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Abstract

High loadings of nitrate (NO3z") in the aerosol over China significantly exacerbates the air quality
and poses a great threaten on ecosystem safety through dry/wet deposition. Unfortunately, limited
ground-level observation data makes it challenging to fully reflect the spatial pattern of NO3™ level
across China. Up to date, the long-term monthly particulate NO3™ datasets at a high resolution were
still missing, which restricted the assessment of human health and ecosystem safety. Therefore, a
unique monthly NOs™ dataset at 0.25<resolution over China during 2005-2015 was developed by
assimilating surface observation, satellite product, meteorological data, land use types and other
covariates using an ensemble model combining random forest (RF), gradient boosting decision tree
(GBDT), and extreme gradient boosting (XGBoost). The new developed product featured excellent
cross-validation R? value (0.78) and relatively lower root-mean-square error (RMSE: 1.19 pg N m-

%) and mean absolute error (MAE: 0.81 pug N m). Besides, the dataset also exhibited relatively
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robust performance at the spatial and temporal scale. Moreover, the dataset displayed good
agreement with (R? = 0.85, RMSE = 0.74 pg N m3, and MAE = 0.55 pg N m®) some unlearned
data collected from previous studies. The spatiotemporal variations of the developed product were
also shown. The estimated NO3™ concentration showed the highest value in North China Plain (NCP)
(3.55 +1.25 pg N m®), followed by Yangtze River Delta (YRD (2.56 +1.12 ug N m®)), Pearl River
Delta (PRD (1.68 +0.81 ug N m®)), Sichuan Basin (1.53 +0.63 ug N m™®), and the lowest one in
Tibetan Plateau (0.42 +0.25 pug N m3). The higher ambient NOs concentrations in NCP, YRD, and
PRD were closely linked to the dense anthropogenic emissions. Apart from the intensive human
activities, poor terrain condition might be a key factor for the serious NOs™ pollution in Sichuan
Basin. The lowest ambient NO3™ concentration in Tibetan Plateau was contributed by the scarce
anthropogenic emission and favorable meteorological factors (e.g., high wind speed). In addition,
the ambient NOj3™ concentration showed marked increasing tendency of 0.10 pg N m~/year during
2005-2014 (p < 0.05), while it decreased sharply from 2014 to 2015 at a rate of -0.40 pg N m/year
(p < 0.05). The ambient NOs™ levels in Beijing-Tianjin-Hebei (BTH), YRD, and PRD displayed
gradual increases at a rate of 0.20, 0.11, and 0.05 pg N m3/year (p < 0.05) during 2005-2013,
respectively. The gradual increases of NO3™ concentrations in these regions from 2005 to 2013 were
due to that the emission reduction measures during this period focused on the reduction of SO,
emission rather than NOy emission and the rapid increase of energy consumption. Afterwards, the
government further strengthened these emission reduction measures, and thus caused the dramatic
decreases of NO3™ concentrations in these regions from 2013 to 2015 (p < 0.05). The long-term NO3-

dataset over China could greatly deepen the knowledge about the impacts of emission reduction
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measures on air quality improvement. The monthly particulate NO3™ levels over China during 2005-

2015 are open access in https://doi.org/10.5281/zenodo.3988307 (Li et al., 2020c).

1. Introduction

Reactive nitrogen (N;) emissions displayed remarkable increases in the past decades owing to

the high-speed industrial development and urbanization (Cui et al., 2016; Singh et al., 2017).

Ambient reactive N emissions were mainly characterized with nitrogen oxides (NOx), accounting

for about 30% of the gross N; emissions (Chen et al., 2015; Liu et al., 2011). These important N-

bearing precursors could be transformed into the nitrate (NO3") via multiple chemical pathways (e.g.,

heterogeneous or liquid phase reaction), and finally deposited in the terrestrial or aquatic ecosystem

(Jia et al., 2016; Qiao et al., 2015; Zhao et al., 2017). On the one hand, heavy loadings of NO3"

greatly degraded the atmospheric visibility and cool the surface of the Earth system because

particulate NOj3™ significantly scattered solar radiation (Fu and Chen, 2017). Moreover, enhanced N

deposition might pose a negative effect on the ecosystem health such as biodiversity losses,

freshwater eutrophication, and oceanic acidification (Compton et al., 2011; Erisman et al., 2013).

Hence, deepening the knowledge about the spatial patterns and long-term trends of particulate NO3

in the atmosphere is beneficial to accurately evaluate the ecological and environmental effects of N

deposition.

Ground-level observation is often acknowledged to be an effective means to explore the spatial

patterns of ambient NO3™ concentrations. Many long-term monitoring networks including Clean Air

Status and Trends Network (CASTNET) and Canadian Air and Precipitation Monitoring Network

(CAPMOoN) were established to quantify the ambient NO3™ concentration and inorganic N deposition.

Du et al. (2014) revealed that the NO3™ deposition showed significant decrease across the United
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States during 1985-2012 based on these observation data. To date, most of these observation

networks focused on North America and Europe, whereas few monitoring sites were located on East

Asia especially on China. Fortunately, China has constructed some ground-level observation

networks such as CARE-China Observation Network in recent years. On the basis of these

observation networks, the overall spatiotemporal trend of particulate NO3™ concentration has been

clarified (Wang et al., 2019¢; Xu et al., 2018a). Xu et al. (2018a) observed that the particulate NO3

concentration (< 4.5 pm) over China did not show significantly temporal variation during 2011-

2015. Very recently, Wang et al. (2019) found that the NO3 level in the fine particle (PMzs)

decreased by 34% during 2015-2017. Although the overall spatial patterns have been preliminarily

revealed based on these isolated sites, these sparse ground-observed sites did not accurately reflect

the high-resolution NOs™ pollution especially the regions far away from these sites because each

station only possessed limited spatial representative and NO3™ concentration was often highly

variable in space and time (Liu et al., 2017a). More importantly, the current studies only investigated

the ambient NO3 concentrations in recent years, while the long-term variation of NO3™ level

remained unknown. It was well known that the energy consumption in China displayed remarkable

increase in recent decades (Zhan et al., 2018). Meanwhile, Chinese government also proposed

pollutant emission reduction policies since 2005 to ensure the coordinated development of economic

growth and environmental protection (Ma et al., 2019). However, the synergistic effects of air

pollution control policies and increased energy consumption on long-term evolution trend of NO3

pollution over China were not assessed yet, which were extremely critical for the implementation

of emission control measures.

