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Abstract. 

Coupled numerical models, which simulate water and energy fluxes in the subsurface-land surface-atmosphere system in a

physically consistent way are a prerequisite for the analysis and a better understanding of heat and matter exchange fluxes at

compartmental boundaries and interdependencies of states across these boundaries. Complete state evolutions generated by

such  models  may be  regarded  as  a  proxy of  the  real  world,  provided  they are  run  at  sufficiently  high resolution and

incorporate the most important processes. Such a simulated reality can be used to test hypotheses on the functioning of the

coupled terrestrial system. Coupled simulation systems, however, face severe problems caused by the vastly different scales

of the processes acting in and between the compartments of the terrestrial system, which also hinders comprehensive tests of

their realism. We used the Terrestrial  Systems Modeling Platform TerrSysMP, which couples the meteorological  model

COSMO, the land-surface model CLM, and the subsurface model ParFlow, to generate a simulated catchment for a regional
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terrestrial system mimicking the Neckar catchment in southwest Germany, the virtual Neckar catchment. Simulations for this

catchment are made for the period 2007-2015, and at a spatial resolution of 400m for the land surface and subsurface and

1.1km for the atmosphere.  Among a discussion of  modelling challenges,  the model performance is evaluated  based on

observations covering several variables of the water cycle. We find that the simulated catchment behaves in many aspects

quite close to observations of the real Neckar catchment, e.g. concerning atmospheric boundary-layer height, precipitation,

and runoff. But also discrepancies become apparent, both in the ability of the model to correctly simulate some processes

which still need improvement such as overland flow, and in the realism of some observation operators like the satellite based

soil moisture sensors. The whole raw dataset is available for interested users. The dataset described here is available via the

CERA database (Schalge et al, 2020): https://doi.org/10.26050/WDCC/Neckar_VCS_v1

1  Introduction

Earth environmental  models are becoming increasingly important for climate and weather  prediction, flood forecasting,

water resources management, agriculture, and water quality control (e.g. Shrestha et al. 2014; Larsen et al. 2014; Simmer et

al., 2015). Assuming that that the models are able to resemble the real-world based on state-of-the-art understanding of the

system processes, the models are also used as “virtual realities” for hypothesis testing and decision support systems in many

scientific disciplines (Clark et al., 2015, Semenova & Beven, 2015).

Virtual or simulated realities have been used for specific compartments of the terrestrial system in many studies (see Fatichi

et al., 2016, and reference herein) and several advantages have been recognized. Bashford et al. (2002) computed simulated

remote-sensing observations with 1 km resolution to derive, among others, process parameterizations for evapotranspiration

in a hydrological  model operating on the same scale as the remote sensing data.  Weiler  and McDonnel  (2004) used a

simulated-reality approach on the hill-slope scale to detect and quantify the major controls on subsurface flow processes and

derive  tunable  parameters  for  conceptual  models.  Similar  experiments  allowed  Schlueter  et  al.  (2012)  to  explore  the

relationship between soil architecture and hydraulic behavior and Chaney et al. (2015) to testing sampling designs. Hein et

al. (2019) explores the relative importance of different factors in the hydrologic response of a catchment. Simulated realities

are also often used to overcome limitations on the data-scarce observations. In this context, Ajami and Sharma (2018) used

simulations results to test disaggregation method for soil moisture observations. In subsurface hydrology it is a standard

procedure to test inverse modeling and data-assimilation approaches on simulated aquifers (e.g., Zimmermann et al., 1998;

Hendricks  Franssen  et  al.,  2009),  which  are  used  to  generate  realistic  aquifer  data  with  exactly  known hydraulic  and

geochemical properties at every point (e.g., Schaefer et al., 2002).

More recently, it has been highlighted that the terrestrial systems should be better exploited by the use of integrated models

which  are  able  to  simulate  water  and  energy  fluxes  in  the  subsurface-land  surface-atmosphere  system in  a  physically

consistent way (Clark et al., 2015, Davison et al, 2018). For this reason, these integrated modeling approaches have also
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been  considered  to  generate  simulated  realities  (Mackay  et  al.,  2015).  However,  despite  the  increasing  computational

capability  and availability  of  infrastructures,  these  modelling approaches  are  generally  more  technically  demanding.  In

addition, the use of these types of integrated models requires different expertises that are not usually cover within one single

scientific group but requires strong interdisciplinary collaborations among different partners. For these reasons, the use of

these types of models is still not commonly foreseen.

