
 1 
  

Gap-Free Global Annual Soil Moisture: 15km Grids for 1991-
2018 
 
Mario Guevara1^, Michela Taufer2, Rodrigo Vargas1* 
 5 
1Department of Plant and Soil Sciences, University of Delaware, Newark, DE, United States.  
 
2Department of Electrical Engineering and Computer Science, The University of Tennessee, 
Knoxville, TN, United States.  
 10 
 
 
 

*Correspondence to: Rodrigo Vargas (rvargas@udel.edu) 

^Present address: University of California Riverside, Environmental Sciences | USDA-ARS, 15 
U.S. Salinity Laboratory CA, United States  
 

  



 2 
  

Abstract. Soil moisture is key for understanding soil-plant-atmosphere interactions. We 

provide a soil moisture pattern recognition framework to increase the spatial resolution and 20 

fill gaps of the ESA-CCI (European Space Agency-Climate Change Initiative v4.5) soil 

moisture dataset, which contains >40 years of satellite soil moisture global grids with a 

spatial resolution of ~27km. We use terrain parameters coupled with bioclimatic and soil type 

information to predict finer-grained (i.e., downscaled) satellite soil moisture. We assess the 

impact of terrain parameters on the prediction accuracy by cross-validating downscaled soil 25 

moisture with and without the support of bioclimatic and soil type information. The outcome 

is a dataset of gap-free global mean annual soil moisture predictions and associated 

prediction variances for 28 years (1991-2018) across 15km grids. We use independent in situ 

records from the International Soil Moisture Network (ISMN, 987 stations) and in situ 

precipitation records (171 additional stations) only for evaluating the new dataset. Cross-30 

validated correlation between observed and predicted soil moisture values varies from r=0.69 

to r=0.87 with root mean squared errors (RMSE, m3/m3) around 0.03 and 0.04. Our soil 

moisture predictions improve: (a) the correlation with the ISMN (when compared with the 

original ESA-CCI dataset) from r=0.30 (RMSE=0.09, ubRMSE=0.37) to r=0.66 

(RMSE=0.05, ubRMSE=0.18); and (b) the correlation with local precipitation records across 35 

boreal (from r=<0.3 up r=0.49) or tropical areas (from r=<0.3 to r=0.46) which are currently 

poorly represented in the ISMN. Temporal trends show a decline of global annual soil 

moisture using: (a) data from the ISMN (-1.5 [-1.8, -1.24]%, (b) associated locations from the 

original ESA-CCI dataset (-0.87[-1.54, -0.17]%), (c) associated locations from predictions 

based on terrain parameters (-0.85[-1.01, -0.49]%), and (d) associated locations from 40 

predictions including bioclimatic and soil type information (-0.68[-0.91, -0.45]%). We 

provide a new soil moisture dataset that has no gaps and higher granularity together with 

validation methods and a modeling approach that can be applied worldwide (Guevara, et al., 

2020, https://doi.org/10.4211/hs.9f981ae4e68b4f529cdd7a5c9013e27e). 
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1 Introduction 45 

Soil moisture data is essential for scientific inquiry in a variety of research areas.  This data 

enables scientists to characterize hydrological patterns (Greve and Seneviratne, 2015), 

quantify the influence of soil moisture on terrestrial carbon dynamics (van der Molen et al., 

2011), identify trends in global climate variability (Seneviratne et al., 2013), analyse the 

response of ecosystems to moisture decline (Zhou et al., 2014), or detect the impact of 50 

moisture on models of land-atmosphere interactions (May et al., 2016). The integrity of 

current soil moisture data is fundamental for a comprehensive understanding of the global 

water cycle (Al-Yaari et al., 2019).  

The main sources of soil moisture data are in situ soil moisture measurements through 

monitoring networks such as the International Soil Moisture Network (ISMN, Dorigo et al., 55 

2011a) and satellite soil moisture measurements such as those provided by European Space 

Agency-Climate Change Initiative (ESA-CCI, Dorigo et al., 2017; Liu et al., 2011). Both 

measurement techniques can quantify regional-to-continental global soil moisture patterns 

and dynamics (Gruber et al., 2020). 

In situ soil moisture measurements assess soil moisture within specific study sites at 60 

specific soil depths (e.g., 0-5 cm). These measurements are fine-grained as soil moisture 

sensors have a small and localized footprint, and despite national and international networks 

they are limited in much of the world (Fig. 1).  Collection of in situ soil moisture data across 

large areas is expensive and time consuming; in many cases, logistical challenges such as 

limited funding for data collection and accessibility of soil moisture monitoring sites make it 65 

impossible.  

On the other hand, satellite soil moisture measurements collected in the form of 

microwave radiometry using L-band (~ 1.4-1.427 GHz) and C-band (~4-8 GHz) are more 

effective for larger regional-to-global soil moisture measurements (Mohanty et al., 2017).  As 

for most available in situ soil moisture measurements, satellite soil moisture datasets are 70 
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representative for the first 0-5 cm of soil depth. Unlike the fine-grained in situ measurements, 

satellite soil moisture datasets are available at the global scale in coarse-grained grids with 

spatial resolution ranging between 9km and 25km (Senanayake et al., 2019) and at the 

regional scale (e.g., the European continent) with a spatial resolution of 3km grids (Naz et al., 

2020). A well-known satellite soil moisture dataset is collected by the European Space 75 

Agency-Climate Change Initiative (ESA-CCI). The ESA-CCI dataset contains more than 40 

years of satellite soil moisture global grids (from the 1978 to 2019) with a spatial resolution 

of ~27km (Liu et al., 2011; Chung et al., 2018). This soil moisture dataset is a synthesis from 

multiple soil moisture sources and has been applied in long-term ecological and hydrological 

studies (Dorigo et al., 2017).  The dataset covers a longer period of time compared with other 80 

satellite-derived soil moisture datasets (e.g., Soil Moisture Active Passive [SMAP]) (Al-Yaari 

et al., 2019). 

 

 

 85 

 

 



 5 
  

[Insert] Fig. 1 Spatial distribution of available data from in situ monitoring sites. This 

information was only used for validating our soil moisture predictions. The ISMN (green for 

all data sites and dark green for sites with available information at 0-5 cm), precipitation records 90 

(blue), soil moisture additional datasets from previous local studies (red).  

 
 

Across large areas of the world, the ESA-CCI soil moisture data has been validated 

and calibrated against in situ soil moisture measurements (Al-Yaari et al., 2019; Dorigo et al., 95 

2011a). In addition, there are continuing efforts to improve the spatial reliability of the 

satellite measurements (Gruber et al., 2017), resulting in new dataset versions. However, 

even the most recent versions of ESA-CCI soil moisture data (i.e., v4.5 to 5.0) still suffers 

from a too coarse-grained spatial resolution and substantial spatial gaps in their spatial 

coverage (Llamas et al., 2020), making the data unsuitable to tackle problems such as 100 

quantifying the implications of soil moisture in water cycle across fine grained scales or 

across areas with spatial gaps. Scientists have developed empirical and physical modeling 

approaches for predicting missing satellite soil moisture data (Peng et al., 2017; Sabaghy et 

al., 2020) and for evaluating the errors in soil moisture satellite model predictions (Gruber et 

al., 2020). The spatial resolution and coverage of these recent studies is still an emergent 105 

challenge due to limited data across large areas of the world (e.g., extremely dry, extremely 

wet or frozen regions) as well as the signal excessive noise and saturation affecting the 

quality of satellite soil moisture records. Consequently, there is a need for developing 

alternative modeling approaches and their validation methods to fill the gaps of the ESA-CCI 

dataset, improving both the spatial resolution and the coverage. Recent soil moisture products 110 

across Europe and the United States (Bauer-Marschallinger, et al., 2018, Guevara and 

Vargas, 2019) reveal the possibility of developing high spatial resolution surface soil 
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moisture estimates that complement the coarse spatial granularity of available remote sensing 

products (e.g., ESA-CCI).  

In this study we tackle the need to increase spatial granularity and provide gap free 115 

global soil moisture predictions. In doing so, we combine a pattern recognition technique 

called Kernel Weighted k-Nearest-Neighbors (or k-KNN, Hechenbichler and Schliep, 2004) 

with the use of independent covariate or prediction factors such as topographic parameters, 

bioclimatic features, and soil types. Our approach enables us to augment both spatial 

resolution and coverage in the ESA-CCI dataset despite limited data in large areas of the 120 

world.  

k-KNN is a machine learning (ML) algorithm that has several benefits for predicting 

satellite soil moisture at the global scale.  First of all, k-KNN accounts for non-linearities 

(e.g., local and regional specific data patterns). Soil moisture data (as a dependent variable) 

can be predicted as a function of the spatial variability of environmental data (independent 125 

variables) with different spatial resolution and coverage (Peng et al., 2017; Guevara and 

Vargas, 2019; Llamas et al., 2020). k-KNN can take advantage of the spatial autocorrelation 

of training data such as the relation between variance and distance between soil moisture 

observations (Llamas et al., 2020; Oliver and Webster, 2015) and use it as ancillary 

information when spatial coordinates (e.g., latitude and longitude) are considered in the 130 

prediction approach (Hengl et al., 2018; Behrens et al., 2018; McBratney et al., 2003). 

Second, k-KNN can use kernel functions to weight the neighbors according to their distances. 

