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Abstract.  22 

Coupled numerical models, which simulate water and energy fluxes in the subsurface-land surface-atmosphere system in a 23 

physically consistent way are a prerequisite for the analysis and a better understanding of heat and matter exchange fluxes at 24 

compartmental boundaries and interdependencies of states across these boundaries. Complete state evolutions generated by 25 

such models may be regarded as a proxy of the real world, provided they are run at sufficiently high resolution and incorporate 26 

the most important processes. Such a virtual reality can be used to test hypotheses on the functioning of the coupled terrestrial 27 

system. Coupled simulation systems, however, face severe problems caused by the vastly different scales of the processes 28 

acting in and between the compartments of the terrestrial system, which also hinders comprehensive tests of their realism. We 29 

used the Terrestrial Systems Modeling Platform TerrSysMP, which couples the meteorological model COSMO, the land-30 

surface model CLM, and the subsurface model ParFlow, to generate a virtual catchment for a regional terrestrial system 31 
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mimicking the Neckar catchment in southwest Germany. Simulations for this catchment are made for the period 2007-2015, 32 

and at a spatial resolution of 400m for the land surface and subsurface and 1.1km for the atmosphere. Among a discussion of 33 

modelling challenges, the model performance is evaluated based on real observations covering several variables of the water 34 

cycle. We find that the simulated (virtual) catchment behaves in many aspects quite close to observations of the real Neckar 35 

catchment, e.g. concerning atmospheric boundary-layer height, precipitation, and runoff. But also discrepancies become 36 

apparent, both in the ability of the model to correctly simulate some processes which still need improvement such as overland 37 

flow, and in the realism of some observation operators like the satellite based soil moisture sensors. The whole raw dataset is 38 

available for interested users. The dataset described here is available via the CERA database (Schalge et al, 2020): 39 

https://doi.org/10.26050/WDCC/Neckar_VCS_v1 40 

 41 

1  Introduction 42 

Earth environmental models are becoming increasingly important for climate and weather prediction, flood forecasting, water 43 

resources management, agriculture, and water quality control (e.g. Shrestha et al. 2014; Larsen et al. 2014; Simmer et al., 44 

2015). Assuming that that the models are able to resemble the real-world based on state-of-the-art understanding of the system 45 

processes, the models are also used as “virtual realities” for hypothesis testing and decision support systems in many scientific 46 

disciplines (Clark et al., 2015, Semenova & Beven, 2015). 47 

Virtual realities have been used for specific compartments of the terrestrial system in many studies (see Fatichi et al., 2016, 48 

and reference herein) and several advantages have been recognized. Bashford et al. (2002) computed virtual remote-sensing 49 

observations with 1 km resolution to derive, among others, process parameterizations for evapotranspiration in a hydrological 50 

model operating on the same scale as the remote sensing data. Weiler and McDonnel (2004) used a virtual-reality approach on 51 

the hill-slope scale to detect and quantify the major controls on subsurface flow processes and derive tunable parameters for 52 

conceptual models. Virtual experiments allowed Schlueter et al. (2012) to explore the relationship between soil architecture 53 

and hydraulic behavior and Chaney et al. (2015) to testing sampling designs. Hein et al. (2019) explores the relative importance 54 

of different factors in the hydrologic response of a catchment. Virtual realities are also often used to overcome limitations on 55 

the data-scarce observations. In this context, Ajami and Sharma (2018) used simulations results to test disaggregation method 56 

for soil moisture observations. In subsurface hydrology it is a standard procedure to test inverse modeling and data-assimilation 57 

approaches on virtual aquifers (e.g., Zimmermann et al., 1998; Hendricks Franssen et al., 2009), which are used to generate 58 

realistic aquifer data with exactly known hydraulic and geochemical properties at every point (e.g., Schaefer et al., 2002). 59 

More recently, it has been highlighted that the terrestrial systems should be better exploited by the use of integrated models 60 

which are able to simulate water and energy fluxes in the subsurface-land surface-atmosphere system in a physically consistent 61 

way (Clark et al., 2015, Davison et al, 2018). For this reason, these integrated modeling approaches have also been considered 62 

to generate virtual realities (Mackay et al., 2015). However, despite the increasing computational capability and availability of 63 
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infrastructures, these modelling approaches are generally more technically demanding. In addition, the use of these types of 64 

integrated models requires different expertises that are not usually cover within one single scientific group but requires strong 65 

interdisciplinary collaborations among different partners. For these reasons, the use of these types of models is still not 66 

commonly foreseen. 67 

To overcome this limitation, in this paper we present the development, the testing and the data of a virtual reality of a mesoscale 68 

catchment based on a fully integrated terrestrial model system. Our virtual catchment encompasses the terrestrial system from 69 

the bedrock to the upper atmosphere covering the catchment of a higher-order river (length ≈ 380km, area ≈ 14000km2) 70 

including a buffer zone surrounding it, in which we simulate - as realistically as currently possible - the multi-year evolution 71 

of states including the water and energy fluxes in and between all its compartments. We specifically venture to represent the 72 

strong spatial variability of the land components, which affects the overall system behavior due to nonlinear couplings and 73 

feedbacks. Since a virtual catchment with no resemblance to a real world catchment hardly allows for evaluating its realism, 74 

we base our simulation loosely on the Neckar catchment in southwest Germany that contains quite variable topography, 75 

different land cover, high and low precipitation regions, deep and low water tables and regions prone to flooding events. (see 76 

Figure 1). The model does not aim at exactly reproducing the catchment’s response to hydro-climatic forcing, instead we only 77 

require that the simulated response is realistic with respect to typical spatial and temporal characteristics. For this reason, we 78 

discuss the model realism in comparison with observations of the real catchment, but also its limitations, particularly in relation 79 

to the chosen resolutions which balance the detail in process representation and computational feasibility 80 

The remainder of the paper is structured as follows. In section 2, we introduce the simulation platform TerrSysMP, while 81 

Section 3 describes in detail the surface and subsurface parameters for topography, soils and aquifers, land use, vegetation, 82 

and the river network. In Section 4, we show snapshots and time series of state variables or system parameters extracted from 83 

the virtual catchment and compare them to observations in the real Neckar catchment to demonstrate how well the most 84 

important requirements are met. These results as well as possible ways to improve them are discussed in Section 5 together 85 

with several issues, which came up during the development phase. We provide conclusions and an outlook in Section 6. 86 

2 The Terrestrial Systems Modeling Platform (TerrSysMP) 87 

We used the Terrestrial System Modeling Platform (TerrSysMP, see Shrestha et al. 2014; Gasper et al. 2014; Sulis et al. 2015) 88 

developed within the Transregional Collaborative Research Centre TR32 (Simmer et al. 2015) for the generation of the virtual 89 

catchment. TerrSysMP couples (Figure 2) the hydrologic flow model ParFlow v693 (Ashby and Falgout, 1996; Jones and 90 

Woodward, 2001; Kollet and Maxwell, 2006), the land-surface model Community Land Model, CLM v3.5 (Oleson et al., 91 

2008), and the atmospheric model Consortium for Small Scale Modeling  (COSMO v4.21, Baldauf et al., 2011) via the Ocean 92 

Atmosphere Sea Ice Coupling framework OASIS3 (e.g. Valcke et al., 2006), using a dynamical two-way approach including 93 

down- and upscaling algorithms for fluxes and state variables between computational grids of different resolution. 94 
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ParFlow is a variably saturated watershed flow model, which solves the three-dimensional Richards equation to model 95 

saturated and unsaturated flow in the subsurface, and the fully integrated kinematic wave equation to model two-dimensional 96 

overland flow. Also other global and regional hydrological models use the latter to route overland flow, e.g. MODCOU 97 

