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Abstract. MAPM (Mapping Air Pollution eMissions) is a project whose goal is to develop a method to infer airborne particu-

late matter (PM) emissions maps from in situ PM concentration measurements. In support of MAPM, a winter field campaign

was conducted in New Zealand in 2019 (June to September) to obtain the measurements required to test and validate the

MAPM methodology. Two different types of instruments measuring PM were deployed: ES-642 remote dust monitors (17 in-

struments) and Outdoor Dust Information Nodes (ODINs; 50 instruments). The measurement campaign was bracketed by two5

intercomparisons where all instruments were co-located, with a permanently installed Tapered Element Oscillating Membrane

(TEOM) instrument, to determine any instrument biases. Changes in biases between the pre- and post-campaign intercompar-

isons were used to determine instrument drift over the campaign period. Once deployed, each ES-642 was co-located with an

ODIN. In addition to the PM measurements, meteorological variables (temperature, pressure, wind speed and wind direction)

were measured at three automatic weather station (AWS) sites established as part of the campaign, with additional data being10

sourced from 27 further AWSs operated by other agencies. Vertical profile measurements were made with 12 radiosondes dur-

ing two 24-hour periods and complimented measurements made with a mini micropulse lidar and ceilometer. Here we present

the data collected during the campaign and discuss the correction of the measurements made by various PM instruments. We

find that when compared to measurements made with a simple linear correction, a correction based on environmental condi-

tions improves the quality of measurements retrieved from ODINs but results in over-fitting and increases the uncertainties15

when applied to the more sophisticated ES-642 instruments. We also compare PM2.5 and PM10 measured by ODINs which,

in some cases, allows us to identify PM from natural and anthropogenic sources. The PM data collected during the campaign

are publicly available from https://doi.org/10.5281/zenodo.4542559 (Dale et al., 2020b), the data from other instruments are

available from https://doi.org/10.5281/zenodo.4536640 (Dale et al., 2020a).
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1 Introduction

Airborne particulate matter (PM) comprises particles that can be solid, liquid or a mixture of both. The solids comprising PM

can include both organic and inorganic constituents, such as sea salt, dust, pollen, and soot. Particle sizes and composition

vary with location, origin and in situ chemical processes (Adams et al., 2015). There are health concerns associated with PM

emissions, as PM remains suspended in the air where, if it is inhaled, the risk of developing cardiovascular and lung-related25

diseases increases (Anderson et al., 2012; Pizzorno and Crinnion, 2017). The World Health Organization estimates that PM

air pollution contributes to approximately 800,000 premature deaths each year, ranking it the 13th leading cause of mortality

globally (Anderson et al., 2012). Pope et al. (2009) show that by decreasing the ambient PM2.5 concentration by 10 µgm−3 life

expectancy can be increased by 0.6 years. PM can be described by its aerodynamic equivalent diameter (AED) and particles

are generally subdivided according to their size: < 10, < 2.5, and < 1 µm (PM10, PM2.5, and PM1, respectively). Particles with30

a diameter greater than 10 µm have a relatively small suspension half-life and are largely filtered out by the nose and upper

airway if inhaled. Particles with diameters between 10 and 2.5 µm (PM10−2.5) are referred to as ‘coarse’, less than 2.5 µm as

‘fine’, and less than 1 µm as ‘ultrafine’ particles. It is important to note that PM10 encompasses ultrafine (PM1), fine (PM2.5−1),

and coarse (PM10−2.5) fractions.

During winter, towns and cities in New Zealand suffer from elevated levels of PM primarily resulting from the burning of35

wood and coal for home heating (Ministry for the Environment & Stats NZ, 2018). Poor air quality is a more frequent problem

in cities and towns that are located in the South Island. This reflects the climatologically colder winters, that occur in the South

Island, resulting in greater use of solid fuel for home heating and the formation of capped boundary layers that restrict the

dispersion of pollutants being more likely. This study presents measurements of PM made during a winter field campaign in

Christchurch in 2019.40

To provide the regional government responsible for managing emissions of PM with legislative tools to address poor air

quality, the New Zealand government defined national environmental standards (hereafter NES) for air quality in 2004 and

updated these in 2011. The standards include five main air contaminants, viz. PM10, sulphur dioxide (SO2), carbon monoxide

(CO), nitrogen dioxide (NO2), and ozone (O3). Each contaminant is monitored in 89 geographical regions surrounding urban

areas known as airsheds, Christchurch lies within a single airshed (Fig. 2). Within each identified airshed, a limited number45

of PM10 exceedances of a daily mean limit of 50 µgm−3 are permitted each year (one for some airsheds, three for others).

However, the PM standard is currently under review with the expectation that the primary standard for PM pollution will shift

from PM10 to PM2.5 in recognition of PM2.5 being more relevant for assessing health impacts, since it penetrates deeper into

the lungs than PM10. This proposed change will bring New Zealand’s air quality standards in line with those suggested by the

World Health Organization (WHO Regional Office for Europe, 2017). As such, while PM10, PM2.5 and PM1 were measured50

during the field campaign, this paper focuses primarily on PM2.5.
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1.1 The Mapping Air Pollution eMissions (MAPM) project

The goal of the MAPM project, funded through the New Zealand Ministry of Business, Innovation and Employment, is to

develop a method for inferring daily, high spatial resolution (< 100 m) PM2.5 emissions maps for cities. The MAPM method

uses an inverse model that takes as input in situ PM2.5 mass concentration measurements and the meteorological data required55

to calculate trajectories from sources to receptors (instrument locations) and generates PM2.5 emissions maps and their uncer-

tainties (hereafter referred to as ’the MAPM methodology’). Several linked lines of development, conducted in parallel, form

the basis of the MAPM research:

1. A field campaign to generate the data required to test and validate the MAPM methodology.

2. A forward model that simulates the local meteorology over the duration of the campaign. This model is used to drive60

Lagrangian particle dispersion trajectories and produce source-receptor relationships between the PM2.5 sensors and the

emissions sources.

3. An inverse model that takes the source-receptor relationships, in situ PM2.5 concentration measurements and a prior

emissions map as input to generate daily maps of sources of PM2.5 emissions and their uncertainties.

4. Several Observing System Simulation Experiments that are being used to explore the effects of different (i) instrument65

configurations, and (ii) instrument types and associated measurement uncertainties.

Because MAPM’s purpose is to infer PM2.5 emissions maps for cities, Christchurch was selected as a target to demonstrate

MAPM’s capability, as it is one of the largest cities in New Zealand and PM concentrations in Christchurch frequently exceed

the NES thresholds during winter. As a result, a three month measurement campaign was conducted in Christchurch in 2019,

which provides the required PM2.5 measurements that are used as input to the inverse model, which is used to infer PM70

emissions sources in Christchurch. This paper describes this field campaign and obtained measurements in detail. For a detailed

description about the inverse model and inferred emissions maps, the reader is referred to Nathan et al. (2021).

1.2 Previous PM measurement field campaigns conducted in Christchurch

In addition to the three PM permanent measurement sites that are installed for regulatory purposes in Christchurch, there

have been several previous short-term PM measurement campaigns in Christchurch and surrounding areas. During the winter75

of 2016, 19 ES-642 remote dust monitors (hereafter referred to as ES-642), measuring both PM10 and PM2.5 were deployed

across the Christchurch airshed. This network was designed to have a high level of correlation with permanent reference

instruments operated by Environment Canterbury (ECan) and primarily focused on suburban PM concentrations, with some

information from local emissions.

Between May and November 2017 an additional 10 low cost nephelometers units were deployed to focus on denser measure-80

ment networks to investigate the prevalence of spikes and airshed boundary gradients using the 2016 spatial characterisation

of the airshed. Both the 2017 and the 2016 campaign found significant spatial and peak PM differences to the data from the 3

permanent monitoring sites.
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Figure 1. The geographical context for Christchurch showing the Southern Alps to the west, Banks Peninsula to the east, and the Canterbury

Plains between the city and the Southern Alps. The inset shows a typical PM2.5 distribution around the city. Background image: © Google,

Maxar Technologies.

Within MAPM, the measurements from the 2016 and 2017 measurement campaigns were combined using a regression

model to create high resolution hourly PM2.5 maps for Christchurch, which were then used as input to an algorithm that selected85

locations for the placements of Outdoor Dust Information Node (ODIN) and ES-642 instruments for the 2019 campaign (refer

to Sect. 3).