Finally, by including spatial coordinates in the predictions, k-KNN can consider geographical 

distances. In doing so, it is able to account for local and regional variability in the feature 

space: each predicted value is dependent on a unique combination of k neighbors in the 135 

feature space that are weighted using kernel functions that can be different from one place to 

another (see Section 2.2 Refinement modeling). 
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We use a diverse set of independent covariates or prediction factors such as 

topographic parameters, bioclimatic features, and soil types to augment the prediction of soil 

moisture values with k-KNN. Topographic parameters are based on physical principles 140 

related to the overall distribution of surface water across the landscape (Western et al., 2002; 

Moeslund et al., 2013; Mason et al., 2016). We generate the topographic parameters from 

digital terrain analysis. Digital terrain analysis involves calculations of land surface 

characteristics that depend on topography (e.g., terrain slope and aspect, Wilson, 2012). The 

impact of terrain parameters on spatial variability of satellite soil moisture is supported by 145 

previous studies that have provided evidence of a topographic signal in satellite soil moisture 

measurements from local (Mason et al., 2016) to continental scales (Guevara and Vargas, 

2019). Other studies derive terrain parameters from elevation data and use them to predict 

soil moisture across a gradient of hydrological conditions (Western et al., 2002). Topographic 

parameters have also been used for soil attribute predictions (Moore et al., 1993) and for soil 150 

moisture mapping applications (Florinsky, 2016). All these studies suggest that topography 

(represented by multiple terrain parameters) is a useful predictor of surface soil moisture 

variability at the global scale. Different types of terrain parameters exist including elevation 

data structures, topographic wetness, overland flow, and potential incoming solar radiation 

among others. Elevation data structures (i.e., point elevation data, elevation contour lines, or 155 

digital elevation models) quantitatively represent topographic variability and are the basis of 

digital terrain analysis (i.e., geomorphometry). The topographic wetness index is a terrain 

parameter that characterizes areas where soil moisture increases by the effect of overland 

flow accumulation (Moore et al., 1993). Overland flow and potential incoming solar radiation 

are two important topographic drivers of the spatial distribution of soil moisture (Nicolai-160 

Shaw et al., 2015), its lags after precipitation events (McColl et al., 2017), and its role as a 

dominant control of plant productivity (Forkel et al., 2015). Bioclimatic features and soil 

types account for hydroclimatic and soil variability affecting soil moisture. We add 
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bioclimatic features and soil type classes as additional prediction factors to our approach to 

determine if information beyond terrain parameters substantially improves soil moisture 165 

predictions. To validate our dataset, we use independent in situ information (i.e., annual soil 

moisture measurements) from local studies (n=8 stations, Vargas, 2012, Saleska et al., 2013), 

from the ISMN (n= 2185 stations) and from precipitation records across the world (n= 171 

stations including tropical areas poorly represented in the ISMN).  

The contributions of this paper are twofold:  first, we integrate the k-KNN algorithm 170 

and prediction factors into a modeling approach to predict fine grained, gap free soil moisture 

data with a resolution of 15km, and second, we generate a new dataset that compliments the 

ESA-CCI dataset and is composed of soil moisture predictions from our modeling approach. 

With reference to our first contribution, we study the effectiveness of k-KNN to downscale 

satellite-derived soil moisture using two prediction factor datasets: a first dataset based only 175 

on topographic parameters and a second based on topographic parameters, bioclimatic 

features, and soil types. We compare the accuracy of the two types of fine grained, gap free 

soil moisture models obtained using the two prediction factor datasets respectively. The 

comparison allows us to assess the impact of the individual prediction factors. Specifically, 

we address the impact of topographic parameters versus bioclimatic features and soil types. 180 

Previous studies have used a variety of prediction factors for soil moisture, including 

vegetation indexes (from optical imagery), climate information (Alemohammad et al., 2018), 

chloropeth maps (i.e., land use and land-forms), thermal data and soil information to improve 

the spatial resolution and coverage of soil moisture gridded datasets (Naz et al., 2020, Peng et 

al., 2017). In contrast to past efforts, our solution uses a comprehensive set of factors for 185 

predicting satellite soil moisture data and independently test the model with in situ soil 

moisture data. Our approach is computationally less expensive and prevents potential 

spurious correlations when predicted soil moisture estimates are compared with climate, 

vegetation, or soil information. With reference to our second contribution, we generate a 
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dataset complementary to the ESA-CCI soil moisture dataset that uses the comprise gap free 190 

global mean annual soil moisture predictions for 28 years (1991-2018) across a 15km grids 

(note that ESA-CCI has a grid of 27km). Our soil moisture dataset can be used for identifying 

spatial and temporal patterns of soil moisture and its contributions to climate and vegetation 

feedbacks. The soil moisture predictions, the field soil moisture validation dataset, and the set 

of prediction factors for soil moisture are publicly available (Guevara et al 2020). 195 

 

2 Methodology 

Our prediction approach has four key steps: First, we define training soil moisture datasets and 

define two different datasets of prediction factors with a 15km global grid resolution: a dataset 

consisting only of terrain parameters and a different dataset combining terrain parameters, 200 

bioclimatic features, and soil type classes (Section 2.1). Second, we build prediction models 

by feeding the prediction factors and ESA-CCI satellite soil moisture data to the k-KNN 

algorithm and using cross validation for selecting the best models (Section 2.2). Third, we 

bootstrap the parameters to assess variances of soil moisture predictions (Sections 2.3). Last, 

we validate our best predictions against independent in situ soil moisture measurements when 205 

they are available (Section 2.4). 

 

2.1 Training Datasets and Datasets of Prediction Factors  

We generate a training dataset for each analyzed year (n=28). A training dataset consists in a 

table with the central coordinates of each pixel in the ESA-CCI dataset and the corresponding 210 

satellite-derived soil moisture values for a given year. We use all available pixels with valid 

soil moisture values reported in the ESA-CCI v4.5 and calculate (for each pixel) the mean 

value of all available observations for a given year. We do not consider a threshold value 

(e.g., a minimum number of pixels) to calculate the mean for each pixel for a given year. 

There are large areas in the world (mainly in the tropics or deserts) with missing information 215 
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throughout an entire year. After identifying the gaps for each year, we observe that the years 

with the largest number of missing values (i.e., data not available; NAs) are between years 

2003 and 2006 (Appendix A). 

We generate and test two different datasets of prediction factors with a 15km grid 

resolution: (a) a dataset of only digital terrain parameters and (b) a more complex dataset that 220 

uses digital terrain parameters, static bioclimatic features, and soil type information. The 

second dataset allows us to differentiate between the impact of terrain parameters in isolation 

versus the terrain parameters when augmented with static bioclimatic features and soil type 

information. The values of prediction factors are generated to overlap with the central 

coordinates (latitude and longitude) of the original ESA-CCI soil moisture pixels following 225 

previous research (Guevara and Vargas, 2019). 

          Digital terrain parameters (described in Fig. 2) are derived from a global digital 

elevation model using SAGA-GIS (System for Automated Geoscientific Analysis-GIS) 

(Conrad et al., 2015). The source of elevation data is a radar based digital elevation model 

(Becker et al., 2009).  This digital elevation model is provided by Hengl et al., (2017) and we 230 

re-sampled (along with bioclimatic features and soil type classes) it to a spatial resolution of 

15km grids across the world. We consider the following terrain parameters: (a) terrain aspect 

(aspect), (b) specific catchment area (carea), (c) channel network base level (chnl base), (d) 

distance to channel network (chnl dist), (e) flow convergence index (convergence), (f) 

horizontal curvature (hcurv), (g) digital elevation model (land), (h) length-slope factor 235 

(lsfactor), (i) relative slope position (rsp), (j) analytical hillshade (shade), (k) smoothed 

elevation (sinks), (l) terrain slope (slope), (m) valley depth index (vall depth), (n) vertical 

curvature (vcurv), and (o) topographic wetness index (wetness). The parameters are presented 

in Fig. 2, and a detailed description and units of the parameters can be found in Guevara and 

Vargas (2019).   240 
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[Insert] Fig. 2 Digital terrain parameters used as prediction factors for soil moisture.  These 

parameters are derived from a digital elevation model using SAGA-GIS. These terrain 

parameters are standardized by centering their means to zero and a variance unit for 245 

visualization purposes. Legend: (a) terrain aspect (aspect), (b) specific catchment area 

(carea), (c) channel network base level (chnl base), (d) distance to channel network (chnl 

dist), (e) flow convergence index (convergence), (f) horizontal curvature (hcurv), (g) digital 
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elevation model (land), (h) length-slope factor (lsfactor), (i) relative slope position (rsp), (j) 

analytical hillshade (shade), (k) smoothed elevation (sinks), (l) terrain slope (slope), (m) 250 

valley depth index (vall depth), (n) vertical curvature (vcurv), and (o) topographic wetness 

index (wetness). For a detailed description and units of these parameters see Guevara and 

Vargas (2019).   