(Haefliger et al., 2015) and TRIP (Alkama et al., 2012). Advanced Newton-Krylov multigrid solvers are used that are especially 98 

suitable for massively parallel computer environments. Excellent model performance and parallel efficiency have been 99 

documented by Jones and Woodward (2001), Kollet and Maxwell (2006), and Kollet et al. (2010). A unique feature of ParFlow 100 

is the use of an advanced octree data structure for rendering overlapping objects in 3-D space, which facilitates modeling 101 

complex geology and heterogeneity as well as the representation of topography based on digital elevation models and 102 

watershed boundaries. 103 

CLM is a single column biogeophysical land-surface model released by the National Center for Atmospheric Research 104 

(NCAR), which considers coupled snow, soil, and vegetation processes. Land surface heterogeneity is represented as a nested 105 

sub-grid hierarchy in which grid cells are composed of multiple land units (glacier, lake, wetland, urban, and vegetation), 106 

snow/soil columns (to capture variability in snow and soil states within each land unit), and Plant Functional Types (PFTs) to 107 

capture the biogeophysical and biogeochemical differences between broad categories of plants in terms of their functional 108 

characteristics. In TerrSysMP, the 1-D Richards-equation model included in CLM is replaced by ParFlow. 109 

COSMO is a limited-area, non-hydrostatic numerical weather prediction model, which operationally runs at the German 110 

weather service DWD, among others, for Numerical Weather Prediction (NWP) and various scientific applications on the 111 

meso-β and meso-γ scale. COSMO is based on the primitive thermo-hydrodynamical equations describing compressible flow 112 

in a moist atmosphere. As a limited-area model, COSMO needs lateral boundary conditions from a driving larger-scale model. 113 

We impose the lateral conditions by nesting COSMO in COSMO-DE which spans Germany. At the lateral boundaries a 114 

relaxation technique is used in which the internal model solution is nudged against an externally specified solution over a 115 

narrow transition zone between the two domains.  116 

Within OASIS3, the upscaling algorithm uses the mosaic or explicit sub-grid approach (Avissar and Pielke, 1989) in which 117 

high-resolution land surface fluxes are averaged and transferred to the coarser resolution of the atmospheric model component. 118 

The implemented Schomburg scheme (Schomburg et al., 2010, 2012) downscales atmospheric variables of the lowest 119 

atmospheric model layer to the higher-resolved land surface model. The scheme involves (i) spline interpolation while 120 

conserving mean and lateral gradients of the coarse field, (ii) deterministic downscaling rules to exploit empirical relationships 121 

between atmospheric variables and surface variables, and (iii) the addition of high-resolution variability (i.e. noise) in order to 122 

honor the non-deterministic part and to restore spatial variability.  123 

TerrSysMP allows simulating the terrestrial water, energy, and biogeochemical cycles from the deeper subsurface including 124 

groundwater (ParFlow) across the land-surface (CLM) into the atmosphere (COSMO). Water and energy cycles are coupled 125 

via evaporation and plant transpiration; these processes are modeled by CLM with a non-linear coupling to ParFlow through 126 

soil-water availability and root-water uptake (Figure 2). The two-way coupling between CLM and COSMO encompasses 127 

radiation exchange and turbulent exchanges of moisture, energy, and momentum. OASIS3 allows for different temporal and 128 
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spatial resolutions of the coupled model components. For example, a temporal resolution of 15 minutes is sufficient for the 129 

subsurface and land-surface components, whereas time steps as small as 5 seconds are needed for the atmosphere. A higher 130 

spatial resolution can be assigned for the surface and subsurface parts to allow for a better representation of soil and land-use 131 

heterogeneity. 132 

Since high-resolution and long time-series of the fully coupled system are needed to satisfy our need to check the statistical 133 

behavior of the system, the models were run on the IBM/BlueGeneQ System JUQUEEN at the Jülich Supercomputing Centre 134 

(Jülich Supercomputing Centre, 2015). JUQUEEN has a total of 28672 nodes with 16 cores each. Our configuration involved 135 

using 256 nodes for 12hours, restarting the simulation every 7 simulation days. This is necessary as the runtime for Parflow 136 

can vary greatly depending on the conditions in the virtual catchment. The total number of grid cells for the domain is 323,675 137 

per model layer with 10 layers for CLM and 50 layers for ParFlow, and 58,420 grid-points for the 50 COSMO layers resulting 138 

in 22.3 million grid cells. We ran the fully-coupled model for a total period of nine years (2007-2015). On average the actual 139 

runtime was approximately eight hours. This means that for one year of simulation about 1.7 million core-hours are needed. 140 

For the full nine-year time-series that is about 12 million core-hours; another ~8 million hours were needed for the spin-up. 141 

We used an output interval of 15 minutes, which results in a total output of 38.5TB of data for the full time-series, where about 142 

half was produced by COSMO and a quarter each by CLM and ParFlow.  143 

3 Description of the Virtual Catchment 144 

Our virtual catchment is based on the Neckar catchment in southwestern Germany (see Figure 1), east of the Black Forest 145 

mountain range and north of the Jurassic ridge of the Swabian Alb. The catchment has a varying topography including 146 

mountains up to 1050 m a.s.l., river valleys, different land use types, i.e. grassland, cropland (majority of the area), broadleaf 147 

and needle leaf forest (see Figure 3), and relatively large soil spatial variability. Annual mean precipitation over the real 148 

catchment ranges between 500 and 2000mm (see Section 5.1) with highest values over the Black Forest. Inter-annual 149 

variability of precipitation can reach up to one third of the mean value. Monthly precipitation can vary largely and its mean 150 

annual cycle is weak with slightly lower values in spring and autumn. While summer precipitation is dominated by convection, 151 

winter precipitation is predominantly related to fronts of extra-tropical cyclones with enhanced precipitation over the 152 

mountains due to orographic lift. Daily average temperatures vary with altitude between -5°C and 0°C in January and between 153 

13 and 18°C in July. Land use and cover in the lower elevations are dominated by agriculture while the Black Forest features 154 

mainly needle-leaf trees. Broad-leaf trees can be found over smaller areas throughout the catchment. The distance to 155 

groundwater is in large parts of the area restricted to a few meters, in particular in lowland areas, which assures strong coupling 156 

between groundwater table and evapotranspiration (Maxwell et al., 2007). These typical central European catchment features 157 

led us to choose the Neckar catchment as the basis for the virtual catchment. 158 

The computational domain is a rectangular area of ~57,850km² encompassing the Neckar catchment of ~14,000km². The 159 

domain is larger than the Neckar catchment in order to allow the atmospheric model to develop its own internal dynamics. 160 
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COSMO is run on a 1.1km horizonal grid with 230x254 grid points, which includes a 4 grid point-wide outer frame zone 161 

where only the lateral boundary forcing is used without coupling to the CLM, as well as 50 vertical layers in hybrid coordinates 162 