Another measurement campaign was undertaken in autumn 2016 by Huggard et al. (2019). 18 ODIN nephelometers were

installed in Rangiora, a small town 20 km north of Christchurch. Data from these were compared to measurements made by

a permanent TEOM also installed in Rangiora. Huggard et al. (2019) analysed several methods of correcting ODIN PM data90

against a TEOM reference. They found little benefit in increasing the instrument co-location period beyond seven days and that

a correction based on relative humidity was optimal.

1.3 Description of Christchurch meteorology and sources of particulate matter

Christchurch is the main urban centre of the Canterbury region, which is situated on the east coast of New Zealand’s South

Island. It is located on the eastern fringe of the Canterbury Plains that slope gently from the coast to the Southern Alps that95

rise to elevations well above 3000 m. While Christchurch is situated on generally flat terrain, immediately south of the main

urban area, the Port Hills form the northernmost side of the volcanic landscape of Banks Peninsula, provide a local orographic

feature that reaches elevations of up to 450 m (Fig. 1).

Dwellings in the urban area of Christchurch are mainly single story houses and buildings higher than 5 stories are rare in the

city centre. The current tallest building in Christchurch rises to 86 metres. Many of the high-rise buildings were demolished100

following a series of major earthquakes in 2010 and 2011. Christchurch has a relatively low population density (270 km−2
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compared to 1,510 km−2 for London, UK). In the centre of Christchurch is Hagley park with an area of 1.65 km2 in this area,

very little PM emissions occur.

Christchurch has a temperate maritime climate with warm dry summers and winters in which it is common for temperatures

to fall below 0◦C overnight. There are, on average, 70 days of ground frost per year. Snowfalls occur on average once or twice105

a year on the Port Hills and about once every two years on the plains. The dominant topography that modifies the synoptic flow

around Christchurch are the Southern Alps which form a roughly perpendicular obstacle to the predominant westerly wind.

The resultant foehn-type winds lead to Christchurch having relatively low rates of rainfall that limit rainout of airborne PM

pollution. The second most common wind in Christchurch is an onshore easterly wind that flows parallel to the Port Hills,

which also induces the majority of the rainfall.110

During winter, the main source of PM2.5 emissions in Christchurch is burning wood and coal for home heating. Further minor

anthropogenic sources result from industry and transport with natural sources including dust and sea salt. ECan monitors

PM10 at two locations in Christchurch (Woolston and St Albans) to provide the data needed to detect exceedances of the

NES permitted thresholds. High pollution days can often be related to several precursor states occurring in concert such as

meteorological conditions, topography influencing air mass movement, and short-term emission sources such as passing heavy115

or poorly serviced vehicles (Mukherjee and Toohey, 2016).

In 2019, Christchurch reported seven days where the daily mean PM10 concentration exceeded the 50 µgm−3 NES permitted

threshold (i.e. four days more than is currently permitted; from 1 September 2020, only a single exceedance is permitted each

year). The proposed new limits for any airshed are: (i) no more than three exceedances of 25 µgm−3 for daily mean PM2.5

and (ii) an annual mean PM2.5 concentration of no more than 10 µgm−3. During winter, 90 % of all particulates measured120

as PM10 comprise particles smaller than 2.5 µm (Aberkane et al., 2010). A series of major earthquakes occurred in 2010 and

2011 in Christchurch, resulting in major structural damage, which substantially increased the reliance on woodburning for

home heating. This, together with intensive construction and demolition activities elevated several sources of PM pollution

(Tunno et al., 2019). On the other hand, major damage led to many homes being removed, people moving away and, older

wood burners being replaced with lower emission burners or electrical heating, leading to reduced PM emissions.125

Sources of PM in Christchurch’s surrounding areas include agricultural fires and agricultural dust, as well as sea salt from

the nearby ocean. Agricultural fires occur predominantly between February and March and are often forbidden during summer

for safety reasons. Golders Associates (2014) investigated the impact of burning of crop residue and found that while agri-

cultural fires were not likely to cause an exceedance of the NES, large spikes in PM10 were possible at hourly timescales and

recommended that agricultural fires are not burned within 6 km of an urban area.130

This paper describes each of the instruments used in the campaign (Sect. 2), the algorithm used to decide where to locate

the sensors (Sect. 3), how the sensors were inter-calibrated and the QA/QC (Quality Assurance/Quality Control; Sect. 4), the

method used to derive the uncertainties on the PM2.5 measurements (Sect. 5), with a final description and presentation of the

data in Sect. 6. Concluding remarks regarding the intended use of the data are provided in Sect. 7.
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2 Instruments135

The MAPM field campaign was conducted in Christchurch from 4 June to 9 September 2019 to collect PM concentration and

meteorological measurements. The campaign was made up of two co-location periods (6-12 June and 30 August to 8 Septem-

ber) which bracketed the main deployment period (22 June to 25 August). Data from the co-location periods, where all PM

instruments were installed alongside each other was used for the correction of measurements (Sect. 4), during the deployment

period instruments were distributed across the city. 50 ODIN and 17 ES-642 instruments were distributed throughout the city,140

measuring PM concentration every minute at ground level (i.e. around 2 to 3 m above the surface depending on the instrument

type). Three automatic weather stations (AWS) that measured temperature, humidity, wind speed, and wind direction were in-

stalled at the perimeter of the city (Fig. 2). Measurements from these AWSs were complemented by measurements from AWSs

operated by the Meteorological Service of New Zealand (MetService) and the National Institute of Water and Atmospheric

Research (NIWA), as well as meteorological measurements made by the public and submitted to the United Kingdom Met145

Office weather observation website (WOW; https://wow.metoffice.gov.uk/). A micropulse lidar and a ceilometer installed on

top of a building (45 m altitude above surface) measured vertical profiles of aerosol concentration. To investigate the stability

of the boundary layer, its height, and to identify the occurrences of temperature inversions, 12 balloon-borne radiosondes were

also deployed during the field campaign.

2.1 ES-642 remote dust monitor150

The ES-642, produced by Met One Instruments, Inc., is a type of nephelometer which automatically measures real-time air-

borne particulate matter concentrations using the principle of forward laser light scatter. The sensor has a prescribed accuracy

of ±5 % and a sensitivity of 1 µgm−3 (Met One Instruments, Inc, 2019). Air is drawn into the sensor through a sharp-cut cy-

clone to prevent particles larger than 2.5 µm entering the sensor. The accuracy of a nephelometer is hindered by water vapour

present within the sample air. As relative humidity increases above 50 % particles begin to aggregate and increase in size due to155

water absorption (Di Antonio et al., 2018). To mitigate these effects, a 10 W inlet heater is used to warm the incoming air and

thereby lowering the relative humidity of the air entering the sensor, preventing the intake of water vapour. The heater turns on

when the ambient relative humidity reaches values above 40 %. The sampled air then passes through the laser optical module

where the suspended particles in the air stream scatter the laser light through reflective and refractive properties. This scattered

light is collected onto a photodiode detector at a near-forward angle, and the resulting electronic signal is processed to derive160

a continuous, real-time measurement of airborne PM concentrations.

The ES-642 instruments were provided by MOTE Ltd. and were coupled with data modems to transmit data in near real-time.

The instruments were deployed in two different configurations (referred to collectively as ES-642s hereafter): ’Dust Motes’

(DM) consisting of a ES-642 module and ’Dust Met Motes’ (DMM) consisting of a ES-642 module and a sonic anemometer

which measures the airflow in the vicinity of the instrument.165

Nine Dust Motes and five Dust Met Motes were deployed throughout Christchurch during the MAPM field campaign

(Fig. 2). A further three ES-642s are permanently installed and operated in Christchurch by ECan. Thus, 17 ES-642s were
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Figure 2. Locations of the instruments deployed during the MAPM field campaign and the AWSs operated by MetService and NIWA. The

solid black line indicates the boundary of the Christchurch Clean Air Zone, the black dotted line indicates the boundary of the Christchurch

Airshed. Locations of AWSs operated by members of the public are not shown. © OpenStreetMap contributors 2020. Distributed under a

Creative Commons BY-SA License.

running in Christchurch during the winter 2019 field campaign. As ES-642s require a mains power supply, most of them were

installed in private residential properties owned by volunteers and instruments were generally mounted onto available struc-

tures such as fence posts (Fig. 3) at a height of around 2 m above the ground. Measurements were made at 1-second intervals170

and are then averaged to one minute resolution by the internal software.

2.2 Outdoor Dust Information Node (ODIN)

ODINs are low cost nephelometers that measure concentrations of PM1, PM2.5 and PM10 using readily available components.