 

 255 

          Static bioclimatic features are extracted from the Food and Agriculture Organization 

Global Agro-Ecological Zones project (FAO, 2010, baseline period 1961-1990) to account 

for hydroclimatic variability. Thus, these static bioclimatic features consist in a spatial 

database of land mapping units with the following categories: 1) Boreal coniferous forest; 2) 

Boreal mountain system; 3) Boreal tundra woodland; 4) Polar; 5) Subtropical desert; 6) 260 

Subtropical dry forest; 7) Subtropical humid forest; 8) Subtropical mountain system; 9) 

Subtropical steppe; 10) Temperate continental forest; 11) Temperate desert; 12) Temperate 

mountain system; 13) Temperate oceanic forest; 14) Temperate steppe; 15) Tropical desert; 

16) Tropical dry forest; 17) Tropical moist deciduous forest; 18) Tropical mountain system; 

19) Tropical rainforest; and 20) Tropical shrubland. 265 

         These categories were developed for assessing global land resources following a 

methodology has been jointly developed by FAO and the International Institute for Applied 

Systems Analysis (IIASA; Fischer et al., 2000). Each category is expressed within 

independent maps of zeros and ones (absence-presence at each pixel) and this information is 

considered as an independent quantitative predictor.  270 

          As soil type information, we include soil water retention capacity classes (1 = 150 mm 

water per m of the soil unit, 2 = 125 mm, 3 = 100 mm, 4 = 75 mm, 5 = 50 mm, 6 = 15 mm, 7 

= 0 mm) from the Re-gridded Harmonized World Soil Database v1.2 (Wieder et al., 2014) to 

account for soil type variability in our prediction framework. In this soil type map the 
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distance between the above-mentioned water retention classes is known (e.g., from high to 275 

low every 25 mm of water) and it can be considered a quantitative predictor.   

          For each pixel with available soil moisture values in the ESA-CCI dataset, we augment 

the spatial coordinates (i.e., latitude and longitude) and soil moisture value by adding the 

tuple of the 15 terrain parameters for the first dataset, and the tuple of the 15 terrain 

parameters, the 19 bioclimatic features, and the soil type classes for the second dataset. The 280 

pixels without soil moisture values become our prediction targets. Because the prediction 

factor datasets have a 15km resolution while the ESA-CCI soil moisture pixels haver a 27km 

resolution, we preprocess each prediction factor dataset to extract the values to the 

corresponding locations of the ESA-CCI pixels. By overlapping the original ESA-CCI dataset 

with one of the two prediction factor datasets and extracting the prediction factor values for 285 

the ESA-CCI pixel centers, we generate two augmented ESA-CCI datasets. A similar method 

was initially used for the conterminous United States (Guevara and Vargas, 2019) and here 

we extend the method to the entire world. In our mapping, we leverage observations from 

other work outlining the positive impact of spatial structure (e.g., spatial distances and 

autocorrelation) on soil attribute predictions (e.g., soil moisture) (see spatial coordinate maps 290 

in Appendix B) (Llamas et al., 2020; Møller et al. 2020; Hengl et al. 2018; Behrens et al., 

2018; McBratney et al., 2003; Oliver and Webster, 2015). We include spatial coordinates in 

our modeling framework (described in Section 2.2) to account for the spatial structure of the 

ESA-CCI training data. To this end, we use spatial coordinates at multiple oblique angles as 

suggested by recent work (Møller et al., 2020, Appendix B). This preprocessing is done using 295 

open-source R software functionalities for geographical information systems (R Core Team 

2020, Hijmans, 2019). 

 

2.2 Building Prediction Models 
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To build prediction models of the soil moisture at a finer spatial resolution (15km) than the 300 

original ESA-CCI dataset (27km), we use the kernel-based method for pattern recognition 

known as k-KNN (Hechenbichler and Schliep, 2004). We build one model per year (n=28 

models). We observe that the relationships among spatial coordinates, soil moisture values, 

terrain parameters, bioclimatic classes, and soil types are not linear. For example, south slope 

areas tend to be dryer than north slopes areas. Moreover, there is a contrasting feedback of 305 

soil moisture and precipitation between humid and dry areas (e.g., between the Eastern and 

Western of the United States, Tuttle and Salvucci, 2016). We use k-KNN because it allows us 

to account for the non-linear feedback while providing a simple and fast prediction solution.  

          The k-KNN algorithm has two main settings: (a) the parameter k that determines the 

number of neighbors from which information is considered for prediction, and (b) a kernel 310 

function that converts distances among neighbors into weights, so the farther the neighbor, 

the smaller the weight it will be assigned. We consider k neighbors with k ranging from two 

to 50 soil moisture pixels and with close spatial coordinates and similar prediction factors. In 

the case of the first prediction factor dataset (i.e., only digital terrain parameters), distances 

among neighbors are computed among spatial coordinates and terrain parameters; in the case 315 

of the second dataset (i.e., digital terrain parameters, static bioclimatic features, and soil type 

classes), distances among neighbors are computed among spatial coordinates, terrain 

parameters, static bioclimatic features, and soil type classes. The similarity among neighbors 

is measured with the Minkowski distance (i.e., the statistical average of the neighbors’ values 

difference). We consider six different kernel functions (i.e., Rectangular, Triangular, 320 

Epanechnikov, Gaussian, Rank, and Optimal). 

          Using the two augmented ESA-CCI datasets obtained by overlapping the original ESA-

CCI dataset with one of the two prediction factor datasets and extracting the prediction factor 

values for the ESA-CCI pixel centers (from Section 2.1), we generate two sets of 28 

prediction models, one for each of the 28 years (i.e., 1991-2018) in the ESA-CCI soil 325 



 15 
  

moisture dataset (v4.5). We feed the augmented ESA-CCI datasets into the k-KNN algorithm 

and search for the most effective k neighbors’ values and kernel functions. To this end, we 

use ten-cross validation to select the values of the k neighbors among the 48 possible values 

(i.e., k ranted from 2 to 50) and the kernel function from these six kernel functions (i.e., 

Rectangular, Triangular, Epanechnikov, Gaussian, Rank, and Optimal). We use cross-330 

validation as a re-sampling technique because it can prevent overfitting in ML methods such 

as k-KNN and can generate multiple sets of independent model residuals to evaluate the 

stability of prediction outcomes. The use of cross-validation for searching for the most 

effective k neighbors’ values and kernel function requires us to randomly create multiple 

independent training and testing datasets. Training and testing datasets generated from one of 335 

our augmented ESA-CCI datasets are disjoined; training data is used for building the models, 

and testing data is used only for quantifying model residuals and evaluating soil moisture 

predictions.  

 As our cross-validation indicators (i.e., information criteria about prediction), we use 

Pearson correlation coefficient (r) and the root mean squared error (RMSE) for each one of 340 

the prediction models. For each year we select the model whose combination of k and kernel 

function has highest r and lowest RMSE. We use the model to predict annual mean global 

soil moisture across 15km global grids. 

 

2.3 Assessing Variances of Model Predictions 345 

We study three sources of modeling variance. First, we assess the sensitivity of the prediction 

models to variations in available training data over the entire world. Second, we assess the 

relevance of the spatial coordinates and different prediction factors by rebuilding the models 

using the k-KNN algorithm with and without each prediction factor, once again over the 

entire world. Third, we assess the effectiveness of the k-KNN algorithm across selected areas 350 
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of the world with fewer data available for training the prediction models and with different 

environmental and climate gradients. 

To assess the sensitivity of the prediction models to variations in training data, we 

compute the variance of our soil moisture predictions as surrogates of model-based 

uncertainty. We rebuild the prediction models setting the k-KNN algorithm to use different 355 

random subsets of available pixels (n=1,000) and 10-fold repeated cross-validation (n=10) to 

quantify the variance of soil moisture predictions. This model variance enables us to identify 

geographical areas with high or low sensitivity of prediction models to random variations in 

training data. 

To assess the relevance of the different prediction factors, we use the r and RMSE of 360 

modeling with all prediction factors as reference, and we compare the r and RMSE with the r 

and RMSE values of modeling without each one of the prediction factors. We test the 

sensitivity of the spatial coordinates and each prediction factor (i.e., terrain parameters, 

bioclimatic features, and soil type classes) by systematically leaving out one prediction factor 

at a time and repeating our k-KNN algorithm and its respective cross-validation. This process 365 

is repeated ten times for each prediction factor to capture a variance estimate. This empirical 

validation approach provides empirical insights of the relative importance of prediction 

factors for the k-KNN algorithm predicting soil moisture at the global scale.  

To assess the effectiveness of the k-KNN algorithm across specific areas of the world, 

we first test the k-KNN algorithm under tropical areas (Appendix C) with low availability of 370 

data to train prediction models (e.g., higher distances between k neighbors) and homogeneous 

environmental and climate conditions (e.g., higher water content aboveground than below 

ground).  We extract the limits of tropical areas from the Global Agro-Ecological Zones 

project (FAO, 2010, baseline period 1961-1990, described in section 2.1). Second, we test the 

k-KNN algorithm using only the available ESA-CCI data across counties with large 375 

heterogenous environmental and climate gradients such as Canada, Australia, and Mexico. 
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We generate new training, testing, and prediction factors datasets for these countries using 

geopolitical limits provided by the global administrative maps initiative (GADM, 2018). We 

use the resulting model predictions to explore modeling consistency in terms of r and RMSE 

values across the selected areas and to visualize spatial patterns between the ESA-CCI soil 380 

moisture dataset and our soil moisture predictions.  

 

2.4 Validation Against Independent in situ Data 

We validate the ESA-CCI dataset and our predictions against in situ soil moisture data 

reported in ISMN for each year. Additionally, we compare soil moisture trends (i.e., changes 385 

in soil moisture over time) by comparing either in situ soil moisture or the ESA-CCI with our 

predictions.  

