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Abstract. Soil moisture is key for quantifying soil-atmosphere interactions. We provide a soil 

moisture pattern recognition framework to increase the spatial resolution and fill gaps of the 

ESA-CCI (European Space Agency-Climate Change Initiative v4.5) soil moisture dataset, 

which contains more than 40 years of satellite soil moisture global grids with a spatial 15 

resolution of ~27km. We use terrain parameters coupled with bioclimatic and soil type 

information to predict the finer-grained satellite soil moisture. We assess the impact of terrain 

parameters on the prediction accuracy by cross-validating the pattern recognition of soil 

moisture with and without the support of bioclimatic and soil type information. The outcome 

is a new dataset of gap-free global mean annual soil moisture and uncertainty for 28 years 20 

(1991-2018) across 15km grids. We use independent in situ records from the International 

Soil Moisture Network (ISMN, n=13376) and in situ precipitation records (n=4909) only for 

evaluating the new dataset. Cross-validated correlation between observed and predicted soil 

moisture values varies from r=0.69 to r=0.87 with root mean squared errors (RMSE, m3/m3) 

around 0.03 and 0.04. Our soil moisture predictions improve: (a) the correlation with the 25 

ISMN (when compared with the original ESA-CCI dataset) from r=0.30 (RMSE=0.09, 

ubRMSE=0.37) to r=0.66 (RMSE=0.05, ubRMSE=0.18); and (b) the correlation with local 

precipitation records across boreal (from r=<0.3 up r=0.49) or tropical areas (from r=<0.3 to 

r=0.46) which are currently poorly represented in the ISMN. Temporal trends show a decline 

of global annual soil moisture using: a) data from the ISMN (-1.5 [-1.8, -1.24]%, b) 30 

associated locations from the original ESA-CCI dataset (-0.87[-1.54, -0.17]%), c) associated 

locations from predictions based on terrain parameters (-0.85[-1.01, -0.49]%), and d) 

associated locations from predictions including bioclimatic and soil type information (-0.68[-

0.91, -0.45]%). We provide a new soil moisture dataset that has no gaps and a finer resolution 

together with validation methods and a modeling approach that can be applied worldwide 35 

(Guevara, et al., 2020, https://doi.org/10.4211/hs.9f981ae4e68b4f529cdd7a5c9013e27e). 
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1 Introduction 

Soil moisture data is essential for scientific inquiry in a variety of research areas.  This data 40 

enables scientists to characterize hydrological patterns (Greve and Seneviratne, 2015), 

quantify the influence of soil moisture on terrestrial carbon dynamics (van der Molen et al., 

2011), identify trends in global climate variability (Seneviratne et al., 2013), analyse the 

response of ecosystems to moisture decline (Zhou et al., 2014), or detect the impact of 

moisture on models of land-atmosphere interactions (May et al., 2016). The integrity of 45 

current soil moisture data is fundamental for a comprehensive understanding of the global 

water cycle (Al-Yaari et al., 2019).  

The main sources of soil moisture data are in situ soil moisture measurements through 

monitoring networks such as the International Soil Moisture Network (ISMN, Dorigo et al., 

2011a) and satellite soil moisture measurements such as those provided by European Space 50 

Agency-Climate Change Initiative (ESA-CCI, Dorigo et al., 2017; Liu et al., 2011). Both 

measurement techniques can quantify regional-to-continental global soil moisture patterns 

and dynamics (Gruber et al., 2020). 

In situ soil moisture measurements assess soil moisture within specific study sites at 

specific soil depths (e.g., 0-5 cm). These measurements are fine-grained as soil moisture 55 

sensors have a small and localized footprint, and despite national and international networks 

they are limited in much the world (Fig. 1).  Collection of in situ soil moisture data across 

large areas is expensive and time consuming; in many cases, logistical challenges such as 

limited funding for data collection and accessibility of soil moisture monitoring sites make it 

impossible.  60 

On the other hand, satellite soil moisture measurements collected in the form of 

microwave radiometry using L-band (~ 1.4-1.427 GHz) and C-band (~4-8 GHz) are more 

effective for larger regional-to-global soil moisture measurements (Mohanty et al., 2017).  As 
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for most available in situ soil moisture measurements, satellite soil moisture datasets are 

representative for the first 0-5 cm of soil depth. Unlike the fine-grained in situ measurements, 65 

satellite soil moisture datasets are available at the global scale in coarse-grained grids with 

spatial resolution ranging between 9km and 25km (Senanayake et al., 2019) and at the 

regional scale (e.g., the European continent) with a spatial resolution of 3km grids (Naz et al., 

2020). A well-known satellite soil moisture dataset is collected by the European Space 

Agency-Climate Change Initiative (ESA-CCI ).The ESA-CCI dataset contains more than 40 70 

years of satellite soil moisture global grids (from the 1978 to 2019) with a spatial resolution 

of ~27km (Liu et al., 2011; Chung et al., 2018). This soil moisture dataset is a synthesis from 

multiple soil moisture sources and has been applied in long-term ecological and hydrological 

studies (Dorigo et al., 2017).  The dataset covers a longer period of time compared with other 

satellite-derived soil moisture datasets (e.g., Soil Moisture Active Passive [SMAP]) (Al-Yaari 75 

et al., 2019). 
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[Insert] Fig. 1 Spatial distribution of available in situ data (collected on the site) for validating 

soil moisture predictions. The ISMN (green), precipitation records (blue), soil moisture 

additional datasets from previous local studies (red).  90 

 

Across large areas of the world, the ESA-CCI soil moisture data has been validated 

and calibrated against in situ soil moisture measurements (Al-Yaari et al., 2019; Dorigo et al., 

2011a). In addition, there are continuing efforts to improve the spatial reliability of the 

satellite measurements (Gruber et al., 2017), resulting in new dataset versions (most recent 95 

v4.9). However, even the most recent version of ESA-CCI soil moisture data (i.e., v4.5-9) 

still suffers from a too coarse-grained spatial resolution and substantial spatial gaps in their 

spatial coverage (Llamas et al., 2020), making the data unsuitable to tackle problems such as 

quantifying the implications of soil moisture in water cycle across fine grained scales or 

across areas with spatial gaps. Scientists have developed empirical and physical modeling 100 

approaches for predicting missing satellite soil moisture data (Peng et al., 2017; Sabaghy et 

al., 2020) and for evaluating the errors in soil moisture satellite model predictions (Gruber et 

al., 2020). The spatial resolution and coverage of these recent studies is still an emergent 

challenge due to limited data across large areas of the world (e.g., extremely dry, extremely 

wet or frozen regions) as well as the signal excessive noise and saturation affecting the 105 

quality of satellite soil moisture records. Consequently, there is a need for developing 

alternative modeling approaches and their validation methods to fill the gaps of the ESA-CCI 

dataset, improving both the spatial resolution and the coverage. 

In this paper we tackle this need by modeling and validating fine grained, gap free soil 

moisture predictions over the entire world. In doing so, we combine a pattern recognition 110 

technique called Kernel Weighted k-Nearest-Neighbors (or k-KNN, Hechenbichler and 

Schliep, 2004) with the use of independent covariate or prediction factors such as topographic 

parameters, bioclimatic features, and soil types. Our approach enables us to augment both 
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special resolution and coverage in the ESA-CCI dataset despite limited data in large areas of 

the world.  115 

k-KNN is a machine learning (ML) algorithm that has several benefits for predicting 

satellite soil moisture at the global scale.  First of all, k-KNN accounts for non-linearities 

(e.g., local and regional specific data patterns). Soil moisture data (as a dependent variable) 

can be predicted as a function of the spatial variability of environmental data (independent 

variables) with different spatial resolution and coverage (Peng et al., 2017; Guevara and 120 

Vargas, 2019; Llamas et al., 2020). k-KNN can take advantage of the spatial autocorrelation 

of training data such as the relation between variance and distance between soil moisture 

observations (Llamas et al., 2020; Oliver and Webster, 2015) and use it as ancillary 

information when spatial coordinates (e.g., latitude and longitude) are considered in the 

prediction approach (Hengl et al., 2018; Behrens et al., 2018; McBratney et al., 2003). 125 

Second, k-KNN can use kernel functions to weight the neighbors according to their distances. 

Finally, by including spatial coordinates in the predictions, k-KNN can consider geographical 

distances. In doing so, it is able to account for local and regional variability in the feature 

space: each predicted value is dependent on a unique combination of k neighbors in the 

feature space that are weighted using kernel functions that can be different from one place to 130 

another (see Section 2.2 Refinement modeling). 

