sea-salt, entering the city from the510

ocean. ODIN 172 was 9.36 km at 257◦ from ODIN 156. Although the distance between these sites was small the inland site

rarely saw values of R smaller than 0.6. This highlights the increased rate of deposition that occurs in larger particles compared

to smaller (< 2.5 µm) particles.
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Table 1. Mean squared error between hourly ODIN 025 or ES-642 ES_SA data and data from the co-located TEOM at St Albans during the

entire deployment period for different versions of correction.

raw Version 1 Version 2

ODIN 48.81 32.29 24.96

ES-642 30.85 14.75 19.31

The fit coefficients calculated from the pre- and post-campaign co-location periods used to correct the PM2.5 data forming

version 1 of the dataset are shown in Fig. 9. For instruments whose data was corrected against a single co-location period,515

due to a failure during the other co-location period, the stationary coefficient used is plotted as either a square (corrected

against co-location 1) or a triangle (corrected against co-location 2). The a fit coefficients (Fig. 9a) decreased from the first

co-location to the second for all instruments except one. Similarly, the b fit coefficients decreased for all ODINs (Fig. 9b; red)

and increased slightly for all ES-642s (blue). These coefficient drifts are likely due to the differing conditions that occurred

during the two co-location periods. The two co-location periods occurred at different times of the year, the PM sources would520

differ at these times due to seasonality of natural sources as well as differences in human activity. The synoptic time scale

weather patterns that occurred during the co-locations would also have an effect on the sources of PM at the co-location site.

Differing PM sources will change the size distribution and chemical make-up of the PM which may result in a change of the

sensitivity of the sensor. Huggard et al. (2019) showed that although the fit did improve as the amount of the training data was

increased, when training a regression model between ODIN data and TEOM data, increasing the training period from 7 to 14525

days only reduced the mean squared error (MSE) by 3.8 %. This gain is minimal considering that it requires the sacrifice of

valuable deployment period data. Huggard et al. (2019) also found that some time periods produced anomalous calibration

values. Because of this we recommended that for future campaigns data are corrected using a series of short co-locations. If

weather patterns present during the co-locations are anomalous for the given season, the co-location should be repeated as it

may not be a fair representation of the seasonal PM emissions that are to be measured.530

With the exception of one ES-642, all ES-642s generally showed a smaller change in magnitude of both coefficients between

the two co-locations. ES-642s are able to heat incoming air, preventing the relative humidity of the incoming air exceeding

40 %. This reduces the errors caused by the misidentification of water vapour as PM. ES-642s also used sharp-cut cyclones

to prevent PM greater than 2.5 µm entering the sensor. These factors mean that ES-642s are less susceptible than ODINs to

environmental changes such as changes in humidity or particle size distribution. This is likely the reason why the change in fit535

coefficients, from the pre- to post-campaign co-location, for the ES-642s is smaller than that for ODINs.

A comparison of the raw, version 1, and version 2 data for ODIN 025 and ES-642 ES_SA, both instruments were co-located

alongside the St Albans TEOM (43.5113◦ S, 172.6337◦ E; note this is a different TEOM than the instrument that the corrections

were made against) is shown in Fig. 10 and 11. Table 1 presents the MSE between hourly averages of the ODIN or ES-642

data and the St Albans TEOM. Further comparison of these data sets are shown in Fig. 10 (ODIN) and Fig. 11 (ES642). These540

figures compare the PM2.5 bias between the raw, version 1, and version 2 for both types of instruments and how the bias depends
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Figure 9. The change in the a and b coefficients used in the version 1 correction. The ends of the arrows indicate the a and b values calculated

at co-location 1 (tail) and co-location 2 (head) for a single ODIN (red) or ES-642 (blue). In cases where an instrument was corrected against

single co-location this value is plotted as a square (co-location 1) or triangle (co-location 2).

on the temperature and relative humidity measured by the instrument. The best agreement between the ODIN and the TEOM

occurred with the version 2 correction (Table 1). ODINs do not have a built in mechanism to reduce uncertainty resulting from

water, which causes particles to aggregate and increase in size. The uncertainty of ODIN measurements is therefore increased

during periods of high ambient relative humidity (Fig. 10g-i). The version 2 correction includes a correction based on relative545

humidity; this is, in part an explanation for why the version 2 performed better. The mean bias between the raw ODIN data and

the TEOM at St Albans is 0.42 µg−3 (Fig. 10a) this is less than that of the version 2 (Fig. 10c). However, the mean of the raw

data differs significantly from the mode of the distribution and the bias shows strong asymmetry in its distribution.

While the mean bias does not appear the depend on temperature, the variance on the bias, and therefore the uncertainty of

the measurements made with this ODIN, increases at lower temperatures (Fig. 10d-f). Similarly, the variance in PM2.5 bias550

increases when the relative humidity exceeds 80 %. These two trends may be related, as the relative humidity will generally

increase as air cools.