We first augment the original ISMN (downloaded in August of 2019) from the 

datasets with information from 8 stations with in situ soil moisture data from literature 

reviews that are distributed in open access data repositories: one station was deployed in a 390 

tropical forest of Mexico with data from 2006-2008 (Vargas, 2012) and seven stations across 

Brazil’s tropical forests with data from 1999-2006 (Saleska, et al., 2013).     

To perform the validation, we computed yearly means in every available location of 

the ISNM dataset. Then, we organized for further comparisons these yearly means with the 

yearly means of the combined ESA-CCI (v4.5) soil moisture grids and our soil moisture 395 

predictions. Consequently, further analyses are consistent in space (i.e., locations from the 

ISMN and corresponding pixels in the ESA-CCI (v4.5) and our predictions) and time (1991-

2018). We first calculate the yearly means using all available soil moisture values per site in 

the ISMN (n=2185 stations) and then we extract the sites containing information of soil 

moisture for the 0-5cm for further analyses (n=987 stations, 1996-2016).   400 

To complement our validation strategy, we perform an additional independent 

validation against in situ records of annual precipitation (n= 171 stations). This information 
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was extracted from the global soil respiration database (Bond-Lamberty and Thomson, 2018) 

and represented years 2008 to 2018. Soil moisture and precipitation are closely related 

variables (McColl et al., 2017) and previous work recommended the use of soil moisture 405 

related information to validate soil moisture predictions in the absence of in situ soil moisture 

information (Gruber et al., 2020). The purpose of including precipitation datasets is to enrich 

the spatial representation of soil moisture-related information for comparative purposes 

between the ESA-CCI and our soil moisture predictions.   

We highlight that any potential bias associated with the data in our augmented ISMN 410 

dataset (e.g., stations with low number of records) has potentially the same impact on the 

validation results of the three datasets (ESA-CCI and our two prediction datasets). In other 

words, we assume biases are randomly distributed across all observations, and thus they are 

not accounted for the outcome of our comparisons. We summarize the validation results in a 

target diagram to illustrate the accuracy of our soil moisture predictions. The target diagram 415 

(presented in Appendix D, Jolliff et al., 2009) shows the relation between the variance and 

magnitude of errors (e.g., unbiased root mean squared error or ubRMSE) (a) between the 

ESA-CCI and the augmented ISMN dataset and (b) between our predictions and the 

augmented ISMN dataset.    

To compare trends in soil moisture over time for areas for which we have in situ data, 420 

we perform a non-parametric (median-based) trend detection test (i.e., Theil-Sen estimator) to 

compare soil moisture trends at the locations of the augmented ISMN dataset. This trend 

detection is done by calculating the median value of the slopes and intercepts of all possible 

combinations of pairs of points in the relationship of soil moisture (response) and time 

(explanatory variable). This resulting median slope and intercept estimates are unbiased and 425 

resistant to outliers (Kunsch, 1989). 

For those areas in which the ISMN dataset has multiple gaps, we rely on the ESA-CCI 

and our prediction datasets to generate a map of soil moisture trends. To this end, we apply a 
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pixel-wise trend detection test to the ESA-CCI and prediction datasets to search for possible 

breakpoints (i.e., significant changes in soil moisture over time). We consider two regression 430 

parameters (i.e., slopes and intercepts) before and after any possible breakpoint to detect 

trends; in all the tests, a minimum of four years is required between breakpoints for detecting 

trends. To provide our study with robust trend detection estimates, we do not consider 

segments between breakpoints with less than eight observations. (Forkel et al., 2013, 2015). 

3 Results 435 

In our assessment of the results, we first discuss the statistical description of the observed and 

modeled soil moisture datasets (Section 3.1). Second, we present the sensitivity of the 

prediction models and the way they are generated to variations in available datasets (Section 

3.2). Third, we measure the relevance of the different prediction factors by rebuilding the 

models using the k-KNN algorithm with and without one prediction factor at the time over 440 

the entire world (Section 3.3). Finally, we summarize results on soil moisture for models that 

are trained on regions for which augmented ISMN datasets exist (Section 3.4) and results on 

soil moisture for models that are trained on regions for which augmented ISMN datasets do 

not exist and thus we use either ESA-CCI or our predictions as alternative datasets (Section 

3.5).   445 

 

3.1 Descriptive Statistics 

We first assess the statistical distributions of the observed ESA-CCI dataset, our soil moisture 

model predictions using the k-KNN algorithm, and the augmented ISMN dataset (Fig. 3). 

Comparing the statistical distribution between observed datasets (i.e., ESE-CCI and ISMN 450 

datasets) and our modeled soil moisture datasets allows us to identify if modeled soil 

moisture falls within the expected range of observed soil moisture values. The statistical 

distribution among different soil moisture datasets can be compared in terms of differences in 
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the mean and standard deviation. We present the mean and standard deviation of the ESA-

CCI dataset, our modeled soil moisture predictions, and the augmented ISMN dataset only at 455 

locations (latitude and longitude) where all datasets have an observation or a prediction. We 

also restrain the period of time for our comparisons between 1991-2016, which is the period 

of time with higher consistency of data availability for both the ESA-CCI dataset and the 

augmented ISMN dataset.   

When comparing the statistical distribution of the soil moisture datasets, we observe 460 

that the ESA-CCI dataset has mean soil moisture values of 0.29 m3/m3 and a standard 

deviation of 0.09 m3/m3. The modeled soil moisture predictions based only on digital terrain 

parameters has mean soil moisture values of 0.24 m3/m3 and a standard deviation of 0.05 

m3/m3. Modeled soil moisture predictions based on digital terrain parameters, bioclimatic 

features, and soil type classes show mean soil moisture value is 0.24 m3/m3 and a standard 465 

deviation is 0.05 m3/m3. The augmented ISMN dataset shows a larger range of soil moisture 

values (Fig. 3) comparing all datasets: the dataset values show a mean of 0.25 m3/m3 and a 

standard deviation 0.07 m3/m3. We have two key observations. First, we observe a consistent 

statistical distribution comparing the statistical distribution of the augmented ISMN 

compared with the statistical distribution of the ESA-CCI dataset (Fig. 3). Second, and more 470 

importantly, the mean and standard deviation of our modeled soil moisture predictions based 

on terrain parameters only and based on terrain parameters, bioclimatic features, and soil type 

classes as prediction factors show similar agreement with the means and standard deviations 

of both ESA-CCI and augmented ISMN datasets.  

 475 
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[Insert] Fig. 3 Statistical distribution of the ESA-CCI soil moisture dataset (red), the 

predictions of soil moisture using the k-KNN algorithm (gray and green) and the augmented 

ISMN dataset (black). The lines represent the values of each dataset at the locations of all 

datasets exist (locations reported in the augmented ISMN). 3.2 Prediction Sensitivity for 495 

Different Datasets 
 

 

 

3.2 Prediction Sensitivity for Different Datasets 500 

We evaluate r and RMSE for 12,040 cross-validated soil moisture models. The number of 

models is defined as follows. For each year (n=28) we build a model with all prediction 

factors (n=42) and assess the variance of 10 model replicas based on different random data 

subsets (n – 10% of data). We repeat the same process for each year leaving out each one of 

the prediction factors at the time and assess the prediction sensitivity for different datasets as 505 
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explained in Section 2.3. We compute the r and RMSE between observation and model 

prediction datasets. Our observations are soil moisture values from the ESA-CCI dataset and 

from the augmented ISMN as generated in Section 2.4. Our prediction factors datasets 

(defined in Section 2.1) are the basis to generate: (a) the soil moisture predictions based on 

terrain parameters only and (b) the soil moisture predictions based on terrain parameters, 510 

bioclimatic features, and soil type classes.  

We first report results for the entire world using ESA-CCI as training dataset for 

building prediction models and repeated cross validation for assessing the accuracy of the 

model predictions (described in Section 2.2). The cross-validated r of soil moisture predictions 

based on digital terrain parameters only ranges from 0.69 to 0.81 across years (1978-2019). 515 

The RMSE ranges from 0.03 to 0.04 m3/m3. The soil moisture predictions based on terrain 

parameters, bioclimatic features, and soil type classes have slightly higher correlation between 

observed and predicted soil moisture values (ranging between 0.78 and 0.85) and slightly lower 

RMSE values (ranging from 0.02 to 0.04 m3/m3). Note that each soil moisture prediction 

contains a cross validation accuracy report (see Section 5). The small variations of r and RMSE 520 

indicate a reliable prediction capacity of our models.  

For the entire world once again, we assess the sensitivity of our predictions (described 

in Section 2.3) in terms of the models’ prediction variance, which ranges from <0.001 to 0.18 

m3/m3. This prediction variance is higher in areas with lower availability of training data 

from the ESA-CCI (e.g., across the tropical areas and coastal areas). These variances also 525 

serve as surrogates for uncertainty; each file containing a soil moisture prediction model 

includes a file with a soil moisture prediction variance (see Section 5 data availability). For 

example, for the year 2018 (Fig. 4), soil moisture predictions varied between ~0.001 and 

~0.45 m3/m3 while the prediction variances range from ~0.001 to 0.14 m3/m3, indicating a 

broader variability around the predicted values. Larger prediction variances are the combined 530 

result of both the higher possible values of soil moisture and the limited sample size within 
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the ESA-CCI to train the prediction models, such as in tropical areas dominated with dense 

vegetation. 

