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Abstract 13 

High loadings of nitrate (NO3
-) in the aerosol over China significantly exacerbates the air quality 14 

and poses a great threaten on ecosystem safety through dry/wet deposition. Unfortunately, limited 15 

ground-level observation data makes it challenging to fully reflect the spatial pattern of NO3
- level 16 

across China. Up to date, the long-term monthly particulate NO3
- datasets at a high resolution were 17 

still missing, which restricted the assessment of human health and ecosystem safety. Therefore, a 18 

unique monthly NO3
- dataset at 0.25° resolution over China during 2005-2015 was developed by 19 

assimilating surface observation, satellite product, meteorological data, land use types and other 20 

covariates using an ensemble model combining random forest (RF), gradient boosting decision tree 21 

(GBDT), and extreme gradient boosting (XGBoost). The new developed product featured excellent 22 

cross-validation R2 value (0.78) and relatively lower root-mean-square error (RMSE: 1.19 μg N m-23 

3) and mean absolute error (MAE: 0.81 μg N m-3). Besides, the dataset also exhibited relatively 24 
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robust performance at the spatial and temporal scale. Moreover, the dataset displayed good 25 

agreement with (R2 = 0.85, RMSE = 0.74 μg N m-3, and MAE = 0.55 μg N m-3) some unlearned 26 

data collected from previous studies. The spatiotemporal variations of the developed product were 27 

also shown. The estimated NO3
- concentration showed the highest value in North China Plain (NCP) 28 

(3.55 ± 1.25 μg N m-3), followed by Yangtze River Delta (YRD (2.56 ± 1.12 μg N m-3)), Pearl River 29 

Delta (PRD (1.68 ± 0.81 μg N m-3)), Sichuan Basin (1.53 ± 0.63 μg N m-3), and the lowest one in 30 

Tibetan Plateau (0.42 ± 0.25 μg N m-3). The higher ambient NO3
- concentrations in NCP, YRD, and 31 

PRD were closely linked to the dense anthropogenic emissions. Apart from the intensive human 32 

activities, poor terrain condition might be a key factor for the serious NO3
- pollution in Sichuan 33 

Basin. The lowest ambient NO3
- concentration in Tibetan Plateau was contributed by the scarce 34 

anthropogenic emission and favorable meteorological factors (e.g., high wind speed). In addition, 35 

the ambient NO3
- concentration showed marked increasing tendency of 0.10 μg N m-3/year during 36 

2005-2014 (p < 0.05), while it decreased sharply from 2014 to 2015 at a rate of -0.40 μg N m-3/year 37 

(p < 0.05). The ambient NO3
- levels in Beijing-Tianjin-Hebei (BTH), YRD, and PRD displayed 38 

gradual increases at a rate of 0.20, 0.11, and 0.05 μg N m-3/year (p < 0.05) during 2005-2013, 39 

respectively. The gradual increases of NO3
- concentrations in these regions from 2005 to 2013 were 40 

due to that the emission reduction measures during this period focused on the reduction of SO2 41 

emission rather than NOx emission and the rapid increase of energy consumption. Afterwards, the 42 

government further strengthened these emission reduction measures, and thus caused the dramatic 43 

decreases of NO3
- concentrations in these regions from 2013 to 2015 (p < 0.05). The long-term NO3

- 44 

dataset over China could greatly deepen the knowledge about the impacts of emission reduction 45 
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measures on air quality improvement. The monthly particulate NO3
- levels over China during 2005-46 

2015 are open access in https://doi.org/10.5281/zenodo.3988307 (Li et al., 2020c). 47 

1. Introduction 48 

Reactive nitrogen (Nr) emissions displayed remarkable increases in the past decades owing to 49 

the high-speed industrial development and urbanization (Cui et al., 2016; Singh et al., 2017). 50 

Ambient reactive N emissions were mainly characterized with nitrogen oxides (NOx), accounting 51 

for about 30% of the gross Nr emissions (Chen et al., 2015; Liu et al., 2011). These important N-52 

bearing precursors could be transformed into the nitrate (NO3
-) via multiple chemical pathways (e.g., 53 

heterogeneous or liquid phase reaction), and finally deposited in the terrestrial or aquatic ecosystem 54 

(Jia et al., 2016; Qiao et al., 2015; Zhao et al., 2017). On the one hand, heavy loadings of NO3
- 55 

greatly degraded the atmospheric visibility and cool the surface of the Earth system because 56 

particulate NO3
- significantly scattered solar radiation (Fu and Chen, 2017). Moreover, enhanced N 57 

deposition might pose a negative effect on the ecosystem health such as biodiversity losses, 58 

freshwater eutrophication, and oceanic acidification (Compton et al., 2011; Erisman et al., 2013). 59 

Hence, deepening the knowledge about the spatial patterns and long-term trends of particulate NO3
- 60 

in the atmosphere is beneficial to accurately evaluate the ecological and environmental effects of N 61 

deposition. 62 

Ground-level observation is often acknowledged to be an effective means to explore the spatial 63 

patterns of ambient NO3
- concentrations. Many long-term monitoring networks including Clean Air 64 

Status and Trends Network (CASTNET) and Canadian Air and Precipitation Monitoring Network 65 

(CAPMoN) were established to quantify the ambient NO3
- concentration and inorganic N deposition. 66 

Du et al. (2014) revealed that the NO3
- deposition showed significant decrease across the United 67 

https://doi.org/10.5281/zenodo.3988307


4 

 

States during 1985-2012 based on these observation data. To date, most of these observation 68 

networks focused on North America and Europe, whereas few monitoring sites were located on East 69 

Asia especially on China. Fortunately, China has constructed some ground-level observation 70 

networks such as CARE-China Observation Network in recent years. On the basis of these 71 

observation networks, the overall spatiotemporal trend of particulate NO3
- concentration has been 72 

clarified (Wang et al., 2019c; Xu et al., 2018a). Xu et al. (2018a) observed that the particulate NO3
- 73 

concentration (< 4.5 μm) over China did not show significantly temporal variation during 2011-74 

2015. Very recently, Wang et al. (2019) found that the NO3
- level in the fine particle (PM2.5) 75 

decreased by 34% during 2015-2017. Although the overall spatial patterns have been preliminarily 76 

revealed based on these isolated sites, these sparse ground-observed sites did not accurately reflect 77 

the high-resolution NO3
- pollution especially the regions far away from these sites because each 78 

station only possessed limited spatial representative and NO3
- concentration was often highly 79 

variable in space and time (Liu et al., 2017a). More importantly, the current studies only investigated 80 

the ambient NO3
- concentrations in recent years, while the long-term variation of NO3