To overcome this limitation, in this paper we present the development, the testing and the data of a simulated reality of a

mesoscale catchment based on a fully integrated terrestrial model system. Our virtual Neckar Catchment encompasses the

terrestrial system from the bedrock to the upper atmosphere covering the catchment of a higher-order river (length ≈ 380km,

area ≈ 14000km2) including a buffer zone surrounding it, in which we simulate - as realistically as currently possible - the

multi-year evolution of states including the water and energy fluxes in and between all its compartments. We specifically

venture to represent the strong spatial variability of the land components, which affects the overall system behavior due to

nonlinear couplings and feedbacks.  Since a simulated catchment with no resemblance to a real  world catchment hardly

allows for  evaluating its  realism,  we base  our simulation loosely on the Neckar  catchment  in  southwest  Germany that

contains quite variable topography, different land cover, high and low precipitation regions, deep and shallow water tables

and regions prone to flooding events.  (see  Figure  1).  The model  does not  aim at  exactly  reproducing  the catchment’s

response to hydro-climatic forcing, instead we only require that the simulated response is realistic with respect to typical

spatial and temporal characteristics. For this reason, we discuss the model realism in comparison with observations of the

real catchment, but also its limitations, particularly in relation to the chosen resolutions which balance the detail in process

representation and computational feasibility.Despite these simplifications we believe this dataset will be useful in a variety

of ways, such as data assimilation, model comparison studies and model development studies as well as  focused impact

studies. In the discussion section at the end we go more into detail how this dataset can potentially be used and what the

limits of applicability are.

The remainder of the paper is structured as follows. In section 2, we introduce the simulation platform TerrSysMP, while

Section 3 describes in detail the surface and subsurface parameters for topography, soils and aquifers, land use, vegetation,

and the river network. In Section 4, we show snapshots and time series of state variables or system parameters extracted

from the simulated catchment and compare them to observations in the real Neckar catchment to demonstrate how well the

most important requirements are met. These results as well as possible ways to improve them are discussed in Section 5

together with several  issues,  which came up during the development phase.  We provide conclusions and an outlook in

Section 6.

2 The Terrestrial Systems Modeling Platform (TerrSysMP)

We used the Terrestrial System Modeling Platform (TerrSysMP, see Shrestha et al. 2014; Gasper et al. 2014; Sulis et al.

2015) developed within the Transregional Collaborative Research Centre TR32 (Simmer et al. 2015) for the generation of
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the simulated catchment. TerrSysMP couples (Figure 1 in Gasper et al., 2014) the hydrologic flow model ParFlow v693

(Ashby and Falgout, 1996; Jones and Woodward, 2001; Kollet and Maxwell, 2006), the land-surface model Community

Land Model, CLM v3.5 (Oleson et al., 2008), and the atmospheric model Consortium for Small Scale Modeling  (COSMO

v4.21, Baldauf et al., 2011) via the Ocean Atmosphere Sea Ice Coupling framework OASIS3 (e.g. Valcke et al., 2006), using

a  dynamical  two-way  approach  including  down-  and  upscaling  algorithms  for  fluxes  and  state  variables  between

computational grids of different resolution.

ParFlow is a  variably saturated watershed  flow model,  which solves  the three-dimensional Richards equation to model

saturated and unsaturated flow in the subsurface, and the fully integrated kinematic wave equation to model two-dimensional

overland flow. Also other global and regional hydrological models use the latter to route overland flow, e.g. MODCOU

(Haefliger  et  al.,  2015) and TRIP (Alkama et  al.,  2012).  Advanced Newton-Krylov multigrid solvers  are  used that  are

especially suitable for massively parallel computer environments. Excellent model performance and parallel efficiency have

been documented by Jones and Woodward (2001), Kollet and Maxwell (2006), and Kollet et al. (2010). A unique feature of

ParFlow is the use of an advanced octree data structure for rendering overlapping objects in 3-D space, which facilitates

modeling complex geology and heterogeneity as well as the representation of topography based on digital elevation models

and watershed boundaries.