To complement the gaps of ground-level observations, satellite product of NO; is regarded as a
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welcome addition to investigate the long-term trends of N-bearing components in the atmosphere.
Ozone Monitoring Instrument (OMI) was regarded as the typical satellite product applied to
simulate the ambient NO3™ concentration (Liu et al., 2017b; Vrekoussis et al., 2013). Jia et al. (2016)
firstly used the linear regression method to predict the NOs™ levels and dry deposition fluxes at the
global scale based on OMI-derived NO; column amount. However, the dry deposition fluxes of
NO3™ modelled by Jia et al. (2016) showed weak correlation with the measured value (R = 0.47),
which might be attributable to the simple linear assumption between NO; column amount and NOj3"
deposition flux. It was well documented that the nonlinearity relationship between multiple
predictors and NOs3™ concentration were hard to reveal on the basis of the simple linear model (Zhan
etal., 2018a; Zhan et al., 2018b). To enhance the predictive performance of NO3™ concentration, Liu
et al. (2017) used the chemical transport models (CTMs) to estimate the dry deposition fluxes of N-
bearing species recently based on the remotely sensed NO> column amount. However, CTMs often
suffered from high uncertainty because of the limited knowledge about the generation pathways for
particulate NO3™ in the atmosphere (Zhan et al., 2018a). Recently, the emergence of machine
learning models provided unprecedented opportunities to estimate the concentrations of N-bearing
components (Chen et al., 2019b; Zhan et al., 2018b). It was well known that the machine-learning
models generally showed the better predictive accuracy than CTMs and traditional statistical models
when the training samples were sufficient (Zang et al., 2019; Zhan et al., 2017). Zhan et al. (2018b)
employed random forest (RF) coupled with spatiotemporal Kriging model to simulate the ambient
NO; levels over China, and achieved the moderate modelling performance (R? = 0.62). Afterwards,
Chen et al. (2019) used the extreme gradient boosting (XGBoost) model combined with kriging-

calibrated satellite method to estimate the national NO» concentration and significantly improved
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the predictive performance (R? = 0.85). Up to date, no study utilized the machine-learning models
to significantly improve the predictive accuracy of NOs™ concentration. Moreover, nearly all of the
current studies only focused on the spatial pattern of particulate NO;3" level in China (Liu et al., 2017;
Jia et al., 2016), while they cannot establish a long-term NOj3™ dataset across China.

Here, we firstly developed a high-resolution (0.25°) monthly particulate NOs™ dataset across
China during 2005-2015 based an ensemble model including RF, XGBoost, and gradient boosting
decision tree (GBDT) algorithms. At first, the modelling performance and improvement of this new-
developed product compared with previous datasets were evaluated. Afterwards, we analyzed the
spatial variation and long-term evolution trend of estimated NO3™ concentration over China and
explored the potential impacts of air pollution control measures on NOj3™ variation. The long-term
NOs™ datasets could supply scientific judge for policy makers to mitigate the severe nitrate pollution
in China.

2. Input data
2.1 Ground-level NO3 data

The monthly NO3™ monitoring data during 2010-2015 were collected from nationwide nitrogen
deposition monitoring network (NNDMN) including 32 sites (Fig. 1, Fig. S1, and Fig. S2), and
these sites could be divided into three types including urban, rural, and background sites (Xu et al.,
2018a). Ambient concentrations of particulate NO3™ were determined on the basis of an active
DEnuder for Long-Term Atmospheric sampling system (DELTA). The system comprises of a pump,
a filter sampling instrument, and a dry gas meter with high sensitivity. Two set of filters in a 2-stage
filter pack was applied to sample the aerosol particles, with a first KoCOs/glycerol impregnated filter

to obtain NOs particles in PM;o. All of the monitoring sites kept the same sampling frequency at
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the month scale, and these samples were continuously collected over a month. The detailed sampling

and analysis procedures have been described by Xu et al. (2018a) and Xu et al. (2019). The detection

limit of particulate NO3™ concentration over China is 0.01 mg N/L.

2.2 Satellite product of NO; column density

The OMI-NO; level-3 tropospheric column densities (0.25° resolution) were used to predict the

NOs3™ concentration (Fig. S3). The OMI aboard on the Aura satellite was available since September,

2004, which displayed global coverage and crossed the entire earth each day. OMI possessed three

spectral channels ranging from 270 to 500 nm, and thus was often applied to monitor the gaseous

pollutants such as NO2, SO, and Os.

In this study, we downloaded the daily NO> columns during 2005-2015 from

https://earthdata.nasa.gov/. The tropospheric NO, column density data of poor quality (e.g., cloud

radiance fraction > 0.5, solar zenith angles > 85°, and terrain reflectivity > 30%) should be removed.

Additionally, the cross-track pixels sensitive to significant row anomaly also must be deleted.

Finally, the monthly NO; columns were estimated by averaging the daily NO; columns.

2.3 Meteorological factors, land use types, and other variables

These independent variables for particulate NO3 estimates were gained from multiple sources.

The meteorological data on a daily basis (European Centre for Medium-Range Weather Forecasts

reanalysis (ECMWF ERA-Interim) datasets (0.25° resolution)) were downloaded from the website

of http://www.ecmwf.int/ (Table S1). Among all of the daily meteorological data in ECMWF

website, 2-m temperature (T2m), 2-m dewpoint temperature (D2m), 10-m latitudinal wind component

(U1o), 10-m meridional wind component (Vo), sunshine duration (Sund), surface pressure (Sp),

boundary layer height (BLH), and total precipitation (Tp) were applied to estimate national NO3
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levels. The elevation, gross domestic production (GDP), and population density (PD) data over
China were downloaded from the website of http://www.resdc.cn/. PD and GDP in 1995, 2000, 2005,
2010, and 2015 were linearly interpolated to calculate PD and GDP in each year. Then, the yearly
GDP data were divided by 12 to estimate the monthly GDP. Afterwards, these data were
incorporated into the sub-model to predict the particulate NO3™ concentration over China. In addition,
the land use data (e.g., grassland, forest, urban, and agricultural land) were also downloaded from
the website of http://www.resdc.cn/.