- level 81 

remained unknown. It was well known that the energy consumption in China displayed remarkable 82 

increase in recent decades (Zhan et al., 2018). Meanwhile, Chinese government also proposed 83 

pollutant emission reduction policies since 2005 to ensure the coordinated development of economic 84 

growth and environmental protection (Ma et al., 2019). However, the synergistic effects of air 85 

pollution control policies and increased energy consumption on long-term evolution trend of NO3
- 86 

pollution over China were not assessed yet, which were extremely critical for the implementation 87 

of emission control measures. 88 

To complement the gaps of ground-level observations, satellite product of NO2 is regarded as a 89 
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welcome addition to investigate the long-term trends of N-bearing components in the atmosphere. 90 

Ozone Monitoring Instrument (OMI) was regarded as the typical satellite product applied to 91 

simulate the ambient NO3
- concentration (Liu et al., 2017b; Vrekoussis et al., 2013). Jia et al. (2016) 92 

firstly used the linear regression method to predict the NO3
- levels and dry deposition fluxes at the 93 

global scale based on OMI-derived NO2 column amount. However, the dry deposition fluxes of 94 

NO3
- modelled by Jia et al. (2016) showed weak correlation with the measured value (R = 0.47), 95 

which might be attributable to the simple linear assumption between NO2 column amount and NO3
- 96 

deposition flux. It was well documented that the nonlinearity relationship between multiple 97 

predictors and NO3
- concentration were hard to reveal on the basis of the simple linear model (Zhan 98 

et al., 2018a; Zhan et al., 2018b). To enhance the predictive performance of NO3
- concentration, Liu 99 

et al. (2017) used the chemical transport models (CTMs) to estimate the dry deposition fluxes of N-100 

bearing species recently based on the remotely sensed NO2 column amount. However, CTMs often 101 

suffered from high uncertainty because of the limited knowledge about the generation pathways for 102 

particulate NO3
- in the atmosphere (Zhan et al., 2018a). Recently, the emergence of machine 103 

learning models provided unprecedented opportunities to estimate the concentrations of N-bearing 104 

components (Chen et al., 2019b; Zhan et al., 2018b). It was well known that the machine-learning 105 

models generally showed the better predictive accuracy than CTMs and traditional statistical models 106 

when the training samples were sufficient (Zang et al., 2019; Zhan et al., 2017). Zhan et al. (2018b) 107 

employed random forest (RF) coupled with spatiotemporal Kriging model to simulate the ambient 108 

NO2 levels over China, and achieved the moderate modelling performance (R2 = 0.62). Afterwards, 109 

Chen et al. (2019) used the extreme gradient boosting (XGBoost) model combined with kriging-110 

calibrated satellite method to estimate the national NO2 concentration and significantly improved 111 
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the predictive performance (R2 = 0.85). Up to date, no study utilized the machine-learning models 112 

to significantly improve the predictive accuracy of NO3
- concentration. Moreover, nearly all of the 113 

current studies only focused on the spatial pattern of particulate NO3
- level in China (Liu et al., 2017; 114 

Jia et al., 2016), while they cannot establish a long-term NO3
- dataset across China. 115 

Here, we firstly developed a high-resolution (0.25°) monthly particulate NO3
- dataset across 116 

China during 2005-2015 based an ensemble model including RF, XGBoost, and gradient boosting 117 

decision tree (GBDT) algorithms. At first, the modelling performance and improvement of this new-118 

developed product compared with previous datasets were evaluated. Afterwards, we analyzed the 119 

spatial variation and long-term evolution trend of estimated NO3
- concentration over China and 120 

explored the potential impacts of air pollution control measures on NO3
- variation. The long-term 121 

NO3
- datasets could supply scientific judge for policy makers to mitigate the severe nitrate pollution 122 

in China. 123 

2. Input data 124 

2.1 Ground-level NO3
- data 125 

The monthly NO3
- monitoring data during 2010-2015 were collected from nationwide nitrogen 126 

deposition monitoring network (NNDMN) including 32 sites (Fig. 1, Fig. S1, and Fig. S2), and 127 

these sites could be divided into three types including urban, rural, and background sites (Xu et al., 128 

2018a). Ambient concentrations of particulate NO3
- were determined on the basis of an active 129 

DEnuder for Long-Term Atmospheric sampling system (DELTA). The system comprises of a pump, 130 

a filter sampling instrument, and a dry gas meter with high sensitivity. Two set of filters in a 2-stage 131 

filter pack was applied to sample the aerosol particles, with a first K2CO3/glycerol impregnated filter 132 

to obtain NO3
- particles in PM10. All of the monitoring sites kept the same sampling frequency at 133 
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the month scale, and these samples were continuously collected over a month. The detailed sampling 134 

and analysis procedures have been described by Xu et al. (2018a) and Xu et al. (2019). The detection 135 

limit of particulate NO3
- concentration over China is 0.01 mg N/L. 136 

2.2 Satellite product of NO2 column density 137 

   The OMI-NO2 level-3 tropospheric column densities (0.25° resolution) were used to predict the 138 

NO3
- concentration (Fig. S3). The OMI aboard on the Aura satellite was available since September, 139 

2004, which displayed global coverage and crossed the entire earth each day. OMI possessed three 140 

spectral channels ranging from 270 to 500 nm, and thus was often applied to monitor the gaseous 141 

pollutants such as NO2, SO2, and O3.  142 

In this study, we downloaded the daily NO2 columns during 2005-2015 from 143 

https://earthdata.nasa.gov/. The tropospheric NO2 column density data of poor quality (e.g., cloud 144 

radiance fraction > 0.5, solar zenith angles > 85°, and terrain reflectivity > 30%) should be removed. 145 

Additionally, the cross-track pixels sensitive to significant row anomaly also must be deleted. 146 

Finally, the monthly NO2 columns were estimated by averaging the daily NO2 columns. 147 

2.3 Meteorological factors, land use types, and other variables 148 

These independent variables for particulate NO3
- estimates were gained from multiple sources. 149 

The meteorological data on a daily basis (European Centre for Medium-Range Weather Forecasts 150 

reanalysis (ECMWF ERA-Interim) datasets (0.25° resolution)) were downloaded from the website 151 

of http://www.ecmwf.int/ (Table S1). Among all of the daily meteorological data in ECMWF 152 

website, 2-m temperature (T2m), 2-m dewpoint temperature (D2m), 10-m latitudinal wind component 153 

(U10), 10-m meridional wind component (V10), sunshine duration (Sund), surface pressure (Sp), 154 

boundary layer height (BLH), and total precipitation (Tp) were applied to estimate national NO3
- 155 
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levels. The elevation, gross domestic production (GDP), and population density (PD) data over 156 

China were downloaded from the website of http://www.resdc.cn/. PD and GDP in 1995, 2000, 2005, 157 

2010, and 2015 were linearly interpolated to calculate PD and GDP in each year. Then, the yearly 158 