We use a diverse set of independent covariates or prediction factors such as 

topographic parameters, bioclimatic features, and soil types to augment the prediction of soil 

moisture values with k-KNN. Topographic parameters are based on physical principles 

related to the overall distribution of surface water across the landscape (Western et al., 2002; 135 

Moeslund et al., 2013; Mason et al., 2016). We generate the topographic parameters from 

digital terrain analysis. Digital terrain analysis involves calculations of land surface 

characteristics that depend on topography (e.g., terrain slope and aspect, Wilson, 2012). The 

impact of terrain parameters on spatial variability of satellite soil moisture is supported by 
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previous studies that have provided evidence of a topographic signal in satellite soil moisture 140 

measurements from local (Mason et al., 2016) to continental scales (Guevara and Vargas, 

2019). Other studies derive terrain parameters from elevation data and use them to predict 

soil moisture across a gradient of hydrological conditions (Western et al., 2002). Topographic 

parameters have also been used for soil attribute predictions (Moore et al., 1993) and for soil 

moisture mapping applications (Florinsky, 2016). All these studies suggest that topography 145 

(represented by multiple terrain parameters) is a useful predictor of surface soil moisture 

variability at the global scale. Different types of terrain parameters exist including elevation 

data structures, topographic wetness, overland flow, and potential incoming solar radiation 

among others. Elevation data structures (i.e., point elevation data, elevation contour lines, or 

digital elevation models) quantitatively represent topographic variability and are the basis of 150 

digital terrain analysis (i.e., geomorphometry).  The topographic wetness index is a terrain 

parameter that characterizes areas where soil moisture increase by the effect of overland flow 

accumulation (Moore et al., 1993). Overland flow and potential incoming solar radiation are 

two important topographic drivers of the spatial distribution of soil moisture (Nicolai-Shaw et 

al., 2015), its lags after precipitation events (McColl et al., 2017), and its role as a dominant 155 

control of plant productivity (Forkel et al., 2015). Bioclimatic features and soil types account 

for hydroclimatic and soil variability affecting soil moisture. We add bioclimatic features and 

soil type classes as additional prediction factors to our approach to determine if information 

beyond terrain parameters substantially improves soil moisture predictions. To validate our 

dataset, we use independent field information from local studies (n=9, Vargas, 2012, Saleska 160 

et al., 2013), from the International Soil Moisture Network (ISMN, n=13376) and n=4909 in 

situ precipitation records (including n=171 sites across tropical areas poorly represented in 

the ISMN). 

The contributions of this paper are twofold:  first, we integrate the k-KNN algorithm 

and prediction factors into a modeling approach to predict fine grained, gap free soil moisture 165 
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data with a resolution of 15km, and second, we generate a new dataset that compliments the 

ESA-CCI dataset and is composed of soil moisture predictions from our modeling approach. 

With reference to our first contribution, we study the effectiveness of k-KNN to downscale 

satellite-derived soil moisture using two prediction factor datasets: a first dataset based only 

on topographic parameters and a second based on topographic parameters, bioclimatic 170 

features, and soil types. We compare the accuracy of the two types of fine grained, gap free 

soil moisture models obtained using the two prediction factor datasets respectively. The 

comparison allows us to assess the impact of the individual prediction factors. Specifically, 

we address the impact of topographic parameters versus bioclimatic features and soil types. 

Previous studies have used a variety of prediction factors for soil moisture, including 175 

vegetation indexes (from optical imagery), climate information (Alemohammad et al., 2018), 

chloropeth maps (i.e., land use and land-forms), thermal data and soil information to improve 

the spatial resolution and coverage of soil moisture gridded datasets (Naz et al., 2020, Peng et 

al., 2017). In contrast to past efforts, our solution uses a comprehensive set of factors for 

predicting satellite soil moisture data and independently test the model with in situ soil 180 

moisture data. Our approach is computationally less expensive and prevents potential 

spurious correlations when predicted soil moisture estimates are compared with climate, 

vegetation, or soil information. With reference to our second contribution, we generate a 

dataset complementary to the ESA-CCI soil moisture dataset that uses the comprise gap free 

global mean annual soil moisture predictions for 28 years (1991-2018) across a 15km grids 185 

(note that ESA-CCI has a grid of 27km). Our soil moisture dataset can be used for identifying 

spatial and temporal patterns of soil moisture and its contributions to climate and vegetation 

feedbacks. The soil moisture predictions, the field soil moisture validation dataset, and the set 

of prediction factors for soil moisture are available at (Guevara et al 2020). 

 190 

2 Methodology 
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Our prediction approach has four key steps: First, we define two different datasets of prediction 

factors with a 15km global grid resolution: a dataset consisting only of terrain parameters and 

a different dataset combining terrain parameters, bioclimatic features, and soil type classes 

(Section 2.1). Second, we build prediction models by feeding the prediction factors and ESA-195 

CCI satellite soil moisture data to the k-KNN algorithm and using cross validation for selecting 

the best models (Section 2.2). Third, we bootstrap the parameters to assess variances of soil 

moisture predictions (Sections 2.3). Last, we validate our best predictions against independent 

in situ soil moisture measurements when they are available (Section 2.4). 

 200 

2.1 Datasets of Prediction Factors  

We generate and test two different datasets of prediction factors with a 15km grid resolution: 

(a) a dataset of only digital terrain parameters and (b) a more complex dataset that uses digital 

terrain parameters, static bioclimatic features, and soil type information. The second dataset 

allows us to differentiate between the impact of terrain parameters in isolation versus the 205 

terrain parameters when augmented with static bioclimatic features and soil type information. 

The values of prediction factors are generated to overlap with the central coordinates (latitude 

and longitude) of the original ESA-CCI soil moisture pixels (Guevara and Vargas, 2019). 

          Digital terrain parameters (described in Fig. 2) are derived from a global digital 

elevation model using SAGA-GIS (System for Automated Geoscientific Analysis-GIS) 210 

(Conrad et al., 2015). The source of elevation data is a radar based digital elevation model 

(Becker et al., 2009).  This digital elevation model is prepared by Hengl et al., (2017) and it is 

re-sampled (along with bioclimatic features and soil type classes) for this present study to a 

spatial resolution of 15km grids across the world. We consider these terrain parameters: (a) 

terrain aspect (aspect), (b) specific catchment area (carea), (c) channel network base level 215 

(chnl base), (d) distance to channel network (chnl dist), (e) flow convergence index 

(convergence), (f) horizontal curvature (hcurv), (g) digital elevation model (land), (h) length-
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slope factor (lsfactor), (i) relative slope position (rsp), (j) analytical hillshade (shade), (k) 

smoothed elevation (sinks), (l) terrain slope (slope), (m) valley depth index (vall depth), (n) 

vertical curvature (vcurv), and (o) topographic wetness index (wetness). The parameters are 220 

presented in Fig. 2. The detailed description and units of the parameters can be found in 

Guevara and Vargas (2019).   
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[Insert] Fig. 2 Digital terrain parameters used as prediction factors for soil moisture.  These 225 

parameters are derived from a digital elevation model using SAGA-GIS. These terrain 

parameters are standardized by centering their means in zero by a variance unit for improving 

visualization purposes. Legend: (a) terrain aspect (aspect), (b) specific catchment area 

(carea), (c) channel network base level (chnl base), (d) distance to channel network (chnl 

dist), (e) flow convergence index (convergence), (f) horizontal curvature (hcurv), (g) digital 230 

elevation model (land), (h) length-slope factor (lsfactor), (i) relative slope position (rsp), (j) 

analytical hillshade (shade), (k) smoothed elevation (sinks), (l) terrain slope (slope), (m) 

valley depth index (vall depth), (n) vertical curvature (vcurv), and (o) topographic wetness 

index (wetness). See detailed description and units at (Guevara and Vargas, 2019).   

 235 

 

          Static bioclimatic features are extracted from the Food and Agriculture Organization 

Global Agro-Ecological Zones project (FAO, 2010, baseline period 1961-1990) to account 

for hydroclimatic variability. As soil type information, we include soil water retention 

capacity classes (1 = 150 mm water per m of the soil unit, 2 = 125 mm, 3 = 100 mm, 4 = 75 240 

mm, 5 = 50 mm, 6 = 15 mm, 7 = 0 mm) from the Re-gridded Harmonized World Soil 

Database v1.2 (Wieder et al., 2014) to account for soil type variability in our prediction 

framework.  