These independent variables collected from various sources were uniformly resampled to 0.25°
x (.25° grids. For instance, the land use area, GDP, and PD in 0.25° grid was calculated based on
area-weighted average algorithm. To ensure the better predictive performance, it was necessary to
employ the appropriate variable selection method to remove some redundant predictors. The basic
principle of the variable choice was to remove the variables with the lower importance values. The
variables could be regarded as the redundant ones when the R? value of the final model showed
dramatic decrease after removing them. Based on this method, in the final sub-model, all of the
variables except GDP, PD, and grassland have been applied to estimate the ambient NO3
concentrations across China.
3. Methods
3.1 Ensemble model development

In the previous studies concerning about air pollution prediction, RF, gradient boosting decision
tree (GBDT), and extreme gradient boosting (XGBoost) showed good predictive performance (Li
et al., 2020a). RF model possesses a large amount of decision trees, and each one suffered from an

independent sampling process and these trees displayed the same distribution (Breiman, 2001). This
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model generally shows the higher prediction accuracy due to the injected randomness. The model
performance mainly relies on the number of trees, the variable group, and the splitting features. The

detailed algorithms are shown as follows:
z
f(x)=>cl(xeM,) @
z-1

CAz =mean(y; | x, €M,) (2

L(mn)={X|X; <n}&L,(m,n)={X[X;>n} (3)

nrynn min > (y-c¢)?’+min > (y-c,)?| @)

My (m,n) Mg (m,n)

A A
¢, =mean(y; | X, € M,(m,n)) &c, =mean(y; | x, € M,(m,n)) (5)
where (xi;, yi) denotes the sample fori=1, 2, ..., N in M regions (M1, Ma, ..., My); I denotes the

weight of each branch; L denotes the branch of decision tree; ¢ represents the response to the model;

A
C, denotes the best value, m represents the feature variable; ci denotes the mean value of left

branch; c; denotes the mean value of right branch; n is the split point.
GBDT model is often considered to be a typical boosting method. Compared with RF model,
each classifier is applied to decrease the residual of the last round. The detailed equations are as

follows:

C; =arg min Z L(y;, fa(x)+c) (6

XieRtJ-
J
f,00=fL(0+> ¢l (D
=

cij denotes the predicted the estimation error in the last round; Ry denotes each leaf node for the
decision trees; yi represents the observed value; fi.1(xi) is the predicted value in the last round. ¢ was

regarded as the optimal value when cj reaches the least value.
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XGBoost method is an updated version of GBDT model and loss functions are expanded to the
second order function. On the basis of the pioneering studies (Chen et al., 2019a), XGBoost
generally shows excellent performance because of its high efficiency and impressive accuracy. The

detailed XGBoost algorithm is shown as the following formula (Zhai and Chen, 2018):

A (D) A (t-1) A (t-1)

L“):i[l(yi,y )+0 w1y, y )ft(xi)%aiml(yi,y ) FA0OI+Q(F)  ®)

where L® represents the cost function at the t-th period; 0 denotes the derivative of the function;

8?0,1) denotes the second derivative of the function; / is the differentiable convex loss function that

A
reveals the difference of the predicted value (Y ) of the i-th instance at the t-th period and the target

value (yi); fi(x) denotes the increment; Q(f,) represents the regularizer.

However, each model still shows some disadvantages in the prediction accuracy. Consequently,
it was proposed to combine these models with multiple linear regression (MLR) model to further
estimate monthly NO3™ concentration in the atmosphere over China. As shown in Fig. 2, three
submodels including RF, GBDT, and XGBoost were stacked through MLR model to estimate the
monthly NO3 concentration over China. At first, a 5-fold cross-validation method was adopted to
train each submodel to determine the appropriate parameter. Afterwards, the MLR model was
trained with the final simulated concentrations of three submodels and observations. Finally, the
high-resolution ambient NO; level over China were estimated based on the optimal ensemble model.
The detailed algorithms are shown as follows (Fig. 2):

NO; = AxPred_RF+BxPred_GBDT+CxPred_XGBoost+e; (9)
where Pred RF, Pred GBDT, and Pred XGBoost denote the predicted NO3™ concentrations by RF,
GBDT, and XGBoost, respectively. A, B, and C represent the partial regression coefficients of RF,

GBDT, and XGBoost predictors, respectively. ejj denotes the residual error. Based on the estimates,
10
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the regression coefficients including A, B, C, and the residual error (eij) determined by the MLR
model were 0.42, 0.77, 0.09, and -0.87, respectively. The variance inflation factors of RF (2.01),
GBDT (2.69), and XGBoost (2.08) were significantly lower than 10, which suggested the MLR
model was robust.

The RF model was trained using matlab2019a with a package named random forest-master. Both
of GBDT and XGBoost algorithms were conducted using many packages named gbhm, caret, and
xgboost in R software.

3.2 The error estimation and uncertainty assessment

The estimation performance of the ensemble model was evaluated based on 10-fold cross-
validation algorithm. The principle of this method meant that the entire datasets were divided into
10 groups with the same capacity randomly. Nine groups were applied to develop the model and the
remained one was used to predict the NO;3  level. After ten rounds, every observed NOjs
concentration showed a corresponding predicted value. Some key indices such as determination
coefficient (R?), root mean square error (RMSE), and mean absolute prediction error (MAE) were
selected as the key indicators to identify the optimal modelling method.