GDP data were divided by 12 to estimate the monthly GDP. Afterwards, these data were 159 

incorporated into the sub-model to predict the particulate NO3
- concentration over China. In addition, 160 

the land use data (e.g., grassland, forest, urban, and agricultural land) were also downloaded from 161 

the website of http://www.resdc.cn/.  162 

   These independent variables collected from various sources were uniformly resampled to 0.25° 163 

× 0.25° grids. For instance, the land use area, GDP, and PD in 0.25° grid was calculated based on 164 

area-weighted average algorithm. To ensure the better predictive performance, it was necessary to 165 

employ the appropriate variable selection method to remove some redundant predictors. The basic 166 

principle of the variable choice was to remove the variables with the lower importance values. The 167 

variables could be regarded as the redundant ones when the R2 value of the final model showed 168 

dramatic decrease after removing them. Based on this method, in the final sub-model, all of the 169 

variables except GDP, PD, and grassland have been applied to estimate the ambient NO3
- 170 

concentrations across China. 171 

3. Methods 172 

3.1 Ensemble model development 173 

In the previous studies concerning about air pollution prediction, RF, gradient boosting decision 174 

tree (GBDT), and extreme gradient boosting (XGBoost) showed good predictive performance (Li 175 

et al., 2020a). RF model possesses a large amount of decision trees, and each one suffered from an 176 

independent sampling process and these trees displayed the same distribution (Breiman, 2001). This 177 
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model generally shows the higher prediction accuracy due to the injected randomness. The model 178 

performance mainly relies on the number of trees, the variable group, and the splitting features. The 179 

detailed algorithms are shown as follows: 180 
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where (xi, yi) denotes the sample for i = 1, 2, …, N in M regions (M1, M2, …, Mz); I denotes the 186 

weight of each branch; L denotes the branch of decision tree; cm represents the response to the model; 187 

zc


  denotes the best value, m represents the feature variable; c1 denotes the mean value of left 188 

branch; c2 denotes the mean value of right branch; n is the split point. 189 

 GBDT model is often considered to be a typical boosting method. Compared with RF model, 190 

each classifier is applied to decrease the residual of the last round. The detailed equations are as 191 

follows: 192 
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ctj denotes the predicted the estimation error in the last round; Rtj denotes each leaf node for the 195 

decision trees; yi represents the observed value; ft-1(xi) is the predicted value in the last round. c was 196 

regarded as the optimal value when ctj reaches the least value. 197 
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XGBoost method is an updated version of GBDT model and loss functions are expanded to the 198 

second order function. On the basis of the pioneering studies (Chen et al., 2019a), XGBoost 199 

generally shows excellent performance because of its high efficiency and impressive accuracy. The 200 

detailed XGBoost algorithm is shown as the following formula (Zhai and Chen, 2018): 201 
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       (8) 202 

where L(t) represents the cost function at the t-th period;   denotes the derivative of the function; 203 

( 1)

2
ty   denotes the second derivative of the function; l is the differentiable convex loss function that 204 

reveals the difference of the predicted value ( y


) of the i-th instance at the t-th period and the target 205 

value (yi); ft(x) denotes the increment; ( )tf  represents the regularizer. 206 

However, each model still shows some disadvantages in the prediction accuracy. Consequently, 207 

it was proposed to combine these models with multiple linear regression (MLR) model to further 208 

estimate monthly NO3
- concentration in the atmosphere over China. As shown in Fig. 2, three 209 

submodels including RF, GBDT, and XGBoost were stacked through MLR model to estimate the 210 

monthly NO3
- concentration over China. At first, a 5-fold cross-validation method was adopted to 211 

train each submodel to determine the appropriate parameter. Afterwards, the MLR model was 212 

trained with the final simulated concentrations of three submodels and observations. Finally, the 213 

high-resolution ambient NO3
- level over China were estimated based on the optimal ensemble model. 214 

The detailed algorithms are shown as follows (Fig. 2): 215 

3  A Pred_RF+B Pred_GBDT+C Pred_XGBoost+eijNO      (9) 216 

where Pred_RF, Pred_GBDT, and Pred_XGBoost denote the predicted NO3
- concentrations by RF, 217 

GBDT, and XGBoost, respectively. A, B, and C represent the partial regression coefficients of RF, 218 

GBDT, and XGBoost predictors, respectively. eij denotes the residual error. Based on the estimates, 219 
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the regression coefficients including A, B, C, and the residual error (eij) determined by the MLR 220 

model were 0.42, 0.77, 0.09, and -0.87, respectively. The variance inflation factors of RF (2.01), 221 

GBDT (2.69), and XGBoost (2.08) were significantly lower than 10, which suggested the MLR 222 

model was robust. 223 

   The RF model was trained using matlab2019a with a package named random forest-master. Both 224 

of GBDT and XGBoost algorithms were conducted using many packages named gbm, caret, and 225 

xgboost in R software. 226 

3.2 The error estimation and uncertainty assessment 227 

The estimation performance of the ensemble model was evaluated based on 10-fold cross-228 

validation algorithm. The principle of this method meant that the entire datasets were divided into 229 

10 groups with the same capacity randomly. Nine groups were applied to develop the model and the 230 

remained one was used to predict the NO3
- level. After ten rounds, every observed NO3

- 231 

concentration showed a corresponding predicted value. Some key indices such as determination 232 

coefficient (R2), root mean square error (RMSE), and mean absolute prediction error (MAE) were 233 

selected as the key indicators to identify the optimal modelling method. 234 

The uncertainty of ensemble model were mainly derived from input ancillary variables. For 235 

instance, both of the satellite data and meteorological data often suffered from some uncertainties. 236 

To quantify the uncertainties derived from meteorological data, the meteorological data at 0.25° 237 

across China were validated using ground-measured meteorological data downloaded from the 238 

website of Chinese Meteorology Bureau (http://data.cma.cn/). Additionally, NO2 columns generally 239 

suffered from some uncertainties, whereas the uncertainties of these NO2 columns cannot be 240 

determined because the data about the ground-level NO2 columns were not open access. In our study, 241 

http://data.cma.cn/
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we only estimated the missing ratio of NO2 column, thereby evaluating the uncertainty of NO3
- 242 

dataset. 243 

3.3 Trend analysis  244 

   The trend analysis of particulate NO3
- concentration was performed using the Mann-Kendall 245 

nonparametric test. This method has been widely applied to analyze the historical trends of carbon 246 

fluxes (Tang et al., 2019) and air quality (Kong et al., 2019), which could reflect whether these data 247 

suffered from significant changes at a significance level of 0.05. The detailed calculation process is 248 

summarized in Mann (1945) and Kendall (1975). 249 

4. Results and discussion 250 

4.1 Descriptive statistics of observed NO3
- concentrations 251 

The ensemble model were applied to fit the NO3
- estimation model based on 1636 matched 252 

samples across China during 2010-2015. In general, the ground-observed NO3
- concentration over 253 