          For each pixel with available soil moisture values in the ESA-CCI dataset, we augment 

the spatial coordinates (i.e., latitude and longitude) and soil moisture value by adding the 245 

tuple of the 15 terrain parameters for the first dataset, and the tuple of the 15 terrain 

parameters, the 19 bioclimatic features, and the soil type classes for the second dataset. The 

pixels without soil moisture values become our prediction targets. Because the prediction 

factor datasets have a 15km resolution while the ESA-CCI soil moisture pixels haver a 27km 

resolution, we preprocess each prediction factor dataset to extract the values to the 250 
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corresponding locations of the ESA-CCI pixels. By overlapping the original ESA-CCI dataset 

with one of the two prediction factor datasets and extracting the prediction factor values for 

the ESA-CCI pixel centers, we generate two augmented ESA-CCI datasets. A similar method 

was initially used for the conterminous United States only (Guevara and Vargas, 2019). Here 

we extend the method to the entire world.  In our mapping, we leverage observations from 255 

other work outlining the positive impact of spatial structure (e.g., spatial distances and 

autocorrelation) on soil attribute predictions (e.g., soil moisture) (see spatial coordinate maps 

in Appendix A) (Llamas et al., 2020; Møller et al. 2020; Hengl et al. 2018; Behrens et al., 

2018; McBratney et al., 2003; Oliver and Webster, 2015).  We include spatial coordinates in 

our modeling framework (described in Section 2.2) to account for the spatial structure of the 260 

ESA-CCI training data. To this end, we use spatial coordinates at multiple oblique angles as 

suggested by recent work (Møller et al., 2020, Appendix A). This preprocessing is done using 

open source R software functionalities for geographical information systems (R Core Team 

2020, Hijmans, 2019). 

 265 

 

 

2.2 Building Prediction Models 

To build prediction models of the soil moisture at a finer spatial resolution (15km) than the 

original ESA-CCI dataset  (27km), we use the kernel-based method for pattern recognition 270 

known as k-KNN (Hechenbichler and Schliep, 2004). We observe that the relationships 

among spatial coordinates, soil moisture values, terrain parameters, bioclimatic classes, and 

soil types are not linear. For example, south slope areas tend to be dryer than north slopes 

areas. Moreover, there is a contrasting feedback of soil moisture and precipitation between 

humid and dry areas (e.g., between the Eastern and Western of the United States, Tuttle and 275 
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Salvucci, 2016). We use k-KNN because it allows us to account for the non-linear feedback 

while providing a simple and fast prediction solution.  

          The k-KNN algorithm has two main settings: (a) the parameter k that determines the 

number of neighbors from which information is considered for prediction, and (b) a kernel 

function that converts distances among neighbors into weights, so the farther the neighbor, 280 

the smaller the weight it will be assigned. We consider k neighbors with k ranging from two 

to 50 soil moisture pixels and with close spatial coordinates and similar prediction factors. In 

the case of the first prediction factor dataset (i.e., only digital terrain parameters), distances 

among neighbors are computed among spatial coordinates and terrain parameters; in the case 

of the second dataset (i.e., digital terrain parameters, static bioclimatic features, and soil type 285 

classes), distances among neighbors are computed among spatial coordinates, terrain 

parameters, static bioclimatic features, and soil type classes. The similarity among neighbors 

is measured with the Minkowski distance (i.e., the statistical average of the neighbors’ values 

difference).  We consider six different kernel functions (i.e., Rectangular, Triangular, 

Epanechnikov, Gaussian, Rank, and Optimal). 290 

          Using the two augmented ESA-CCI datasets obtained by overlapping the original ESA-

CCI dataset with one of the two prediction factor datasets and extracting the prediction factor 

values for the ESA-CCI pixel centers (from Section 2.1), we generate two sets of 28 

prediction models, one for each of the 28 years (i.e., 1991-2018) in the ESA-CCI soil 

moisture dataset (v4.5). We feed the augmented ESA-CCI datasets into the k-KNN algorithm 295 

and search for the most effective k neighbors’ values and kernel functions. To this end, we 

use ten-cross validation to select the values of the k neighbors among the 48 possible values 

(i.e., k ranted from 2 to 50) and the kernel function from these six kernel functions (i.e., 

Rectangular, Triangular, Epanechnikov, Gaussian, Rank, and Optimal). We use cross-

validation as a re-sampling technique because it can prevent overfitting in ML methods such 300 

as k-KNN and can generate multiple sets of independent model residuals to evaluate the 
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stability of prediction outcomes. The use of cross-validation for searching for the most 

effective k neighbors’ values and kernel function requires us to randomly create multiple 

independent training and testing datasets. Training and testing datasets generated from one of 

our augmented ESA-CCI datasets are disjoined; training data is used for building the models, 305 

and testing data is used only for quantifying model residuals and evaluating soil moisture 

predictions.  

 As our cross-validation indicators (i.e., information criteria about prediction), we use 

Pearson correlation coefficient (r) and the root mean squared error (RMSE) for each one of 

the prediction models. For each year we select the model whose combination of k and kernel 310 

function has highest r and lowest RMSE. We use the model to predict annual mean global 

soil moisture across 15km global grids. 

 

2.3 Assessing variances of model predictions 

We study three sources of modeling variance. First, we assess the sensitivity of the prediction 315 

models to variations in available training data over the entire world. Second, we assess the 

relevance of the spatial coordinates and different prediction factors by rebuilding the models 

using the k-KNN algorithm with and without each prediction factor, once again over the 

entire world. Third, we assess the effectiveness of the k-KNN algorithm across selected areas 

of the world with fewer data available for training the prediction models and with different 320 

environmental and climate gradients. 

To assess the sensitivity of the prediction models to variations in training data, we 

compute the variance of our soil moisture predictions as surrogates of model-based 

uncertainty. We rebuild the prediction models setting the k-KNN algorithm to use different 

random subsets of available pixels (n=1,000) and 10-fold repeated cross-validation (n=10) to 325 

quantify the variance of soil moisture predictions. This model variance enables us to identify 
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geographical areas with high or low model uncertainty associated with the sensitivity of 

prediction models to random variations in training data. 

To assess the relevance of the different prediction factors, we use the r and RMSE of 

modeling with all prediction factors as reference, and we compare the r and RMSE with the r 330 

and RMSE values of modeling without each one of the prediction factors. We test the 

sensitivity of the spatial coordinates and each prediction factor (i.e., terrain parameters, 

bioclimatic features, and soil type classes) by systematically leaving out one prediction factor 

at a time and repeating our k-KNN algorithm and its respective cross-validation. This process 

is repeated ten times for each prediction factor to capture a variance estimate. This empirical 335 

validation approach provides empirical insights of the relative importance of prediction 

factors for the k-KNN algorithm predicting soil moisture at the global scale.  

To assess the effectiveness of the k-KNN algorithm across specific areas of the world, 

we first test the k-KNN algorithm under tropical areas (Appendix B) with low availability of 

data to train prediction models (e.g., higher distances between k neighbors) and homogeneous 340 

environmental and climate conditions (e.g., higher water content aboveground than below 

ground).  We extract the limits of tropical areas from the Global Agro-Ecological Zones 

project (FAO, 2010, baseline period 1961-1990, described in section 2.1). Second, we test the 

k-KNN algorithm using only the available ESA-CCI data across counties with large 

heterogenous environmental and climate gradients such as Canada, Australia, and Mexico. 345 

We generate new training, testing, and prediction factors datasets for these countries using 

geopolitical limits provided by the global administrative maps initiative (GADM, 2018). We 

use the resulting model predictions to explore modeling consistency in terms of r and RMSE 

values across the selected areas and to visualize spatial patterns between the ESA-CCI soil 

moisture dataset and our soil moisture predictions.  350 

 

2.4 Validation against independent in situ data 
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When in situ soil moisture data (i.e., ISMN) and in situ precipitation records (as an alternative 

validation approach across areas with low availability of in situ soil moisture data) are 

available in the ISMN dataset (Dorigo et al., 2011a, 2017), we validate the ESA-CCI dataset 355 

and our predictions against those local soil moisture data reported in ISMN for each year. 

Additionally, we compare soil moisture trends (i.e., changes in soil moisture over time) 

across time by comparing either in situ soil moisture or the ESA-CCI with our predictions.  

To validate the ESA-CCI dataset and our predictions against the available in situ soil 

moisture data, we augment the original ISMN datasets with its in situ soil moisture data for 360 

the years 1991-2018 (see Section 5) built from its 8,080 tables. In doing so, because tropical 

areas are poorly represented in the ISMN, we first further extend ISMN dataset by including 

10 more stations with in situ soil moisture data from literature reviews that are distributed in 

open access data repositories: one site in a tropical forest of Mexico with data from 2006-

2008 (Vargas, 2012) and nine sites across Brazil’s tropical forests with data from 1999-2006 365 

(Saleska, et al., 2013). Second, across areas of the world with low availability of in situ soil 

moisture information, as it is the case for tropical areas (Fig. 1), we use in situ records of 

annual precipitations (n=4909) including 171 sites (years 2008 to 2018) from the global soil 

respiration database (Bond-Lamberty and Thomson, 2018), and we compute the correlation 

between satellite soil moisture data and in situ precipitation records when no other 370 

independent in situ soil moisture data is available. We add these correlations to the 

augmented ISMN dataset. The use of precipitation data for areas of the world where no in 

situ soil moisture validation data is supported by work of Gruber et al., (2020).  