 

 535 

[Insert] Fig. 4 Soil moisture mean (a) and variance (b) of the ESA-CCI soil moisture product 

v4.5 between 1991 and 2018. Prediction of soil moisture (c) and prediction variance (5000 x 

5, d) based on topographic terrain parameters. Prediction of soil moisture (e) and prediction 

variance (f) based on bioclimatic and soil type classes. Units: m3/m3.  
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We provide an example of the sensitivity of our models across tropical areas with low 540 

available data for training the models as described in Section 2.3. For tropical areas of the world 

with limited information in the ESA-CCI datasets, the cross-validated results of the model 

predictions showed r values around 0.62 and RMSE values around 0.03 m3/m3 using terrain 

parameters and soil type classes (Appendix C). We find that the model predictions based only 

in the limited ESA-CCI soil moisture information available across tropical areas (Appendix C) 545 

shows a similar prediction variance compared with the model predictions for the entire world, 

with values from <0.001 to <0.12 m3/m3 (Appendix C). These result support the effectiveness 

of our approach across areas with lower availability of information to train the k-KNN 

algorithm.  

 550 
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[Insert] Fig. 5 Examples of downscaled annual mean soil moisture across specific countries. 555 

Prediction of soil moisture, prediction variance and training data from the ESA-CCI across 

Canada (CAN; a-c), and their respective boxplots (showing their statistical distribution) for 

the year 2018 (d). Prediction of soil moisture, prediction variance and training data from the 

ESA-CCI across Australia (AUS; e-g), and their respective boxplots for the year 2018 (h). 

Prediction of soil moisture, prediction variance and training data from the ESA-CCI across 560 

Mexico (MEX; i-k), and their respective boxplots for the year 2018 (l).  
 

 

We additionally assess the sensitivity of the model predictions across areas of the 

world with heterogeneous environmental and climate gradients (i.e., geographical extent of 565 

countries such as Mexico, Canada and Australia), generated as described in Section 2.3. The 

ESA-CCI has a relatively better spatial coverage across these countries (Fig. 5) compared 

with tropical areas (Appendix C) but still with a lower amount of training data compared with 

models generated for the entire world. Comparing our soil moisture predictions across 15km 

grids with the original ESA-CCI soil moisture dataset at 27km grids (Fig. 8) for these areas, 570 

we observe that our soil moisture predictions have consistently higher maximum values 

(>0.04 m3m-3) than the original ESA-CCI soil moisture dataset (<0.4 m3m-3) (Fig. 5). We 

observe consistent modeling accuracy across these countries and across the entire world (in 

all cases r values >0.6 and RMSE values around 0.04 m3m-3).  

The last two sets of results for tropical areas with low available data and areas of the 575 

world with heterogeneous environmental and climate gradients support the effectiveness of 

our approach across areas exhibiting unfeasible data collection and heterogeneous data 

characteristics respectively. The flexibility of our prediction models to generate consistent 

results on a country-specific basis could be supported by the use of country specific 
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information (e.g., topographic, bioclimatic, and soil information) to predict soil moisture with 580 

higher spatial resolution (<15km grids) in future research. 

 

3.3 Relevance of the Different Prediction Factors 

Across the entire world, we assess the relevance of the different prediction factors defined in 

Section 2.1 (i.e., prediction factors from terrain parameters, bioclimatic features, and soil type 585 

classes) by rebuilding the prediction models using the k-KNN algorithm and removing one 

prediction factor at a time. By systematically removing one prediction factor at a time and 

using repeated 10-fold cross-validation (n=10), we can measure the prediction factor impact 

on the accuracy of each model generated for each year using the k-KNN algorithm (Fig. 6). 

To this end, we compare the cross-validation results (r and RMSE values) of each new model 590 

against a reference model that we build by using all prediction factors. Each soil moisture 

prediction using all prediction factors for each year is accompanied by a reference accuracy 

report containing the cross-validation results (see Section 5 Data availability). We sort the 

relevance of prediction factors based on the impact of their absence on the cross-validation 

results (r and RMSE values), compared with the reference models (using all prediction 595 

factors) across each year. Specifically, for each year (1991-2018) and for each factor that is 

removed at the time (42 factors), we repeat ten times the cross validation as explained in 

Section 2.2 and compute the mean accuracy. For each factor, we count the number of times 

when the absence of that factor causes a higher r and a lower RMSE compared with the mean 

accuracy of the reference model generated for each of the 28 years. Across the years we 600 

count the number of positive and negative impacts and show the proportion of times (or 

impact rate) when the absence of each prediction factor results in a higher accuracy (i.e., 

higher r and lower RMSE) versus the proportion of times when the absence results in a lower 

accuracy (i.e., lower r and higher RMSE) (Fig. 6).  

 605 
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[Insert] Fig. 6  Impact of each factor on (a) r and (b) RMSE values across years (1991-2018).  

The factors with code: pi0.00, pi0.17, pi0.33, pi0.50, pi0.67 and pi0.83 are the spatial 610 

coordinates rotated at multiple angles shown in Appendix B. The rest of the factors are the 

digital terrain parameters used to predict the ESA-CCI annual means as they are shown in 

Figure 3 and described by Guevara and Vargas (2019): aspect: terrain aspect, carea: specific 

catchment area, chnl base: channel network base level, chnl dist: distance to channel network, 

convergence: flow convergence index, hcurv: horizontal curvature, land: digital elevation 615 

model, lsfactor: length-slope factor, rsp: relative slope position, shade: analytical hillshade, 

sinks: smoothed elevation, slope: terrain slope, vall depth: valley depth index, vcurv: vertical 

curvature, wetness: topographic wetness index. The bioclimatic features in: a) tropical, b) 

subtropical, c) temperate or e) boreal environments are represented by binomial variables (0-

1). These variables are extracted by the Food and Agriculture Organization Global Agro-620 
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Ecological Zones project. The available water storage capacity variable is represented by 

continuous classes available thanks to the Re-gridded Harmonized World Soil Database. 

 
 

We sort the relevance of prediction factors based on the impact of their absence on the 625 

cross validation results (r and RMSE values), compared with the reference models (using all 

prediction factors) across each year: for r (Fig. 6a) a negative impact rate of a factor means 

that the model tends to improve in accuracy (in terms of higher r) when including that factor 

and vice versa a positive impact means that the correlation increased when the factor is 

removed. In contrast, for RMSE (Fig. 6b) a positive impact means that the model tends to 630 

improve accuracy (in terms of lower RMSE) when including that factor, and vice versa (a 

negative impact means that the error decreased when the factor is removed).  

We observe that spatial coordinates in rotated angles ranging between 17% and 83% 

degrees (Appendix B) are coordinates with positive impact on r and RMSE results across 

years (Fig. 6). Considered each year in isolation, we observe that values for r and RMSE are 635 

consistent across individual years. In Figure 7 we present the values for r and RMSE for 2018 

as a representative case. In 2018, we observe that spatial coordinates rotated in an oblique 

angle between 33% to 50% degrees (variables pi0.33 and pi0.50, Appendix B) have high 

impact on r or RMSE values (Fig. 7a).  

Across all years, we find bioclimatic features have a higher impact on r or RMSE 640 

values, followed by terrain parameters and soil classes (Fig. 6), which supports further 

findings in our validation against in situ soil moisture data contained in the augmented ISMN 

(in Section 3.4). We find that the use of spatial coordinates has similar impact on r and 

RMSE values compared with terrain parameters or soil type classes (Fig. 6). We observe 

slightly higher (but statistically similar) impact of bioclimatic features in cross validation 645 

results compared with terrain parameters (Fig. 6). Bioclimatic features indicating presence or 
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absence (0/1 bionomial variable) of tropical, subtropical, or temperate desert (biological and 

climatological) conditions are variables with high impact in the cross validation of prediction 

models. The height between the base of drainage networks channels to the closest highest 

point in the ground (before elevation decreases again) (code in Fig. 6: chnl_base) or the 650 

distance of each pixel to the closest drainage network channel (code in Fig. 6: chnl_dist) are 

elevation (code in Fig. 6: land) derived terrain parameters with high impact on r and RMSE 

across all years. We observe for our example with the year 2018 that terrain parameters such 

as chnl_base and chnl_dist have higher impact on r and RMSE values consistently with our 

analysis across all years (1991-2018). Bioclimatic features indicating the presence or absence 655 

(0/1 bionomial variable) of temperate steppe climate conditions or the presence or absence of 

tropical shrubland climate conditions become top prediction factors for soil moisture in this 

specific year (2018, Fig. 7). The impact of terrain parameters has different impact for 

predicting soil moisture variability depending on the average amount of water reaching the 

soil (via precipitation and runoff or overlandflow) for each year, which is a process highly 660 

dependent on bioclimatic conditions. Thus, we can expect to observe variations in the impact 

of parameters to predict soil moisture across specific years (e.g., in extremely dry versus 

extremely wet years).  We provide a variable importance plot for each year associated with 

each soil moisture prediction (see Section 5).       
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 665 

[Insert] Fig. 7 Impact of each factor on the (a) r and (b) RMSE values for the year 2018. The 

factors named  pi0.00, pi0.17, pi0.33, pi0.50, pi0.67 and pi0.83 are the spatial coordinates at 

multiple angles shown in Appendix B.The digital terrain parameters are shown in Figure 3 

and described by Guevara and Vargas (2019): aspect: terrain aspect, carea: specific 

catchment area, chnl base: channel network base level, chnl dist: distance to channel network, 670 

convergence: flow convergence index, hcurv: horizontal curvature, land: digital elevation 

model, lsfactor: length-slope factor, rsp: relative slope position, shade: analytical hillshade, 

sinks: smoothed elevation, slope: terrain slope, vall depth: valley depth index, vcurv: vertical 

curvature, wetness: topographic wetness index. The bioclimatic features are divided in: a) 

tropical, b) subtropical, c) temperate or e) boreal environments are represented by binomial 675 

variables (0-1). These variables are extracted by the Food and Agriculture Organization 

Global Agro-Ecological Zones project. The available water storage capacity variable is 

represented by continuous classes available thanks to the Re-gridded Harmonized World Soil 

Database. 