China ranged from 0.3 μg N m-3 in Bayinbrook of Xinjiang province to 7.1 μg N m-3 in Zhengzhou 254 

of Henan province with the mean value of 2.7 ± 1.7 μg N m-3. The monthly particulate NO3
- 255 

concentrations displayed the highest and lowest values in North China Plain (NCP) and Tibetan 256 

Plateau, respectively. Besides, the monthly NO3
- level exhibited significantly temporal variation 257 

during 2010-2015. The ambient NO3
- concentrations in most of sites displayed the gradual increase 258 

during 2010-2014, while they decreased sharply from 2014 to 2015. The spatiotemporal variation 259 

of ambient NO3
- concentration over China shared similar characteristic with NO2 column amount 260 

(Fig. S3). The Pearson correlation analysis revealed that the monthly particulate NO3
- level showed 261 

the significantly positive relationship with NO2 column amount (r = 0.57, p < 0.01) and urban land 262 

area (r = 0.35, p < 0.05) (Fig. S4). However, D2m showed the remarkably negative correlation with 263 
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ambient NO3
- concentration (r = -0.31, p < 0.05). 264 

4.2 The validation of new-developed NO3
- dataset and comparison with previous products 265 

In our study, the ensemble model was applied to develop a monthly particulate NO3
- dataset over 266 

China based on various predictors. Besides, other three individual models were also trained to 267 

compare with their predictive performances. The cross-validation result indicated that the R2 value 268 

of the new product developed by ensemble decision trees model reached 0.78, significantly higher 269 

than those developed by RF (0.57), GBDT (0.73), and XGBoost (0.45). Nonetheless, both of RMSE 270 

and MAE exhibited the opposite trends. The RMSE value was in the order of XGBoost (1.98 μg N 271 

m-3) > RF (1.67 μg N m-3) > GBDT (1.35 μg N m-3) > ensemble model (1.19 μg N m-3). The MAE 272 

value followed the similar characteristic with the order of XGBoost (1.29 μg N m-3) > RF (0.99 μg 273 

N m-3) > GBDT (0.95 μg N m-3) > ensemble model (0.81 μg N m-3). In some previous studies (Xiao 274 

et al., 2018), XGBoost often showed the better performance compared with RF, which seemed to 275 

be in contrast to our study. It was assumed that XGBoost showed the better performance for big-276 

data samples. However, the size of training samples in our study was relatively less than those in 277 

previous studies. Xiao et al. (2018) also verified that the XGBoost showed the better accuracy than 278 

RF in some developed regions such as East China, while RF showed the better performance than 279 

XGBoost in Northwest China because the monitoring sites in Northwest China was relatively scarce. 280 

Wolpert (1992) suggested the combination of various machine-learning models can significantly 281 

strengthen the transferability of models. Chen et al. (2019a) demonstrated that the ensemble model 282 

significantly outperformed the individual machine-learning model because the ensemble model can 283 

overcome the weaknesses of individual model. Besides, we also assessed the annual modelling 284 

performance of NO3
- estimation. Figure S5 shows that the R2 value of annual NO3

- estimation 285 
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reached 0.81, slightly higher than monthly NO3
- prediction (0.78). However, both of RMSE (1.23 286 

μg N m-3) and MAE (0.85 μg N m-3) for annual NO3
- estimation were slightly higher than those of 287 

monthly NO3
- prediction. 288 

The new developed NO3
- dataset showed the markedly temporal discrepancy. The R2 values of 289 

NO3
- estimates during 2011-2015 (0.88, 0.89, 0.83, 0.74, and 0.78) were notably higher than that 290 

during 2010 (0.62) (Table 1 and Fig. 3). The relatively lower R2 value in 2010 attested to the 291 

dominant role of sampling size on the predictive accuracy for machine-learning models. The training 292 

samples in 2010 (135 samples) were notably less than those in other years due to the lack of 293 

observation data in spring. However, both of RMSE and MAE were not sensitive to the sampling 294 

size. The higher RMSE and MAE focused on the 2010, 2014, and 2015. The higher RMSE and 295 

MAE observed in 2010 might be contributed by the relatively scarce training samples, while the 296 

higher RMSE and MAE likely attained to the higher NO3
- levels during other years. In addition, the 297 

performance of the NO3
- dataset varied greatly at the seasonal scale. The R2 value was in the order 298 

of summer (0.85) > spring (0.80) = autumn (0.80) > winter (0.75) across China (Table 2). The 299 

seasonal variation of NO3
- concentration was in contrast to the results of fine particle modelled by 300 

previous studies (Li et al., 2020a; Qin et al., 2018). It was supposed that aerosol optical depth (AOD) 301 

was sensitive to the precipitation and relative humidity, and thus showed the worse performance in 302 

summer. However, the predictive accuracy of NO3
- estimation based on NO2 column amount was 303 

closely linked with the chemical transformation from NO2 to NO3
-.  304 

The performance of NO3
- dataset also displayed markedly spatial variation. The highest R2 value 305 

was observed in NCP (0.70), followed by Southwest China (0.60), Southeast China (0.59), 306 

Northwest China (0.55), and the lowest one in Northeast China (0.44) (Table 3). The highest R2 307 
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value occurring in NCP was mainly attributable to the largest training samples (> 400) compared 308 

with other regions. Southeast China and Southwest China showed satisfactory cross-validation R2 309 

values because the valid training samples in both of these regions were higher than 300. Although 310 

both of Northeast China and Northwest China possessed limited training samples (< 200), the 311 

predictive performances of these regions showed significant discrepancy. It was assumed that the 312 

sampling sites in Northeast China were very centralized, while the sampling sites in Northwest 313 

China were uniformly distributed across the whole region. Geng et al. (2018) revealed that the 314 

modelling accuracy based on statistical models were significantly affected by the distribution 315 

characteristics of sampling sites. However, both of RMSE and MAE showed different spatial 316 

distributions with the R2 value and slope of fitting curve. Note that the higher values of RMSE and 317 

MAE were concentrated on Southwest China (2.08 and 1.41 μg N m-3) and Northwest China (2.06 318 

and 1.38 μg N m-3) rather than NCP (1.74 and 1.06 μg N m-3). There are two reasons responsible for 319 

the result. At first, the predictive performances of Southwest China and Northwest China were 320 

significantly worse than that of NCP, thereby leading to the higher RMSE and MAE. Moreover, 321 

most of the sampling sites in Southwest China were focused on Sichuan Basin, which often showed 322 

severe NO3
- pollution all the year round. Meanwhile, the annual mean NO3

- concentrations in 323 

Yangling and Wuwei reached 4.1 and 4.5 μg N m-3, respectively. The higher loadings of NO3
- 324 

concentrations for training samples led to the higher RMSE and MAE for Northwest China.  325 