CLM is a single column biogeophysical  land-surface model released by the National Center for Atmospheric Research

(NCAR), which considers coupled snow, soil,  and vegetation processes.  Land surface heterogeneity is  represented as a

nested  sub-grid  hierarchy  in  which  grid  cells  are  composed  of  multiple  land  units  (glacier,  lake,  wetland,  urban,  and

vegetation), snow/soil columns (to capture variability in snow and soil states within each land unit), and Plant Functional

Types (PFTs) to capture the biogeophysical and biogeochemical differences between broad categories of plants in terms of

their functional characteristics. In TerrSysMP, the 1-D Richards-equation model included in CLM is replaced by ParFlow.

COSMO is a limited-area, non-hydrostatic numerical weather prediction model, which operationally runs at the German

weather service DWD, among others, for Numerical Weather Prediction (NWP) and various scientific applications on the

meso-β and meso-γ scale. COSMO is based on the primitive thermo-hydrodynamical  equations describing compressible

flow in a moist atmosphere. As a limited-area model, COSMO needs lateral boundary conditions from a driving larger-scale

model.  We  impose  the  lateral  conditions  by  nesting  COSMO  in  COSMO-DE  which  spans  Germany.  At  the  lateral

boundaries a relaxation technique is used in which the internal model solution is nudged against an externally specified

solution over a narrow transition zone between the two domains. Version 3.5 of CLM that is used here is already relatively

old. Even though version 5 was not yet available when we started our work, it is now and comparison is warranted. Newer

versions of CLM have several major improvements over 3.5. The first one is a more sophisticated routing scheme leading to

much improved soil moisture profiles. In our case we replace this part with ParFlow anyway so our older version is not a

disadvantage in that regard. Other improvements are the inclusion of carbon and nitrogen cycles as well as more options for

crop type vegetation. Here we purposely simplify our setup as we not only have and want static land use but also use a blend

type of  crop  with no sharp changes  in LAI due to  harvests.  Instead,  we assume harvest  to  be an ongoing process  all

4

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129



throughout autumn. Thus, all these improvements do not downgrade the simulation results presented and discussed in this

study. 

Within OASIS3, the upscaling algorithm uses the mosaic or explicit sub-grid approach (Avissar and Pielke, 1989) in which

high-resolution  land  surface  fluxes  are  averaged  and  transferred  to  the  coarser  resolution  of  the  atmospheric  model

component. The implemented Schomburg scheme (Schomburg et al., 2010, 2012) downscales atmospheric variables of the

lowest atmospheric model layer to the higher-resolved land surface model. The scheme involves (i)  spline interpolation

while conserving mean and lateral gradients of the coarse field, (ii) deterministic downscaling rules to exploit empirical

relationships between atmospheric variables and surface variables, and (iii) the addition of high-resolution variability (i.e.

noise) in order to honor the non-deterministic part and to restore spatial variability. 

TerrSysMP allows simulating the terrestrial water, energy, and biogeochemical cycles from the deeper subsurface including

groundwater (ParFlow) across the land-surface (CLM) into the atmosphere (COSMO). Water and energy cycles are coupled

via evaporation and plant transpiration; these processes are modeled by CLM with a non-linear coupling to ParFlow through

soil-water availability and root-water uptake (Figure 2). The two-way coupling between CLM and COSMO encompasses

radiation exchange and turbulent exchanges of moisture, energy, and momentum. OASIS3 allows for different temporal and

spatial resolutions of the coupled model components. For example, a temporal resolution of 15 minutes is sufficient for the

subsurface and land-surface components, whereas time steps as small as 5 seconds are needed for the atmosphere. A higher

spatial resolution can be assigned for the surface and subsurface parts to allow for a better representation of soil and land-use

heterogeneity.