Subsequently, we extract the values of the ESA-CCI soil moisture dataset and the 

values of our soil moisture predictions for each one of the locations reported in our 375 

augmented ISMN dataset of in situ soil moisture values. Any potential bias associated with 

the data in our augmented ISMN dataset (e.g., stations with low number of records) has 

potentially the same impact on the validation results of the three datasets (ESA-CCI and our 
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two prediction datasets). In other words, we assume biases are randomly distributed across all 

observations, and thus they are not accounted for the outcome of our comparisons. We 380 

summarize the validation results in a target diagram to illustrate the accuracy of our soil 

moisture predictions. The target diagram (presented in Appendix C, Jolliff et al., 2009; 

Gruber et al., 2020) shows the relation between the variance and magnitude of errors (e.g., 

unbiased root mean squared error or ubRMSE) (a) between the ESA-CCI and the augmented 

ISMN dataset and (b) between our predictions and the augmented ISMN dataset.    385 

To compare trends in soil moisture over time for areas for which we have in situ data, 

we perform a non-parametric (median-based) trend detection test (i.e., Theil-Sen estimator) to 

compare soil moisture trends at the locations of the augmented ISMN dataset. This trend 

detection is done by calculating the median value of the slopes and intercepts of all possible 

combinations of pairs of points in the relationship of soil moisture (response) and time 390 

(explanatory variable). This resulting median slope and intercept estimates are unbiased and 

resistant to outliers (Kunsch, 1989). 

For those areas in which the ISMN dataset has multiple gaps, we rely on the ESA-CCI 

and our prediction datasets to generate a map of soil moisture trends. To this end, we apply a 

pixel-wise trend detection test to the ESA-CCI and prediction datasets to search for possible 395 

breakpoints (i.e., significant changes in soil moisture over time). We consider two regression 

parameters (i.e., slopes and intercepts) before and after any possible breakpoint to detect 

trends; in all the tests, a minimum of four years is required between breakpoints for detecting 

trends. To provide our study with robust trend detection estimates, we do not consider 

segments between breakpoints with less than eight observations. (Forkel et al., 2013, 2015). 400 

3 Results 

In our assessment of the results, we first discuss the statistical description of the observed and 

modeled soil moisture datasets (Section 3.1). Second, we present the sensitivity of the 
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prediction models and the way they are generated to variations in available datasets (Section 

3.2). Third, we measure the relevance of the different prediction factors by rebuilding the 405 

models using the k-KNN algorithm with and without one prediction factor at the time over 

the entire world (Section 3.3).  Finally, we summarize results on soil moisture for models that 

are trained on regions for which augmented ISMN datasets exist (Section 3.4) and results on 

soil moisture for models that are trained on regions for which augmented ISMN datasets do 

not exist and thus we use either ESA-CCI or our predictions as alternative datasets (Section 410 

3.5).   

 

3.1 Descriptive Statistics 

We first assess the statistical distributions of the observed ESA-CCI dataset, our soil moisture 

model predictions using the k-KNN algorithm, and the augmented ISMN dataset (Fig. 3). 415 

Comparing the statistical distribution between observed datasets (i.e., ESE-CCI and ISMN 

datasets) and our modeled soil moisture datasets allows us to identify if modeled soil 

moisture falls within the expected range of observed soil moisture values. The statistical 

distribution among different soil moisture datasets can be compared in terms of differences in 

the mean and standard deviation. We present the mean and standard deviation of the ESA-420 

CCI dataset, our modeled soil moisture predictions, and the augmented ISMN dataset only at 

locations (latitude and longitude) where all datasets have an observation or a prediction. We 

also restrain the period of time for our comparisons between 1991-2016, which is the period 

of time with higher consistency of data availability for both the ESA-CCI dataset and the 

augmented ISMN dataset.   425 

When comparing the statistical distribution of the soil moisture datasets, we observe 

that the ESA-CCI dataset has mean soil moisture values of 0.29 m3/m3 and a standard 

deviation of 0.09 m3/m3. The modeled soil moisture predictions based only on digital terrain 

parameters has mean soil moisture values of 0.24 m3/m3 and a standard deviation of 0.05 
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m3/m3. Modeled soil moisture predictions based on digital terrain parameters, bioclimatic 430 

features, and soil type classes show mean soil moisture value is 0.24 m3/m3 and a standard 

deviation is 0.05 m3/m3. The augmented ISMN dataset shows a larger range of soil moisture 

values (Fig. 3) comparing all datasets: the dataset values show a mean of 0.25 m3/m3 and a 

standard deviation 0.07 m3/m3. We have two key observations. First, we observe a consistent 

statistical distribution comparing the statistical distribution of the augmented ISMN 435 

compared with the statistical distribution of the ESA-CCI dataset (Fig. 3). Second, and more 

importantly, the mean and standard deviation of our modeled soil moisture predictions based 

on terrain parameters only and based on terrain parameters, bioclimatic features, and soil type 
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classes as prediction factors show similar agreement with the means and standard deviations 

of both ESA-CCI and augmented ISMN datasets.  440 

[Insert] Fig. 3 Statistical distribution of the ESA-CCI soil moisture dataset (red), the 

predictions of soil moisture using the k-KNN algorithm (gray and green) and the augmented 

ISMN dataset (black). The lines represent the values of each dataset at the locations of all 

datasets exist (locations reported in the augmented ISMN).  

 445 
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3.2 Prediction Sensitivity for Different Datasets 

We evaluate r and RMSE for 12,040 cross-validated soil moisture models. The number of 

models is defined as follows. For each year (n=28) we build a model with all prediction 

factors (n=42) and assess the variance of 10 model replicas based on different random data 

subsets (n – 10% of data). We repeat the same process for each year leaving out each one of 450 

the prediction factors at the time and assess the prediction sensitivity for different datasets as 

explained in Section 2.3. We compute the r and RMSE between observation and model 

prediction datasets. Our observations are soil moisture values from the ESA-CCI dataset and 

from the augmented ISMN as generated in Section 2.4. Our prediction factors datasets 

(defined in Section 2.1) are the basis to generate: (a) the soil moisture predictions based on 455 

terrain parameters only and (b) the soil moisture predictions based on terrain parameters, 

bioclimatic features, and soil type classes.  

We first report results for the entire world using ESA-CCI as training dataset for 

building prediction models and repeated cross validation for assessing the accuracy of the 

model predictions (described in Section 2.2). The cross-validated r of soil moisture predictions 460 

based on digital terrain parameters only ranges from 0.69 to 0.81 across years (1978-2019). 

The RMSE ranges from 0.03 to 0.04 m3/m3. The soil moisture predictions based on terrain 

parameters, bioclimatic features, and soil type classes have slightly higher correlation between 

observed and predicted soil moisture values (ranging between 0.78 and 0.85) and slightly lower 

RMSE values (ranging from 0.02 to 0.04 m3/m3). Note that each soil moisture prediction 465 

contains a cross validation accuracy report (see Section 5). The small variations of r and RMSE 

indicate a reliable prediction capacity of our models.  

For the entire world once again, we assess the sensitivity of our predictions (described 

in Section 2.3) in terms of the models’ prediction variance, which ranges from <0.001 to 0.18 

m3/m3. This prediction variance is higher in areas with lower availability of training data 470 
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from the ESA-CCI (e.g., across the tropical areas and coastal areas).  These variances also 

serve as surrogates for uncertainty; each file containing a soil moisture prediction model 

includes a file with a soil moisture prediction variance (see Section 5 data availability). For 

example, for the year 2018 (Fig. 4), soil moisture predictions varied between ~0.001 and 

~0.45 m3/m3 while the prediction variances range from ~0.001 to 0.14 m3/m3, indicating a 475 

broader variability around the predicted values. Larger prediction variances are the combined 

result of both the higher possible values of soil moisture and the limited sample size within 

the ESA-CCI to train the prediction models, such as in tropical areas dominated with dense 

vegetation.  
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 480 

[Insert] Fig. 4 Soil moisture prediction and prediction variance (5000 x 5), snapshot 2018, 

showing the mean values of the ESA-CCI for 2018 (a), the resulting k-KNN prediction (b), 

and the prediction variance (c). 