(terrain following at the surface, flat in the stratosphere). COSMO is set up identical to the operational COSMO-DE setup of 163 

the German national weather service (Deutscher Wetterdienst, DWD), e.g., the deep convection parameterization is switched 164 

off because at the chosen grid resolution convection is enabled by the dynamical core (see Section 2.1). In COSMO-DE, the 165 

operational resolution is 2.8km, so that the approximation regarding deep convection is even more appropriate in our 166 

simulations. Similar choices were taken by Smith et al. (2015), who simulated precipitation events of roughly the same domain 167 

using nested WRF models, where the cumulus parameterization was switched off at horizontal resolutions of 900m and 300m. 168 

Lateral boundary forcing and constant fields (topography, land-mask etc.) are provided by the COSMO-DE analysis fields, 169 

which are downscaled to the 1.1km grid by linear interpolation. The lateral relaxation zone, which moderates the jump from 170 

the lateral driving fields to the inner model area, is set to 12km. 171 

A software restriction does not allow for cases with more than 4.2 million CLM columns; thus currently a higher spatial 172 

resolution for CLM and ParFlow than 400 m cannot be used for the Neckar catchment. So, ParFlow and CLM use the same 173 

horizontal grid with a resolution of 400 m and 535x605 grid points. The vertical grid for both component models is partially 174 

the same, with CLM limited to 10 vertical layers up to a total depth of 3 m shared with ParFlow, which has in total 50 vertical 175 

layers reaching down to 100m. COSMO runs with a 5sec timestep while CLM and Parflow run at 15min timesteps, which is 176 

also the coupling frequency. 177 

For setting up CLM, the European digital elevation model (DEM) by the European Environment Agency EEA 178 

(http://www.eea.europa.eu/data-and-maps/data/eu-dem) was projected to the latitude/longitude grid and bi-linearly 179 

interpolated to 400m from the original 30m spatial resolution. The same DEM is used to create the slope input files for ParFlow. 180 

A slight modification to the original DEM was made in order to ensure that the simulated Neckar River would flow in the 181 

correct valley, especially in the upper half of the catchment where the valley is not always properly resolved by the 400m 182 

resolution. In total, the elevation of 8 grid points was reduced to achieve proper routing for the Neckar River. We have not 183 

considered rivers outside the Neckar catchment in these corrections; thus there are cases where their routing is not identical to 184 

the real rivers. 185 

Land use is taken from the 2006 Corine Land Cover Data Set (http://www.eea.europa.eu/data-and-maps/data/corine-land-186 

cover-2006-raster-3) also provided by EEA. Since the latter dataset features many more land use types (at a resolution of 187 

100m) than required by CLM, they were grouped according to the CLM (IGBP) Plant Functional Type classes (1) broad-leaf 188 

forests, (2) needle-leaf forests, (3) grassland, (4) cropland, and (5) bare soil. Urban areas are not considered in this setup and 189 

replaced by bare soil. Water surfaces (e.g., larger lakes like Lake Constance in the South of the domain) are also treated as 190 

bare soil in CLM while COSMO uses its own land-mask and specific calculations for water surfaces. Therefore, no values 191 

from CLM are used for water surfaces in COSMO. A few hundred grid cells feature shrubs (mostly areas that are re- or de-192 

forested or areas at higher altitudes) which are treated as forests, and each grid cell features only one – the most dominant – 193 

plant functional type. The plant Leaf Area Index (LAI) is computed from MODIS (Myneni et al. 2002) as monthly averages 194 
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for the year 2008 for each of the four vegetated land use classes. This LAI is increased for all plant functional types by about 195 

20 percent in the summer months and significantly changed from factors less than 1 to about 3.3 in winter-time for needle-leaf 196 

forests in order to account for known biases in the MODIS data (Tian et al. 2004). The stem area index (SAI) is estimated from 197 

the LAI by a slightly modified (no dead leaves for crops, constant base SAI of 10 percent of the maximum LAI) formulation 198 

of Lawrence and Chase (2007) and Zeng et al. (2002) to better represent European tree types. Vegetation height was set to 7m 199 

for needle-leaf trees and 10m for broad-leaf trees to account for partial coverage by shrubs, to 20 - 120cm for crops, and to 10 200 

- 60 cm for grass depending on the time of the year with low values in the winter months and largest values in July and August. 201 

Since we consider only one crop type, we do not specify a harvest date when the plant height drops to its minimum, but assume 202 

a smooth decline between August and October. 203 

For the representation of soils in CLM we use the 1:1,000,000 soil map (BUEK1000) provided by the Federal Institute for 204 

Geosciences and Natural Resources - BGR 205 

(http://www.bgr.bund.de/DE/Themen/Boden/Informationsgrundlagen/Bodenkundliche_Karten_Datenbanken/BUEK1000/bu206 

ek1000_node.html). This soil map is available for entire Germany; thus only small areas in Switzerland and France are missing 207 

outside the Neckar catchment for which we assume a nearby soil class. BUEK1000 offers sand and clay percentages as well 208 

as carbon content for two to seven soil horizons down to a maximum depth of 3m for each soil type. The carbon content is 209 

used to infer soil color. For urban areas (modeled as bare soil, as mentioned above) a fixed soil color (class 8 in CLM) was 210 

used. 211 

Since soil properties may vary substantially at scales smaller than the 1km for which BUEK1000 is appropriate, which might 212 

impact system dynamics (Binley et al. 1989, Herbst et al. 2006, Rawls 1983), the soil map is downscaled by artificially adding 213 

variability using the conditional points method recently presented in Baroni et al. (2017) as follows: 214 

(1) The BUEK1000 soil map is randomly sampled at 1995 point locations with one sample every 5 km2 on average, a 215 

minimum sample distance of 250 m, and at least one sample for each soil type of the original soil map. This strategy resulted 216 

from extensive testing by minimizing the tradeoffs between reproducing the main features of the original soil map and creating 217 

variability at finer resolution. 218 

(2) The sample locations are used as conditional points for further interpolation. Here, texture, carbon content, and depth 219 

of the first three soil horizons are extracted from the BUEK1000. In addition, the sand content of the original map was increased 220 

by approximately 20% resulting in a slightly higher hydraulic conductivity because previous simulations yielded too shallow 221 

unsaturated zones. 222 

(3) Experimental variograms and cross-variograms are calculated for all variables and exponential models were fitted to 223 

all spatial structures.  224 

(4) A texture map (sand and clay percentage) is generated using a single realization based on conditional co-simulation 225 

(Gomez-Hernandez and Journal, 1993) to provide the sub-scale variability (<1 km2). Horizon depths and carbon content are, 226 

however, assumed to have a smoothed spatial variability; therefore, they are interpolated based on ordinary kriging. 227 
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(5) Since ParFlow describes retention and hydraulic conductivity curves based on van-Genuchten-Mualem parameters, 228 

pedotransfer functions are applied to estimate these parameters. The pedotransfer functions of Cosby et al. (1984), Rawls 229 

(1983) and Tóth et al. (2015) are used and selected based on data availability, applicability of the particular approaches, and 230 

previous evaluations conducted in the area (Tietje and Hennings, 1996). 231 

In order to keep soil porosity identical between CLM and ParFlow, we replaced the porosity calculation within CLM (which 232 

uses a different pedotransfer function). The Manning’s surface roughness was set to a constant value of 5.52×10-4 h/m1/3 and 233 

the specific storage to 1×10-3. The chosen surface roughness value results in a realistic base flow for the local rivers without 234 

calibration. Repercussions of this choice are discussed in Chapter 6. Slopes of the main rivers are additionally smoothed to 235 

avoid artificial ponded areas. 236 

In order to allow for realistic flow in the saturated zone, the 3-D geologic model of the geological survey of the state of Baden-237 