Since high-resolution and long time-series of the fully coupled system are needed to satisfy our need to check the statistical

behavior of the system, the models were run on the IBM/BlueGeneQ System JUQUEEN at the Jülich Supercomputing

Centre (Jülich Supercomputing Centre, 2015). JUQUEEN has a total of 28672 nodes with 16 cores each. Our configuration

involved using 256 nodes for 12hours, restarting the simulation every 7 simulation days. This is necessary as the runtime for

Parflow can vary greatly depending on the conditions in the catchment. The total number of grid cells for the domain is

323,675 per model layer with 10 layers for CLM and 50 layers for ParFlow, and 58,420 grid-points for the 50 COSMO

layers resulting in 22.3 million grid cells. We ran the fully-coupled model for a period of nine years (2007-2015) as 2007

was the first full year where high resolution atmospheric forcings were available and nine years was the maximum possible

simulation length  given constraints on compute resources. On average the actual runtime was approximately eight hours.

This means that for one year of simulation roughly 1.7 million core-hours are needed. For the full nine-year time-series that

is about 12 million core-hours; another ~8 million hours were needed for the spin-up. We used an output interval of 15

minutes, which results in a total output of 38.5TB of data for the full time-series, where about half was produced by COSMO

and a quarter each by CLM and ParFlow. 
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3 Description of the virtual Neckar Catchment

Our simulated catchment is based on the Neckar catchment in southwestern Germany (see Figure 1), east of the Black Forest

mountain range and north of the Jurassic ridge of the Swabian Alb. The catchment has a varying topography including

mountains up to 1050 m a.s.l., river valleys, different land use types, i.e. grassland, cropland (majority of the area), broadleaf

and needle leaf forest (see Figure 3), and relatively large soil spatial variability. Annual mean precipitation over the real

catchment  ranges  between 500 and 2000mm (see  Section 5.1)  with highest  values  over  the Black  Forest.  Inter-annual

variability of precipitation can reach up to one third of the mean value. Monthly precipitation can vary largely and its mean

annual  cycle  is  weak  with  slightly  lower  values  in  spring  and  autumn.  While  summer  precipitation  is  dominated  by

convection, winter precipitation is predominantly related to fronts of extra-tropical cyclones with enhanced precipitation

over the mountains due to orographic lift. Daily average temperatures vary with altitude between -5°C and 0°C in January

and between 13 and 18°C in July. Land use and cover in the lower elevations are dominated by agriculture while the Black

Forest features mainly needle-leaf trees. Broad-leaf trees can be found over smaller areas throughout the catchment. The

distance to groundwater is in large parts of the area restricted to a few meters, in particular in lowland areas, which assures

strong coupling between groundwater table and evapotranspiration (Maxwell et al., 2007). These typical central European

catchment  features  in  addition  to  the  relatively  shallow groundwater  tables  (implying  a  stronger  possible  feedback  of

groundwater on atmospheric conditions) were the basis to select the Neckar catchment for our simulation.

The computational domain is a rectangular area of ~57,850km² encompassing the Neckar catchment of ~14,000km². The

domain is larger than the Neckar catchment in order to allow the atmospheric model to develop its own internal dynamics.

COSMO is run on a 1.1km horizonal grid with 230x254 grid points, which includes a 4 grid point-wide outer frame zone

where  only the lateral  boundary forcing  is  used without  coupling to the CLM, as  well  as 50 vertical  layers  in  hybrid

coordinates (terrain following at the surface, flat in the stratosphere). COSMO is set up identical to the operational COSMO-

DE  setup  of  the  German  national  weather  service  (Deutscher  Wetterdienst,  DWD),  e.g.,  the  deep  convection

parameterization is switched off because at the chosen grid resolution convection is enabled by the dynamical core (see

Section 2.1). In COSMO-DE, the operational resolution is 2.8km, so that the approximation regarding deep convection is

even more appropriate in our simulations. Similar choices were taken by Smith et al. (2015), who simulated precipitation

events of roughly the same domain using nested WRF models, where the cumulus parameterization was switched off at

horizontal resolutions of 900m and 300m. Lateral boundary forcing and constant fields (topography, land-mask etc.) are

provided by the COSMO-DE analysis fields, which are downscaled to the 1.1km grid by linear interpolation. The lateral

relaxation zone, which moderates the jump from the lateral driving fields to the inner model area, is set to 12km.