The uncertainty of ensemble model were mainly derived from input ancillary variables. For
instance, both of the satellite data and meteorological data often suffered from some uncertainties.
To quantify the uncertainties derived from meteorological data, the meteorological data at 0.25°
across China were validated using ground-measured meteorological data downloaded from the

website of Chinese Meteorology Bureau (http://data.cma.cn/). Additionally, NO, columns generally

suffered from some uncertainties, whereas the uncertainties of these NO, columns cannot be

determined because the data about the ground-level NO» columns were not open access. In our study,
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we only estimated the missing ratio of NO» column, thereby evaluating the uncertainty of NO3
dataset.
3.3 Trend analysis

The trend analysis of particulate NOs™ concentration was performed using the Mann-Kendall
nonparametric test. This method has been widely applied to analyze the historical trends of carbon
fluxes (Tang et al., 2019) and air quality (Kong et al., 2019), which could reflect whether these data
suffered from significant changes at a significance level of 0.05. The detailed calculation process is
summarized in Mann (1945) and Kendall (1975).
4. Results and discussion
4.1 Descriptive statistics of observed NOs3™ concentrations

The ensemble model were applied to fit the NO3™ estimation model based on 1636 matched
samples across China during 2010-2015. In general, the ground-observed NO3™ concentration over
China ranged from 0.3 ug N m in Bayinbrook of Xinjiang province to 7.1 ug N m3 in Zhengzhou
of Henan province with the mean value of 2.7 + 1.7 ug N m>. The monthly particulate NO5-
concentrations displayed the highest and lowest values in North China Plain (NCP) and Tibetan
Plateau, respectively. Besides, the monthly NO;™ level exhibited significantly temporal variation
during 2010-2015. The ambient NO3™ concentrations in most of sites displayed the gradual increase
during 2010-2014, while they decreased sharply from 2014 to 2015. The spatiotemporal variation
of ambient NO3™ concentration over China shared similar characteristic with NO> column amount
(Fig. S3). The Pearson correlation analysis revealed that the monthly particulate NO3™ level showed
the significantly positive relationship with NO> column amount (r = 0.57, p <0.01) and urban land
area (r = 0.35, p <0.05) (Fig. S4). However, D2y, showed the remarkably negative correlation with
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ambient NO;3™ concentration (r = -0.31, p < 0.05).
4.2 The validation of new-developed NOs™ dataset and comparison with previous products

In our study, the ensemble model was applied to develop a monthly particulate NO3™ dataset over
China based on various predictors. Besides, other three individual models were also trained to
compare with their predictive performances. The cross-validation result indicated that the R? value
of the new product developed by ensemble decision trees model reached 0.78, significantly higher
than those developed by RF (0.57), GBDT (0.73), and XGBoost (0.45). Nonetheless, both of RMSE
and MAE exhibited the opposite trends. The RMSE value was in the order of XGBoost (1.98 pg N
m>) > RF (1.67 ug N m3) > GBDT (1.35 ug N m*) > ensemble model (1.19 pg N m). The MAE
value followed the similar characteristic with the order of XGBoost (1.29 ug N m) > RF (0.99 ug
N m3)>GBDT (0.95 ug N m~*) > ensemble model (0.81 ug N m~). In some previous studies (Xiao
et al., 2018), XGBoost often showed the better performance compared with RF, which seemed to
be in contrast to our study. It was assumed that XGBoost showed the better performance for big-
data samples. However, the size of training samples in our study was relatively less than those in
previous studies. Xiao et al. (2018) also verified that the XGBoost showed the better accuracy than
RF in some developed regions such as East China, while RF showed the better performance than
XGBoost in Northwest China because the monitoring sites in Northwest China was relatively scarce.
Wolpert (1992) suggested the combination of various machine-learning models can significantly
strengthen the transferability of models. Chen et al. (2019a) demonstrated that the ensemble model
significantly outperformed the individual machine-learning model because the ensemble model can
overcome the weaknesses of individual model. Besides, we also assessed the annual modelling
performance of NOj3~ estimation. Figure S5 shows that the R? value of annual NOs estimation
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reached 0.81, slightly higher than monthly NOj3™ prediction (0.78). However, both of RMSE (1.23
ug N m3) and MAE (0.85 pg N m™) for annual NOs" estimation were slightly higher than those of
monthly NO;™ prediction.

The new developed NOs- dataset showed the markedly temporal discrepancy. The R? values of
NOj™ estimates during 2011-2015 (0.88, 0.89, 0.83, 0.74, and 0.78) were notably higher than that
during 2010 (0.62) (Table 1 and Fig. 3). The relatively lower R? value in 2010 attested to the
dominant role of sampling size on the predictive accuracy for machine-learning models. The training
samples in 2010 (135 samples) were notably less than those in other years due to the lack of
observation data in spring. However, both of RMSE and MAE were not sensitive to the sampling
size. The higher RMSE and MAE focused on the 2010, 2014, and 2015. The higher RMSE and
MAE observed in 2010 might be contributed by the relatively scarce training samples, while the
higher RMSE and MAE likely attained to the higher NOj3™ levels during other years. In addition, the
performance of the NOs- dataset varied greatly at the seasonal scale. The R? value was in the order
of summer (0.85) > spring (0.80) = autumn (0.80) > winter (0.75) across China (Table 2). The
seasonal variation of NOj3™ concentration was in contrast to the results of fine particle modelled by
previous studies (Li et al., 2020a; Qin et al., 2018). It was supposed that aerosol optical depth (AOD)
was sensitive to the precipitation and relative humidity, and thus showed the worse performance in
summer. However, the predictive accuracy of NO3™ estimation based on NO> column amount was
closely linked with the chemical transformation from NO; to NOs".