 680 
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3.4 Soil Moisture Trained for Region for which Augmented ISMN Datasets Exist 

To compare soil moisture values between our predictions and the augmented ISMN, we 

followed two main steps. First, we assess the r and RMSE values between the ESA-CCI 

dataset and our soil moisture predictions against in situ soil moisture using the augmented 685 

ISMN. Second, we report changes of soil moisture over time using the augmented ISMN, the 

ESA-CCI and our soil moisture predictions.  

Comparing the correlation between in situ and gridded soil moisture datasets, we 

observe that the correlation of the ESA-CCI (v4.5) with the augmented ISMN across the 

world is lower compared to the correlation between soil moisture predictions based on digital 690 

terrain analysis with the ISMN or soil moisture predictions adding bioclimatic and soil type 

classes (Fig. 8).   

Considering all available data across all soil depths per site in the augmented ISMN 

(n= 2185 stations) the r values show a mean of 0.50 between the ISMN and the ESA-CCI, the 

predictions based on digital terrain parameters show an r value of 0.56, and the predictions 695 

including bioclimatic and soil type classes show an r value of 0.65. Similar levels of RMSE 

against the ISMN are found with the models using bioclimatic and soil type classes (~0.05 

m3/m3) or models using only terrain parameters (~0.05 m3/m3 ). When comparing the ISMN 

and the ESA-CCI, we observe a mean RMSE of 0.09 m3/m3. Confirming these results, by 

restricting our validation strategy only to the sites with available information for the first 0-5 700 

cm of soil depth (n= 987 stations), we observe correlation values varying from 0.46 for the 

ESA-CCI (RMSE= ~0.05 m3/m3), to 0.86 using topographic prediction factors (RMSE= 

~0.03 m3/m3 ) and 0.74 using bioclimatic and soil type classes (RMSE= ~0.05 m3/m3) as is 

shown in Fig. 8a-f. The target diagram presented in Appendix D is also useful to visualize the 

improvement of our approach against the original ESA-CCI soil moisture dataset.  705 
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[Insert] Fig. 8 Model evaluation plots (points vs grids) of mean annual values of soil 

moisture across the world. ISMN against the ESA-CCI (a), ISMN against the predictions 

based on terrain analysis (b), and ISMN against the predictions based on the model using 730 

bioclimatic and soil type classes (c) for the sites with available information between 0-5 cm 
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(n=987 stations). We also show the correlation between the ESA CCI (d) and our predictions 

based on terrain parameters (e) or bioclimatic and soil type classes (f) using all available data 

in the ISMN across all soil depths (n=2185 stations). The panels below show the correlation 

between soil moisture grids and in situ mean annual precipitation records and: in situ 735 

precipitation against the ESA-CCI (g), in situ precipitation against predictions based on 

terrain analysis (h) and in situ precipitation against predictions based on the model using 

bioclimatic and soil type classes (i). 

 

 740 

Across all analyzed years, our global soil moisture predictions represent an 

improvement as they reduce bias when compared with the ISMN data and in situ 

precipitation records. The variance around the prediction error (e.g., the unbiased RMSE) 

estimated against the augmented ISMN was also lower in our predictions compared with the 

ESA-CCI soil moisture dataset (Appendix D). 745 

We confirm the effectiveness of the k-KNN algorithm for modeling and predicting 

soil moisture considering changes in soil moisture levels over time (soil moisture trends, 

Table 1). There is a consistent soil moisture decline over time across all soil moisture datasets 

(i.e., the augmented ISMN and the ESA-CCI datasets, the soil moisture predictions based on 

digital terrain analysis, and the predictions using digital terrain analysis, bioclimatic and soil 750 

type classes, Table 1) at the specific locations of the augmented ISMN dataset (Fig. 1).  

Supporting the effectiveness of the model predictions, all datasets (observed and modeled soil 

moisture) show negative soil moisture trends at locations where all datasets exist (Table 1). 
 

 755 
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[Insert] Table 1 The slope and slope uncertainties of soil moisture trends at the locations 

where all datasets exist. We show the Dataset, the slope (%), lower and upper confidence 

interval (CI). We report negative trends across considering all available data across ALL soil 

depths (n= 2185 stations) and across sites with information available only between 0-5 cm of 760 

soil depth (n= 987 stations).  
 

 

Dataset Slope (%)   CI 1 %  CI 99 %  Soil depth 

ESA-CCI v4.5 -0.4 -0.69 -0.01 ALL 

Topography  -0.58 -0.92 -0.17 ALL 

Bioclimatic and soil -0.68 -0.91 -0.45 ALL 

Augmented ISMN  -1.7 -1.9 -1.4 ALL 

ESA-CCI v4.5 -0.92 -1.07 -0.74 0-5 cm 

Topography  -1.49 -1.58 -1.46 0-5 cm 

Bioclimatic and soil -1.47 -1.6 -1.3 0-5 cm 

Augmented ISMN  -2.28 -2.4 -2.1 0-5 cm  

 

 765 

 

3.5 Soil Moisture Trained for Region with Limited ISMN Dataset Availability  

To compare soil moisture values across the entire world we followed two main steps. First, 

we assess soil moisture trends across areas with no available data in the augmented ISMN 

using in situ precipitation data (Fig. 1 blue). Second, we assess changes over time across the 770 
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areas with available data in the ESA-CCI dataset. Third we assess changes of soil moisture 

across the world using our soil moisture predictions.  

Comparing the correlation of the ESA-CCI and our soil moisture predictions we 

observe that our predictions are better correlated with in situ precipitation records across 

areas with no available data in the augmented ISMN (Fig. 8, g-i). Aggregated in yearly 775 

means, we observe a correlation between precipitation data and the ESA-CCI of 0.63, a 

correlation of 0.86 of precipitation data and the soil moisture predictions based on terrain 

parameters, and a correlation of 0.75 of precipitation data and the soil moisture predictions 

based on bioclimatic and soil type classes. These result support the model predictions across 

areas with low available in situ soil moisture validation data.   780 

By analyzing changes of soil moisture over time using the ESA-CCI dataset across 

the entire world (when available), we observe significant soil moisture increase (positive 

trend) over time across ~70 000km2 of the global land area (>500 million km2) using a 

probability threshold of 0.05, with available data during 1991 and 2018. We also observe a 

significant decline (negative trend) of soil moisture across 43740 km2 of global land area 785 

(Fig. 9, a-b). In contrast, across the entire world, soil moisture based on terrain parameters 

shows >60 million km2 of global land area with negative trends and 274147 km2 with positive 

trends (Fig. 9, c-d).  
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 790 

[Insert] Fig. 9 Trends of the ESA-CCI annual means (a) and their respective probability 

values (b). Trends of the soil moisture predictions based on digital terrain parameters (c) and 

their respective probability values (d). Trends of soil moisture predictions using terrain 

parameters, bioclimatic and soil type features (e) and their respective probability values (f).  

 795 

 

The soil moisture predictions based on terrain parameters, bioclimatic and soil type 

features showed significant negative trends (probability threshold <0.05) across 216 246 km2 

and positive trends across 85991 km2 (Fig. 9, e-f) of global land area. Discrepancies between 

the ESA-CCI and our downscaled datasets are in part because our results predict soil 800 

moisture decline across areas with large gaps in the ESA-CCI, such as tropical areas. For 

example, with our soil moisture predictions we observe emergent negative trends of soil 

moisture across tropical rain forests of the Amazon basin and the Congo region.   
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4 Discussion 805 

We present a regression approach coupling k-KNN and digital terrain analysis for improving 

the spatial resolution (i.e., improving spatial granularity) of ESA-CCI satellite soil moisture 

estimates by nearly 50% and providing a gap-free global annual mean soil moisture dataset 

(with associated prediction variances) for years 1991-2018. In this section we interpret and 

describe the significance of the new soil moisture datasets (based on terrain continuous 810 

parameters, soil and climate classes) in light of what was already known thanks to state-of-the-

art satellite soil moisture (e.g., from the ESA-CCI) about the research problem of accuracy, 

coarse granularity and spatial gaps of soil moisture information at the global scale (i.e., 

incomplete global coverage).  

We outline the key findings and insights organized in terms of their impact. First, we 815 

highlight the main improvements of the new soil moisture dataset against the ESA-CCI soil 

moisture product. Second, we discuss the role of terrain parameters in the accuracy of the new 

generated dataset. Third, we discuss emergent soil moisture trends before and after taking our 

new datasets into consideration. Fourth, we discuss potential sources of variance and 

discrepancy between soil moisture datasets (e.g., augmented ISMN, ESA-CCI, our 820 

predictions).  Fifth, we provide information about the main limitations of the new dataset and 

sixth, we discuss opportunities for future work.   