A software restriction (unfixable bug specific to the supercomputing system we were using for our simulation runs r as

described in the previous section) did not allow for cases with more than 4.2 million CLM columns as the model d id not

initialize properly and crashed implying that a higher spatial resolution for CLM and ParFlow than 400 m  could not be

achieved for the Neckar catchment on the used system. So, ParFlow and CLM use the same horizontal grid with a resolution
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of 400 m and 535x605 grid points. The vertical grid for both component models is partially the same, with CLM limited to

10 vertical layers up to a total depth of 3 m shared with ParFlow, which has in total 50 vertical layers reaching down to

100m. COSMO runs with a 5sec timestep while CLM and Parflow run at  15min timesteps,  which is also the coupling

frequency.

For  setting  up  CLM,  the  European  digital  elevation  model  (DEM)  by  the  European  Environment  Agency  EEA

(http://www.eea.europa.eu/data-and-maps/data/eu-dem)  was  projected  to  the  latitude/longitude  grid  and  bi-linearly

interpolated to 400m from the original 30m spatial resolution. The same DEM is used to create the slope input files for

ParFlow. A slight modification to the original DEM was made in order to ensure that the simulated Neckar River would flow

in the correct valley, especially in the upper half of the catchment where the valley is not always properly resolved by the

400m resolution. In total, the elevation of 8 grid points was reduced to achieve proper routing for the Neckar River. The

resulting elevation map is part of the CLM input data and available with the dataset as supplementary material. We have not

considered rivers outside the Neckar catchment in these corrections; thus, there are cases where their routing is not identical

to the real rivers.

Land use is taken from the 2006 Corine Land Cover Data Set (http://www.eea.europa.eu/data-and-maps/data/corine-land-

cover-2006-raster-3) also provided by EEA. Since the latter dataset features many more land use types (at a resolution of

100m) than required by CLM, they were grouped according to the CLM (IGBP) Plant Functional Type classes (1) broad-leaf

forests, (2) needle-leaf forests, (3) grassland, (4) cropland, and (5) bare soil. Urban areas are not considered in this setup and

replaced by bare soil. Water surfaces (e.g., larger lakes like Lake Constance in the South of the domain) are also treated as

bare soil in CLM while COSMO uses its own land-mask and specific calculations for water surfaces. Therefore, no values

from CLM are used for water surfaces in COSMO. A few hundred grid cells feature shrubs (mostly areas that are re- or de-

forested or areas at higher altitudes) which are treated as forests, and each grid cell features only one – the most dominant –

plant functional type. The plant Leaf Area Index (LAI) is computed from MODIS (Myneni et al. 2002) as monthly averages

for the year 2008 for each of the four vegetated land use classes. As a result, interannual variability is not considered in this

simulation  as  we  have  the  same  LAI  curve  for  each  PFT each  year.  This  somewhat  limits  the  comparability  to  ET

observations especially in spring. This LAI is increased for all plant functional types by 20 percent on average (more for

forests and less for grassland and crops) in the summer months and significantly changed from factors less than 1 to 3.3 in

winter-time (DJF average) for needle-leaf forests in order to account for known biases in the MODIS data (Tian et al. 2004)

mostly related to snow cover and fractional land cover due to the satellite footprint which often includes other vegetation

types or roads and other buildings, leading to an underestimation for a gridcell that is fully covered by just one type as we

use them. The stem area index (SAI) is estimated from the LAI by a slightly modified (no dead leaves for crops, constant

base SAI of 10 percent of the maximum LAI) formulation of Lawrence and Chase (2007) and Zeng et al. (2002) to better

represent European tree types. Vegetation height was set to 7m for needle-leaf trees and 10m for broad-leaf trees to account

for partial coverage by shrubs, to 20 - 120cm for crops, and to 10 - 60 cm for grass depending on the time of the year with

low values in the winter months and largest values in July and August. Since we consider only one crop type, we do not
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specify a harvest  date when the plant  height drops to its minimum, but assume a smooth decline between August  and

October.