 

 485 

We provide an example of the sensitivity of our models across tropical areas with low 

available data for training the models as described in Section 2.3. For tropical areas of the world 
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with limited information in the ESA-CCI datasets, the cross-validated results of the model 

predictions showed r values around 0.62 and RMSE values around 0.03 m3/m3 using terrain 

parameters and soil type classes (Appendix B). We find that the model predictions based only 490 

in the limited ESA-CCI soil moisture information available across tropical areas (Appendix B) 

shows a similar prediction variance compared with the model predictions for the entire world, 

with values from <0.001 to <0.12 m3/m3 (Appendix B). These result support the effectiveness 

of our approach across areas with lower availability of information to train the k-KNN 

algorithm.  495 

 

 

 

 

 500 

 

 

 

 

 505 

 

 

 

 

 510 

[Insert] Fig. 5 Examples of downscaled annual mean soil moisture across specific countries. 

Prediction of soil moisture, prediction variance and training data from the ESA-CCI across 

Canada (CAN; a-c), and their respective boxplots (showing their statistical distribution) for 
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the year 2018 (d). Prediction of soil moisture, prediction variance and training data from the 

ESA-CCI across Australia (AUS; e-g), and their respective boxplots for the year 2018 (h). 515 

Prediction of soil moisture, prediction variance and training data from the ESA-CCI across 

Mexico (MEX; i-k), and their respective boxplots for the year 2018 (l).  

 

 

We additionally assess the sensitivity of the model predictions across areas of the 520 

world with heterogeneous environmental and climate gradients (i.e., geographical extent of 

countries such as Mexico, Canada and Australia), generated as described in Section 2.3. The 

ESA-CCI has a relatively better spatial coverage across these countries (Fig. 5) compared 

with tropical areas (Appendix B) but still with a lower amount of training data compared with 

models generated for the entire world. Comparing our soil moisture predictions across 15km 525 

grids with the original ESA-CCI soil moisture dataset at 27km grids (Fig. 8) for these areas, 

we observe that our soil moisture predictions have consistently higher maximum values 

(>0.04 m3m-3) than the original ESA-CCI soil moisture dataset (<0.4 m3m-3) (Fig. 5). We 

observe consistent modeling accuracy across these countries and across the entire world (in 

all cases r values >0.6 and RMSE values around 0.04 m3m-3).  530 

The last two sets of results for tropical areas with low available data and areas of the 

world with heterogeneous environmental and climate gradients support the effectiveness of 

our approach across areas exhibiting unfeasible data collection and heterogenous data 

characteristics respectively. The flexibility of our prediction models to generate consistent 

results on a country-specific basis could be supported by the use of country specific 535 

information (e.g., topographic, bioclimatic, and soil information) to predict soil moisture with 

higher spatial resolution (<15km grids) in future research. 

 

3.3 Relevance of the different prediction factors 
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Across the entire world, we assess the relevance of the different prediction factors defined in 540 

Section 2.1 (i.e., prediction factors from terrain parameters, bioclimatic features, and soil type 

classes) by rebuilding the prediction models using the k-KNN algorithm and removing one 

prediction factor at a time. By systematically removing one prediction factor at a time and 

using repeated 10-fold cross-validation (n=10), we can measure the prediction factor impact 

on the accuracy of each model generated for each year using the k-KNN algorithm (Fig. 6). 545 

To this end, we compare the cross-validation results (r and RMSE values) of each new model 

against a reference model that we build by using all prediction factors. Each soil moisture 

prediction using all prediction factors for each year is accompanied by a reference accuracy 

report containing the cross-validation results (see Section 5 Data availability). We sort the 

relevance of prediction factors based on the impact of their absence on the cross-validation 550 

results (r and RMSE values), compared with the reference models (using all prediction 

factors) across each year. Specifically, for each year (1991-2018) and for each factor that is 

removed at the time (42 factors), we repeat ten times the cross validation as explained in 

Section 2.2 and compute the mean accuracy. For each factor, we count the number of times 

when the absence of that factor causes a higher r and a lower RMSE compared with the mean 555 

accuracy of the reference model generated for each of the 28 years. Across the years we 

count the number of positive and negative impacts and show the proportion of times (or 

impact rate) when the absence of each prediction factor results in a higher accuracy (i.e., 

higher r and lower RMSE) versus the proportion of times when the absence results in a lower 

accuracy (i.e., lower  r and higher RMSE)  (Fig. 6).  560 
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[Insert] Fig. 6  Impact of each factor on (a) r and (b) RMSE values across years.  The factors 

with code: pi0.00, pi0.17, pi0.33, pi0.50, pi0.67 and pi0.83 are the spatial coordinates rotated 

at multiple angles shown in Appendix A.The rest of the factors are the digital terrain 565 

parameters used to predict the ESA-CCI annual means as they are shown in Figure 3 and 

described by Guevara and Vargas (2019): aspect: terrain aspect, carea: specific catchment 

area, chnl base: channel network base level, chnl dist: distance to channel network, 

convergence: flow convergence index, hcurv: horizontal curvature, land: digital elevation 
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model, lsfactor: length-slope factor, rsp: relative slope position, shade: analytical hillshade, 570 

sinks: smoothed elevation, slope: terrain slope, vall depth: valley depth index, vcurv: vertical 

curvature, wetness: topographic wetness index. The bioclimatic features in: a) tropical, b) 

subtropical, c) temperate or e) boreal environments are represented by binomial variables (0-

1). These variables are extracted by the Food and Agriculture Organization Global Agro-

Ecological Zones project. The available water storage capacity variable is represented by 575 

continuous classes available thanks to the Re-gridded Harmonized World Soil Database. 

 

 

We sort the relevance of prediction factors based on the impact of their absence on the 

cross validation results (r and RMSE values), compared with the reference models (using all 580 

prediction factors) across each year: for r (Fig. 6a) a negative impact rate of a factor means 

that the model tends to improve in accuracy (in terms of higher r) when including that factor 

and vice versa a positive impact means that the correlation increased when the factor is 

removed. In contrast, for RMSE (Fig. 6b) a positive impact means that the model will tend to 

improve accuracy (in terms of lower RMSE) when including that factor, and vice versa (a 585 

negative impact means that the error decreased when the factor is removed).  

We observe that spatial coordinates in rotated angles ranging between 17% and 83% 

degrees (Appendix A) are coordinates with positive impact on r and RMSE results across 

years (Fig. 6). Considered each year in isolation, we observe that values for r and RMSE are 

consistent across individual years. In Figure 7 we present the values for r and RMSE for 2018 590 

as a representative case. In 2018, we observe that spatial coordinates rotated in an oblique 

angle between 33% to 50% degrees (variables pi0.33 and pi0.50, Appendix A) have high 

impact on r or RMSE values (Fig. 7a).  

Across all years, we find bioclimatic features have a higher impact on r or RMSE 

values, followed by terrain parameters and soil classes (Fig. 6), which supports further 595 
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findings in our validation against in situ soil moisture data contained in the augmented ISMN 

(in Section 3.4). We find that the use of spatial coordinates has similar impact on r and 

RMSE values compared with terrain parameters or soil type classes (Fig. 6), We observe 

slightly higher (but statistically similar) impact of bioclimatic features in cross validation 

results compared with terrain parameters (Fig. 6). Bioclimatic features indicating presence or 600 

absence (0/1 bionomial variable) of tropical, subtropical, or temperate desert (biological and 

climatological) conditions are variables with high impact in the cross validation of prediction 

models. The height between the base of  drainage networks channels to the closest highest 

point in the ground (before elevation decreases again) (code in Fig. 6: chnl_base) or the 

distance of each pixel to the closest drainage network channel (code in Fig. 6: chnl_dist) are 605 

elevation (code in Fig. 6: land) derived terrain parameters with high impact on r and RMSE 

across all years. We observe for our example with the year 2018 that terrain parameters such 

as chnl_base and chnl_dist have higher impact on r and RMSE values consistently with our 

analysis across all years (1991-2018). Bioclimatic features indicating the presence or absence 

(0/1 bionomial variable) of temperate steppe climate conditions or the presence or absence of 610 

tropical shrubland climate conditions become top prediction factors for soil moisture in this 

specific year (2018, Fig. 7). The impact of terrain parameters have different impact for 

predicting soil moisture variability depending of the average amount of water reaching the 

soil (via precipitation and runoff or overlandflow) for each year, which is a process highly 

dependent on bioclimatic conditions. Thus, we can expect to observe variations in the impact 615 

of parameters to predict soil moisture across specific years (e.g., in extremely dry versus 

extremely wet years).  We provide a variable importance plot for each year associated with 

each soil moisture prediction (Section 5 Data availability).       