Although the cross-validation result suggested the new developed dataset achieved the better 326 

modelling accuracy, the cross-validation algorithm cannot test the transferability and agreement of 327 

this dataset in the past years. Hence, the unlearned data (annual mean NO3
- concentration in 10 cities) 328 

collected from previous references were employed to validate the transferability of this product. As 329 
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shown in Fig. 4 and Table S2, we found that the R2 value of new-developed NO3
- product and 330 

historical data reached 0.85 (Fig. 4), and the out-of-range R2 value was even slightly higher than the 331 

cross-validation R2 value. Moreover, the out-of-bag slope based on these unlearning data reached 332 

0.81, and equaled to the slope of cross-validation database. In addition, the site-based cross-333 

validation was also applied to validate the transferability of this dataset. The basic principle is that 334 

all of the sites were evenly classified into ten clusters based on the geographical locations. 335 

Afterwards, nine of ten were used to train the model and then test the model based on the remained 336 

one. After ten round, all of the observed values versus estimate values was considered to be the final 337 

result to validate the spatial transferability of this model. As depicted in Fig. S6, the site-based cross-338 

validation R2 value reached 0.73, which was slightly lower than the cross-validation R2 value of the 339 

training model (0.78). The result suggested the new-developed dataset showed excellent 340 

performance in the past decade. 341 

Owing to the severe air pollution issue frequently observed in recent years, especially nitrogen-342 

bearing haze events, many studies have tried to predict the NO3
- concentrations in China. Most of 343 

these studies employed CTMs to simulate the ambient NO3
- concentrations over China. Huang et al. 344 

(2015) employed WRF-CMAQ to estimate the inorganic nitrogen deposition over PRD, and 345 

confirmed that the R value only reached 0.54. Afterwards, Han et al. (2017) used RAMS-GMAQ to 346 

predict the dry deposition flux of reactive nitrogen, and significantly underestimated the NO3
- 347 

concentration in the atmosphere. Very recently, Geng et al. (2019) used CMAQ to estimate the NO3
- 348 

concentrations over East China, and the predictive performance (R = 0.53) showed the similar result 349 

to Huang et al. (2015). Apart from these CTMs, the statistical models also has been applied to 350 

estimate the ambient NO3
- concentration over China. Unfortunately, the predictive accuracy was not 351 
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good based on traditional statistical models (e.g., linear regression) (R = 0.47) (Jia et al., 2016). In 352 

terms of model performance, the developed NO3
- product in our study was much better than those 353 

developed by pioneering studies. Furthermore, this product showed many extra advantages than 354 

those obtained by CTMs especially for the estimates of air pollutants. For instance, CTMs generally 355 

required continuous emission inventory data, which were often not available and showed high 356 

uncertainties. Moreover, CTMs generally needed substantial computing time and big-data input data 357 

to ensure the reliable predictive accuracy. Thus, the NO3
- product retrieved by CTMs often lacks of 358 

long-term dataset (> 10 yr), and our study fills the gaps of previous studies. 359 

4.3 Spatial pattern of new-developed NO3
- dataset  360 

The monthly NO3
- concentration displayed the similar distribution characteristic with PM2.5 and 361 

PM1 (Wei et al., 2019). Overall, the NO3
- concentration in East China was much higher than that in 362 

West China. The higher NO3
- concentration was concentrated on NCP (3.55 ± 1.25 μg N m-3), 363 

followed by Yangtze River Delta (YRD (2.56 ± 1.12 μg N m-3)), Pearl River Delta (PRD (1.68 ± 364 

0.81 μg N m-3)), Sichuan Basin (1.53 ± 0.63 μg N m-3), and the lowest one observed in Tibetan 365 

Plateau (0.42 ± 0.25 μg N m-3) (Fig. 5). Most provinces over NCP such as Beijing, Hebei, Henan, 366 

and Shandong suffered from severe NO3
- pollution due to dense human activities and strong industry 367 

foundation (Li et al., 2017) (Fig. S7), which released a large amount of N-bearing gaseous pollutants 368 

to the atmosphere especially in winter. In BTH (2.97 ± 1.97 μg N m-3), Wang et al. (2016) verified 369 

that these fresh NOx emitted from power plants or cement industries could be transformed into the 370 

nitrate in the particulate phase by the aid of low air temperature. In YRD and PRD, the combustion 371 

of fossil fuels and traffic emissions were considered to be the major source of NOx emission, which 372 

favored to the formation of nitrate event through the gas-particle conversion processes (Fu et al., 373 
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2017; Kong et al., 2020; Ming et al., 2017). Apart from the contributions of smelting industries, the 374 

poor topographical or meteorological conditions were also responsible for the severe NO3
- pollution 375 

in Sichuan Basin (Tian et al., 2017; Wang et al., 2017). Tibetan Plateau generally showed the clean 376 

air quality due to the unique landform and scarce industrial activity (Yang et al., 2018). In addition, 377 

it was interesting to note that the Altai region and Taklimakan desert in Xinjiang autonomous region 378 

also showed some NO3
- hotspots, though these regions were often believed to be the remote region. 379 

It was assumed that the many petrochemical industries (e.g., Karamai oil field) were located in the 380 

Altai region (Liu et al., 2018). Besides, Qi et al. (2018) verified that the resuspension of soil dust 381 

might trigger the accumulation of NO3
- concentration in the aerosol. 382 

4.4 Long-term trend of ambient NO3
- across China 383 

The temporal variation of NO3
- levels from 2005 to 2015 over China has been clarified in Fig. 384 

6, Fig. 7 and Table S3. Overall, the ambient NO3
- concentration in China showed the significant 385 

increasing trend of 0.10 μg N m-3/year during 2005-2014, while it decreased sharply from 2014 to 386 

2015 by -0.40 μg N m-3/year. Overall, more than 90% areas of Mainland China showed consistent 387 

temporal variation with the gradual increase from 2005 to 2013/2014, and then rapid decrease from 388 

2013/2014 to 2015. However, the decreasing/increasing speed displayed significantly spatial 389 

difference in some major regions of China. For instance, the ambient NO3
- level in BTH showed the 390 

remarkable increase during 2005-2013 by 0.20 μg N m-3/year. Afterwards, the NO3
- level decreased 391 

rapidly from 2013 to 2015 at a rate of -0.58 μg N m-3/year. The NO3
- concentrations in YRD (0.11 392 

μg N m-3/year) and PRD (0.05 μg N m-3/year) both showed the slight increases during 2005-2013, 393 

though the statistical test revealed the increases were significant (p < 0.05). However, the NO3
- 394 

concentrations in YRD and PRD showed the dramatic decreases with -0.48 and -0.36 μg N m-3/year 395 
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during 2013-2015, respectively. As seen from 2005 to 2015, the NO3
- concentration in BTH 396 

displayed the slight increase during this period. Nevertheless, the NO3
- levels in YRD and PRD both 397 

displayed the slow decreases by -0.01 and -0.03 μg N m-3/year, respectively.  398 