Württemberg was used from which eleven rock types were defined for Baden-Württemberg (see Figure 4). Some characteristic 238 

features of the domain, such as middle Triassic and Jurassic karst aquifers, are not included to avoid the manifold hydrological 239 

challenges related to its modeling. For areas outside of Baden-Württemberg we extended the rock types at the boundary 240 

outwards to cover the full computational domain. Tab. 1 summarizes porosity and hydraulic conductivity used in the domain 241 

for the different stratigraphic units. As already mentioned above, karst features of limestones are not considered, and porosities 242 

in stratigraphic units containing limestones and crystalline rocks are set considerably higher than in nature to somewhat counter 243 

this. 244 

Not covered by the discussed data sets are the large alluvial bodies filling large part of the Neckar valley throughout the domain 245 

(Riva et al., 2006). Up to 30% of the runoff takes place in the subsurface especially during periods of base flow according to 246 

a sub-catchment simulation performed for the year 2007. In that simulation we used measured precipitation and river discharge 247 

data together with the simulated evapotranspiration to calculate the water balance over a whole year. While our simulated 248 

evapotranspiration rates may be inaccurate, it is implausible that this can account for 30% of the precipitation; i.e. the water 249 

could have left the domain only through the subsurface. Thus, gravel channels are needed to account for this lateral flow. Since 250 

the valleys in the catchment are often small compared to the limited horizontal resolution of the model, we conceptualize the 251 

alluvial bodies as gravel layers underneath all river cells (cells with a mean pressure head >0.1m) and directly next to rivers 252 

(riverbanks, i.e., one grid point besides each river cell). The assumed gravel layers reach from beneath the soil down to a depth 253 

of 8m. The gravel cells are parameterized with a high hydraulic conductivity of 1 m/h, a porosity of 0.6 and van-Genuchten 254 

parameters of 2 for n and 4m-1 for α (residual saturation is 0.06 cm3/cm3). Our setup results in a reasonable distribution of 255 

surface and subsurface discharge at the outlet of the catchment and reasonable river – aquifer exchange fluxes. In addition to 256 

the gravel channels, we included a layer of weathered bedrock, which starts below the soil and extents down to a depth of 6m. 257 

This layer is characterized by substantially larger porosity (0.4) and hydraulic conductivity (0.1 m/h) than the rock below. This 258 

layer was added to enhance subsurface flow and counter the common occurrence of too shallow water levels if these features 259 

are not included. 260 
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Since we enforce no-flow boundary conditions at the subsurface domain boundaries, all water has to eventually reach the 261 

surface in order to leave the domain. This happens predominantly in areas outside of the Neckar catchment, e.g. in the upper 262 

Rhine valley, thus soil-moisture values in this region may be too high. 263 

4 Results 264 

In the following, we present example results of the virtual-reality simulations in order to demonstrate its potential for a better 265 

understanding of the dynamics in coupled terrestrial systems. We will also show that the simulations quite well resemble 266 

observations in the real Neckar catchment, and thus can be used to develop and evaluate modelling and prediction strategies. 267 

Precipitation is the strongest hydrological driver in this region; thus its realistic spatial and temporal variability in the domain 268 

including its statistical relations with topography is important. Also, the state of the atmospheric boundary layer, which reflects 269 

the interaction of the land surface with the atmosphere is a critical component of the terrestrial system, which should be 270 

represented by the simulation with some confidence. Along with the comparisons we will also discuss the challenges 271 

experienced with such a modeling setup. 272 

Figure 5 shows as an example result a snapshot of the simulated three-dimensional distribution of cloud water/ice, precipitation 273 

density, and volumetric soil moisture. The soil exhibits different soil moisture layers, the variability of which is mainly 274 

connected to different soil hydraulic properties. Only clouds reaching high enough to have sufficient cloud ice produce 275 

precipitation, and some precipitation evaporates before it reaches the ground. Extended weather fronts moving through the 276 

domain (not shown), which are imposed by the boundary conditions, are also simulated realistically given the resolution of the 277 

atmospheric model. 278 

4.1 Relation between water table depth and evapotranspiration 279 

An important measure for hydro-meteorological interactions within a catchment is the relation between water availability and 280 

surface energy flux partitioning. Thus, the virtual catchment simulation should capture the expected reduced evapotranspiration 281 

(ET) with increasing distance to groundwater (e.g., Maxwell et al., 2007; Shrestha et al., 2014). In Figure 6, we show daily 282 

averaged ET (evaporation as all other contributors are zero) values over bare soil against distance to groundwater for 30 th April 283 

and 30th July for the year 2007. April was almost completely dry (on average less than 3 mm precipitation over the domain), 284 

while July was much wetter, but the increased solar radiation and thus temperatures compared to April result in higher ET 285 

rates and thus a quicker drying of the top layer of the soil. Figure 6 indicates a reduction in ET when the distance to groundwater 286 

falls below 15 – 100cm, depending on soil properties with faster ET reduction for increasing soil sand contents. Such relations 287 

are less obvious for cells with significant plant cover: while trees show overall higher ET and almost no ET change with 288 

distance to groundwater due to their deep root zones, ET variability increases with larger distances to groundwater (not shown). 289 

Also crops and grassland show limited ET changes as a function of distance to groundwater, which can, however, be explained 290 

by the high water availability (no water stress) in the time period considered. Figure 6 also contains a small number of grid-291 
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points at water table depth of 7m or deeper with evaporation rates only slightly lower than in the shallow water table regions. 292 

These relate most likely to cells that retain high levels of upper-level soil moisture even during dry periods to support higher 293 

evaporation. This could be either because of the soil properties or due to high flow from neighboring cells. Time-series of soil 294 

moisture for the 10 days preceding 30th April and 30th July are shown in Figure 7 to illustrate this effect. It can be seen that 295 

volumetric soil moisture for cells with deep water table but high evaporation is much more similar to cells with shallow water 296 

table than to cells with deep water table but low evaporation. This means that these cells can retain high upper level soil 297 

moisture despite having a low groundwater level. Most of these cells are near rivers and can receive just the right amount of 298 

water from lateral flow to keep evaporation high while groundwater level stays low.  299 

4.2 Precipitation 300 

We compare the simulated precipitation with the 1 km2 gridded REGNIE product of DWD, derived from in-situ precipitation 301 

observations (Rauthe et al., 2013). For the evaluation of seasonal daily precipitation cycles hourly observations of 71 DWD 302 

observational stations are used. The simulated seasonal mean precipitation (Figure 8) and the annual mean precipitation (not 303 

shown) are governed by the orographic structures of the Black Forest and Swabian Alb. Values range between approximately 304 

520 mm/year around Mannheim and 2105 mm/year over the Black Forest in good accordance with REGNIE concerning the 305 

overall pattern and range (510 mm/year – 2130 mm/year). Overall the simulation shows about 10% higher annual precipitation 306 

in the east and south and about 25% lower in the north and west compared to REGNIE. During winter (December to February) 307 

precipitation is dominated by advection from the west, which result in maxima over the upwind and peak zones of the 308 

mountains and leeward minima. The simulated winter pattern (j) compares well with REGNIE (k), but the model 309 

underestimates precipitation in the northwestern part of the catchment (l). Over the mountains a slight lateral shift of this kind 310 

of precipitation pattern results in neighboring areas with under- and overestimation also found for COSMO simulations coupled 311 

to its own TERRA land surface model (e.g., Dierer et al., 2009; Lindau and Simmer, 2013). In fall, the difference pattern 312 

between simulations and REGNIE (i) is similar to the winter pattern, but has smaller contrasts. In spring, the simulated 313 

precipitation is higher compared to REGNIE. In the summer (June to August), cloud bases are usually higher and reduce the 314 

patterns caused by the luff-lee effects. Moist air extends further to the east and south and gets staunched by the alpine upland 315 

leading to enhanced precipitation there. The simulated summer precipitation pattern, which is dominated by convective 316 

precipitation, resembles the REGNIE pattern but exceeds the latter by about 20% lower over large parts of the catchment 317 