For the representation of soils in CLM we use the 1:1,000,000 soil map (BUEK1000, roughly 1km resolution) provided by

the  Federal  Institute  for  Geosciences  and  Natural  Resources  -  BGR

(http://www.bgr.bund.de/DE/Themen/Boden/Informationsgrundlagen/Bodenkundliche_Karten_Datenbanken/BUEK1000/

buek1000_node.html). This soil map is available for entire Germany; thus only small areas in Switzerland and France are

missing outside the Neckar catchment for which we assume a nearby soil class. BUEK1000 offers sand and clay percentages

as well as carbon content for two to seven soil horizons down to a maximum depth of 3m for each soil type. The carbon

content is used to infer soil color. For urban areas (modeled as bare soil, as mentioned above) a fixed soil color (class 8 in

CLM) was used.

Since soil properties may vary substantially at scales smaller than the 1km for which BUEK1000 is appropriate, which might

impact system dynamics (Binley et al. 1989, Herbst et al. 2006, Rawls 1983), the soil map is downscaled by artificially

adding variability using the conditional points method recently presented in Baroni et al. (2017) as follows:

(1) The BUEK1000 soil map is randomly sampled at 1995 point locations with one sample every 5 km 2 on average, a

minimum sample distance of 250 m, and at least one sample for each soil type of the original soil map which is realistic in

the context of how soil maps are usually created. This strategy resulted from extensive testing by minimizing the tradeoffs

between reproducing the main features of the original soil map and creating variability at finer resolution.

(2) The sample locations are used as conditional points for further interpolation. Here,  texture, carbon content, and

depth of the first  three soil  horizons are extracted  from the BUEK1000 resulting in variable  soil  depth rather  than the

assumed unrealistic uniform soil depth. In addition, the sand content of the original map was increased by 20% (except for

areas with very high sand content to avoid grid cells with >90% sand) resulting in a slightly higher hydraulic conductivity

because  previous simulations yielded  too shallow unsaturated  zones  related to  the  spatial  resolution of  the simulation.

Changing sand content increased the thickness of unsaturated zones and lowered groundwater tables,  fixing most of the

emerging biases

(3) Experimental variograms and cross-variograms are calculated for all variables and exponential models were fitted

to all spatial structures. 

(4) A texture map (sand and clay percentage) is generated using a single realization based on conditional co-simulation

(Gomez-Hernandez and Journal, 1993) to provide the sub-scale variability (<1 km2). Soil horizon depths and carbon content

are, however, assumed to have a smoothed spatial variability; therefore, they are interpolated based on ordinary kriging as

the removal of small-scale variability is not important for the depth and carbon content.

(5) Since ParFlow describes retention and hydraulic conductivity curves based on Mualem-van-Genuchten parameters,

pedotransfer functions are applied to estimate these parameters. The pedotransfer function of Cosby et al. (1984) is used to

estimate saturated hydraulic conductivity based on soil texture, the one from Rawls (1983) is used to estimate soil bulk

density based on soil texture and organic matter and the one from Tóth et al. (2015)  is used to estimate van Genuchten
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parameters based on soil texture and bulk density. These have been selected based on data availability, applicability of the

particular approaches, and previous evaluations conducted in the area (Tietje and Hennings, 1996).

In order to keep soil porosity identical between CLM and ParFlow, we replaced the porosity calculation within CLM (which

uses a different pedotransfer function). The Manning’s surface roughness was set to a constant value of 5.52×10 -4 h/m1/3 and

the specific storage to 1×10-3. The chosen surface roughness value results in a realistic base flow for the local rivers without

calibration. Repercussions of this choice are discussed in Chapter 6. Slopes of the main rivers are additionally smoothed to

avoid artificial ponded areas.