Furthermore, the different provinces displayed disparate temporal variations especially during 399 

11th five year plan (2005-2010). 31 provinces (municipalities/autonomous region) of China can be 400 

classified into three clusters based on the temporal trends of NO3
- concentrations during 11th five 401 

year plan. The first cluster featured the gradual increase of NO3
- concentration during this period, 402 

which consisted of three provinces in Northeast China (e.g., Heilongjiang) and central provinces in 403 

South China (e.g., Jiangxi, Anhui) (Table S3). The second cluster represented the provinces with the 404 

stable increases of NO3
- during 2005-2007 and slight decreases during 2007-2010. Some provinces 405 

of NCP (e.g., Beijing, Hebei, Henan) and Northwest China (e.g., Gansu, Inner Mongolia, Ningxia) 406 

fell into the second cluster. The last cluster featured the opposite temporal trend to the second cluster 407 

during 2005-2010, which included many southern provinces such as Fujian, Guangdong, Zhejiang, 408 

and Guangxi. Although the central government proposed the emission reduction goal in 2006, the 409 

ambient NO3
- concentrations in most provinces did not display pronounced decreases, which was 410 

totally different from the decrease of PM2.5 since 2007 (Xue et al., 2019). Especially in the provinces 411 

of Northeast China (e.g., Liaoning), the ambient NO3
- concentrations in these provinces still showed 412 

the rapid increases after the proposal of emission control measures. It was assumed that these 413 

provinces generally possessed a large amount of energy-intensive industries and coal-fired power 414 

plants (Zhang et al., 2018). Moreover, the result might be associated with the fact that the emission 415 

reduction measures focused on the reduction of SO2 emission rather than NOx emission (Kanada et 416 

al., 2013). Schreifels et al. (2012) revealed that major control measures during this period included 417 



20 

 

shutting down inefficient industries, increasing the pollution levy for excessive SO2 emissions, and 418 

implementing energy conservation projects. Therefore, the total SO2 emission in 2010 decreased by 419 

more than 14% compared with the emission in 1995 and the ambient SO2 concentrations in many 420 

provinces since 2005 displayed significant decreases compared with those in 1990s (Li et al., 2020b; 421 

Lu et al., 2013; Zhou et al., 2015). Nonetheless, the NOx emission in China did not display 422 

significant decrease during this period (Duncan et al., 2016; Granier et al., 2017), and thus the 423 

ambient NO3
- in many provinces still kept the higher concentrations. It should be noted that the 424 

NO3
- concentrations in some provinces of NCP exactly exhibited the slow decreases after 2007. It 425 

was supposed that the energy structure adjustment and elimination of backward production capacity 426 

promoted the small decrease of NO3
- concentrations (Ma et al., 2019). Unfortunately, the slight 427 

decreases were quickly offset by the rapid increase of energy consumption. Zhang et al. (2018) 428 

demonstrated that the industry added values and private car number in BTH have been increasing 429 

by 189.4% and 279.6% during 2005-2010, respectively. In addition, the decrease of SO2 emission 430 

rather than NOx emission can further lead to NO3
- increase because of decreased aerosol acidity, 431 

which was dictated by SO4
2- in particulate matter (Xie et al., 2020; Vasilakos et al., 2018). 432 

Since 2010, the central government began to implement severe limitations in PM2.5, NOx, and 433 

soot emissions, and thus the total NOx emission during 11th five year plan (2011-2015) showed 434 

slow decrease (10%) across China (Ma et al., 2019). However, the NO3
- concentrations across China 435 

did not show rapid response to the emission control measures. For instance, the NO3
- concentrations 436 

in most provinces of China still showed rapid increases during 2010-2013 (2014) (Fig. 7 and Fig. 437 

8). The result suggested that the control measures about the NOx emissions from vehicles and ships 438 

might be not very effective. Until 2013, the central government issued Action Plan for Air Pollution 439 
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Prevention and Control (APPC-AP) in order to enhance the air pollution prevention measures (Li et 440 

al., 2017; Li et al., 2019). Many powerful economic and policy means including pricing (tax) policy 441 

and optimization of industrial layout caused the rapid decreases of NO3
- concentrations after 2013 442 

in many provinces (e.g., Beijing, Hebei, Zhejiang). Wang et al. (2019b) also verified that the NO3
- 443 

level in PM2.5 over BTH has decreased by 20% during 2013-2015, which was in accordance with 444 

the finding of our study. In addition to the impact of emission reduction, the rapid decrease of NO3
- 445 

concentration over China after 2013 might be linked with the beneficial meteorological factors 446 

because Chen et al. (2019c) has demonstrated that favorable meteorological conditions led to about 447 

20% of the PM2.5 decrease in BTH during 2013-2015. However, the decreasing trend of NO3
- 448 

concentration during 2014-2015 in PRD (-0.36 μg N m-3/year) was significantly slower than that in 449 

BTH (-0.58 μg N m-3/year) and YRD (-0.48 μg N m-3/year) (Table 4). Wang et al. (2019b) found 450 

that the ambient NO3
- concentration in a background site of PRD even showed an upward trend 451 

during 2014-2016. Thus, it was necessary to strengthen the control of nitrogen oxide emissions. 452 

In general, the ambient NO3
- concentration varied greatly at the seasonal scale (Fig. 9). China 453 

undergone the most serious NO3
- pollution in winter (1.57 ± 0.63 μg N m-3), followed by autumn 454 

(1.09 ± 0.52 μg N m-3), spring (0.78 ± 0.50 μg N m-3), and the lowest one in summer (0.63 ± 0.40 455 

μg N m-3) (Table S4). The higher NO3
- concentration observed in winter might be contributed by 456 

the dense coal combustion in North China and unfavorable meteorological conditions (Itahashi et 457 

al., 2017; Quan et al., 2014; Wang et al., 2019d). The lightest NO3
- pollution in summer was 458 

attributable to the abundant precipitation, which promoted the diffusion and removal of pollutants 459 

and reduced ambient NO3
- level (Hu et al., 2005). The ratio of NO3

- concentration in winter (NO3
-460 

winter) and that in summer (NO3
-
summer) varied greatly at the spatial scale. The NO3

-
winter/ NO3

-
summer 461 
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in some provinces (municipalities) including Tianjin (2.11), Hebei (2.25), and Henan (2.84) 462 

displayed the higher values compared with other provinces. The higher NO3
-
winter/ NO3

-
summer in NCP 463 

might be affected by the fossil fuel combustion for domestic heating, while some southern provinces 464 

did not need domestic heating in winter. In contrast, the ratio of NO3
-
winter/ NO3