The performance of NOs- dataset also displayed markedly spatial variation. The highest R? value
was observed in NCP (0.70), followed by Southwest China (0.60), Southeast China (0.59),
Northwest China (0.55), and the lowest one in Northeast China (0.44) (Table 3). The highest R?
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value occurring in NCP was mainly attributable to the largest training samples (> 400) compared
with other regions. Southeast China and Southwest China showed satisfactory cross-validation R?
values because the valid training samples in both of these regions were higher than 300. Although
both of Northeast China and Northwest China possessed limited training samples (< 200), the
predictive performances of these regions showed significant discrepancy. It was assumed that the
sampling sites in Northeast China were very centralized, while the sampling sites in Northwest
China were uniformly distributed across the whole region. Geng et al. (2018) revealed that the
modelling accuracy based on statistical models were significantly affected by the distribution
characteristics of sampling sites. However, both of RMSE and MAE showed different spatial
distributions with the R? value and slope of fitting curve. Note that the higher values of RMSE and
MAE were concentrated on Southwest China (2.08 and 1.41 pg N m*) and Northwest China (2.06
and 1.38 pug N m3) rather than NCP (1.74 and 1.06 pg N m3). There are two reasons responsible for
the result. At first, the predictive performances of Southwest China and Northwest China were
significantly worse than that of NCP, thereby leading to the higher RMSE and MAE. Moreover,
most of the sampling sites in Southwest China were focused on Sichuan Basin, which often showed
severe NOs™ pollution all the year round. Meanwhile, the annual mean NO3™ concentrations in
Yangling and Wuwei reached 4.1 and 4.5 pg N m, respectively. The higher loadings of NO3
concentrations for training samples led to the higher RMSE and MAE for Northwest China.
Although the cross-validation result suggested the new developed dataset achieved the better
modelling accuracy, the cross-validation algorithm cannot test the transferability and agreement of
this dataset in the past years. Hence, the unlearned data (annual mean NOj3™ concentration in 10 cities)
collected from previous references were employed to validate the transferability of this product. As
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shown in Fig. 4 and Table S2, we found that the R? value of new-developed NOj5™ product and
historical data reached 0.85 (Fig. 4), and the out-of-range R? value was even slightly higher than the
cross-validation R? value. Moreover, the out-of-bag slope based on these unlearning data reached
0.81, and equaled to the slope of cross-validation database. In addition, the site-based cross-
validation was also applied to validate the transferability of this dataset. The basic principle is that
all of the sites were evenly classified into ten clusters based on the geographical locations.
Afterwards, nine of ten were used to train the model and then test the model based on the remained
one. After ten round, all of the observed values versus estimate values was considered to be the final
result to validate the spatial transferability of this model. As depicted in Fig. S6, the site-based cross-
validation R? value reached 0.73, which was slightly lower than the cross-validation R? value of the
training model (0.78). The result suggested the new-developed dataset showed excellent
performance in the past decade.

Owing to the severe air pollution issue frequently observed in recent years, especially nitrogen-
bearing haze events, many studies have tried to predict the NO3™ concentrations in China. Most of
these studies employed CTMs to simulate the ambient NOj3™ concentrations over China. Huang et al.
(2015) employed WRF-CMAQ to estimate the inorganic nitrogen deposition over PRD, and
confirmed that the R value only reached 0.54. Afterwards, Han et al. (2017) used RAMS-GMAQ to
predict the dry deposition flux of reactive nitrogen, and significantly underestimated the NO3
concentration in the atmosphere. Very recently, Geng et al. (2019) used CMAQ to estimate the NO3
concentrations over East China, and the predictive performance (R = 0.53) showed the similar result
to Huang et al. (2015). Apart from these CTMs, the statistical models also has been applied to
estimate the ambient NOs3™ concentration over China. Unfortunately, the predictive accuracy was not
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good based on traditional statistical models (e.g., linear regression) (R = 0.47) (Jia et al., 2016). In
terms of model performance, the developed NO;™ product in our study was much better than those
developed by pioneering studies. Furthermore, this product showed many extra advantages than
those obtained by CTM:s especially for the estimates of air pollutants. For instance, CTMs generally
required continuous emission inventory data, which were often not available and showed high
uncertainties. Moreover, CTMs generally needed substantial computing time and big-data input data
to ensure the reliable predictive accuracy. Thus, the NO3™ product retrieved by CTMs often lacks of
long-term dataset (> 10 yr), and our study fills the gaps of previous studies.
4.3 Spatial pattern of new-developed NOj3™ dataset

The monthly NO3™ concentration displayed the similar distribution characteristic with PM» s and
PM; (Wei et al., 2019). Overall, the NO3™ concentration in East China was much higher than that in
West China. The higher NOs™ concentration was concentrated on NCP (3.55 + 1.25 pug N m?),
followed by Yangtze River Delta (YRD (2.56 + 1.12 pg N m™)), Pearl River Delta (PRD (1.68 +
0.81 ug N m)), Sichuan Basin (1.53 + 0.63 ug N m?), and the lowest one observed in Tibetan
Plateau (0.42 + 0.25 pg N m) (Fig. 5). Most provinces over NCP such as Beijing, Hebei, Henan,
and Shandong suffered from severe NO3™ pollution due to dense human activities and strong industry
foundation (Li et al., 2017) (Fig. S7), which released a large amount of N-bearing gaseous pollutants
to the atmosphere especially in winter. In BTH (2.97 + 1.97 ug N m™), Wang et al. (2016) verified
that these fresh NOy emitted from power plants or cement industries could be transformed into the
nitrate in the particulate phase by the aid of low air temperature. In YRD and PRD, the combustion
of fossil fuels and traffic emissions were considered to be the major source of NOx emission, which
favored to the formation of nitrate event through the gas-particle conversion processes (Fu et al.,
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2017; Kong et al., 2020; Ming et al., 2017). Apart from the contributions of smelting industries, the
poor topographical or meteorological conditions were also responsible for the severe NO3™ pollution
in Sichuan Basin (Tian et al., 2017; Wang et al., 2017). Tibetan Plateau generally showed the clean
air quality due to the unique landform and scarce industrial activity (Yang et al., 2018). In addition,
it was interesting to note that the Altai region and Taklimakan desert in Xinjiang autonomous region
also showed some NO3™ hotspots, though these regions were often believed to be the remote region.
It was assumed that the many petrochemical industries (e.g., Karamai oil field) were located in the
Altai region (Liu et al., 2018). Besides, Qi et al. (2018) verified that the resuspension of soil dust
might trigger the accumulation of NO3™ concentration in the aerosol.
4.4 Long-term trend of ambient NOj3™ across China

The temporal variation of NO3™ levels from 2005 to 2015 over China has been clarified in Fig.
6, Fig. 7 and Table S3. Overall, the ambient NO3™ concentration in China showed the significant
increasing trend of 0.10 pg N m3/year during 2005-2014, while it decreased sharply from 2014 to
2015 by -0.40 pg N m-/year. Overall, more than 90% areas of Mainland China showed consistent
temporal variation with the gradual increase from 2005 to 2013/2014, and then rapid decrease from
2013/2014 to 2015. However, the decreasing/increasing speed displayed significantly spatial
difference in some major regions of China. For instance, the ambient NO3"level in BTH showed the
remarkable increase during 2005-2013 by 0.20 ug N m-/year. Afterwards, the NOs™ level decreased
rapidly from 2013 to 2015 at a rate of -0.58 pg N m-3/year. The NOs" concentrations in YRD (0.11
ug N m3/year) and PRD (0.05 ug N m~/year) both showed the slight increases during 2005-2013,
though the statistical test revealed the increases were significant (p < 0.05). However, the NOj3
concentrations in YRD and PRD showed the dramatic decreases with -0.48 and -0.36 pug N m™/year
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during 2013-2015, respectively. As seen from 2005 to 2015, the NOs3™ concentration in BTH
displayed the slight increase during this period. Nevertheless, the NOs™ levels in YRD and PRD both
displayed the slow decreases by -0.01 and -0.03 pg N m~/year, respectively.