Each ODIN instrument consists of a plantower PMS3003 laser PM sensor and a SHT30 temperature and relative humidity

sensor regulated by a microcontroller that logs data to a Secure Digital (SD) memory card. The PMS3003 dust sensor operates175

by using a laser with a wavelength of 650 ± 10 nm) to illuminate the air sample and a light detector to measure the scattering

intensity at a 90 degrees angle (Kelly et al., 2017). Unfortunately, the manufacturer does not provide information about the

implementation of the Mie scattering theory to estimate the particle size distribution. Although automatic data transmission

can be enabled, this functionality was not used during the MAPM field campaign to improve instrument reliability. Instead,

data were periodically retrieved from the SD card. Power is drawn from an on-board battery that is charged by a small solar180

panel, allowing for units to be installed in remote locations, independent of a power source.
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Figure 3. Examples of typical co-located ES-642 and ODIN installs. Note the instrument on the left is a Dust Met Mote with an additional

sonic anemometer. An ODIN was co-located with every ES-642 instrument for intercomparison purposes.

Of the 50 ODINs that were deployed for the MAPM field campaign, 16 were co-located with the ES-642 instruments (one

ES-642 site was deemed not suitable for a solar powered ODIN). The remaining instruments were installed throughout the

city attached to light-posts (Fig. 4). Instruments were intended to be installed 2.5 m on the light-posts, however at several sites

instruments were installed at a different height due to other fittings on the pole. This led to the ODIN install heights varying185

from 2 to 3 m Data from two ODINs could not be retrieved as one was destroyed due to water ingress and one was presumed

to be stolen from the light-post.

The ODINs took instantaneous measurements at 1-minute time intervals and reported PM values as the nearest integer

constraining the accuracy provided by the ODIN. The ODINs were set to sample once every 60 seconds instead of at the

beginning of every minute and because of variations in the length of the sampling run, the reporting times gradually drifted190

and were linearly interpolated to integer minutes following the pre-screening of data, described in Appendix A.

2.3 Tapered Element Oscillating Microbalance (TEOM)

Three Tapered Element Oscillating Microbalance Filter Dynamics Measurement System (TEOM-FDMS, hereafter referred to

as TEOM) instruments were running in Christchurch during the MAPM field campaign as part of the permanent observing

system installed by ECan and provided data at hourly resolution. The TEOM instruments were co-located with an ES-642 and195

an ODIN instrument at the Woolston and St Albans sites and with an ES-642 at the Riccarton Road site (Fig. 2). The TEOM

continuously measures PM2.5 and PM10 concentrations and are classified as equivalent to gravimetric measurements by the US

Environmental Protection Agency (Charron, 2004). Gravimetric measurements are based on weighing the mass of particulate

matter that accumulates on a filter after air has passed through the filter over a prescribed time period, generally 24 hours.

The TEOM measures PM concentration by passing air through an oscillating filter (Patashnick and Rupprecht, 1991). As PM200
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Figure 4. An example of a typical ODIN installation on a light-pole.

accumulates on the filter, the inertia of the filter and thus the frequency of oscillation of the filter changes. The instrument

therefore measures particulate matter mass directly.

2.4 Automatic Weather Station (AWS)

Three temporary AWSs were installed specifically in support of the MAPM field campaign. These were deployed to supplement

measurements from AWSs operated by MetService, NIWA and by members of the public who made their data available through205

WOW maintained by the United Kingdom Met Office. While data from all of these AWSs (a total of 30 instruments) have been

used in the MAPM project, only the three dedicated MAPM AWSs will be described and here. Measurements were made

using a Unidata LM34 temperature sensor, a Vector W200P Potentiometer wind vane to determine the wind direction and a

Vector A101 anemometer to measure wind speed. The data were logged using a Unidata Starlogger 6004D-2, which averaged

3-second data to a 10-minute resolution and recorded the averages, the standard deviation and the minimum and maximum210

values measured within the preceding 10 minutes.

The instrument locations were chosen to complement the network of permanently installed AWSs. Observations at the

exterior of the city were preferred to provide information on any inflow of PM across the perimeter of the city. Two AWSs

were located in rural fields just outside the suburban city area, while the third was installed on an abandoned airfield towards

the perimeter of the city. The instruments were installed 2 m above the local foliage (one instrument was located in a field215

containing a 1.5 m tall crop so was installed 3.5 m above the surface). All AWSs were installed at least 50 m from the nearest

tall obstruction.

Extensive quality control was performed on all AWS data, which is described detail in Sect. 4.
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2.5 Vertical profile measurements

The vertical stability of the atmospheric column has a strong effect on the distribution of aerosols. During night-time, radiative220

cooling at the surface of the atmosphere causes temperature inversions to form in the lower layers of the atmosphere. These

regions of stable air prevent mixing of aerosol above the boundary layer. Therefore, to accurately simulate the transport of

aerosol across a city, it is essential for any transport model to correctly represent the planetary boundary layer height (BLH).

To evaluate the ability of atmospheric transport models to represent the diurnal cycle of the BLH, vertical profile measurements

were made during the MAPM field using:225

i a Sigma Space mini micro pulse lidar (miniMPL)

ii a Lufft CHM 15k ceilometer and

iii radiosondes

The miniMPL and ceilometer were ran in co-location. These instruments provided continuous profiling of the vertical struc-

ture of the atmosphere above Christchurch and were complemented during two 24-hour periods by radiosondes launched from230

a nearby location. BLH measurements from the MiniMPL and ceilometer are not provided but can be produced using a tool

such as the Automatic Lidar and Ceilometer Framework (https://alcf-lidar.github.io/)

2.5.1 Mini micro pulse lidar (miniMPL)

A miniMPL was installed on the roof of the Rutherford Regional Science and Innovation Centre at the University of Canterbury

(43.5225◦ S, 172.5841◦ E) at an altitude of 45 m above sea level. This building is approximately 30 m high and is surrounded235

by several buildings of similar height. The university campus is otherwise surrounded by a residential area of primarily single-

and two-story houses. The miniMPL was installed on 17 July 2019 and operated by the University of Canterbury until the end

of the MAPM field campaign.

The MiniMPL is a dual-polarisation micro pulse lidar operating at a wavelength of 532 nm at pulse repetition frequency of

2.5 kHz, with a maximum range of 30 km (Spinhirne et al., 1995; Campbell et al., 2002; Flynn et al., 2007). The MiniMPL240

is an aerosol backscattering lidar and a detailed description of the lidar instrument can be found in Ware et al. (2016). The

MiniMPL operates similarly to other lidars and operates continuously with a temporal resolution of 2 minutes.

The instrument produces native binary files with backscatter and housekeeping meta-data, which can be converted to netCDF

files using manufacturer supplied software (SigmaMPL). The measurements from this campaign have been used in Kuma et al.

(2020) to demonstrate the potential of a ground-based lidar simulator for model evaluation of cloud properties. The instrument245

is also sensitive enough to measure aerosol backscatter on a continuous basis and can therefore be used to infer boundary layer

height.
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2.5.2 Ceilometer

A ceilometer was also installed on the roof of the Rutherford science and innovation centre next to the miniMPL (Sect. 2.5.1),

pointing vertically. The ceilometer operates at an infrared wavelength of 1064 nm. The maximum range of the instrument is250

approximately 15 km. The instrument provides vertical profiles of backscatter with a vertical resolution of 5 m in the first

150 m and 15 m above, and a temporal resolution of 2 s. Variables such as cloud base height and planetary boundary layer

height are calculated by a built-in algorithm. While the instrument was active from 1 June 2019 until the end of the MAPM

field campaign, due to problems with the instruments and data transfer only and incomplete set of measurements could be

retrieved from the instrument.255

2.5.3 Radiosondes

As part of the MAPM field campaign 12 GRAW DFM-9 radiosondes were launched. The radiosonde measurements were used

to identify stable inversion layers that typically form during cold and calm periods, particularly at night-time. A thermistor is

used to measure the temperature with an accuracy of ±0.2 ◦C and a resolution of ±0.01 ◦C and a capacitive polymer sensor

measuring relative humidity with an accuracy of ±4 % and a resolution of ±1 % (GRAW Radiosondes, 2019). The atmospheric260

pressure was calculated based on the GPS altitude of the radiosonde. Altitude, wind direction and wind speed are calculated

from the Global Positioning System (GPS) location of the sonde.