-
summer exhibited the 465 

lower values in some western provinces such as Tibet and Qinghai. It might be probably associated 466 

with the less aerosol emission from anthropogenic source and the higher wind speed (Wei et al., 467 

2019). 468 

4.5 Uncertainty analysis of NO3
- estimation 469 

   The ensemble model of three machine-learning algorithms captured the better accuracy in 470 

predicting the NO3
- level from OMI data. Nonetheless, the ensemble model still showed some 471 

improvement space in terms of the R2 value. At first, meteorological data collected from reanalysis 472 

in ECMWF website generally showed high uncertainty, which inevitably increased the error of NO3
- 473 

estimation. In our study, we validated the gridded T2m and Tp datasets against the groud-observed 474 

datasets and found that the R2 values of T2m and Tp reached 0.98 and 0.83 (Table S5), respectively. 475 

The result suggested that T2m showed the lower uncertainty, while Tp displayed relatively higher 476 

uncertainty. Except T2m and Tp, the ground-level datasets for other meteorological factors were not 477 

open access, and thus we cannot assess their uncertainties. Thus, we only reviewed some references 478 

and evaluated their uncertainties. For instance, Guo et al. 2019 found that the reanalysis BLH data 479 

also exhibited large uncertainties because few sounding data were assimilated. These uncertainties 480 

derived from predictors could be passed to the ensemble model, and thus increased the uncertainties 481 

of ambient NO3
- estimates. 482 

   The second reason was closely linked to the missing NO2 column amount across China. The 483 
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NO2 column amount retrieval showed many nonrandom biases especially for the arid or semi-arid 484 

area with high surface reflectance. The missing NO2 column amounts over China were not filled in 485 

our study due to the increased uncertainty of filling NO2 column. Moreover, it should be noted that 486 

the monthly NO2 column amounts were averaged based on the daily one, and the missing ratio of 487 

daily NO2 columns during 2005-2015 reached 57.64%, the higher missing ratio might increase the 488 

uncertainty of NO3
- simulation. 489 

   Lastly, the developed ensemble model did not integrate the direct spatiotemporal weight 490 

indicators (e.g., the distance of observed sites and contiguous grids) though many predictors (e.g., 491 

month of year) reflecting spatiotemporal autocorrelation were input into the original model as the 492 

key predictors. Furthermore, the developed model was the ensemble one of three original models, 493 

which ignored the spatiotemporal autocorrelation of estimation residues from first-stage model. In 494 

the future work, the ensemble model could be combined with a space-time model to further enhance 495 

the modelling performance. 496 

5. Data availability 497 

The monthly NO3
- datasets at 0.25° resolution across China during 2005-2015 are available at 498 

https://doi.org/10.5281/zenodo.3988307 (Li et al., 2020), which can be downloaded in xlsx format. 499 

The missing values are shown in NaN.  500 

6. Conclusions and implications 501 

In this study, RF, GBDT, and XGBoost algorithms were combined to establish a high-resolution 502 

(0.25°) NO3
- dataset over China during 2005-2015 on the basis of multi-source predictors. The NO3

- 503 

product showed high cross-validation R2 value (0.78), but low RMSE (1.19 μg N m-3) and MAE 504 

(0.81 μg N m-3). The NO3
- dataset showed the markedly spatiotemporal discrepancy. The R2 value 505 

https://doi.org/10.5281/zenodo.3988307
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was in the order of summer (0.85) > spring (0.80) = autumn (0.80) > winter (0.75) across China, 506 

and the R2 showed the highest value in NCP. In addition, the dataset exhibited excellent 507 

transferability (R2 = 0.85, RMSE = 0.74 μg N m-3, and MAE = 0.55 μg N m-3) on the basis of the 508 

unlearning observed data in ten sites. 509 

The new-developed NO3
- dataset showed remarkably predictive accuracy compared with 510 

previous products developed by CTMs and linear regression model. The result might be linked to 511 

two key reasons. First of all, the new product assimilated high-resolution NO2 column amount 512 

instead of the NOx emission inventory used by CTMs. The imperfect knowledge about the chemical 513 

modules with regard of the NO3
- formation and the inaccurate emission inventory decreased the 514 

predictive performance of CTMs. In contrast, the new product was obtained using ensemble 515 

machine-learning model, which did not need to consider the photochemical or aqueous process from 516 

gaseous NO2 to particulate NO3
-. Compared with the NO3

- product estimated by linear regression 517 

model (R2 = 0.21), the new product significantly elevated the modelling performance of NO3
- 518 

concentration. It was supposed that the ensemble model for the development of the new NO3
- dataset 519 

did not predefine the potential relationships between explanatory variables and NO3
- level as the 520 

multiple regression model, which must assume the linear linkage between dependent variable and 521 

predictors before model establishment. 522 

On the basis of the such dataset, the spatiotemporal variation of NO3
- concentration over China 523 

during 2005-2015 were clarified. The annual mean NO3
- concentration followed the order of NCP 524 

(3.55 ± 1.25 μg N m-3) > YRD (2.56 ± 1.12 μg N m-3) > PRD (1.68 ± 0.81 μg N m-3) > Sichuan 525 

Basin (1.53 ± 0.63 μg N m-3) > Tibetan Plateau (0.42 ± 0.25 μg N m-3). The higher NO3
- 526 

concentrations in NCP, YRD, and PRD were mainly contributed by the intensive industrial and 527 
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traffic emissions. Sichuan Basin suffered serious NO3
- pollution due to the high loadings of aerosols 528 

and unfavorable terrain condition. Tibetan Plateau shared with the lightest NO3
- pollution because 529 

of the scarce anthropogenic emissions and favorable meteorological factors. Additionally, we also 530 

found that the ambient NO3
- concentration showed significant increasing trend of 0.10 μg N m-531 

3/year during 2005-2014, while it decreased sharply from 2014 to 2015 at a rate of -0.40 μg N m-532 

3/year. The ambient NO3
- levels in BTH, YRD, and PRD displayed slight increases at the rate of 533 

0.20, 0.11, and 0.05 μg N m-3/year during 2013-2015, respectively. Afterwards, the NO3
- 534 

concentrations decreased sharply at the speed of -0.58, -0.48, and -0.36 μg N m-3/year. Although 535 

National Economic and Social Development of China has issued the emission reduction goal in 536 

2006, the NO3
- concentrations in most provinces did not show the significant decreases during 2005-537 

2010. It might be contributed by the increase of energy consumption and non-targeted emission 538 

control measures. Since 2010, the government began to decrease the NOx emission over China, 539 

whereas the NO3
- concentrations in many provinces still showed slight increases during 2010-2014 540 

because the benefits of control measures for NOx emission could be neutralized by elevated energy 541 

consumption along with the rapid economic development. Since 2014, Chinese government issued 542 

APPC-AP and further enhanced the emission control measures, and triggered the dramatic decrease 543 

of NO3
- concentration over China. Apart from the effect of emission reduction, the favorable 544 

meteorological conditions might lead to the rapid decrease of NO3
- level over China during 2014-545 