Furthermore, the different provinces displayed disparate temporal variations especially during
11th five year plan (2005-2010). 31 provinces (municipalities/autonomous region) of China can be
classified into three clusters based on the temporal trends of NO3™ concentrations during 11th five
year plan. The first cluster featured the gradual increase of NO3™ concentration during this period,
which consisted of three provinces in Northeast China (e.g., Heilongjiang) and central provinces in
South China (e.g., Jiangxi, Anhui) (Table S3). The second cluster represented the provinces with the
stable increases of NO3™ during 2005-2007 and slight decreases during 2007-2010. Some provinces
of NCP (e.g., Beijing, Hebei, Henan) and Northwest China (e.g., Gansu, Inner Mongolia, Ningxia)
fell into the second cluster. The last cluster featured the opposite temporal trend to the second cluster
during 2005-2010, which included many southern provinces such as Fujian, Guangdong, Zhejiang,
and Guangxi. Although the central government proposed the emission reduction goal in 2006, the
ambient NO3~ concentrations in most provinces did not display pronounced decreases, which was
totally different from the decrease of PMz 5 since 2007 (Xue et al., 2019). Especially in the provinces
of Northeast China (e.g., Liaoning), the ambient NOj3™ concentrations in these provinces still showed
the rapid increases after the proposal of emission control measures. It was assumed that these
provinces generally possessed a large amount of energy-intensive industries and coal-fired power
plants (Zhang et al., 2018). Moreover, the result might be associated with the fact that the emission
reduction measures focused on the reduction of SO, emission rather than NOy emission (Kanada et
al., 2013). Schreifels et al. (2012) revealed that major control measures during this period included
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shutting down inefficient industries, increasing the pollution levy for excessive SO, emissions, and
implementing energy conservation projects. Therefore, the total SO, emission in 2010 decreased by
more than 14% compared with the emission in 1995 and the ambient SO> concentrations in many
provinces since 2005 displayed significant decreases compared with those in 1990s (Li et al., 2020b;
Lu et al., 2013; Zhou et al., 2015). Nonetheless, the NOx emission in China did not display
significant decrease during this period (Duncan et al., 2016; Granier et al., 2017), and thus the
ambient NO3™ in many provinces still kept the higher concentrations. It should be noted that the
NOs™ concentrations in some provinces of NCP exactly exhibited the slow decreases after 2007. It
was supposed that the energy structure adjustment and elimination of backward production capacity
promoted the small decrease of NO3™ concentrations (Ma et al., 2019). Unfortunately, the slight
decreases were quickly offset by the rapid increase of energy consumption. Zhang et al. (2018)
demonstrated that the industry added values and private car number in BTH have been increasing
by 189.4% and 279.6% during 2005-2010, respectively. In addition, the decrease of SO» emission
rather than NOy emission can further lead to NOs™ increase because of decreased aerosol acidity,
which was dictated by SO4> in particulate matter (Xie et al., 2020; Vasilakos et al., 2018).

Since 2010, the central government began to implement severe limitations in PM; 5, NOy, and
soot emissions, and thus the total NOx emission during 11th five year plan (2011-2015) showed
slow decrease (10%) across China (Ma et al., 2019). However, the NO3™ concentrations across China
did not show rapid response to the emission control measures. For instance, the NO3™ concentrations
in most provinces of China still showed rapid increases during 2010-2013 (2014) (Fig. 7 and Fig.
8). The result suggested that the control measures about the NOy emissions from vehicles and ships
might be not very effective. Until 2013, the central government issued Action Plan for Air Pollution
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Prevention and Control (APPC-AP) in order to enhance the air pollution prevention measures (Li et
al., 2017; Li et al., 2019). Many powerful economic and policy means including pricing (tax) policy
and optimization of industrial layout caused the rapid decreases of NOs™ concentrations after 2013
in many provinces (e.g., Beijing, Hebei, Zhejiang). Wang et al. (2019b) also verified that the NO3
level in PM, s over BTH has decreased by 20% during 2013-2015, which was in accordance with
the finding of our study. In addition to the impact of emission reduction, the rapid decrease of NO3
concentration over China after 2013 might be linked with the beneficial meteorological factors
because Chen et al. (2019c) has demonstrated that favorable meteorological conditions led to about
20% of the PM, s decrease in BTH during 2013-2015. However, the decreasing trend of NOj3
concentration during 2014-2015 in PRD (-0.36 pg N m~/year) was significantly slower than that in
BTH (-0.58 ug N m*/year) and YRD (-0.48 ug N m=/year) (Table 4). Wang et al. (2019b) found
that the ambient NO3™ concentration in a background site of PRD even showed an upward trend
during 2014-2016. Thus, it was necessary to strengthen the control of nitrogen oxide emissions.

In general, the ambient NO3™ concentration varied greatly at the seasonal scale (Fig. 9). China
undergone the most serious NOj3™ pollution in winter (1.57 + 0.63 ug N m), followed by autumn
(1.09 £ 0.52 pg N m3), spring (0.78 + 0.50 ug N m), and the lowest one in summer (0.63 + 0.40
ug N m?) (Table S4). The higher NOs~ concentration observed in winter might be contributed by
the dense coal combustion in North China and unfavorable meteorological conditions (Itahashi et
al., 2017; Quan et al., 2014; Wang et al., 2019d). The lightest NO3™ pollution in summer was
attributable to the abundant precipitation, which promoted the diffusion and removal of pollutants
and reduced ambient NO3" level (Hu et al., 2005). The ratio of NOs™ concentration in winter (NO3"
winter) and that in summer (NO3 summer) Varied greatly at the spatial scale. The NO3 winter/ NO3 summer
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in some provinces (municipalities) including Tianjin (2.11), Hebei (2.25), and Henan (2.84)
displayed the higher values compared with other provinces. The higher NO3 winter/ NO3 summer in NCP
might be affected by the fossil fuel combustion for domestic heating, while some southern provinces
did not need domestic heating in winter. In contrast, the ratio of NO3 winter/ NO3 summer €xhibited the
lower values in some western provinces such as Tibet and Qinghai. It might be probably associated
with the less aerosol emission from anthropogenic source and the higher wind speed (Wei et al.,
2019).
4.5 Uncertainty analysis of NO;3™ estimation