All  these  changes  are  part  of  the forcing  files  that  are  provided with the full  dataset  making it  easy to  reproduce  our

simulations (https://cera-www.dkrz.de/WDCC/ui/cerasearch/entry?acronym=Neckar_VCS_v1_FORCING)

In order to allow for realistic flow in the saturated zone, the 3-D geologic model of the geological survey of the state of

Baden-Württemberg was used from which eleven rock types were defined for Baden-Württemberg (see Figure A1). Some

characteristic features  of the domain, such as middle Triassic and Jurassic karst  aquifers,  are not included to avoid the

manifold  hydrological  challenges  related  to  its  modeling.  While  this  can  have  significant  impact  on  groundwater

representation in the karst areas, for the rather short time period considered here we expect a limited impact on near-surface

soil  moisture  content as  the  affected  areas  have  in  general  deeper  groundwater  levels.  For  areas  outside  of  Baden-

Württemberg  we  extended  the  rock  types  at  the  boundary  outwards  to  cover  the  full  computational  domain.  Tab.  1

summarizes porosity and hydraulic conductivity used in the domain for the different stratigraphic units. Since karst features

of  limestones  are  not  considered,  porosities  in  stratigraphic  units  containing  limestones  and  crystalline  rocks  are  set

considerably higher than in nature to somewhat counter this.

Not covered by the discussed data sets (not part of the soil and not large enough to be resolved in the geological map) are the

large alluvial bodies filling large part of the Neckar valley throughout the domain (Riva et al., 2006).  Up to 30% of the

runoff  takes  place  in  the  subsurface  especially  during  periods  of  base  flow  according  to  a  sub-catchment  simulation

performed for the year 2007. In that simulation we used measured precipitation and river discharge data together with the

simulated evapotranspiration to calculate the water balance over a whole year. While our simulated evapotranspiration rates

may be inaccurate, it is implausible that this can account for 30% of the precipitation as in this climate we are almost always

energy limited and therefore ET errors will be smaller and mostly related to errors in atmospheric forcings and LAI. This

implies that the water could only have left the domain through the subsurface. Thus, gravel channels are needed to account

for this lateral flow. Since the valleys in the catchment are often small compared to the limited horizontal resolution of the

model, we conceptualize the alluvial bodies as gravel layers underneath all river cells (cells with a mean pressure head

>0.1m) and directly next to rivers (riverbanks, i.e., one grid point besides each river cell). The assumed gravel layers reach

from beneath the soil down to a depth of 8m. The gravel cells are parameterized with a high hydraulic conductivity of 1 m/h,

a porosity of 0.6 and van-Genuchten parameters of 2 for n and 4m-1 for α (residual saturation is 0.06 cm3/cm3). Our setup

results in a reasonable distribution of surface and subsurface discharge at the outlet of the catchment and reasonable river –

aquifer exchange fluxes. In addition to the gravel channels, we included a layer of weathered bedrock, which starts below the
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soil and extents down to a depth of 6m. This layer is characterized by substantially larger  porosity (0.4) and hydraulic

conductivity (0.1 m/h) than the rock below. This layer was added to enhance subsurface flow and counter the common

occurrence of too shallow water levels if these features are not included. Both these changes are realistic when compared to

the actual morphology of the Neckar river valley. While it is quite narrow in many places, there are still significant alluvial

deposits everywhere except the furthest  upstream region (which are not considered for this anyway due to the pressure

cutoff). The choice for the weathered bedrock layer is also reasonable given the temperature and moisture ranges leading to

imperfections in the rock layers near the surface.

Since we enforce no-flow boundary conditions at the subsurface domain boundaries, all water has to eventually reach the

surface in order to leave the domain. This happens predominantly in areas outside of the Neckar catchment, e.g. in the upper

Rhine valley, thus soil-moisture values in this region may be too high.

4 Results

In the following, we present example results of the simulated-reality simulations in order to demonstrate its potential for a

better understanding of the dynamics in coupled terrestrial  systems. We will  also show that  the simulations quite  well

resemble observations in the real Neckar catchment, and thus can be used to develop and evaluate modelling and prediction

strategies. Precipitation is the strongest hydrological driver in this region; thus its realistic spatial and temporal variability in

the domain including its statistical relations with topography is important. Also, the state of the atmospheric boundary layer,

which reflects the interaction of the land surface with the atmosphere is a critical component of the terrestrial system, which

should  be  represented  by  the  simulation  with  some confidence.  Along with  the  comparisons  we  will  also  discuss  the

challenges experienced with such a modeling setup.