2015. Compared with the powerful emission control measures, meteorological factors only 546 

contributed a small portion of NO3
- reduction in China. Besides, the decrease speed of NO3

- level 547 

in China also displayed pronounced spatial heterogeneity and some background region even 548 

featured the upward of air pollutant in recent years. Therefore, it is still imperative to strengthen the 549 
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emission reduction measures. 550 

It must be acknowledged that our study still suffers from some limitations. First of all, the NO3
- 551 

dataset was developed by machine-learning models, which lacked of the chemical module 552 

concerning about the transformation pathway from NO2 to NO3
-, and might underestimate the 553 

ambient NO3
- concentration across China. In the future work, the output results of CTMs including 554 

conversion ratio from NO2 to NO3
-, dry/wet deposition flux of NO2 and NO3

- in the atmosphere 555 

should be incorporated into the machine-learning model to develop next-generation NO3
- product. 556 

Second, the low time-resolution (monthly) observation data hindered the daily estimation of NO3
- 557 

concentration. The daily NO3
- datasets are warranted in the future because it could be used to assess 558 

the potential impact on human health. Besides, the ultrahigh-resolution satellite (TROPOMI) can 559 

allow continuation and enhancement of the spatiotemporal NO3
- estimation though the OMI product 560 

could capture enough spatial variations across China. 561 
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Fig. 1 Spatial distributions of ground-level NO3
- monitoring sites used for model establishment. Red 781 

circles represent the ground-level sites during 2010-2015. The colormap denotes the elevation 782 

distribution across China.  783 

784 
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Fig. 2 The workflow of the ensemble model development for ambient NO3
- estimates. 785 

786 
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Fig. 3 Density scatterplots of 10-fold cross-validation results for monthly NO3
- estimation (Unit: μg 787 

N m-3) across China for the ensemble decision trees model (a), RF (b), GBDT (c), and XGBoost 788 

(d), respectively. The color bar reflects the sampling size of each model. The red solid line denotes 789 

the best-fit line through the data points (1636 points). The black dashed line denotes the diagonal, 790 

which could be used to reflect the deviation of data points. 791 

792 
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Fig. 4 The transferability validation of the ensemble model in estimating NO3
- concentration over 793 

China based on the unlearning observation data (Shen et al., 2013; Shen et al., 2009; Wang et al., 794 

2019a; Xu et al., 2018b). The color bar reflects the sampling size of each model. The red solid line 795 

denotes the best-fit line through the data points. The black dashed line denotes the diagonal, which 796 

could be used to reflect the deviation of data points. 797 

798 
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Fig. 5 The spatial pattern of estimated NO3
- concentration (μg N m-3) over China during 2005-2015 799 

based on the ensemble model. 800 

801 
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Fig. 6 The annual mean predicted NO3
- concentrations (μg N m-3) across the entire China from (a)-802 

(k) 2005-2015 based on the ensemble model. 803 

804 
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Fig. 7 The annual mean NO3
- concentrations in major regions across China during 2005-2015. The 805 

solid lines denote the mean NO3
- concentrations and the shadow represents the range of NO3

- 806 

concentrations.  807 

 808 

 809 
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Fig. 8 The long-term trends of NO3
- concentrations (μg N m-3) and significance levels in China (a, 810 

b, and c denote the annual variation of ambient NO3
- concentration during 2005-2015, 2005-2014, 811 

and 2014-2015, respectively. d, e, and f represent the significance level of NO3
- trend during these 812 

periods). The pale green color denotes the regions with the significant variation of ambient NO3
- 813 

concentrations (p < 0.05), while the gray color represents the regions with insignificant variation of 814 

NO3
- concentrations. 815 

816 
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Fig. 9 The mean concentrations of ambient NO3
- in spring (a), summer (b), autumn (c), and winter 817 

(d) during 2005-2015 over China, respectively. 818 

819 
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Table 1 The cross-validation result of NO3
- estimation over China during 2010-2015. 820 

Year Sample size R2 value Slope RMSE (μg N 

m-3) 

MAE (μg N m-

3) 

2010 135 0.62 0.60 1.39 0.90 

2011 291 0.88 0.85 0.32 0.24 

2012 274 0.89 0.86 0.33 0.28 

2013 312 0.83 0.82 0.64 0.43 

2014 306 0.74 0.76 1.50 1.04 

2015 318 0.78 0.78 1.35 0.86 

821 
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Table 2 The cross-validation result of NO3
- estimation over China in four seasons. 822 

Season Sample size R2 value Slope RMSE (μg N 

m-3) 

MAE (μg N m-

3) 

Spring 395 0.80 0.80 0.71 0.48 

Summer 418 0.85 0.84 0.29 0.20 

Autumn 437 0.80 0.78 1.10 0.70 

Winter 386 0.75 0.73 1.85 1.23 

823 
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Table 3 The cross-validation result of NO3
- estimation over China in different regions (Northeast 824 

China includes Heilongjiang, Jilin, and Liaoning provinces; NCP includes Beijing, Tianjin, Hebei, 825 

Henan, Shandong, and Shanxi provinces; Southeast China includes Jiangsu, Zhejiang, Fujian, 826 

Guangdong, Jiangxi, Anhui, Hunan, Hainan, Shanghai, and Hubei provinces; Southwest China 827 

includes Yunnan, Guangxi, Sichuan, Tibet, Chongqing, and Guizhou provinces; Northwest China 828 

includes Inner Mongolia, Xinjiang, Gansu, Qinghai, Ningxia, and Shaanxi.   829 

Season Sample size R2 value Slope RMSE (μg N 

m-3) 

MAE (μg N m-

3) 

Northeast 

China 

175 0.44 0.43 1.30 0.81 

NCP 492 0.70 0.64 1.74 1.06 

Southeast 

China 

395 0.59 0.57 1.50 0.84 

Southwest 

China 

384 0.60 0.59 2.08 1.41 

Northwest 

China 

190 0.58 0.52 2.06 1.38 

830 
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Table 4 The trend analysis of NO3
- concentrations in China, BTH, YRD, and PRD regions during 831 

2005-2015. 832 

Period Trend  China BTH YRD PRD 

2005-2014 
Trend (μg N m-

3/year) 

0.08 0.13 0.08 0.03 

Significance p < 0.05 p < 0.05 p < 0.05 p < 0.05 

2014-2015 Trend (μg N m-

3/year) 

-0.40 -0.76 -0.79 -0.59 

 Significance p < 0.05 p < 0.05 p < 0.05 p < 0.05 

2005-2015 Trend (μg N m-

3/year) 

0.04 0.04 -0.01 -0.03 

 Significance p < 0.05 p > 0.05 p > 0.05 p < 0.05 

833 
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