The ensemble model of three machine-learning algorithms captured the better accuracy in
predicting the NO;™ level from OMI data. Nonetheless, the ensemble model still showed some
improvement space in terms of the R? value. At first, meteorological data collected from reanalysis
in ECMWF website generally showed high uncertainty, which inevitably increased the error of NO3
estimation. In our study, we validated the gridded T.m and Tp datasets against the groud-observed
datasets and found that the R? values of Tom and Tp reached 0.98 and 0.83 (Table S5), respectively.
The result suggested that T, showed the lower uncertainty, while Tp displayed relatively higher
uncertainty. Except Tam and Tp, the ground-level datasets for other meteorological factors were not
open access, and thus we cannot assess their uncertainties. Thus, we only reviewed some references
and evaluated their uncertainties. For instance, Guo et al. 2019 found that the reanalysis BLH data
also exhibited large uncertainties because few sounding data were assimilated. These uncertainties
derived from predictors could be passed to the ensemble model, and thus increased the uncertainties
of ambient NO3™ estimates.

The second reason was closely linked to the missing NO> column amount across China. The
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NO; column amount retrieval showed many nonrandom biases especially for the arid or semi-arid

area with high surface reflectance. The missing NO> column amounts over China were not filled in

our study due to the increased uncertainty of filling NO; column. Moreover, it should be noted that

the monthly NO, column amounts were averaged based on the daily one, and the missing ratio of

daily NO; columns during 2005-2015 reached 57.64%, the higher missing ratio might increase the

uncertainty of NO3™ simulation.

Lastly, the developed ensemble model did not integrate the direct spatiotemporal weight

indicators (e.g., the distance of observed sites and contiguous grids) though many predictors (e.g.,

month of year) reflecting spatiotemporal autocorrelation were input into the original model as the

key predictors. Furthermore, the developed model was the ensemble one of three original models,

which ignored the spatiotemporal autocorrelation of estimation residues from first-stage model. In

the future work, the ensemble model could be combined with a space-time model to further enhance

the modelling performance.

5. Data availability

The monthly NOs™ datasets at 0.25° resolution across China during 2005-2015 are available at

https://doi.org/10.5281/zenodo.3988307 (Li et al., 2020), which can be downloaded in xlsx format.

The missing values are shown in NaN.
6. Conclusions and implications

In this study, RF, GBDT, and XGBoost algorithms were combined to establish a high-resolution
(0.259 NOs" dataset over China during 2005-2015 on the basis of multi-source predictors. The NOs”
product showed high cross-validation R? value (0.78), but low RMSE (1.19 pug N m) and MAE
(0.81 pg N m3). The NOs5" dataset showed the markedly spatiotemporal discrepancy. The R? value
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was in the order of summer (0.85) > spring (0.80) = autumn (0.80) > winter (0.75) across China,
and the R? showed the highest value in NCP. In addition, the dataset exhibited excellent
transferability (R? = 0.85, RMSE = 0.74 ug N m, and MAE = 0.55 pg N m) on the basis of the
unlearning observed data in ten sites.

The new-developed NOj  dataset showed remarkably predictive accuracy compared with
previous products developed by CTMs and linear regression model. The result might be linked to
two key reasons. First of all, the new product assimilated high-resolution NO> column amount
instead of the NOy emission inventory used by CTMs. The imperfect knowledge about the chemical
modules with regard of the NO;™ formation and the inaccurate emission inventory decreased the
predictive performance of CTMs. In contrast, the new product was obtained using ensemble
machine-learning model, which did not need to consider the photochemical or aqueous process from
gaseous NO; to particulate NO3s~. Compared with the NO3z™ product estimated by linear regression
model (R? = 0.21), the new product significantly elevated the modelling performance of NO3-
concentration. It was supposed that the ensemble model for the development of the new NOj3™ dataset
did not predefine the potential relationships between explanatory variables and NOjs™ level as the
multiple regression model, which must assume the linear linkage between dependent variable and
predictors before model establishment.

On the basis of the such dataset, the spatiotemporal variation of NO3z™ concentration over China
during 2005-2015 were clarified. The annual mean NOs™ concentration followed the order of NCP
(3.55 +1.25 pg N m?) > YRD (2.56 £1.12 ug N m3) > PRD (1.68 £0.81 pug N m) > Sichuan
Basin (1.53 +0.63 pg N m3) > Tibetan Plateau (0.42 +0.25 pg N m?®). The higher NOs
concentrations in NCP, YRD, and PRD were mainly contributed by the intensive industrial and
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traffic emissions. Sichuan Basin suffered serious NOs™ pollution due to the high loadings of aerosols
and unfavorable terrain condition. Tibetan Plateau shared with the lightest NO3™ pollution because
of the scarce anthropogenic emissions and favorable meteorological factors. Additionally, we also
found that the ambient NO3~ concentration showed significant increasing trend of 0.10 pg N m
3/year during 2005-2014, while it decreased sharply from 2014 to 2015 at a rate of -0.40 ug N m
3/year. The ambient NOs™ levels in BTH, YRD, and PRD displayed slight increases at the rate of
0.20, 0.11, and 0.05 pg N m/year during 2013-2015, respectively. Afterwards, the NOj5-
concentrations decreased sharply at the speed of -0.58, -0.48, and -0.36 ug N m>/year. Although
National Economic and Social Development of China has issued the emission reduction goal in
2006, the NO3™ concentrations in most provinces did not show the significant decreases during 2005-
2010. It might be contributed by the increase of energy consumption and non-targeted emission
control measures. Since 2010, the government began to decrease the NOx emission over China,
whereas the NO3™ concentrations in many provinces still showed slight increases during 2010-2014
because the benefits of control measures for NOyx emission could be neutralized by elevated energy
consumption along with the rapid economic development. Since 2014, Chinese government issued
APPC-AP and further enhanced the emission control measures, and triggered the dramatic decrease
of NOj3™ concentration over China. Apart from the effect of emission reduction, the favorable
meteorological conditions might lead to the rapid decrease of NO3™ level over China during 2014-
2015. Compared with the powerful emission control measures, meteorological factors only
contributed a small portion of NO;™ reduction in China. Besides, the decrease speed of NO;3™ level
in China also displayed pronounced spatial heterogeneity and some background region even
featured the upward of air pollutant in recent years. Therefore, it is still imperative to strengthen the
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emission reduction measures.