(Figure 8). 318 

The mean seasonal diurnal precipitation cycles (Figure 9) reflect the dominating precipitation types. While observed and 319 

simulated winter precipitation (Figure 9b) do not show a diurnal cycle, summer precipitation (Figure 9a) increases over the 320 

afternoon reaching a maximum at about 7pm in accordance with the maximum of convective precipitation. The simulations 321 

reproduce this pattern but exhibit a weak second peak between 6am and 12am while the afternoon/evening increase is delayed 322 

by about two hours. The simulated daily precipitation distribution fits the observations quite well. While the virtual catchment 323 

has somewhat less dry and low precipitation days than REGNIE, the number of days between 4 and 10 mm are higher than in 324 
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REGNIE (not shown). The simulated and observed seasonal precipitation cycles (Figure 10) compare very well and mean 325 

precipitation is nearly identical between simulations and observations. The model reproduces the seasonal cycle of maximum 326 

daily precipitation well, however with larger differences in the summer (see also Dierer et al. 2009). 327 

4.3 Atmospheric State Variables and Surface Radiation 328 

We compare the atmospheric boundary layer (ABL) of the virtual catchment to observations from the meteorological tower at 329 

Karlsruhe Institute of Technology (KIT; Kalthoff and Vogel, 1992) and with DWD radiosonde observations in Stuttgart (STG) 330 

(see Figure 3 for locations and Table A1 for details of observed quantities). To avoid a biased comparison due to land-cover 331 

mismatches between the simulation and the actual land use at the observation sites, the simulations are averaged over five-by-332 

five atmospheric grid boxes centered around the observation sites. 333 

The 10m mean diurnal minimum temperatures in the virtual catchment are between 0.5 K (January) and 2.5 K (August) higher 334 

than observed (Figure 11, top) and are reached approximately one hour later than observed with the subsequent morning 335 

temperature rise shifted accordingly. The simulated diurnal temperature maxima are on average 0.7 K lower than in the 336 

observations and are reached 30 minutes later than measured. The morning temperature gradient in the simulation ranges from 337 

0.10 K/h in December to 0.31 K/h in April, which compares reasonably well with the observations (0.13/0.52 K/h in 338 

January/April). The evening cooling, however, progresses too slowly and results in too high minimum temperatures. At 100 339 

m above ground, diurnal maximum temperatures agree within 0.7 K while the warm bias of diurnal minimum temperatures 340 

(0.9 K) is smaller than at 10m height (Figure 11, bottom). Also at 100 m a 1h shift between the diurnal minimum temperatures 341 

and the morning temperature rise are found. In 200 m height, the simulated monthly mean diurnal cycles are practically 342 

identical to the KIT observations (not shown). The temperature standard deviations in the virtual catchment are somewhat 343 

smaller than observed, in particular during the afternoon for the summer half year when the reduction can be more than 20%. 344 

COSMO in TerrSysMP estimates ABL heights via the bulk Richardson number criterion with a threshold of 0.22 for unstable 345 

and 0.33 for stable conditions (Szintai and Kaufmann, 2008). Both seasonal and diurnal variations of the mean ABL height at 346 

0 and 12h local time agree well with the observations using the same criterion (Figure 12), but the simulation tends to 347 

overestimate ABL heights at nighttime by up to 150 m and underestimate it at daytime by up to 200 m in March. Figure 13 348 

compares simulated mean vertical profiles of temperature, virtual potential temperature, and specific humidity with radiosonde 349 

observations at 0 h and 12 h local time in Stuttgart (STG) including the mean differences (bias) and the standard deviation of 350 

the differences. Simulations are up to 0.9 K warmer close to the surface at 0 h and up to 0.5 K colder at 12 h. At larger heights, 351 

the simulations are up to 0.5 K warmer depending on land cover. Specific humidity profiles at 0 h are approximately 0.2 g/kg 352 

too dry close to the surface and 0.2 g/kg too wet above 1500 m. At 12 h profiles are up to 0.3 g/kg too wet throughout. The 353 

simulations have smaller virtual potential temperature gradients and are thus less stable close to the surface at 0 h. At 12 h, the 354 

decreasing virtual potential temperature close to the surface is not captured and tends towards a more neutral instead of unstable 355 

profile at low heights. 356 
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At KIT (STG) the land surface receives on average 20 W/m2 (5.3 W/m2) more incoming shortwave radiation and 18 W/m2 (8 357 

W/m2) less incoming longwave radiation indicating a somewhat lower cloud cover (or lower cloud optical depth) as observed. 358 

At daytime (6 h – 22 h), the mean outgoing longwave radiation matches the KIT observations, while at nighttime (22 h – 6 h) 359 

values are 7.2 W/m2 larger than observed, which corresponds to a higher surface temperature of approximately 1.4 K. 360 

Overall, the atmospheric profiles, including the ABL heights, compare very well with observations. Noteworthy differences 361 

only occur close to the surface with too high nighttime temperatures (up to 2.5 K in summer) and subsequently too small 362 

morning temperature gradients. Somewhat higher incoming shortwave and lower incoming longwave radiation at the surface 363 

indicate less cloud cover (or lower cloud optical depths) compared to the observations. These results are in line with a previous 364 

evaluation of a 2.2 km COSMO simulation (Ban et al. 2014). In addition, we note somewhat reduced unstable conditions at 365 

daytime close to the surface in the simulations. 366 

4.4 Passive Microwave Observations 367 

The most direct area-covering observations of soil moisture are currently provided by L-Band (1.4 GHz) passive microwave 368 

observations from satellites. The Community Microwave Emission Model (CMEM) is used as a forward operator to simulate 369 

the brightness temperatures (TB) at this frequency in vertical and horizontal polarization (de Rosnay et al., 2009). CMEM 370 

simulates brightness temperatures at the top of the atmosphere resulting from microwave emission and interaction by soil, 371 

vegetation, and atmosphere based on the state variables of the virtual catchment. Input to CMEM are the percentages of clay 372 

and sand in the soil, the coverage with open water surfaces, the profiles of soil moisture and soil temperature, vegetation types, 373 

and leaf area index (LAI). Satellite orbit geometry, antenna pattern, foot-print and incidence angle are taken into account 374 

following the ESA SMOS (Soil Moisture Ocean Salinity) instrument specifications, i.e. a full-width-half-maximum field of 375 

view leading to a footprint of 40km across-orbit and 47km along-orbit at multiple incidence angles (Kerr 2001) is applied. 376 

This antenna pattern weighs the grid-cell simulated brightness temperatures (Figure 14, left) in order to obtain virtual SMOS 377 

observations. Finally, these synthetic observations are rendered according to pixels based on the Icosahedral Snyder Equal 378 