We highlight the main improvements of the new soil moisture dataset against the ESA-

CCI soil moisture product. Our predictions of soil moisture against the ESA-CCI soil moisture 

product show an improvement in the reduction of bias when compared with in situ soil moisture 825 

datasets (i.e., with the ISMN, Fig. 8 and Appendix D). Improving the accuracy and spatial 

resolution of satellite-derived soil moisture is an ongoing challenge that requires different 

approaches. For example, recent soil moisture remote sensing datasets (Entekhabi et al., 2010, 

Piles et al., 2019) are able to provide information across areas with spatial gaps in the ESA-
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CCI; however, only recent years have full soil moisture coverage (e.g., 2010 to date). Our 830 

results represent a long-term (1991-2018) and gap-free soil moisture dataset and represent a 

response to the need of alternative global-to-regional soil moisture datasets (An et al., 2016; 

Colliander et al., 2017b; Dorigo et al., 2011b; Minet et al., 2012; Mohanty et al., 2017; Yee et 

al., 2016). This dataset has implications for further analyses on soil moisture patterns (Berg 

and Sheffield, 2018), global hydrological models (Zhuo et al., 2016), climate change 835 

predictions (Samaniego et al., 2018), carbon cycling models (Green et al., 2019), and food 

security assessments (Mishra et al., 2019).   

We now discuss the role of terrain parameters in the prediction accuracy of the new 

generated dataset. We demonstrated the role of topographic terrain parameters as a 

parsimonious and effective approach for downscaling satellite-derived soil moisture in terms 840 

of r (Fig. 6) or RMSE (Fig. 7). Terrain parameters are available nowadays with 

unprecedented levels of spatial resolution (e.g., meters) and our approach is potentially 

applicable to specific areas or countries (Fig. 5) and higher spatial resolution (Guevara and 

Vargas, 2019). Our results support the value of terrain parameters as the basis for 

downscaling soil moisture satellite estimates in future research across specific areas or 845 

periods of time. The exclusive use of terrain parameters in our algorithm implementation 

(Section 2.2) can help to reduce model complexity and computational expenses of more 

complex models using an extensive set of prediction factors for representing soil variability 

(e.g., Hengl et al., 2017). A soil moisture dataset independent of bioclimatic and soil 

information is useful to prevent potential spurious correlations in further studies. This is 850 

specifically important for studies dealing with the problem of interpreting machine learning 

frameworks or better understanding the use of data by the algorithms to generate accurate 

model predictions (Padarian et al., 2020, Ribeiro et al., 2016). In the other hand, predicting 

soil moisture considering tacit knowledge (i.e., expert opinion) on variable selection (e.g., 

combining manually multiple combinations of prediction factors and discussing with experts 855 
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the resulting maps) may be also useful to complement the assessment of model accuracy and 

to develop interpretable and parsimonious models for global soil moisture mapping. Our 

results suggest that a parsimonious model based on topography shows comparable accuracy 

with more complex model including bioclimatic and soil type classes (Figs. 6 to 8, Appendix 

D) and similar negative trends (Table 1).  Although ML approaches generally benefit from 860 

using multiple prediction factors to represent patterns, we advocate for simpler models. The 

parsimonious approach (based on topography) does not necessarily reduce prediction 

capacity when compared with a more complex model adding bioclimatic and soil type classes 

and both datasets show a similar trend of soil moisture levels over time. 

Our trend detection analysis reveals changes of soil moisture over time at the global 865 

scale; across areas with limited information in the ESA-CCI dataset or areas where the 

augmented ISMN does not exist. We observe consistent soil moisture decline at the global 

scale using both the soil moisture predictions based on topography and the predictions based 

on topography, bioclimatic features and soil classes. The soil moisture trend of the 

augmented ISMN dataset was also negative (Table 1). These soil moisture trends bring 870 

potential implications in the calibration of future projections of the water cycle, in identifying 

regions of strong land–atmosphere coupling (Lorenz et al., 2015), and in quantifying the 

contribution of soil moisture for land-surface models (Singh et al., 2015). The negative soil 

moisture trends found in this study (Fig. 9) are consistent with recent soil moisture 

monitoring efforts (Albergel et al., 2013; Gu et al., 2019a). It has been shown that soil 875 

moisture decline can be intensified by land warming (Samaniego et al., 2018), land use 

change (Chen, et al., 2016; Garg et al., 2019), agricultural practices (Bradford et al., 2017), or 

transformations to vegetation cover that directly affect primary productivity, 

evapotranspiration rates and drought (Stocker et al, 2019; Martens et al., 2018). Furthermore, 

contiguous information of soil moisture trends is increasingly needed for quantifying the 880 

consequences of soil moisture decline in ecosystems processes such as soil respiration (Bond-
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Lamberty and Thomson. 2018). Our results complement the ESA-CCI soil moisture dataset 

as they identify soil moisture decline across the Congo region or the Amazon basin (Fig. 9). 

These results are consistent with previous studies that have identified soil moisture decline 

across the Congo region associated with reduction of precipitation rates (Nogherotto et al., 885 

2013), and across the Amazon basin where climate signals on plant productivity can be due 

changes in soil moisture conditions (Wagner et al., 2017). Further studies are needed to fully 

interpret the influence of surface or deeper soil moisture on ecological processes (Morton et 

al., 2014), but we argue that surface soil moisture trends are critical to identify potentially 

vulnerable regions across the world. Our examples of surface soil moisture predictions across 890 

tropical areas (using the available ESA-CCI information) or across specific countries with 

heterogeneous environmental gradients (e.g., Fig. 5) are consistent in terms of prediction 

accuracy, suggesting that our approach is applicable to any country of region in the world, 

including areas with limited information to feed prediction algorithms.  

Limitations of our approach include a) the propagation of measurement errors of the 895 

ESA-CCI dataset used to train the k-KNN algorithm, b) the propagation of measurement 

errors (and quality) of the digital elevation dataset used for calculating terrain parameters and 

c) by the prediction errors of k-KNN algorithm (e.g., random errors, systematic errors, 

spatially autocorrelated errors). It is known that satellite-derived soil moisture estimates fail 

to measure extremely dry or extremely wet conditions (McColl et al., 2017; Liu et al., 2019); 900 

consequently, this lack of information influences the prediction capacity of our downscaling 

framework and there is a need to improve modeling and measurements of these extremes. In 

addition, the quality of the prediction factors impacts the quality of final prediction outcomes. 

Thus, the prediction algorithm is not able in any case, to generate a perfect model. Therefore, 

it is important to provide prediction variances around soil moisture predictions that are useful 905 

to identify areas with high or low model consistency (Fig. 4). The variance associated with 

soil moisture predictions provides novel information to assess the strength of the relationship 
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between the covariate space (e.g., terrain parameters, bioclimatic and/or soil type features) 

and predicted soil moisture. Consequently, large prediction variances (Appendix C) remain 

across areas less represented in both field measurements (Fig. 1) and across extremely dry or 910 

extremely wet conditions affecting the spatial representation of satellite soil moisture datasets 

(Fig. 4a). Our prediction variances also provide insights for future research efforts where 

alternative techniques are needed to provide information to better constrain model predictions 

and to reduce prediction variances.  

We discuss potential sources of prediction variance between soil moisture predictions 915 

and datasets. Prediction variances are indicators of discrepancy levels between soil moisture 

datasets (augmented ISMN, ESA-CCI, our predictions). Discrepancy between the augmented 

ISMN and satellite-derived soil moisture or our downscaled datasets can be associated with 

differences in the spatial representativeness of points measurements and grids surfaces 

(Gruber et al., 2020). This scale mismatch has been previously identified when testing 920 

different soil moisture patterns (Nicolai-Shaw et al., 2015) as field soil moisture records are 

usually representative of <1 m3 of soil while satellite and modeling estimates varies from 

several meters to multiple kilometers. Soil moisture measurements (from satellites and in situ 

measurements) across both water-limited environment and tropical areas are extremely 

limited (Liu et al., 2019), a condition that increases prediction variances (and consequently 925 

also increased model uncertainty). Thus, alternative modeling and evaluation frameworks and 

model evaluation statistics are required to provide more information to better interpret the 

spatial variability and dynamics of soil moisture global estimates (Gruber et al., 2020). To 

this end, we used in situ annual precipitation as a proxy to evaluate soil moisture estimates 

and found that our predicted soil moisture was better correlated than the original ESA-CCI 930 

dataset. This higher correlation may be useful for further analyses and evaluations including 

soil moisture and precipitation feedbacks (McColl et al., 2017) as precipitation decline has 

been associated with soil moisture decline in previous studies (Nogherotto et al., 2013).     
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Future work should include predicting global soil moisture patterns across finer pixel 

sizes (e.g., 1km or <1km) and higher temporal resolutions (e.g., monthly, daily), as it has 935 

been done at the regional to continental scales (Naz et al., 2020; Llamas et al., 2020; Guevara 

and Vargas, 2019). The current version of the downscaled soil moisture predictions is 

provided on an annual basis because is a temporal resolution useful for multiple ecological 

and hydrological studies related to large-scale ecological processes and climate change 

(Green et al., 2019). We recognize that there is an increasing need of soil moisture datasets 940 

with higher temporal resolutions to analyze the seasonal and short-term memory soil moisture 

effects after precipitation events (McColl et al., 2017). A spatial resolution of 15 km is still a 

coarse pixel size for detailed analysis of hydro-ecological patterns (e.g., at the hillslope 

scale), but the main focus of this study was to test the potential of digital terrain analysis for 

increasing the spatial resolution of the original ESA-CCI soil moisture dataset. Our decision 945 

for selecting a 15km pixel size was driven by the reproducibility or our approach by multiple 

groups without the need of HPC infrastructure. HPC is increasingly required for modeling 

soil moisture patterns with unprecedented levels of spatial resolution across continental scales 

(e.g., 3 km grids, RMSE 0.04 to 0.06 m3m−3; Naz et al., 2020) that show comparable 

accuracy with our 15km grids (Fig. 8 a-c). Additionally, the increase of nearly 50% in spatial 950 

resolution suggests a larger range of soil moisture predicted values compared with the ESA-

CCI, possibly associated with scale dependent patterns of soil moisture (Fig. 5) which can be 

analyzed in future work.  