 

 620 
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 625 

 

 

 

 

 630 

 

 

 

[Insert] Fig. 7 Impact of each factor on the (a) r and (b) RMSE values for the year 2018. The 

factors named  pi0.00, pi0.17, pi0.33, pi0.50, pi0.67 and pi0.83 are the spatial coordinates at 635 

multiple angles shown in Appendix A.The digital terrain parameters are shown in Figure 3 

and described by Guevara and Vargas (2019): aspect: terrain aspect, carea: specific 

catchment area, chnl base: channel network base level, chnl dist: distance to channel network, 

convergence: flow convergence index, hcurv: horizontal curvature, land: digital elevation 

model, lsfactor: length-slope factor, rsp: relative slope position, shade: analytical hillshade, 640 

sinks: smoothed elevation, slope: terrain slope, vall depth: valley depth index, vcurv: vertical 

curvature, wetness: topographic wetness index. The bioclimatic features are divided in: a) 

tropical, b) subtropical, c) temperate or e) boreal environments are represented by binomial 

variables (0-1). These variables are extracted by the Food and Agriculture Organization 

Global Agro-Ecological Zones project. The available water storage capacity variable is 645 

represented by continuous classes available thanks to the Re-gridded Harmonized World Soil 

Database. 
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[Insert] Fig. 8 Model evaluation plots (points vs grids). ISMN against the ESA-CCI (a), 

ISMN against the predictions based on terrain analysis (b), and ISMN against the predictions 650 

based on the model using bioclimatic and soil type classes (c). The panels below show the 

correlation between soil moisture grids and in situ mean annual precipitation records and: in 

situ precipitation against the ESA-CCI (d), in situ precipitation against predictions based on 

terrain analysis (e) and in situ precipitation against predictions based on the model using 

bioclimatic and soil type classes (f). 655 
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3.4 Soil moisture trained for region for which augmented ISMN datasets exist 

To compare soil moisture values between our predictions and the augmented ISMN, we 

followed two main steps. First, we assess the r and RMSE values between the ESA-CCI 

dataset and our soil moisture predictions against in situ soil moisture using the augmented 660 

ISMN. Second, we report changes of soil moisture over time using the augmented ISMN, the 

ESA-CCI and our soil moisture predictions.  

 
[Insert] Fig. 9 Negative soil moisture trends at the places of field stations in the ISMN. Trend 

of ISMN (a), trend of the model based on the ESA-CCI dataset (b). Trend of the models 665 

using terrain parameters (c) and trend of the models using bioclimatic and soil type classes 

(e). 
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Comparing the correlation between in situ and gridded soil moisture datasets, we 

observe that the correlation of the ESA-CCI (v4.5) with the augmented ISMN across the 670 

world is lower compared to the correlation between soil moisture predictions based on digital 

terrain analysis with the ISMN or soil moisture predictions adding bioclimatic and soil type 

classes (Fig. 8).  The r values show a mean of 0.50 between the ISMN and the ESA-CCI, the 

predictions based on digital terrain parameters show an r value of 0.59, and the predictions 

including bioclimatic and soil type classes show an r value of 0.65. Similar levels of RMSE 675 

against the ISMN are found with the models using bioclimatic and soil type classes (~0.05 

m3/m3 ) or models using only terrain parameters  (~0.05 m3/m3 ). When comparing the ISMN 

and the ESA-CCI, we observe a mean RMSE of 0.09 m3/m3 (Fig. 8, a-c). The target diagram 

presented in Appendix C is useful to visualize the improvement of our approach against the 

original ESA-CCI soil moisture dataset.  680 

Across all analyzed years, our global soil moisture predictions represent an 

improvement as they reduce bias when compared with the ISMN data and in situ 

precipitation records. The variance around the prediction error (e.g., the unbiased RMSE) 

estimated against the augmented ISMN was also lower in our predictions compared with the 

ESA-CCI soil moisture dataset (Appendix C). 685 

We confirm the effectiveness of the k-KNN algorithm for modeling and predicting 

soil moisture considering changes in soil moisture levels over time (soil moisture trends, Fig. 

9). There is a consistent soil moisture decline over time across all soil moisture datasets (i.e., 

the augmented ISMN and the ESA-CCI datasets, the soil moisture predictions based on 

digital terrain analysis, and the predictions using digital terrain analysis, bioclimatic and soil 690 

type classes) at the specific locations of the augmented ISMN dataset (Fig. 1). Temporal 

trends show a decline of global annual soil moisture levels using: a) data from the ISMN (-

1.7 [-1.9, -1.4]%, b) associated locations from the original ESA-CCI dataset (-0.4[-0.69, -
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0.01]%), c) associated locations from predictions based on terrain parameters (-0.58[-0.92, -

0.17]%), and d) associated locations from predictions including bioclimatic and soil type 695 

classes (-0.68[-0.91, -0.45]%). Supporting the effectiveness of the model predictions, all 

datasets (observed and modeled soil moisture) show negative soil moisture trends at locations 

where all datasets exist. 

 

3.5 Soil moisture trained for region for which augmented ISMN datasets do not exist 700 

To compare soil moisture values across the entire world we followed two main steps. First, 

we assess soil moisture trends across areas with no available data in the augmented ISMN 

using in situ precipitation data (Fig. 1 blue). Second, we assess changes over time across the 

areas with available data in the ESA-CCI dataset. Third we assess changes of soil moisture 

across the world using our soil moisture predictions.  705 

Comparing the correlation of the ESA-CCI and our soil moisture predictions we 

observe that our predictions are better correlated with in situ precipitation records across 

areas with no available data in the augmented ISMN (Fig. 8, d-f). These results are consistent 

restraining the comparison to tropical areas (r=0.31 to r=0.38), boreal areas (r=34 to r=41) or 

temperate areas (r=40 to r=51) of the world. These result support the effectiveness of the 710 

model predictions across areas with low available in situ soil moisture validation data.   

By analyzing changes of soil moisture over time using the ESA-CCI dataset across 

the entire world (when available), we observe significant soil moisture increase (positive 

trend) over time across ~70 000km2 of the global land area (>500 million km2) using a 

probability threshold of 0.05, with available data during 1991 and 2018. We also observe a 715 

significant decline (negative trend) of soil moisture across 43740 km2 of global land area 

(Fig. 10, a-b). In contrast, across the entire world, soil moisture based on terrain parameters 

shows >60 million km2 of global land area with negative trends and 274147 km2 with positive 

trends (Fig. 8, c-d).  
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 720 

[Insert] Fig. 10 Trends of the ESA-CCI annual means (a) and their respective probability 

values (b). Trends of the soil moisture predictions based on digital terrain parameters (c) and 

their respective probability values (d). Trends of soil moisture predictions using terrain 

parameters, bioclimatic and soil type features (e) and their respective probability values (f).  

 725 
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The soil moisture predictions based on terrain parameters, bioclimatic and soil type 

features showed significant negative trends (probability threshold <0.05) across 216 246 km2 

and positive trends across 85991 km2 (Fig. 10, e-f) of global land area. Discrepancies between 

the ESA-CCI and our downscaled datasets are in part because our results predict soil 730 

moisture decline across areas with large gaps in the ESA-CCI, such as tropical areas. For 

example, with our soil moisture predictions we observe emergent negative trends of soil 

moisture across tropical rain forests of the Amazon basin and the Congo region.   

 

4 Discussion 735 

We present a regression approach coupling k-KNN and digital terrain analysis for improving 

the spatial resolution of ESA-CCI satellite soil moisture estimates by nearly 50% and providing 

a gap-free global annual mean soil moisture dataset (with associated uncertainty) for years 

1991-2018. In this section we interpret and describe the significance of the new soil moisture 

datasets (based on terrain continuous parameters, soil and climate classes) in light of what was 740 

already known thanks to state-of-the-art satellite soil moisture (e.g., from the ESA-CCI) about 

the research problem of accuracy, coarse granularity and spatial gaps of soil moisture 

information at the global scale (incomplete global coverage).  