Two 24 hour periods in which to launch the radiosondes were selected based on the weather conditions. In each 24 hour

period six balloons were launched. The first balloon was launched at 1400 NZST (UTC + 12), followed by a launch every four

hours until 1000 NZST the next day. By measuring six vertical profiles throughout the day, the depth of the boundary layer and265

its diurnal cycle can be investigated. Temperature inversions near the top of the boundary layer form a stable barrier preventing

vertical mixing, constraining aerosol within the boundary layer. The first of two 24 hour launch periods took place on 25 of

July 2019, a day that was characterised by clear, relatively cold conditions with decreasing wind speeds. Around 2200 NZST

dense fog formed which evaporated around 0830 NZST the next morning. The second launch period, which began on the 15

of August 2019, was characterised by reasonably clear conditions with decreasing wind speeds towards the night and no fog270

occurring (Fig. 7). The primary goal of the balloon launches was to sample the air within the boundary layer. To increase

the sampling rate in the boundary layer, all balloons were underinflated with a target ascent rate of 3 ms−1 compared to the

commonly used 5 ms−1.

3 MAPM Field campaign design

We sought an optimal set of 50 sites around Christchurch city whose pollution measurement times series would be as different275

as possible from those at every other site. This design philosophy would maximise the information content of the time varying

PM concentration field sampled at the 50 sites. To accomplish this we first developed a method for generating hourly spatially-

resolved PM2.5 concentration maps over the domain from point source PM measurements and model output.
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3.1 Hourly concentration maps

The measurements used in the concentration maps were made by MOTE over the winters of 2016 and 2017 (Sect. 1.2),280

extreme outliers were removed and hourly averages were then calculated. We fitted a least squares regression model to every

winter day over 2016, and 2017 separately using the hourly PM2.5 measurements. The basis functions in the regression model

contained spatially resolved, modelled winter maximum and winter average concentrations expanded into six Fourier terms.

The modelled winter maximum and winter average of PM2.5 concentration fields were obtained from Golders Associates

(2016), and compromised 137x137 grid cells over Christchurch. For every hour the residuals of the fits were calculated and then285

kriging was used to interpolate this field across the whole model domain, creating the delta map. Finally the regression model

was evaluated at each grid point, and combined with the delta map, producing the gridded hourly maps of PM2.5 concentration

over Christchurch during the 2016 and 2017 winters. These maps then guided the process for locating the instruments deployed

during the campaign.

3.2 Instrument placement290

To select 50 sites for the PM instruments, we compiled a list of 32 properties of volunteers and 50,000 suitable light poles

around the city to choose from. Hourly PM2.5 concentration maps were derived from the regression model output described

above at each site over June, July, and August of 2016 and 2017. In addition to these potential sites there were a number of

fixed sites: i) three permanent ES-642 installations that are maintained by ECan and ii) a site at the University of Canterbury

where a ES-642 was installed to be co-located with the miniMPL. Starting with the PM concentrations of these four fixed sites,295

an algorithm was employed that selected the next instrument site out of the list of potential sites with the least correlation to the

other sites in the set of sites already chosen. First the sites for the ES-642s were selected out of the potential sites (ODINs were

also installed at all except one of the ES-642 sites), as ES-642s were only able to be installed at the volunteer sites. Secondly

the sites for the remaining ODINs were selected. Because the majority of variation in the derived PM2.5 concentration estimates

at each site were induced by the measurements made during the 2016 and 2017 campaigns (Sect. 3.1), the algorithm tended to300

cluster instruments close to the original measurement sites. To account for this an extra term was added to the algorithm which

maximises the distance between the sites. The adjusted algorithm preferentially suggested sites on the perimeters of the city,

which was desirable for estimating the background PM2.5 concentrations flowing into the city (Fig. 2).

4 Quality control and correction of measurements

Overall, three versions of the PM2.5 data sets were generated and are provided with this paper. The different versions are305

described in detail below, briefly:

– version ’raw’: Is a collection of the measurements as obtained from the instrument but all data were put into a common

netCDF file format. In addition, some pre-screening of the PM measurements was performed (see Sect. 4.1) to flag

erroneous data.
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– version 1.1: Contains all PM2.5 data that were corrected to a chosen standard (see Sect. 4.2.2) to produce a consistent set310

of measurements, i.e. consistent between instrument types and consistent through time.

– version 2.0: As with version 1.1, this version contains all PM2.5 data that were corrected to a chosen standard (see Sect.

4.2.2), but for version 2.0 the correction applied depends on environmental variables such as relative humidity.

In addition to the PM2.5 data sets, netCDF files are provided for the AWS measurements, the ceilometer and MiniMPL data.

While an internal consistency check was applied to the AWS data, were all ‘bad’ data were flagged, no screening has been315

performed on the ceilometer or MiniMPL data.

4.1 Pre-screening of the measurements

A simple pre-screening process was applied to all data from all the instruments to remove erroneous values. Firstly missing

data were flagged as such, secondly a plausible range was defined for each variable and values outside this range were also

flagged. The values used for these plausible ranges are listed in Appendix A. Finally other values that were clearly erroneous320

were flagged, for example PM2.5 values measured by ES-642s were flagged if the air flow rate through the device fell outside

the acceptable range stated on the ES-642 datasheet (1.9< flow rate < 2.1). For ES-642s 1.46% of PM2.5 data points were

flagged as missing and no PM2.5 values fell outside the reasonable range (PM2.5 < 10000 µgm−3).

4.2 PM2.5 QA/QC and correction

All PM2.5 measurements were corrected using data collected during two co-location periods:325

i a pre-campaign co-location that ran from 6 June 2019 1700 NZST to 12 June 2019 1700 NZST

ii a post-campaign co-location that ran from 30 August 2019 1900 NZST to 8 September 2019 1900 NZST

For both co-location periods, all PM instruments together with the TEOM instrument were located at the Woolston site

(43.5572◦ S and 172.6811◦ E). The instruments were mounted on a scaffold approximately 3 m above the ground.

4.2.1 ODIN time retrievals330

The ODIN instruments had no built in absolute reference for time. The time was set each time the instrument was installed

and the instrument required constant power to the board in order to keep time. This meant that if an ODIN restarted during the

campaign the time on the instrument would reset to the time that the instrument was originally started at. During the campaign

ODINs restarted for a variety of reasons, presumably due to either low battery voltage (and then restarting once the solar panel

recharged the battery), or due to a short on the circuit board due to ingress of debris or moisture. This resulted in several large335

sections of data being recorded that were unusable due to the timing of the data being unknown.

Cross correlation analysis was performed to retrieve these missing data. This retrieval method was only applied to sections

of missing data containing at least 12 hours of continuous measurements. PM2.5, temperature, and relative humidity from the
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missing section of data were cross correlated, over a range of plausible times, against the median value from all operating

ODINs within 5 km of the instrument being corrected. The peak in the product of these three cross correlation curves was then340

found, if this peak was greater than 0.8 this was identified as the time offset and the section of data was corrected to match

the time of this peak. Data that was retrieved using this method was flagged in the netCDF files, i.e. the flag 2 was used which

is described as ’Time index retrieved using cross correlation analysis’. In total 2438 hours of data were retrieved across all

ODINs.

4.2.2 Correcting PM2.5 measurements345

While the measurements cannot be corrected to the ‘truth’ as the ’true’ PM2.5 concentrations are unknown, a correction can

be applied to the measurements that creates a data set that is spatially and temporally consistent. In other words, the PM2.5

measurements can be corrected to: (i) ensure that the measurements made during the main deployment period were consistent

between instruments, of either the same or different types; (ii) ensure that the measurements made during the main deployment

period by each individual instrument were consistent through time.350

The correction applied to all PM2.5 measurements is based on an approach that uses a regression model together with the

PM2.5 measurements from a chosen reference instrument. In this study all PM2.5 measurements from the ES-642 and ODIN

instruments are separately corrected to the PM2.5 measurements from the TEOM. As the TEOM only provides hourly PM2.5

measurements, hourly means of all valid ES-642 and ODIN measurements for each individual instrument and for each co-

location period were calculated. If fewer than 50 valid measurements are present in a given hour that hour was excluded.355

Furthermore, if an instrument recorded data for less than 80 % of a given co-location period the measurements were instead

corrected against the other co-location period only.

Once the hourly mean concentrations have been calculated, a regression model was applied to the measurements of each

ES-642 and ODIN instrument, respectively. In the first instance, we applied a regression model that is comprised of two basis

functions: (i) the PM2.5 measurements from the respective instrument (i.e. either ES-642 or ODIN) and (ii) an offset term, viz:360

PM2.5; TEOM = a×PM2.5; raw + b (1)

where PM2.5; TEOM are the hourly PM2.5 concentrations measured by the reference instrument, PM2.5; raw are the hourly

PM2.5 concentrations measured by each individual instrument, and a and b are the fit coefficients. The regression model was

applied to each co-location separately resulting in two sets of fit coefficients per instrument.