Area (ISEA) projection at a spatial separation of about 15 km similar to the SMOS L1C TB data product (Figure 14, right), 379 

which can then be compared with real observations for an indirect evaluation of the simulation. Every pixel corresponds to a 380 

fixed geo-location of the real SMOS L1C data product over the modeled area. Optionally, the satellite observation operator in 381 

TerrSysMP is able to also replicate the NASA SMAP (Soil Moisture Active Passive) radiometer (Saavedra et al., 2016) for 382 

years beyond 2015 since when SMAP data is available.  383 

We evaluate the simulated brightness temperature distribution over the domain with real SMOS observations between April 384 

2011 and September 2011. The real SMOS observations are corrected from radio-frequency interference (RFI) effects over 385 

the region following Saavedra et al. (2016). Initial results with CMEM adapted parameters for surface roughness and 386 

vegetation optical thickness (which needed to be increased from its standard values found in the literature), lead to a systematic 387 

underestimation of the brightness temperature of about -20K on average (see orange line in Figure 15, which compares real 388 
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SMOS observations with the simulated brightness temperatures) and maximum and minimum differences of -33K and -6K, 389 

respectively, for an incidence angle of 30°. A similar underestimation of -14K resulted for the 40° incidence angle with 390 

maximum and minimum values of -34K and +15K (lower plot in Figure 16). Those differences are mainly caused by the too 391 

large near-surface soil moisture values in the virtual catchment. The cumulative distribution functions of the satellite-derived 392 

soil moisture products and the soil moisture of the virtual catchment suggests an about 63% higher near-surface soil moisture 393 

compared to the satellite estimates (Saavedra et al. 2016, Figure 6) with extremes of 44% and 95%. A daily matching of the 394 

cumulative distribution functions of the virtual catchment and satellite retrieved soil moisture are performed to find a factor 395 

which then is assumed to be the soil-moisture bias of the simulation. Figure 16 compares true SMOS observations with 396 

simulated brightness temperatures obtained without and with day-to-day correction for the assumed soil-moisture bias of the 397 

simulation. The correction decreases the average bias in brightness temperature from -20K(-14K) to about -3K (-2K) for the 398 

incidence angle of 30° (40°) at horizontal polarization. Similar results are found when the simulations were statistically 399 

compared with observations of later years from the NASA SMAP (Fig. 3 in Saavedra et al. 2016). The remaining bias can 400 

probably be further reduced by fine tuning radiation interaction parameters in CMEM, and by including orographic effects on 401 

the effective incidence angle.  These biases will be addressed by an improved exploitation of the uncertainty of the radiation 402 

interaction parameters and by including in CMEM a two-stream approximation to better simulate cases with dense vegetation 403 

in the future. 404 

The microwave observations retrieved from the virtual catchment show a typical situation encountered in data assimilation; 405 

more often than not there are biases between simulated and remote sensing observations. This discrepancy usually has multiple 406 

causes, which can relate to the observations themselves, assumptions in the observation operator used to simulate the virtual 407 

observations, and in the model used to generate the systems state variables entering the observation operator. Even if these 408 

differences cannot be removed, such observations can be highly valuable for data assimilation as long as temporal tendencies 409 

are meaningful information. Usually the bias is statistically corrected and thus only the information in the temporal and (if 410 

meaningful) spatial variability of the observations is exploited for moving the model states towards the true states. 411 

4.5 Evaluation of River Discharge 412 

We compare river discharge in the virtual catchment with observations made in the Neckar catchment at the gaging stations 413 

Rockenau, Lauffen, and Plochingen for a three-year period from 2007 to 2009 (Figure 16). The range of the hydrological 414 

response to precipitation in the virtual catchment is in adequate agreement with the observations; this is noteworthy since no 415 

calibration to runoff data has been applied to the model. The simulated discharge peaks are, however, higher and delayed by 416 

about one to three days compared to the observations. A reason could be a too large Manning´s coefficient and the model 417 

resolution. In the discussion we suggest a scaling of Mannings coefficient to account for the mismatch between true river width 418 

and the model resolution in order to better represent realistic flood dynamics. In spring and summer, the response to 419 

precipitation is significantly smoother than observed and peak amplitudes vary with respect to peak amplitudes of the 420 
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observations. The differences between observed and simulated precipitation discussed above and the effects of the less 421 

predictable convective events during these seasons may also play a significant role. Convective events will always be displaced 422 

in space and time compared to the observations and may even show different individual life cycles including lifetime and 423 

amplitude. Finally, the base flow is much lower compared to the real catchment during dry periods, most likely because the 424 

grid resolution is considerably larger than the actual river width and the unresolved subsurface spatial heterogeneity. An 425 

increased hydraulic conductivity via an increased soil sand content may reduce the base flow further as infiltration increases. 426 

The results are further evaluated comparing the flow duration curve and the monthly run off coefficient. The former represents 427 

the statistical probability to exceed a specific discharge value within a given time period while the latter is the ratio between 428 

runoff and precipitation over the catchment area. Figure 17 shows the lower exceedance probability of the virtual catchment 429 

compared to the observations, in particular for low discharge rates, a behavior attributed to the lower base flow component 430 

and confirmed by the too low runoff coefficients in spring and summer but similar coefficients during the rest of the year 431 

(Figure 18). We hypothesize that in this period the simulation has a lower hydrological response also due to missing subsurface 432 

heterogeneity. As stated above, we have neglected karst features, which are known to produce fast lateral subsurface flows. 433 

Overall, the model captures the general statistical features of the catchment including the typical seasonal trends quite well, 434 

while differences are noted related to hydrological extremes and base flow. These differences could be reduced by model 435 

calibration from which we refrain because hydrological extremes are not primary the objective of this study. We discuss 436 

options to improve the representation of river discharge further below. 437 

4.6 Groundwater 438 

A plausibility check of the groundwater levels is performed in two steps. First we visually inspect the groundwater depth map, 439 

shown in Figure 19a. Accordingly, the model shows a good distribution between shallower and deeper (5 meter and below) 440 

groundwater tables. Furthermore, the deeper sections are found in the mountainous areas of the model domain, which 441 

corresponds well with the real situation. It has to be noted though that regions with shallow groundwater levels often show 442 

very small values, likely not to be found in the real catchment where the unsaturated zone is usually thicker. In a second step, 443 

we compare simulated hydraulic heads with available data. The environmental protection agency of the state of Baden-444 

Württemberg (Landesanstalt für Umwelt, Messungen und Naturschutz – LUBW) operates 33 continuous groundwater 445 

observation wells. Comparing those point measurements to simulation results of an uncalibrated model with 400m grid 446 

resolution makes little sense. Instead, we compare (1) the magnitude of the fluctuation in the groundwater table throughout the 447 

catchment during a year (calculated as the groundwater observation minus its mean, shown in Figure 19b) and (2) the average 448 

trend of the groundwater in the full model (calculated after subtracting the mean and scaling the fluctuations to have the same 449 

magnitude. According to Figure 19c, the magnitude of the groundwater fluctuations are within similar ranges as the 450 

observations (Figure 19b), while a few real observation wells show larger magnitudes. Also the trends overall follow similar 451 

patterns (Figure 19c). Hence, the groundwater, given the coarse resolution of the model in comparison with the compared point 452 

measurements, shows a reasonable behavior. 453 
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5 Discussion 454 