We outline the key findings and insights organized in terms of their impact. First, we 

highlight the main improvements of the new soil moisture dataset against the ESA-CCI soil 745 

moisture product. Second, we discuss the role of terrain parameters in the accuracy of the new 

generated dataset. Third, we discuss emergent soil moisture trends before and after taking our 

new datasets into consideration.  Fourth, we discuss potential sources of variance and 

discrepancy between soil moisture datasets (e.g., augmented ISMN, ESA-CCI, our 

predictions).  Fifth, we provide information about the main limitations of the new dataset and 750 

sixth, we discuss opportunities for future work.   
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We highlight the main improvements of the new soil moisture dataset against the ESA-

CCI soil moisture product. Our predictions of soil moisture against the ESA-CCI soil moisture 

product show an improvement in the reduction of bias when compared with in situ soil moisture 

datasets (i.e., with the ISMN, Fig. 8 and Appendix C). Improving the spatial resolution of 755 

satellite-derived soil moisture is an ongoing challenge that requires different approaches. For 

example, recent soil moisture remote sensing datasets (Entekhabi et al., 2010, Piles et al., 2019) 

are able to provide information across areas with spatial gaps in the ESA-CCI; however, only 

recent years have full soil moisture coverage (e.g., 2010 to date). Our results represent a long-

term (1991-2018) and gap-free soil moisture dataset and represent a response to the need of 760 

alternative global-to-regional soil moisture datasets (An et al., 2016; Colliander et al., 2017b; 

Dorigo et al., 2011b; Minet et al., 2012; Mohanty et al., 2017; Yee et al., 2016). This dataset 

has implications for further analyses on soil moisture patterns (Berg and Sheffield, 2018), 

global hydrological models (Zhuo et al., 2016), climate change predictions (Samaniego et al., 

2018), carbon cycling models (Green et al., 2019), and food security assessments (Mishra et 765 

al., 2019).   

We now discuss the role of terrain parameters in the prediction accuracy of the new 

generated dataset. We demonstrated the role of topographic terrain parameters as a 

parsimonious and effective approach for downscaling satellite-derived soil moisture in terms 

of r (Fig. 6) or RMSE (Fig. 7). Terrain parameters are available nowadays with 770 

unprecedented levels of spatial resolution (e.g., meters) and our approach is potentially 

applicable to specific areas or countries (Fig. 5) and higher spatial resolution (Guevara and 

Vargas, 2019). These results (e.g., Fig. 5, Appendix B) support the value of terrain 

parameters as the basis for downscaling soil moisture satellite estimates in future research 

across specific areas or periods of time. The exclusive use of terrain parameters in our 775 

algorithm implementation (Section 2.2) can  help to reduce model complexity and 

computational expenses of more complex models using a extensive set of prediction factors 
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for representing soil variability (e.g., Hengl et al., 2017). A soil moisture dataset independent 

of bioclimatic and soil information is useful to prevent potential spurious correlations in 

further studies. This is specifically important for studies dealing with the problem of 780 

interpreting machine learning frameworks or better understanding the use of data by the 

algorithms to generate accurate model predictions (Padarian et al., 2020, Ribeiro et al., 2016). 

In the other hand, predicting soil moisture considering tacit knowledge (i.e., expert opinion) 

on variable selection (e.g., combining manually multiple combinations of prediction factors 

and discussing with experts the resulting maps) may be also useful to complement the 785 

assessment of model accuracy and to develop interpretable and parsimonious models for 

global soil moisture mapping. Our results suggest that a parsimonious model based on 

topography shows comparable accuracy with more complex model including bioclimatic and 

soil type classes (Figs. 6 to 8, Appendix C) and similar temporal variability (Fig. 9).  

Although ML approaches generally benefit from using multiple prediction factors to 790 

represent patterns, we advocate for simpler models. The parsimonious approach (based on 

topography) does not necessarily reduce prediction capacity when compared with a more 

complex model adding bioclimatic and soil type classes and both datasets show a similar 

trend of soil moisture levels over time. 

Our trend detection analysis reveals changes of soil moisture over time at the global 795 

scale; across areas with limited information in the ESA-CCI dataset or areas where the 

augmented ISMN does not exist. We observe consistent soil moisture decline at the global 

scale using both the soil moisture predictions based on topography and the predictions based 

on topography, bioclimatic features and soil classes. The soil moisture trend of the 

augmented ISMN dataset was also negative (Fig. 9). These soil moisture trends bring 800 

potential implications in the calibration of future projections of the water cycle, in identifying 

regions of strong land–atmosphere coupling (Lorenz et al., 2015), and in quantifying the 

contribution of soil moisture for land-surface models (Singh et al., 2015). The negative soil 
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moisture trends found in this study (Fig. 10) are consistent with recent soil moisture 

monitoring efforts (Albergel et al., 2013; Gu et al., 2019a). It has been shown that soil 805 

moisture decline can be intensified by land warming (Samaniego et al., 2018), land use 

change (Chen, et al., 2016; Garg et al., 2019), agricultural practices (Bradford et al., 2017), or 

transformations to vegetation cover that directly affect primary productivity, 

evapotranspiration rates and drought (Stocker et al, 2019; Martens et al., 2018). Furthermore, 

contiguous information of soil moisture trends is increasingly needed for quantifying the 810 

consequences of soil moisture decline in ecosystems processes such as soil respiration (Bond-

Lamberty and Thomson. 2018). Our results complement the ESA-CCI soil moisture dataset 

as they identify soil moisture decline across the Congo region or the Amazon basin (Fig. 10). 

These results are consistent with previous studies that have identified soil moisture decline 

across the Congo region associated with reduction of precipitation rates (Nogherotto et al., 815 

2013), and across the Amazon basin where climate signals on plant productivity can be due 

changes in soil moisture conditions (Wagner et al., 2017). Further studies are needed to fully 

interpret the influence of surface or deeper soil moisture on ecological processes (Morton et 

al., 2014), but we argue that surface soil moisture trends are critical to identify potentially 

vulnerable regions across the world. Our examples of surface soil moisture predictions across 820 

tropical areas (using the available ESA-CCI information) or across specific countries with 

heterogeneous environmental gradients (e.g., Fig. 5), suggest that our predictions follow 

expected environmental gradients and the range of values observed by the augmented ISMN, 

and they show also show clear correlation with in situ precipitation records (Fig. 3).  

Limitations of our approach include a) the propagation of measurement errors of the 825 

ESA-CCI dataset used to train the k-KNN algorithm, b) the propagation of measurement 

errors (and quality) of the digital elevation dataset used for calculating terrain parameters and 

c) by the prediction ertherors of  k-KNN algorithm (e.g., random errors, systematic errors, 

spatially autocorrelated errors). It is known that satellite-derived soil moisture estimates fail 
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to measure extremely dry or extremely wet conditions (McColl et al., 2017; Liu et al., 2019); 830 

consequently, this lack of information influences the prediction capacity of our downscaling 

framework and there is a need to improve modeling and measurements of these extremes. In 

addition, the quality of the prediction factors will impact the quality of final prediction 

outcomes. Thus, the prediction algorithm will not be able in any case, to generate a perfect 

model. Therefore, it is important to provide prediction variances around soil moisture 835 

predictions that are useful to identify areas with high or low model consistency (Fig. 4c). The 

variance associated with soil moisture predictions provides novel information to assess the 

strength of the relationship between the covariate space (e.g., terrain parameters, bioclimatic 

and/or soil type features) and predicted soil moisture. Consequently, large prediction 

variances (Appendix B) remain across areas less represented in both field measurements (Fig. 840 

1) and across extremely dry or extremely wet conditions affecting the spatial representation 

of satellite soil moisture datasets (Fig. 4a). Our prediction variances also provide insights for 

future research efforts where alternative techniques are needed to provide information to 

better constrain model predictions and to reduce prediction variances.  

We discuss potential sources of prediction variance between soil moisture predictions 845 

and datasets. Prediction variances are indicators of discrepancy levels between soil moisture 

datasets (augmented ISMN, ESA-CCI, our predictions). Discrepancy between the augmented 

ISMN and satellite-derived soil moisture or our downscaled datasets can be associated with 

differences in the spatial representativeness of points measurements and grids surfaces 

(Gruber et al., 2020). This scale mismatch has been previously identified when testing 850 

different soil moisture patterns (Nicolai-Shaw et al., 2015) as field soil moisture records are 

usually representative of <1 m3 of soil while satellite and modeling estimates varies from 

several meters to multiple kilometers. Soil moisture measurements (from satellites and in situ 

measurements) across both water-limited environment and tropical areas are extremely 

limited (Liu et al., 2019), a condition that increases prediction variances (and consequently 855 
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also increased model uncertainty). Thus, alternative modeling and evaluation frameworks and 

model evaluation statistics are required to provide more information to better interpret the 

spatial variability and dynamics of soil moisture global estimates (Gruber et al., 2020). To 

this end, we used in situ annual precipitation as a proxy to evaluate soil moisture estimates 

and found that our predicted soil moisture was better correlated than the original ESA-CCI 860 

dataset. This higher correlation may be useful for further analyses and evaluations including 

soil moisture and precipitation feedbacks (McColl et al., 2017) as precipitation decline has 

been associated with soil moisture decline in previous studies (Nogherotto et al., 2013).     