The derived fit coefficients were then used together with the measurements made during the deployment period at one365

minute time resolution, to obtain a corrected time-series of PM2.5 concentrations. For each instrument a separate time-series

was generated using the coefficients from each of the two co-location periods separately. These two times series were then

combined using a weighted average in the form of:

PM2.5; corrected(t) = x(t)×PM2.5; coloc 1(t)+ y(t)×PM2.5; coloc 2(t) (2)

where PM2.5; corrected(t) is the final corrected PM2.5 concentration time-series, PM2.5; coloc 1(t) and PM2.5; coloc 2(t) are370

the times series formed when using the coefficients from the pre- and post-campaign co-location periods respectively, and x(t)

14



and y(t) are the weighting coefficients which evolve linearly with time and have the following boundary conditions:

x(t0) = 1

x(tf ) = 0

y(t0) = 0375

y(tf ) = 1

where t0 and tf are the start and end of the main deployment period, respectively. This combined time-series formed the

version 1 data set accompanying this study.

The regression model presented in Eq. 1 does not account for any environmental changes such as changes in humidity that

may have an impact on the measured PM2.5 concentrations by different instruments. When looking at the differences between380

the TEOM measurements and the version 1 of the ODIN data (i.e. the corrected data using Eq. 1) it became apparent that the

differences depend not only on the amount of PM measured but also relative humidity (see Fig. 9h). Furthermore, when looking

at the PM concentrations from the TEOM versus the measurements from the ODIN or ES-642 (not shown) it became clear that

the relationship is non-linear at low values of PM2.5. As a result, we designed a second regression model that is comprised of

five basis functions in the form of:385

PM2.5; TEOM = a×PM2.5; raw + b×PM2
2.5; raw + c+ d×RH + e×RH2 (3)

where RH is the time-series of relative humidity measured by the instrument and a, b, c, d, and e are the fit coefficients.

The regression model described in Eq. 3 is applied in the same manner as the model described in Eq. 1, resulting in two sets

of fit coefficients (one per co-location period) for each ES-642 and ODIN instrument. Applying these derived coefficients to

the measurements made during the deployment period lead to the production of a second set of corrected data; referred to as390

version 2.

4.3 Automatic weather station (AWS)

After applying coarse limit tests on each of the AWS data streams (Appendix A), measurements of

i air temperature

ii relative humidity395

iii wind speed

iv wind gust speed

v air pressure

from the 30 AWSs were tested for internal consistency. The purpose of the tests was to identify data that was recorded erro-

neously. Before conducting these internal consistency checks, for air temperature, all measurements were reduced to sea-level400
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temperatures assuming a moist adiabatic lapse rate of 6 ◦Ckm−1. For air pressure, the values were reduced to sea-level using

the hydrostatic approximation assuming a layer mean temperature of 9.85 ◦C. For air temperature and wind speed, com-

parisons between sites were challenged by some sites providing measurements as 1-minute means and other sites providing

measurements as 10-minute means. As such, 10-minute ’synchronised’ means were calculated for all data across all locations,

i.e. means were calculated in common 10-minute blocks centred on 5, 15, 25, 35, 45 and 55 minutes past the hour.405

The data are tested using a iterative method using three individual passes. On the first pass, a ‘proxy’ 10-minute value is

estimated for each site. These proxy values are intended to be a best estimate of the value of the target variable at that site

and are calculated as follows: for each AWS site, the closest other site in each of four quadrants (NE, NW, SE, SW) with a

valid 10-minute mean is identified and a weighted mean (weighted by the inverse distance squared between the sites) of the

four values (noting that it can be fewer than four) is then calculated. We note that these proxy values may be contaminated410

by erroneous data that were not excluded in the coarse data screening, but were used in the calculation of the proxy means.

Therefore, on the second pass, only data that did not receive a ‘D grade’ in pass 1 (see below), were used to calculate the

10-minute proxy values. On the third pass, only data that did not receive a ‘D grade’ in passes 1 or 2, were used to calculate

the 10-minute proxy values.

On each pass, differences between 10-minute means and their associated 10-minute proxies are calculated. An example of a415

histogram of these differences for air temperature is shown with selected percentiles and their associated ’grading’ (A, B, C, or

D) in Fig. 5. Each 10-minute mean receives an A, B, C, or D grade depending on the difference from its associated 10-minute

proxy value in the context of the distribution shown in Fig. 5. Each measurement in the associated 10-minute time interval

receives that grade. On the second pass, the 10-minute proxies are recalculated but now using only measurements that received

an A, B, or C grade from pass 1. As in pass 1, those 10-minute proxies are used to derive new differences and a new histogram420

is used to give each measurement a revised grading. In this second pass we are more confident in the robustness of the proxy

values as they are now less likely to be contaminated by erroneous values - indeed the histogram of absolute differences on

the second pass (not shown) shows tighter limits on the A, B, and C gradings. Each measurement then receives a second A-D

grading. The process is repeated a third time resulting in each measurement receiving a QA/QC label comprising three letters

arising from each consistency check. For the analysis presented here, the poorest quality measurements (receiving a D grade425

on the third pass) are then excluded. This results in 12.5 % of the data being eliminated from each data set across all 30 sites,

noting that for any single site, this could result in a majority of the data at the site not being used.

An example of the QA/QC labelling of the temperature measurements at the Belfast site (ALS1139) is shown in Fig. 6.

During the first period (upper panel, when the quality of the measurements was good, the three proxy series are almost

identical and the majority of the data receive a final A grade. During the second period shown in the lower panel of Fig. 6,430

when the measurements were affected by hardware failures, the iterative revision of the proxy time series leads to increasingly

robust QA/QC assessment of the quality of the measurements with the outliers frequently receiving a D grade (in some cases

after receiving an A grade on the first pass). A similar QA/QC procedure was applied to the five variables listed above. Time

series of recommended values, where the final grade was A, B, or C, are provided in the associated measurement AWS data

files.435

16



Figure 5. A histogram of the absolute differences between measured and proxy 10-minute air temperatures (scaled to sea-level) across all

sites across the entire campaign.

Figure 6. two selected periods of temperature measurements at the Belfast AWS site (ALS1139) and the QA/QC label ascribed to each of

the values. For clarity, only every 10th label is shown. The 10-minute proxy mean time series from each of the passes (brown=1, orange=2,

yellow=3) are also shown.

At three of the sites, 10-minute maximum and 10-minute minimum temperatures were also recorded. QA/QC was applied

to these time series by screening out any 10-minute maximum values that were more than 5 ◦C above the 10-minute mean

recommended value or were below the 10-minute mean. 10-minute minimum values more than 5 ◦C below the 10-minute
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mean or above the mean were also screened out. The number of values that received a ’D’ grade at each AWS are shown in

Table 1.440

Table 1. The amount of temperature and wind speed data points that received a ’D’ grade on the internal consistency check at each AWS site

as a percentage of data points recorded at that site.

Site Temperature [%] Wind Speed [%]

BDS_Belfast 10.76 0.00

BDS_Halswell 3.75 0.00

BDS_Wigram 7.89 0.00

Metservice_CHA 3.00 0.07

Metservice_CWX 2.68 0.38

Metservice_LBX 21.21 33.41

Metservice_NBX 17.86 1.45

Metservice_SGX 18.68 39.89

NIWA_Akaroa_Ews 10.11 0.65

NIWA_Christchurch_Kyle_St_Ews 2.19 0.00

NIWA_Diamond_Harbour_Ews 8.05 0.34

NIWA_Lincoln_Broadfield_Ews 3.51 0.07

NIWA_Ohoka_Cws - 0.00

NIWA_Rangiora_Ews 7.79 0.00

NIWA_Waipara_West_Ews 17.03 3.31

NIWA_West_Eyreton_Larundel_Farm_Cws 5.30 0.00

5 Uncertainties

The inverse modelling requires a quantification of the uncertainty of each measurement used. These uncertainties are used by

the inverse model as an indication of how much deviation from the measurement is acceptable, in other words, how far the

measured values are from the true measurements. For measurements made together with a reference instrument, the uncertainty

is simply the difference between the measurement and the reference reading. However, in order to be able to calculate these445

uncertainties for deployments where the reference reading is not available, we separated the uncertainty into two components:

one describing the uncertainty associated to the type of instrument (ODIN or ES-642) and the other describing the relationship

of the specific instrument to the rest of its type (inter-instrument variability). Taking this approach means that unlike the

correction analysis described in section 4.2.2, measurements from a single instrument are never directly compared with the

reference instrument. The correction from section 4.2.2 creates a uniform dataset that can be analysed together, regardless450

of the instrument used to generate the measurement, while the uncertainty analysis estimates the differences between the

measurements (raw and corrected) and a reference instrument.
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Following this approach, the total uncertainty can be expressed as follows:

εtx(m) =m−Mreference = ((
1

Nt

∑
t

mt)−Mreference︸ ︷︷ ︸
Instrument type uncertainty

)+ ( m− 1

Nt

∑
t

mt︸ ︷︷ ︸
Inter-instrument variability

) (4)

Where455

– m is the measurement taken by the instrument.