The size of the catchment and resolution considered (400 m) pose an enormous challenge in terms of required CPU-time. Still, 455 

the applicability of Darcy’s law with laboratory-based parameters can be debated as we have to resort to apparent model 456 

parameters to produce realistic mass fluxes in the compartments. By compromising these technical and physical aspects in the 457 

setup of the virtual catchment, we experienced several challenges; four of them will be discussed which we believe to be 458 

inherent to simulating energy and mass fluxes across compartment boundaries with partial-differential-equation-based, high-459 

resolution coupled models.  460 

Representation of rivers and surface roughness: River flow in the ParFlow module of TerrSysMP is simulated by an 461 

overland flow module. Overland flow appears when hydraulic heads in the top cells are above the land surface. As there is no 462 

discrimination between overland flow and river flow, rivers in the simulation have the width of the grid resolution whereas the 463 

real rivers may be significantly narrower. Overland flow is represented in ParFlow with the kinematic wave approximation of 464 

the St. Venant equations with the surface friction parameterized by Manning’s coefficient. Typical Manning’s coefficients 465 

when assigned to e.g. to a 400 m grid cell while in fact the river is much narrower, would result in too high discharge values 466 

during rain events and far too low ones during dry periods. In both cases the always too low water levels caused by the too 467 

wide rivers result in a poor representation of river-subsurface exchange. Our current choice of Manning’s coefficient in 468 

ParFlow (5.52×10-4 h/m1/3) results in realistic average discharge throughout the year, albeit at too low flow velocities. In order 469 

to compensate for this inconsistency, the Manning's coefficient could be scaled such that the overland flow velocity in river 470 

cells equals the river flow velocity as proposed by Schalge et al. (2019), which improves the phasing between simulated and 471 

observed discharge and the discharge peak. Similarly, the hydraulic conductivity of the model top layer for river cells could 472 

be scaled in order to reduce the loss of too much surface water to the subsurface caused by the too wide river cells. These 473 

issues will become even more severe when model resolutions are reduced, e.g., for ensemble-based data assimilation because 474 

of the even higher demands for computing efficiency. 475 

Coarsening of topography: The still coarse topography of the virtual catchment reduces the true hill slopes where lateral flow 476 

on the surface and in the shallow subsurface takes place. This affects quick-flow components towards rivers. As shown by 477 

Shrestha et al. (2015), coarse topography directly impacts the storage of water in the unsaturated zone because drainage 478 

becomes less effective. This in turn can lead to an overestimation of latent and underestimation of sensible heat flux. 479 

Additionally, coarse-resolution model runs result in delayed and stretched discharge peaks in the rivers. The severity of this 480 

effect is proportional to the degree of topography smoothing, that is introduced by the coarser resolution; therefore, any change 481 

in subsurface parameters such as hydraulic conductivity will depend on the degree of coarsening and the location within a 482 

catchment. Especially in narrow valleys and in mountainous areas this will lead to an overestimation of soil moisture, which 483 

we have not yet compensated by changing other parameters. Recently a method has been proposed to improve these issues by 484 

scaling horizontal hydraulic conductivity (Foster and Maxwell, 2019). 485 
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Soil parameters: As outlined in section 2, the soil hydraulic parameters were generated based on soil maps of the real Neckar 486 

catchment. According to the maps, the soils in the catchment consist mainly of clay and silt, which have rather low saturated 487 

hydraulic conductivities and small air entry pressure values. In large areas of the domain, the water content in our first 488 

simulations was close to saturation, even for upper soil layers, and the infiltration velocities were unrealistically low. Reasons 489 

are the soil parameters, which do not capture the true soil heterogeneity; moreover, real infiltration often takes place in root 490 

channels, small fractures, and other small structures. Thus, infiltration is always underpredicted by models using observed soil 491 

parameters assuming homogeneity. Infiltration processes may be better captured with dual domain approaches, which are, 492 

however, computationally demanding. A workaround would be to change the soil hydraulic parameters in order to obtain 493 

stronger infiltration. Currently, we use an artificially increased sand percentage of the soils in order to stay consistent with the 494 

concept of the pedotransfer functions used in CLM. We will also test known scaling rules (e.g., Ghanbarian et al.,  2015) to 495 

increase for example the saturated hydraulic conductivity for larger soil units. These rules should be applied on the soil 496 

hydraulic parameters, estimated by the pedotransfer functions. 497 

6 Conclusions and Outlook 498 

In the present study we show the development and the data generated based on a integrated subsurface-land surface-atmosphere 499 

system TSMP. Plausibility tests for the derived virtual reality which tries to mimic the Neckar catchment in southwestern 500 

Germany, show that the virtual catchment is able to reproduce realistic behavior when compared to measurements. 501 

Comparisons of simulated precipitation and ABL statistics show a very reasonable agreement with real observations. However, 502 

comparisons with observed passive microwave measurements by satellites shows clearly a systematic bias which is probably 503 

related to a mixture of systematic errors in the latter, assumptions in the used forward operator, parameterizations of land 504 

surface properties (soil parameters) in the simulation, and missing processes therein (e.g., preferential flow, hill-slope 505 

processes). The analysis also shows a realistic connection between evapotranspiration and distance to groundwater in the 506 

virtual catchment, while larger deviations from reality are found for river discharge dynamics. The deficiencies could be traced 507 

to the model resolution, which limits the often much smaller river widths to multiples of the model resolution, and to the way 508 

river discharge is handled in the ParFlow component of TerrSysMP. A new parameterization scheme proposed by Schalge et 509 

al. (2019) will avoid such problems in future model simulations. The main issues we face for the upper Neckar are too high 510 

soil moisture and shallow groundwater levels. Several ideas have been proposed to improve the setup including scaling of the 511 

surface roughness and soil parameters. 512 

Overall the results are encouraging regarding the viability of the virtual reality as key input parameters to the land surface and 513 

subsurface show very good agreement with observations. For these reasons, the analysis show that the results can be used as 514 

a basis for the community for, among others, exploring feedbacks between compartments, identify in which conditions 515 

simplification of the models could be done (Baroni et al., 2019) or develop and test methods for assimilating observations 516 

across compartments . We encourage the scientific community to explore this data for the different applications. Within the 517 
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study we also highlighted some limitations mainly due to the still sever technical limitation and the IT-requirements. We 518 

anticipate however that more sophisticated versions of the virtual catchment (higher resolution, improved parameterization of 519 

sub-scale processes as discussed above) are already in progress that could be also compared to this virtual reality in further 520 

study. 521 

 522 

7 Data Availability 523 

The presented virtual catchment is available in the CERA database of the German Climate Computing Center (DKRZ: 524 

Deutsches Klimarechenzentrum GmbH) (Schalge et al., 2020) at https://doi.org/10.26050/WDCC/Neckar_VCS_v1. The full 525 

nine-year time series (2007-2015) for all three compartments has a size of roughly 40TB in compressed netCDF4 format. 526 

Nevertheless, we encourage the use of this data set for investigations on data assimilation, but also the general functioning of 527 

catchments including cross-environmental interactions and predictability studies can profit from such complete state evolutions 528 

of the regional Earth system. 529 

The TerrSysMP model is built in a modular way and users are supposed to get the component models by themselves while the 530 

coupling interface is provided through a git repository (https://git.meteo.uni-bonn.de). As of now, registration is required to 531 

access the TerrSysMP git and wiki page. 532 

Both ParFlow (https://parflow.org/) and CLM (http://www.cgd.ucar.edu/tss/clm/distribution/clm3.5/) are freely available for 533 

download from their respective websites or repositories. COSMO is not available, but the DWD supplies it free of charge for 534 

research purposes upon request. More information on this process can be found in the TerrSysMP wiki. 535 
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 734 

Figure 1: Location of the Neckar catchment within SW Germany. 735 
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 737 

Figure 2: Exchange of energy and mass fluxes in TerrSysMP (Gasper et al., 2014). 738 

 739 

https://doi.org/10.5194/essd-2020-24

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 30 March 2020
c© Author(s) 2020. CC BY 4.0 License.