In conclusion, to downscale (i.e., increase spatial resolution) coarse satellite soil 

moisture grids we used k-KNN to combine satellite soil moisture data with terrain parameters 955 

(as surrogates of topographic variability), bioclimatic and soil type classes. The validation of 

our soil moisture model predictions against multiple field data sources (Fig. 1) and multiple 

combinations of prediction factors supports that digital terrain analysis can be used as a 

parsimonious approach for improving the spatial resolution of the ESA-CCI soil moisture 
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dataset (Appendix D). We provide a new gap-free and annual soil moisture dataset for 28 960 

years provided across 15 km grids in an annual basis (1991-2018). Our results provide a 

global soil moisture benchmark to address the increasing need of soil moisture datasets with 

higher temporal and spatial resolution at the global scale.  

 

5 Data Availability   965 

We provide a publicly available soil moisture dataset including working codes and information 

useful to replicate our results. We follow global validations standards for modelled soil 

moisture estimates (Gruber et al., 2020). We also provide the prediction variance maps derived 

from bootstrapping the results each modelled year (as surrogate of prediction uncertainty) and 

user guidance for interpreting and reproducing our results. The sources of information required 970 

to develop this study are:  

• The soil moisture training dataset used in this study is available thanks to the ESA-

CCI (https://www.esa-soilmoisture-cci.org/)  

• The soil moisture validation dataset used in this study is available thanks to the ISMN 

(https://ismn.geo.tuwien.ac.at/en/) 975 

• The downscaled soil moisture predictions generated in this study are available here: 

https://www.hydroshare.org/resource/9f981ae4e68b4f529cdd7a5c9013e27e/ 

(Guevara, et al., 2020)  

◦ The soil moisture predictions are provided in rasters (n=28 per folder, 1991-2018) 

that can be imported to any GIS and they contain an accuracy report from the 980 

cross validation for each model/year in a *.csv file.   

◦ We include a raster stack with 28 layers containing the prediction variances for 

each model year (1991-2018) derived from bootstrapping the k-KNN models.  
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◦ The prediction factors for soil moisture across 15km grids are also available in a R 

spatial pixels data frame; containing values for each pixel of:  985 

▪ a) terrain parameters calculated in SAGA-GIS http://www.saga-gis.org/,  

▪ b) bioclimatic classes from http://www.fao.org/nr/gaez/en/ transformed to a 

binary presence/absence, 1/0 code and  

▪ c) the continuous classes (1 = 150 mm water per m of the soil unit, 2 = 125 

mm, 3 = 100 mm, 4 = 75 mm, 5 = 50 mm, 6 = 15 mm, 7 = 0 mm) from the Re-990 

gridded Harmonized World Soil Database v1.2 available here: 

https://daac.ornl.gov/SOILS/guides/HWSD.html. 

▪ d) each soil moisture prediction contains a plot of top prediction factors 

affecting the accuracy (r and RMSE) computed after the cross validation 

strategy for each model year.  995 

◦ In the same data repository, we provide the ISMN  (downloaded in August of 

2019) annual dataset that we used for validating (Fig. 1, green) our soil moisture 

predictions in a native R spatial object. 

▪ Appendix E of this dataset includes a summary of soil moisture values per 

contributing network in the ISMN. All contributing networks can be found: 1000 

https://ismn.geo.tuwien.ac.at/en/networks/ thanks to the ISMN initiative.  

• The precipitation dataset used as alternative validation data (Fig. 1, blue) is available 

here: https://daac.ornl.gov/SOILS/guides/SRDB_V4.html. 

• Additional soil moisture data from local studies (Fig. 1, red) across tropical areas is 

available here: https://iopscience.iop.org/article/10.1088/1748-9326/7/3/035704 and 1005 

https://daac.ornl.gov/LBA/guides/CD32_Brazil_Flux_Network.html  
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• The R code used  a) to develop our soil moisture modeling and validation approach 

and b) to generate the base figures on this paper is available here: 

https://github.com/vargaslab/Global_Soil_Moisture.  

 1010 

As this is paper is the result of an active line of research, we will continue updating our 

soil moisture predictions and our results as new input data (ESA-CCI- future versions) 

become available. Current version covers the period of time between 1991 and 2018 and it is 

based on the ESA-CCI version 4.5.  
 1015 
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Appendices 

Appendix A 

We present the number of data gaps per year. 1085 

 

 

 

 

 1090 

 

 

 

 

 1095 

 

 

 

 

 1100 

 

 

[insert] Figure A1. Number of data gaps or not available values (NAs) *100 in the ESA-CCI 

v4.5 across years during the analyzed period. 
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Appendix B 

 

We present the maps of the spatial coordinates used in our prediction approach. We 1110 

developed these maps following the recently proposed method by Møller et al., (2020). In 

this method, latitude and longitude across the area of interest (e.g., the entire world) are 

rotated along several (e.g., n=6) axes tilted at oblique angles (Fig. A1) and used as prediction 

factors for soil attributes (e.g., soil moisture).  

 1115 
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[insert] Figure A2. The variables: pi0.00 (a), pi0.17 (b), pi0.33 (c), pi0.50 (d), pi0.67 (e) and 

pi0.83 (f) are spatial coordinates of the global 15km grids tilted at multiple angles (n=6) used 

as ancillary information in order to explicitly account for the spatial structure of available soil 

moisture values in the geographical space.    
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Appendix C 

 1125 

We present the availability of data in the ESA-CCI soil moisture data for a given year (e.g., 

2018) across tropical areas of the world (Figure A2a). Using this limited information only 

(the ESA-CCI data across the tropics) we improve the spatial representativeness of satellite 

soil moisture data following our prediction approach (Figure A2b). Our approach considers 

the model prediction variance after n model realizations (Figure A2c).  1130 
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[insert] Figure A3. Soil moisture across Tropical Rain Forests of the world based on the data 

available in the ESA-CCI soil moisture product (4.5) for the year 2018 (a). We show the soil 

moisture prediction (b), the soil moisture prediction variance using only the data available for 

Tropical Rain Forests (c). Note that the correlation between observed and predicted decreased 1135 

to 0.62, most likely due to the limited information for modeling these ecosystems, however 

the root mean squared error is comparable with a model using all global data (e.g., <0.04).  
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Appendix D 

 

We present a summary of our validation of soil moisture predictions in the form of a Target 1140 

Diagram (Figure A3). A Target Diagram is derived from the relation between the unbiased 

RMSE, MBE (mean bias error), and RMSE. In a Cartesian coordinate system, the x-axis 

represents the unbiased RMSE (variance of the error), and the y-axis represents the MBE. 

Therefore, the distance between any point to the origin is equal to the RMSE. Because the 

unbiased RMSE is always positive, the left area of the coordinate system is empty with this 1145 

scheme. With additional information this region may be also used: the unbiased RMSE is 

multiplied by the sign of the difference between the standard deviations of model and 

observations. The diagram provides three different measures: whether the model 

overestimates or underestimates (positive or negative values of the MBE on the y-axis, 

respectively), whether the model standard deviation is larger or smaller than the standard 1150 

deviation of the measurements (positive or negative values on the x-axis, respectively), and 

the error performance as quantified by the RMSE represented as the distance to the 

coordinates origin (see Jolliff, et al., 2009).  
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 1155 

[insert] Figure A4. Target diagram showing the performance of our soil moisture predictions. 

The x-axis represents the unbiased RMSE (variance units of the error), and the y-axis 

represents the MBE. This figure shows that our soil moisture predictions using terrain 

parameters (esa_cci_terrain) and the predictions using terrain parameters, bioclimatic and soil 

type classes (esa_cci_terrain_bio_soil) show lower error levels when compared with field 1160 

data (from the ISMN) than the ESA-CCI soil moisture product (esa_cci). 
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Appendix E 

We present a summary of soil moisture values per contributing network in the ISMN.  
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 1170 

 

[insert] Figure A5 A list of contributing networks across the analyzed period of time 

(organized in three main periods to simplify the Figure) and soil moisture values used to 

compare the ESA-CCI v4.5 and our soil moisture predictions. General information of each 

network can be found in https://ismn.geo.tuwien.ac.at/en/networks/ thanks to the ISMN 1175 

initiative.   