– Mreference is the reference measurement that corresponds to the measurement m.

– Nt is the number of instruments of type t that are available for this measurement.

– εtx(m) is the total uncertainty of measurement m from instrument x of type t, i.e., the difference between the measure-

ment m and the reference measurement Mreference.460

– the instrument type uncertainty is the difference between the average of the measurements of all instruments of the same

type t and a chosen reference instrument. Here the reference instrument is the TEOM-FDMS installed at the Woolston

co-location site. This uncertainty is the same for all instruments of the same type.

– the inter-instrument variability is the difference between the measurementm and the average of measurements of instru-

ments of type t at the same time.465

It is clear that this is only applicable to when a set of instruments are exposed to the same conditions, thus the two co-location

periods (pre- and post-campaign) were used to calculate the uncertainty components as detailed below.

5.1 Data processing before analysis

The raw data from the ES-642 and ODIN instruments required some processing before they could be used to derive uncer-

tainties. First, the flagged data were removed as described in Sect. 4.1. The remaining data were lognormally distributed so470

in order to use standard inferential statistics, a logarithm transformation was applied to all data to bring them within a normal

distribution. This meant that any zeros or negative readings in the time-series were replaced with the detection limit of the

instrument, i.e. for the ES-642s all zeros were replaced by 0.1 µgm−3 and for the TEOM-FDMS and the ODINs by 1 µgm−3.

An important difference between the two uncertainty estimates is the temporal resolution at which they can be derived. The

inter-instrument variability can be derived from the native 1 minute resolution of the ES-642 and ODIN measurements. On475

the other hand, the uncertainty resulting from the instrument type can only be obtained for a time resolution compatible with

that of the TEOM measurements which are available hourly. As the final output to the uncertainty calculations was a 1 minute

time series, the hourly instrument type uncertainty was interpolated between each hour.
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5.2 Instrument type accuracy

The first component of the measurement uncertainty corresponds to answering the question of: “How far is the average of480

measurements taken by the ensemble of all instruments of the same type from that of a reference instrument?”.

Using the data from each co-location period and for each hour for which there is TEOM-FDMS data, the average of all ES-

642 (or ODIN) measurements and its difference with the TEOM-FDMS reading (instrument type accuracy) were calculated.

Then, a correlation analysis was performed to identify the predictive power of different variables like ambient conditions or

instrument readings. These analyses indicated that there was no strong correlation between the instrument type accuracy of485

either the ODINs or ES-642s and hourly mean temperature, relative humidity or the measured concentrations. This means

that the instrument type accuracy can be added as a constant. The instrument type accuracies from pre- and post-campaign

co-location data were slightly different and therefore they were interpolated over the deployment period.

It is outside of the scope of this work to fully explain and understand why the instrument type accuracy has little correlation

with ambient conditions and why their value changed between the two co-location periods. These questions will be explored490

in a future publication.

5.3 Inter-instrument variability

The second component of the measurement uncertainty corresponds to answering the question: "How far is each device’s

measurement from the average of instruments of the same type?".

Given a group of instruments of the same type sampling the same air, it is possible to define, for each instrument, the495

distribution of the anomalies of these measurements relative to the group’s average. These distributions can be understood as

the uncertainty profile of the instruments, relative to the instrument type fleet.

As both the ES642 and the ODIN units are measuring PM2.5 every minute, a mean value and confidence interval was calcu-

lated for each type of instrument for each minute. Correlations were sought between the variability and potential environmental

factors (temperature and relative humidity) and PM2.5 concentration.500

The calculated inter-instrument variabilities showed very weak correlations with temperature or relative humidity and only

the magnitude of PM2.5 showed any predictive power for the uncertainty estimates. This is partly a reflection on the temporal

resolution of the variability of the PM2.5 measurements, which can change quickly and dramatically compared with the more

gradually changing environmental factors.

For this reason, the uncertainty estimates were parameterised in terms only of the PM2.5 for both the first and second co-505

locations:

Inter-instrument variability = α ∗PM2.5 +β (5)

Where α and β are determined for each instrument of each type and are different from the first and second co-locations. The

deployment uncertainties were estimated as a linear interpolation between those estimated using the parameters obtained from
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the first co-location and those using the coefficients from the second co-location. See the code repository for the full detail of510

the analysis and how these terms were obtained.

It is beyond the scope of this work to explore more in detail the relationships between the uncertainty estimates and the

ambient conditions which will be analysed further in a forthcoming article.

6 Data and analysis

Temperature and relative humidity profiles were measured on 12 radiosonde flights during the two sub-campaigns as detailed515

in Sect. 2. Figure 7(b-g) shows the temperature and relative humidity profiles between the ground and 1500 m for all launches

between 1400 NZST 15 August and 1000 NZST 16 August 2019. The temperature profiles show a strong temperature inversion

forming below 250 m as the night progresses and the surface cools radiatively. This inversion reaches its peak at 0600 NZST

on 16 August (Fig. 7(f)) with a strength of 5 ◦C.

Figure 7(a) shows the backscatter recorded by the MPL during August radiosonde launch period. Stronger backscatter520

is recorded near to the surface, suggesting that there is a higher concentration of aerosols in the lower atmosphere. Strong

gradients in the backscatter profiles are present near regions where temperature inversions were observed by the radiosondes

(shown in pink), this highlights the constraining effect that inversions have on aerosols.

The fit coefficients calculated from the pre- and post-campaign co-location periods used to correct the PM2.5 data forming

version 1 of the dataset are shown in Fig. 8. For instruments whose data was corrected against a single co-location period,525

due to a failure during the other co-location period, the stationary coefficient used is plotted as either a square (corrected

against co-location 1) or a triangle (corrected against co-location 2). The a fit coefficients (Fig. 8a) decreased from the first

co-location to the second for all instruments except one. Similarly, the b fit coefficients decreased for all ODINs (Fig. 8b; red)

and increased slightly for all ES-642s (blue). These coefficient drifts are likely due to the differing conditions that occurred

during the two co-location periods. The two co-location periods occurred at different times of the year, the PM sources would530

differ at these times due to seasonality of natural sources as well as differences in human activity. The synoptic time scale

weather patterns that occurred during the co-locations would also have an effect on the sources of PM at the co-location site.

Differing PM sources will change the size distribution and chemical make-up of the PM which may result in a change of the

sensitivity of the sensor. Huggard et al. (2019) showed that although the fit did improve as the amount of the training data was

increased, when training a regression model between ODIN data and TEOM data, increasing the training period from 7 to 14535

days only reduced the mean squared error (MSE) by 3.8 %. This gain is minimal considering that it requires the sacrifice of

valuable deployment period data. Huggard et al. (2019) also found that some time periods produced anomalous calibration

values. Because of this we recommended that for future campaigns data are corrected using a series of short co-locations. If

weather patterns present during the co-locations are anomalous for the given season, the co-location should be repeated as it

may not be a fair representation of the seasonal PM emissions that are to be measured.540

With the exception of one ES-642, all ES-642s generally showed a smaller change in magnitude of both coefficients between

the two co-locations. ES-642s are able to heat incoming air, preventing the relative humidity of the incoming air exceeding
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Figure 7. (a) Normalised relative backscatter (NRB) curtain taken by the miniMPL between 1000 NZST 15 August and 1400 NZST 16

August 2019, the dashed, green lines indicate the timing of the six radiosondes launched in this period with temperature inversions highlighted

in pink. (b-g) Relative humidity and temperature profiles measured with GRAW DFM-9 radiosondes during the same period, shown in

chronological order.

Table 2. Mean squared error (in µg2m−6) between hourly ODIN or ES-642 data (for all three data versions) and data from the co-located

TEOM at the St Albans sites using measurements made during the entire deployment period. The instrument ID for the ODIN instrument is

’SD0025’ and for the ES-642 instrument the ID is ’ES_SA’.

raw Version 1 Version 2

ODIN 48.81 32.29 24.96

ES-642 30.85 14.75 19.31

40 %. This reduces the errors caused by the misidentification of water vapour as PM. ES-642s also used sharp-cut cyclones

to prevent PM greater than 2.5 µm entering the sensor. These factors mean that ES-642s are less susceptible than ODINs to

environmental changes such as changes in humidity or particle size distribution. This is likely the reason why the change in fit545

coefficients, from the pre- to post-campaign co-location, for the ES-642s is smaller than that for ODINs.