Future work includes predicting global soil moisture patterns across finer pixel sizes 

(e.g., 1km or <1km) and higher temporal resolutions (e.g., monthly, daily), as it has been 865 

done at the regional to continental scales (Naz et al., 2020; Llamas et al., 2020; Guevara and 

Vargas, 2019). The current version of the downscaled soil moisture predictions is provided 

on an annual basis because is a temporal resolution useful for multiple ecological and 

hydrological studies related to large-scale ecological processes and climate change (Green et 

al., 2019). We recognize that there is an increasing need of soil moisture datasets with higher 870 

temporal resolutions to analyze the seasonal and short-term memory soil moisture effects 

after precipitation events (McColl et al., 2017). A spatial resolution of 15 km is still a coarse 

pixel size for detailed analysis of hydro-ecological patterns (e.g., at the hillslope scale), but 

the main focus of this study was to test the potential of digital terrain analysis for increasing 

the spatial resolution of the original ESA-CCI soil moisture dataset. Our decision for 875 

selecting a 15km pixel size was driven by the reproducibility or our approach by multiple 

groups without the need of HPC infrastructure. HPC is increasingly required for modeling 

soil moisture patterns with unprecedented levels of spatial resolution across continental scales 

(e.g., 3km grids, RMSE 0.04 to 0.06 m3m−3; Naz et al., 2020) that show comparable accuracy 

with our 15km grids (Fig. 8 a-c). Additionally, the increase of nearly 50% in spatial 880 

resolution suggests a larger range of soil moisture predicted values compared with the ESA-
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CCI, possibly associated with scale dependent patterns of soil moisture (Fig. 5) which can be 

analyzed in future work.  

In conclusion, to downscale (i.e., increase spatial resolution) coarse satellite soil 

moisture grids we used k-KNN to combine satellite soil moisture data with terrain parameters 885 

(as surrogates of topographic variability), bioclimatic and soil type classes. The validation of 

our soil moisture model predictions against multiple field data sources (Fig. 1) and multiple 

combinations of prediction factors support that digital terrain analysis can be used as a 

parsimonious approach for improving the spatial resolution of the ESA-CCI soil moisture 

dataset (Appendix C). We provide a new gap-free and annual soil moisture dataset for 28 890 

years provided across 15 km grids in an annual basis (1991-2018). Our results provide a 

global soil moisture benchmark to address the increasing need of soil moisture datasets with 

higher temporal and spatial resolution at the global scale.  

 

 895 

5 Data availability   

We provide a publicly available soil moisture dataset including working codes and information 

useful to replicate our results. We follow global validations standards for modeled soil moisture 

estimates (Gruber et al., 2020). We also provide explicit uncertainty estimates and user 

guidance for interpreting and reproducing our results. The sources of information required to 900 

develop this study are:  

• The soil moisture training dataset used in this study is available thanks to the ESA-

CCI (https://www.esa-soilmoisture-cci.org/)  

• The soil moisture validation dataset used in this study is available thanks to the ISMN 

(https://ismn.geo.tuwien.ac.at/en/) 905 
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• The downscaled soil moisture predictions generated in this study are available here: 

https://doi.org/10.4211/hs.b940b704429244a99f902ff7cb30a31f (Guevara, et al., 

2020)  

◦ The soil moisture predictions are provided in rasters (n=28 per folder, 1991-2018) 

that can be imported to any GIS and they contain an accuracy report from the 910 

cross validation for each model/year in a *.csv file.   

◦ We include a raster stack with 28 layers containing the prediction variances for 

each model year (1991-2018) derived from bootstrapping the k-KNN models.  

◦ The prediction factors for soil moisture across 15km grids are also available in a R 

spatial pixels data frame; containing values for each pixel of:  915 

▪ a) terrain parameters calculated in SAGA-GIS http://www.saga-gis.org/,  

▪ b) bioclimatic classes from http://www.fao.org/nr/gaez/en/ transformed to a 

binary presence/absence, 1/0 code and  

▪ c) the continuous classes (1 = 150 mm water per m of the soil unit, 2 = 125 

mm, 3 = 100 mm, 4 = 75 mm, 5 = 50 mm, 6 = 15 mm, 7 = 0 mm) from the Re-920 

gridded Harmonized World Soil Database v1.2 available here: 

https://daac.ornl.gov/SOILS/guides/HWSD.html. 

▪ d) each soil moisture prediction contains a plot of top prediction factors 

affecting the accuracy (r and RMSE) computed after the cross validation 

strategy for each model year.  925 

◦ In the same data repository, we provide the ISMN annual dataset that we used for 

validating (Fig. 1, green) our soil moisture predictions in a native R spatial object. 

• The precipitation dataset used as alternative validation data (Fig. 1, blue) is available 

here: https://daac.ornl.gov/SOILS/guides/SRDB_V4.html. 
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• Additional soil moisture data from local studies (Fig. 1, red) across tropical areas is 930 

available here: https://iopscience.iop.org/article/10.1088/1748-9326/7/3/035704 and 

https://daac.ornl.gov/LBA/guides/CD32_Brazil_Flux_Network.html  

• The R code used for a) to develop our soil moisture modeling and validation approach 

and b) to generate the base figures on this paper is available here: 

https://github.com/vargaslab/Global_Soil_Moisture.  935 

• Step-by-step guidance for modeling satellite soil moisture using k-KNN and terrain 

parameters as prediction factors is available here: 

https://www.protocols.io/view/protocol-for-downscaling-satellite-soil-moisture-e-

6cahase 

 940 

As this is paper is the result of an active line of research, we will continue updating our 

soil moisture predictions and our results as new input data (ESA-CCI- future versions) 

become available. Current version covers the period of time between 1991 and 2018 and it is 

based on the ESA-CCI version 4.7.  

 945 
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Appendices 

 

Appendix A 

 

We present the maps of the spatial coordinates used in our prediction approach. We 1015 

developed these maps following the recently proposed method by Møller et al., (2020). In 

this method, latitude and longitude across the area of interest (e.g., the entire world) are 

rotated along several (e.g., n=6) axes tilted at oblique angles (Fig. A1) and used as prediction 

factors for soil attributes (e.g., soil moisture).  
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 1020 

[insert] Figure A1. The variables: pi0.00 (a), pi0.17 (b), pi0.33 (c), pi0.50 (d), pi0.67 (e) and 

pi0.83 (f) are spatial coordinates of the global 15km grids tilted at multiple angles (n=6) used 

as ancillary information in order to explicitly account for the spatial structure of available soil 

moisture values in the geographical space.    

 1025 
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Appendix B 

 

We present the availability of data in the ESA-CCI soil moisture data for a given year (e.g., 1030 

2018) across tropical areas of the world (Figure A2a). Using this limited information only 

(the ESA-CCI data across the tropics) we improve the spatial representativeness of satellite 

soil moisture data following our prediction approach (Figure A2b). Our approach consider 

model uncertainty, represented by the model prediction variance after n model realizations 

(Figure A2c).  1035 
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[insert] Figure A2. Soil moisture across Tropical Rain Forests of the world based on the data 

available in the ESA-CCI soil moisture product (4.5) for the year 2018 (a). We show the soil 

moisture prediction (b), the soil moisture prediction variance using only the data available for 1040 

Tropical Rain Forests (c). Note that the correlation between observed and predicted decreased 

to 0.62, most likely due to the limited information for modeling these ecosystems, however 

the root mean squared error is comparable with a model using all global data (e.g., <0.04). 

 

1045 
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Appendix C 

 

We also present a summary of our validation of soil moisture predictions in the form of a 

Target Diagram (Figure A3). A Target Diagram is derived from the relation between the 

unbiased RMSE, MBE (mean bias error), and RMSE. In a Cartesian coordinate system, the x-1050 

axis represents the unbiased RMSE (variance of the error), and the y-axis represents the 

MBE. Therefore, the distance between any point to the origin is equal to the RMSE. Because 

the unbiased RMSE is always positive, the left area of the coordinate system is empty with 

this scheme. With additional information this region may be also used: the unbiased RMSE is 

multiplied by the sign of the difference between the standard deviations of model and 1055 

observations. The diagram provides three different measures: whether the model 

overestimates or underestimates (positive or negative values of the MBE on the y-axis, 

respectively), whether the model standard deviation is larger or smaller than the standard 

deviation of the measurements (positive or negative values on the x-axis, respectively), and 

the error performance as quantified by the RMSE represented as the distance to the 1060 

coordinates origin (see Jolliff, et al., 2009).  
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[insert] Figure A3. Target diagram showing the performance of our soil moisture predictions. 1065 

The x-axis represents the unbiased RMSE (variance units of the error), and the y-axis 

represents the MBE. This figure shows that our soil moisture predictions using terrain 

parameters (esa_cci_terrain) and the predictions using terrain parameters, bioclimatic and soil 

type classes (esa_cci_terrain_bio_soil) show lower error levels when compared with field 

data (from the ISMN) than the ESA-CCI soil moisture product (esa_cci). 1070 
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