26 

 740 

Figure 3: Land cover in Domain 1 covering the entire Neckar catchment and bounding areas. KIT: Karlsruhe Institute of 741 
Technology (location of meteorological tower observations), STG: Stuttgart (location of radiosonde observations). 742 
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 743 

Figure 4: Stratigraphy in the state of Baden-Württemberg represented by its logarithmic conductivity. The left figure shows a 3-D 744 
view of the 100 m deep geological model used in this work, where the elevation has been neglected for readability and the transparent 745 
regions corresponds to low-permeable material. The right figure shows the same using cross-sections to better visualize the vertical 746 
heterogeneity.  747 
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 748 

Figure 5: Snapshot of the three dimensional distribution of cloud water/ice [g/kg] (greyscale), precipitation/rain water [g/kg] (blue 749 
in foreground over cloud) and soil moisture [cm3/cm3] (colored) at a time point with a single rain cloud with light rain. 750 
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 751 

Figure 6: Daily average evapotranspiration (ET) simulated for 30th April (left) and 30th July 2007 in [mm/day]. The color indicates 752 
soil sand percentage. 753 

 754 

Figure 7: 10-day time-series of volumetric soil moisture for three representative grid-points with high evaporation and shallow 755 
water-table (Shallow+High), low evaporation and deep water-table (Deep+Low), and high evaporation and deep water-table 756 
(Deep+High) prior to the days shown in Figure 6. 757 

 758 
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 759 

Figure 8: Mean seasonal precipitation over the Neckar catchment between 2007-2013 in the virtual reality (VR, left column) 760 
compared to the REGNIE data set (middle column). The difference between VR and REGNIE is shown in the right column. Figure 761 
(a), (b), and (c) show the comparison for spring (March – May); (d), (e), and (f) for summer (June – August); (g), (h), and (i) for fall 762 
(September – November); and (j), (k), and (l) for winter (December-February).  763 

 764 

 765 
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 766 

Figure 9: Mean diurnal precipitation cycle for the 71 DWD stations and the corresponding simulations for wet days (more than 1 767 
[mm/day]) for June-August (a) and December-February (b) season. The upper and lower hinges correspond to the first and third 768 
quartile, the center black line the median, the upper whisker (analog for lower whisker) extends from the hinge to the highest value 769 
within 1.5*(interquartile range), and the black dots mark the outliers.  770 

 771 

 772 

Figure 10: (a) Daily precipitation distribution on a monthly basis as observed (black) and simulated (red). The gray and red lines 773 
indicate the monthly mean precipitation. (b) Maximum daily precipitation for the given months for the 71 DWD stations and the 774 
corresponding simulation. Box sizes as explained in the caption of Figure 10.  775 

 776 

 777 
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 778 

 779 

Figure 11: Monthly mean diurnal cycles (local time) and respective standard deviation for air temperature in 10 m (top) and 100 m 780 
(bottom) height at the KIT tower and for the COSMO grid boxes around the KIT location. 781 
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 782 

Figure 12: Monthly mean boundary layer height at 0 h and 12 h local time for different land covers diagnosed from radiosonde 783 
observations at Stuttgart STG and from atmospheric profiles above grid boxes of CLM. 784 
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 785 

Figure 13: Mean vertical profiles of temperature, virtual potential temperature, and specific humidity (top), and mean differences 786 
between modelled and observed data including the standard deviation of the differences (bottom). The experimental data are from 787 
the radiosonde data at STG and the simulated data from the grid boxes of the virtual catchment with different land cover (left: 0 h 788 
local time, right: 12 h local time). 789 
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 790 

Figure 14: Brightness temperature calculated by the application of CMEM (H-polarization) on the virtual-reality output on July 791 
2nd 2011 (left) and its aggregation on the  spatial resolution of the L1C data-product SMOS passive microwave radiometer (right). 792 

 793 

Figure 15: Area-averaged L-band brightness temperature the period from April to September  2011  for an incidence angle of 30° 794 
(top) and 40°  (bottom). The boxplots indicate the real SMOS observations averaged over the same domain. The black line is the 795 
median of the virtual observations simulated with CMEM. The dark-gray area corresponds to the inter-quartile range (IQR) while 796 
the light-gray area encompasses the 3 to 97% range. The orange continuous line indicates the brightness temperature without taking 797 
into account an assumed bias in surface soil moisture content (see text). 798 
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 799 

Figure 16: Hourly values river discharge at the gauging stations Rockenau (P1), Lauffen (P2) and Plochingen (P3) for the year 2007. 800 
Blue: observed; red: virtual catchment. 801 
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 802 

Figure 17: Flow duration curve for the three stations for the three year time period based on. Blue:  observations; red: virtual 803 
catchment. 804 

 805 

Figure 18: Differences between the run off coefficient calculated for the three stations for the year 2007 based on observations and 806 
virtual catchment. 807 

https://doi.org/10.5194/essd-2020-24

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 30 March 2020
c© Author(s) 2020. CC BY 4.0 License.



38 

 808 

Figure 19:(a) Mean groundwater table depth of the entire domain for the year ranging from 01.02.11 to 01.02.12, (b) groundwater 809 
fluctuations around a zero mean and (c) the total mean of all model cells and all real data points superimposed on top of each other 810 
to show the annual average trend. Please note that for readability of the figure, subfigure (a) is limited to a maximum depth of -5 m, 811 
while the underlying data ranged down to -88 m 812 

 813 

 814 

 815 

 816 

 817 

  818 
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Appendix 819 

7.1 Appendix Tables 820 

Table A1: Values of porosity and hydraulic conductivity of rocks found in Baden-Wuerttemberg 821 

Nr. rock type Ksat [m/h] porosity fraction 

1 Quarternary 0.00100 0.3 

2 Tertiary 0.00100 0.3 

3 Upper Jura 0.00720 0.3 

4 Middle Jura 10-7 0.3 

5 Lower Jura 10-7 0.3 

6 Upper Triassic (Keuper) 0.00036 0.3 

7 Middle Triassic (Muschelkalk) 0.00180 0.3 

8 Lower Triassic (Buntsandstein) 0.02160 0.4 

9 Upper Permian (Rotliegendes) 0.00360 0.3 

10 New Red Conglomerate 0.00100 0.3 

11 Bedrock/Granite 10-7 0.3 

 822 

 823 
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 824 

Table A2: Observed atmospheric variables at KIT and STG. Local time at STG is UTC+01. 825 

 826 

dataset quantity temporal resolution height above ground data coverage 

KIT 

temperature  

10 min averages (resampled to 15 min) 

10 m, 100 m 

01/2007 – 12/2013 Incoming and outgoing 

shortwave radiation 

- 

Incoming and outgoing 

longwave radiation 

- 06/2011 – 12/2013 

STG 

temperature 

12 h 

(11:45 h and 23:45 h local time) 

vertical profiles 

(interpolated to model 

levels) 

01/2007 – 12/2013 

dew point temperature 

pressure 

incoming shortwave 

radiation 

1 h averages 

- 

incoming longwave 

radiation 

- 

 827 

 828 

 829 

 830 
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