A comparison of the differences between the raw, version 1, and version 2 data for the ODIN and ES-642 instruments that

were co-located at the St Albans site and the St Albans TEOM (43.5113◦ S, 172.6337◦ E; note this is a different TEOM than

the instrument that the corrections were made against) and the dependence of the differences on the temperature and relative

humidity measured by the instrument are shown in Fig. 9 and 10. Table 2 presents the MSE between hourly averages of the550

22



Figure 8. The change in the a and b coefficients used to generate version 1 of the data set. The fit coefficients are unit-less. The ends of each

arrow indicate the a and b coefficients calculated at co-location 1 (tail) and co-location 2 (head) for a single ODIN (red) or ES-642 (blue). In

cases where an instrument was corrected against single co-location this value is plotted as a square (co-location 1) or triangle (co-location 2).

ODIN or ES-642 data and the St Albans TEOM. Further comparison of these data sets are shown in Fig. 9 (ODIN) and Fig. 10

(ES642). The best agreement between the ODIN and the TEOM occurred with the version 2 correction (Table 2). ODINs do not

have a built in mechanism to reduce uncertainty resulting from water, which causes particles to aggregate and increase in size.

The uncertainty of ODIN measurements is therefore increased during periods of high ambient relative humidity (Fig. 9g-i).

The version 2 correction includes a correction based on relative humidity; this is, in part an explanation for why the version 2555

performed better. The mean bias between the raw ODIN data and the TEOM at St Albans is 0.42 µg−3 (Fig. 9a) this is less

than that of the version 2 (Fig. 9c). However, the mean of the raw data differs significantly from the mode of the distribution

and the bias shows strong asymmetry in its distribution.

While the mean bias does not appear the depend on temperature, the variance on the bias, and therefore the uncertainty

of the measurements made with this ODIN, increases at lower temperatures (Fig. 9d-f). Similarly, the variance in PM2.5 bias560

increases when the relative humidity exceeds 80 %. These two trends may be related, as the relative humidity will generally

increase as air cools.

In contrast, the ES-642s performed best when corrected using the simpler version 1 correction (Table 2). The version 2

performed worse than version 1 but was still an improvement on the raw data set. This suggests that the additional fit coefficients

added for version 2 resulted in over-fitting when applied to ES-642 data. Figure 10a-c shows that the ES-642 bias distributions565

are much more symmetrical than that of the ODIN and have a smaller standard deviation. Similar to the ODIN, the variance

of the bias increases as temperature decreases, but to a lesser degree. The relation between bias and relative humidity is very

different from that of the ODIN due to the inlet heater, built into an ES-642. This is likely the reason why the version 2
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Figure 9. A comparison of hourly means of the raw (a,d,g), version 1 (b,e,h), and version 2 (c,f,i) data from ODIN and the TEOM at the St

Albans site. (a,b,c) show histograms of bias (ODIN-TEOM) with the mean (green line) and ±1 standard deviation (orange dashes) indicated.

(d,e,f ) show scatterplots of the bias against temperature and (g,h,i) show scatterplots of bias against humidity. The instrument ID for the

ODIN instrument is ‘SD0025’.

correction performed poorly on ES-642 data compared to the simpler version 1 correction, a correction based on relative

humidity was not necessary as the inlet heater prevented these biases.570

The ODIN instruments measured both PM2.5 and PM10. Although the goal of the campaign was to measure PM2.5, the

PM10 data were used as a diagnostic tool for the PM2.5 measurements. We define the dimensionless value R as the ratio of

PM2.5/PM10. In Fig. 11, R derived from measurements at two ODIN sites is compared: ODIN 172, a site near the centre of

the city (Fig. 11b; 43.517◦ S, 172.615◦ E) and ODIN 156, a site on the eastern coastline (Fig. 11d; 43.498◦ S, 172.728◦ E).

The distribution of calculated R values measured at these sites was divided into four histograms based on the wind direction575

at nearby AWS stations: the Kyle street AWS (Fig. 11a; 43.531◦ S, 172.608◦ E) and the New Brighton Pier AWS (Fig. 11c;

43.506◦ S, 172.734◦ E). The histograms of R for the city centre site (ODIN 172; Fig. 11b) show that under all wind directions

the distribution ofR had a mode of approximately 0.8 with values ofR rarely falling below 0.6. This indicates that the majority

of particles smaller than 10 µm were measured to also be smaller than 2.5 µm. PM sources such as home heating and transport

primarily produce particles smaller than 2.5 µm. The histograms of R for the coastal site (ODIN 172; Fig. 11d) show that R580

has large variations that are dependent on the wind direction. During periods of westerly, offshore winds (red and green) the R

distributions closely resemble to those at the city centre site with modes of approximately R= 0.8. However, during periods

of easterly, onshore wind (blue and orange) the distribution of R has a mode of approximately 0.45 with R exceeding 0.6 less

than 10.0 % of the time. This is consistent with a population of larger particles, primarily made up of natural sea-salt, entering
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Figure 10. A comparison of hourly means of the raw (a,d,g), version 1 (b,e,h) and version 2 (c,f,i), data from the ES-642 and the TEOM at

the St Albans site. (a,b,c) show histograms of bias (ES-642-TEOM) with the mean (green line) and ±1 standard deviation (orange dashes)

indicated. (d,e,f ) show scatterplots of the bias against temperature and (g,h,i) show scatterplots of bias against humidity. The instrument ID

for the ES-642 instrument the ID is ’ES_SA’.

the city from the ocean. ODIN 172 was 9.36 km at 257◦ from ODIN 156. Although the distance between these sites was small585

the inland site rarely saw values of R smaller than 0.6. This highlights the increased rate of deposition that occurs in larger

particles compared to smaller (< 2.5 µm) particles.

7 Summary

The MAPM field campaign, which ran over the winter of 2019 in Christchurch New Zealand collected variety of meteorological

and PM measurements to improve our understanding of air pollution and its distribution throughout the city. Alongside PM590

measurements from three types of PM instruments, three AWSs were installed to complement the 27 AWSs permanently

installed in Christchurch. In addition, a mini-MPL and ceilometer were installed to provide vertical profiles of the atmosphere,

and two days with 4-hourly radiosonde launches were conducted to provide additional information about the vertical structure

of the boundary layer. We compare two correction methods for PM measurements, we find that the low-cost ODIN instruments

benefit from a correction that corrects based on relative humidity. We also developed uncertainties on the PM measurements.595

These uncertainties were separated into two components, inter-device variability and device type accuracy. The device type

accuracy was found to have little dependence on environmental factors and constant values for each co-location were obtained.

On the other hand the inter-instrument variability was found to vary with environmental factors. PM2.5 and PM10 measurements
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Figure 11. A comparison of R derived from hourly mean measurements by two ODIN sites under different wind directions. (a) An angular

histogram of hourly wind mean direction measured by the Kyle Street AWS, the colours indicate the quadrants used in panel b. The ‘bars’

are scaled for area rather than length. (b) Histograms of the R derived from measurements made with ODIN 172. The data are split into four

histograms based on the wind direction in panel a. Panels c and d As for a and b but instead using the New Brighton Pier AWS for the wind

direction and ODIN 156 for the PM values used to calculate R.

at two sites, one on the coast and one near the city centre were compared. PM originating from the city was found to have a

smaller mean size than PM originating from the ocean. This methodology could be used to separate different sources of PM600

and identify natural and anthropogenic sources of PM. While the ES-642s outperformed the low-cost ODINs, the corrected

ODIN data were found to outperform the uncorrected ES-642s. This suggests that although they are inferior instruments there

is value in these low-cost sensors, particularly in situations where a high spatial resolution is desirable.