It must be acknowledged that our study still suffers from some limitations. First of all, the NO3

dataset was developed by machine-learning models, which lacked of the chemical module

concerning about the transformation pathway from NO; to NOs’, and might underestimate the

ambient NO3 concentration across China. In the future work, the output results of CTMs including

conversion ratio from NO; to NOs, dry/wet deposition flux of NO> and NOs™ in the atmosphere

should be incorporated into the machine-learning model to develop next-generation NO3™ product.

Second, the low time-resolution (monthly) observation data hindered the daily estimation of NO3

concentration. The daily NO3 datasets are warranted in the future because it could be used to assess

the potential impact on human health. Besides, the ultrahigh-resolution satellite (TROPOMI) can

allow continuation and enhancement of the spatiotemporal NO3" estimation though the OMI product

could capture enough spatial variations across China.
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Fig. 1 Spatial distributions of ground-level NO3™ monitoring sites used for model establishment. Red

circles represent the ground-level sites during 2010-2015. The colormap denotes the elevation

distribution across China.
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Fig. 2 The workflow of the ensemble model development for ambient NO;™ estimates.
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Fig. 3 Density scatterplots of 10-fold cross-validation results for monthly NO;3™ estimation (Unit: pg
N m™) across China for the ensemble decision trees model (a), RF (b), GBDT (c), and XGBoost (d),
respectively. The color bar reflects the sampling size of each model. The red solid line denotes the
best-fit line through the data points (1636 points). The black dashed line denotes the diagonal, which

could be used to reflect the deviation of data points.
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793  Fig. 4 The transferability validation of the ensemble model in estimating NO3™ concentration over

794 China based on the unlearning observation data (Shen et al., 2013; Shen et al., 2009; Wang et al.,

795 2019a; Xu et al., 2018b). The color bar reflects the sampling size of each model. The red solid line

796  denotes the best-fit line through the data points. The black dashed line denotes the diagonal, which

797  could be used to reflect the deviation of data points.
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799  Fig. 5 The spatial pattern of estimated NO3™ concentration (ug N m) over China during 2005-2015

800 based on the ensemble model.
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Fig. 6 The annual mean predicted NOs™ concentrations (ug N m) across the entire China from (a)-

(k) 2005-2015 based on the ensemble model.
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805  Fig. 7 The annual mean NO3™ concentrations in major regions across China during 2005-2015. The

806  solid lines denote the mean NOs concentrations and the shadow represents the range of NOjs

807 concentrations.
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810  Fig. 8 The long-term trends of NO3™ concentrations (ug N m~) and significance levels in China (a,
811 b, and ¢ denote the annual variation of ambient NOj3™ concentration during 2005-2015, 2005-2014,
812  and 2014-2015, respectively. d, e, and f represent the significance level of NOs™ trend during these
813  periods). The pale green color denotes the regions with the significant variation of ambient NOj3

814  concentrations (p < 0.05), while the gray color represents the regions with insignificant variation of

815 NOs concentrations.
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817  Fig. 9 The mean concentrations of ambient NOj3™ in spring (a), summer (b), autumn (c), and winter

818 (d) during 2005-2015 over China, respectively.
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820  Table 1 The cross-validation result of NO3™ estimation over China during 2010-2015.

Year Sample size R? value Slope RMSE (ug N MAE (ug N m
m) %)
2010 135 0.62 0.60 1.39 0.90
2011 291 0.88 0.85 0.32 0.24
2012 274 0.89 0.86 0.33 0.28
2013 312 0.83 0.82 0.64 0.43
2014 306 0.74 0.76 1.50 1.04
2015 318 0.78 0.78 1.35 0.86

821
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822 Table 2 The cross-validation result of NOs™ estimation over China in four seasons.

Season Sample size R? value Slope RMSE (ug N MAE (ug N m
m) %)
Spring 395 0.80 0.80 0.71 0.48
Summer 418 0.85 0.84 0.29 0.20
Autumn 437 0.80 0.78 1.10 0.70
Winter 386 0.75 0.73 1.85 1.23

823
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Table 3 The cross-validation result of NOs™ estimation over China in different regions (Northeast
China includes Heilongjiang, Jilin, and Liaoning provinces; NCP includes Beijing, Tianjin, Hebei,
Henan, Shandong, and Shanxi provinces; Southeast China includes Jiangsu, Zhejiang, Fujian,
Guangdong, Jiangxi, Anhui, Hunan, Hainan, Shanghai, and Hubei provinces; Southwest China
includes Yunnan, Guangxi, Sichuan, Tibet, Chongqing, and Guizhou provinces; Northwest China

includes Inner Mongolia, Xinjiang, Gansu, Qinghai, Ningxia, and Shaanxi.

Season Sample size R? value Slope RMSE (ug N MAE (ug N m
m) %)
Northeast 175 0.44 0.43 1.30 0.81
China
NCP 492 0.70 0.64 1.74 1.06
Southeast 395 0.59 0.57 1.50 0.84
China
Southwest 384 0.60 0.59 2.08 1.41
China
Northwest 190 0.58 0.52 2.06 1.38
China
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831  Table 4 The trend analysis of NO3™ concentrations in China, BTH, YRD, and PRD regions during
832  2005-2015.

Period Trend China BTH YRD PRD
2005-2014 Trend (ug N m- 0.08 0.13 0.08 0.03
3/year)
Significance p<0.05 p<0.05 p<0.05 p <0.05
2014-2015 Trend (ug N m- -0.40 -0.76 -0.79 -0.59
3/year)
Significance p<0.05 p<0.05 p<0.05 p<0.05
2005-2015 Trend (ug N m- 0.04 0.04 -0.01 -0.03
3/year)
Significance p<0.05 p>0.05 p>0.05 p<0.05
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