In contrast, the ES-642s performed best when corrected using the simpler version 1 correction (Table 1). The version 2

performed worse than version 1 but was still an improvement on the raw data set. Figure 11a-c shows that the ES-642 bias

distributions are much more symmetrical than that of the ODIN and have a smaller standard deviation. Similar to the ODIN, the555

variance of the bias increases as temperature decreases, but to a lesser degree. The relation between bias and relative humidity

is very different from that of the ODIN due to the inlet heater, built into an ES-642.
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Figure 10. A comparison of hourly means of the raw (a,d,g), version 1 (b,e,h), and version 2 (c,f,i) data from ODIN 025 and the St Albans

TEOM. (a,b,c) show histograms of bias (ODIN-TEOM) with the mean (green line) and ±1 standard deviation (orange dashes) indicated.

(d,e,f ) show scatterplots of the bias against temperature and (g,h,i) show scatterplots of bias against humidity.

7 Summary

The MAPM field campaign, which ran over the winter of 2019 in Christchurch New Zealand collected variety of meteorological

and PM measurements to improve our understanding of air pollution and its distribution throughout the city. Alongside PM560

measurements from three types of PM instruments, three AWSs were installed to complement the 27 AWSs permanently

installed in Christchurch. In addition, a mini-MPL and ceilometer were installed to provide vertical profiles of the atmosphere,

and two intensive periods of radiosonde launches were conducted to provide additional information about the vertical structure

of the boundry layer. We compare two correction methods for PM measurements, we find that the low-cost ODIN instruments

benefit from a correction that corrects based on relative humidity. We also developed uncertainties on the PM measurements.565

These uncertainties were separated into two components, intra-device variability and device type accuracy. The intra-instrument

variability was found to found the have little dependence on environmental factors and a constant value was used. On the other

hand the instrument type accuracy was found to vary with environmental factors. PM2.5 and PM10 measurements at two sites,

one on the coast and one near the city centre were compared. PM originating from the city was found to have a smaller mean

size than PM originating from the ocean. This methodology could be used to separate different sources of PM and identify570

natural and anthropogenic sources of PM. While the ES-642s outperformed the low-cost ODINs, the corrected ODIN data

were found to outperform the uncorrected ES-642s. This suggests that although they are inferior instruments there is value in

these low-cost sensors, particularly in situations where a high spatial resolution is desirable.
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Figure 11. A comparison of hourly means of the raw (a,d,g), version 1 (b,e,h) and version 2 (c,f,i), data from the ES-642 ES_SA and the

St Albans TEOM. (a,b,c) show histograms of bias (ES-642-TEOM) with the mean (green line) and ±1 standard deviation (orange dashes)

indicated. (d,e,f ) show scatterplots of the bias against temperature and (g,h,i) show scatterplots of bias against humidity.

Data availability. The PM data collected during the campaign are publicly available from https://doi.org/10.5281/zenodo.4023402 (Dale

et al., 2020b), the data from other instruments are available from https://doi.org/10.5281/zenodo.4021685 (Dale et al., 2020a). AWS data that575

were collected by the permanently installed AWSs are available from NIWA (https://cliflo.niwa.co.nz/) and the United Kingdom Met Office

(https://wow.metoffice.gov.uk/). The TEOM data are available on request from ECan (https://www.ecan.govt.nz/).
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Appendix A: Thresholds for pre-screening of data

Variable (formal name) Units Instrument(s) Lower limit Upper limit

PM2.5 concentration µgm−3 ES642, ODIN 0 10000

Air temperature K AWS, ODIN, ES-642 253.15 (20 ◦C) 323.15 (50 ◦C)

Air temperature K Radiosonde 173.15 (−100 ◦C) 293.15 (20 ◦C)

Relative humidity % ODIN, ES-642, Radiosonde 0 100

Air Pressure hPa ES-642 700 1300

Air Pressure hPa Radiosonde 0 1050

Air flow rate lmin−1 ES-642 0 10

Wind speed ms−1 Radiosonde 0 120

Wind direction degree Radiosonde 0 360

Altitude m Radiosonde 0 35,000

Geopotential height m Radiosonde 0 35,000

Latitude degree north Radiosonde -90 90

Longitude degree east Radiosonde -180 +180

Dew point temperature K Radiosonde 173.15 (−100 ◦C) 293.15 (20 ◦C)

Virtual temperature K Radiosonde 173.15 (−100 ◦C) 293.15 (20 ◦C)

Ascent speed ms−1 Radiosonde -1 5

Elevation angle degree Radiosonde 0 90

Platform azimuth angle degree Radiosonde 0 360

Horizontal range m Radiosonde 0 300,000

Air density kgm−3 Radiosonde 0 1.3

Author contributions. The field campaign was undertaken by Ethan Dale, Jordis Tradowsky, Stefanie Kremser, and Greg Bodeker with the

assistance of Jonathan Barte, Jan-Niklas Schmidt, Woody Pattinson, and Nariefa Abrahim. The mini-MPL and ceilometer were installed and580

maintained by Adrian McDonald and Peter Kuma. Leroy Bird performed the analysis that selected instrument locations and wrote several

utility scripts to assist the post-processing of the data. The QA/QC was performed by: Ethan Dale (all PM data), Greg Bodeker (AWS data),

and Jordis Tradowsky (radiosonde data). The uncertainties for the PM measurements were calculated by Gustavo Olivares, Guy Coulson,

and Elizabeth Somervell. The manuscript preparation was lead by Ethan Dale with contributions made by all authors
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