Code availability. Code used to calculate the uncertainties for the PM data is available at: https://github.com/bodekerscientific/MAPM_

shared605

Data availability. The PM data collected during the campaign are publicly available from https://doi.org/10.5281/zenodo.4542559 (Dale

et al., 2020b), the data from other instruments are available from https://doi.org/10.5281/zenodo.4536640 (Dale et al., 2020a). AWS data that

26

https://github.com/bodekerscientific/MAPM_shared
https://github.com/bodekerscientific/MAPM_shared
https://github.com/bodekerscientific/MAPM_shared
https://doi.org/10.5281/zenodo.4542559
https://doi.org/10.5281/zenodo.4536640


were collected by the permanently installed AWSs are available from NIWA (https://cliflo.niwa.co.nz/) and the United Kingdom Met Office

(https://wow.metoffice.gov.uk/). The TEOM data are available on request from ECan (https://www.ecan.govt.nz/).
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Appendix A: Thresholds for pre-screening of data610

Variable (formal name) Units Instrument(s) Lower limit Upper limit
PM2.5 concentration µgm−3 ES642, ODIN 0 10000
Air temperature K AWS, ODIN, ES-642 253.15 (-20 ◦C) 323.15 (50 ◦C)
Air temperature K Radiosonde 173.15 (-100 ◦C) 293.15 (20 ◦C)
Relative humidity % ODIN, ES-642, Radiosonde 0 100
Air Pressure hPa ES-642 700 1300
Air Pressure hPa Radiosonde 0 1050
Air flow rate lmin−1 ES-642 0 10
Wind speed ms−1 Radiosonde 0 120
Wind direction degree Radiosonde 0 360
Altitude m Radiosonde 0 35,000
Geopotential height m Radiosonde 0 35,000
Latitude degree north Radiosonde -90 90
Longitude degree east Radiosonde -180 +180
Dew point temperature K Radiosonde 173.15 (-100 ◦C) 293.15 (20 ◦C)
Virtual temperature K Radiosonde 173.15 (-100 ◦C) 293.15 (20 ◦C)
Ascent speed ms−1 Radiosonde -1 5
Elevation angle degree Radiosonde 0 90
Platform azimuth angle degree Radiosonde 0 360
Horizontal range m Radiosonde 0 300,000
Air density kgm−3 Radiosonde 0 1.3

Appendix B: List of instruments and locations

Table B1: The IDs and locations of the PM sensors and AWSs installed during the campaign.

Type Instrument ID Latitude Longitude Altitude Inlet Height
ES-642 DM1 -43.4880 172.6013 31.0 2.72
ES-642 DM2 -43.5462 172.5484 38.0 3.8
ES-642 DM2 -43.5758 172.5646 31.0 3.94
ES-642 DM3 -43.5158 172.5441 41.0 2.68
ES-642 DM4 -43.5354 172.6399 44.0 3.49
ES-642 DM5 -43.4722 172.6988 25.0 2.9
ES-642 DM6 -43.5654 172.6449 21.0 2.41
ES-642 DM7 -43.5723 172.7004 20.0 2.52
ES-642 DM8 -43.5225 172.5824 60.0 2.75
ES-642 DM9 -43.5391 172.6909 19.0 1.86
ES-642 DMM2 -43.5015 172.6626 19.0 2.72
ES-642 DMM3 -43.5497 172.6390 25.0 2.87
ES-642 DMM4 -43.5059 172.5713 37.0 3.56
ES-642 DMM5 -43.5607 172.6137 27.0 2.72
ES-642 DMM6 -43.5224 172.6710 18.0 2.8
ES-642 ES_RR -43.5298 172.5987
ES-642 ES_SA -43.5113 172.6337 12.0 3.35
ES-642 ES_WS -43.5572 172.6811 8.0 3.56
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ODIN SD0006 -43.5014 172.6625 16.0 2.45
ODIN SD0007 -43.5089 172.5500 16.0 3.34
ODIN SD0009 -43.472 172.6987 13.0 2.24
ODIN SD0010 -43.5677 172.6260 -6.0 2.91
ODIN SD0012 -43.5514 172.5920 9.0 3.05
ODIN SD0013 -43.5336 172.6210 17.0 3.18
ODIN SD0015 -43.5202 172.5250 30.0 2.95
ODIN SD0017 -43.5758 172.5646 11.0 3.28
ODIN SD0020 -43.5479 172.6370 11.0 2.72
ODIN SD0021 -43.5059 172.5714 28.0 2.28
ODIN SD0022 -43.5572 172.7000 3.0 3.03
ODIN SD0023 -43.5159 172.5440 14.0 2.02
ODIN SD0024 -43.5391 172.6908 3.0 1.2
ODIN SD0025 -43.5113 172.6337 12.0 3.35
ODIN SD0028 -43.5788 172.6090 9.0 3.03
ODIN SD0029 -43.4844 172.7200 11.0 3.4
ODIN SD0030 -43.5355 172.6399 9.0 2.83
ODIN SD0032 -43.5793 172.6380 166.0 3.18
ODIN SD0033 -43.5624 172.6640 6.0 3.18
ODIN SD0034 -43.5557 172.7190 7.0 2.85
ODIN SD0039 -43.5653 172.6450 11.0 1.75
ODIN SD0040 -43.4940 172.6850 9.0 3.2
ODIN SD0041 -43.4499 172.5960 12.0 3.06
ODIN SD0042 -43.4980 172.6170 25.0 3.17
ODIN SD0043 -43.5225 172.5827 35.0 2.09
ODIN SD0044 -43.5662 172.5750 21.0 3.07
ODIN SD0045 -43.4636 172.6190 113.0 2.96
ODIN SD0046 -43.4502 172.6719 5.0 2.65
ODIN SD0047 -43.5521 172.5160 39.0 3.17
ODIN SD0048 -43.5927 172.5546 10.0 1.39
ODIN SD0049 -43.5497 172.6390 18.0 2.21
ODIN SD0050 -43.5559 172.6370 15.0 3.07
ODIN SD0051 -43.4879 172.6270 13.0 3.16
ODIN SD0054 -43.5656 172.5540 23.0 3.27
ODIN SD0055 -43.4879 172.6012 20.0 2.06
ODIN SD0056 -43.5572 172.6811 8.0 3.56
ODIN SD0057 -43.515 172.7340 6.0 3.1
ODIN SD0058 -43.5703 172.7100 7.0 2.91
ODIN SD0065 -43.5224 172.6709 8.0 2.47
ODIN SD0066 -43.5127 172.6520 5.0 3.17
ODIN SD0072 -43.5723 172.7003 5.0 1.98
ODIN SD0074 -43.5606 172.6137 4.0 2.06
ODIN SD0155 -43.5114 172.6980 2.0 3.16
ODIN SD0156 -43.4984 172.7280 7.0 3.02
ODIN SD0167 -43.5070 172.5930 19.0 2.97
ODIN SD0170 -43.5462 172.5484 22.0 3.14
ODIN SD0171 -43.5701 172.5390 27.0 3.02
ODIN SD0172 -43.5168 172.6150 11.0 3.31
AWS BDS_Wigram -43.5927 172.5546 23.0
AWS BDS_Halswell -43.5472 172.5496 8.8
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AWS BDS_Belfast -43.4502 172.6719 0.4
AWS Metservice_CHA -43.4890 172.5280 37.0
AWS Metservice_CWX -43.7510 172.8200 55.0
AWS Metservice_LBX -43.7460 173.1220 236.0
AWS Metservice_NBX -43.5060 172.7340 9.0
AWS Metservice_SGX -43.6040 172.6490 496.0
AWS NIWA_Akaroa_Ews -43.8090 172.9660 45.0
AWS NIWA_Christchurch,_Kyle_St_Ews -43.5307 172.6077 6.0
AWS NIWA_Diamond_Harbour_Ews -43.6331 172.7281 122.0
AWS NIWA_Lincoln,_Broadfield_Ews -43.6262 172.4704 18.0
AWS NIWA_Ohoka_Cws -43.3423 172.5657
AWS NIWA_Rangiora_Ews -43.3286 172.6111 23.0
AWS NIWA_Waipara_West_Ews -43.0703 172.6534 130.0
AWS NIWA_West_Eyreton,_Larundel_Farm_Cws -43.3573 172.4322 88.0
AWS WOW_Allandale1 -43.642 172.6545
AWS WOW_Fendalton_Weather -43.5264 172.5884
AWS WOW_ICANTERB76 -43.5217 172.7090
AWS WOW_ICASHMER2 -43.5743 172.6380
AWS WOW_Ilam -43.5156 172.5839
AWS WOW_Lansdowne_Valley_Weather -43.6147 172.5714
AWS WOW_Lyttelton -43.6008 172.7175
AWS WOW_Mt_Pleasant -43.5566 172.7130
AWS WOW_Prebbleton_New_Zealand -43.5867 172.5118
AWS WOW_Rolleston -43.6079 172.3677
AWS WOW_Templeton -43.5492 172.4657
AWS WOW_Vega_Place -43.5708 172.6856
AWS WOW_West_Melton -43.5315 172.3741
AWS WOW_Worcester_Street -43.5313 172.6473
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