Even though we do not aim to be as close to reality as possible, we feel it important to show  that the model system is

behaving as expected and is thus suitable for the various use cases we discussed. Figure A2 shows as an example result a

snapshot  of  the  simulated  three-dimensional  distribution  of  cloud  water/ice,  precipitation  density,  and  volumetric  soil

moisture.  The soil  exhibits different  soil  moisture layers,  the variability of which is mainly connected to different  soil

hydraulic  properties.  Only  clouds  reaching  high  enough  to  have  sufficient  cloud  ice  produce  precipitation,  and  some

precipitation evaporates before it reaches the ground. Extended weather fronts moving through the domain (not shown),

which are imposed by the boundary conditions, are also simulated realistically (timing, strength of wind gusts, change of

wind direction, change in temperature and pressure) given the resolution of the atmospheric model.

4.1 Relation between water table depth and evapotranspiration

An important measure for hydro-meteorological interactions within a catchment is the relation between water availability

and surface energy flux partitioning. Thus, the simulated catchment should capture the expected reduced evapotranspiration

(ET) with increasing distance to groundwater (e.g., Maxwell et al., 2007; Shrestha et al., 2014). In Figure 3, we show daily
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averaged evaporation (which here is equal to ET as all other contributors are zero) values over bare soil against distance to

groundwater for 30th April and 31st July for the year 2007. These days were chosen as they were preceded with several dry

days in almost the whole catchment leading to comparable states for the upper soil layers. April was almost completely dry

(on average less than 3 mm precipitation over the domain), while July was much wetter, but the increased solar radiation and

thus temperatures compared to April result in higher evaporation rates and thus a quicker drying of the top layer of the soil.

Figure 3 indicates a reduction in evaporation when the distance to groundwater falls below 15 – 100cm, depending on soil

properties with faster evaporation reduction for increasing soil sand contents. Such relations are less obvious for cells with

significant plant cover: while trees show overall higher evaporation and almost no change with distance to groundwater due

to their deep root zones, variability increases with larger distances to groundwater (not shown). Also crops and grassland

show limited evaporation changes as a function of distance to groundwater, which can, however, be explained by the high

water availability (no water stress) in the time period considered. Figure 3 also contains a small number of grid-points at

water table depth of 7m or deeper with evaporation rates only slightly lower than in the shallow water table regions. These

relate most likely to cells that retain high levels of upper-level soil moisture even during dry periods to support higher

evaporation. This could be due to the way the water-table is calculated. We define the water-table as the deepest threshold

between positive and negative pressure. Since there are some places where there is another  saturated region closer to the

surface, leading to higher water availability near the surface, the high value for water-table can be misleading with respect to

near-surface soil moisture.  Such a feature will only occur if the water-table is deep enough to begin with which is why we

do not see this for water-tables of less than 10m.As a results volumetric soil moisture for these cells with deep water table

but high evaporation is much more similar to cells with shallow water table than to cells with deep water table but low

evaporation

We want to point out that in this region ET is almost always limited by atmospheric demand which is why we limit  the

analysis to bare-soil evaporation only. Since the upper-most layers can dry quickly the resulting drop in evaporation can be

seen which is not the case for ET if there is an extended root zone as we have for crop,grassland and forests. These bare-soil

areas are not a feature of the real catchment and as such can not be compared to real measurements. 

4.2 Precipitation

We  compare  the  simulated  precipitation  with  the  1x1  km  gridded  REGNIE  product  of  DWD,  derived  from  in-situ

precipitation observations (Rauthe et al., 2013). For the evaluation of seasonal daily precipitation cycles hourly observations

of 71 DWD observational stations are used. The simulated seasonal mean precipitation (Figure 5) and the annual mean

precipitation (not shown) are governed by the orographic structures of the Black Forest and Swabian Alb. Values range

between approximately 520 mm/year around Mannheim and 2105 mm/year over the Black Forest in good accordance with

REGNIE concerning the overall pattern and range (510 mm/year – 2130 mm/year). Overall the simulation shows about 10%

higher annual precipitation in the east and south and about 25% lower in the north and west compared to REGNIE. During

winter (December to February) precipitation is dominated by advection from the west, which result in maxima over the
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upwind and peak zones of the mountains and leeward minima. The simulated winter pattern (j) compares well with REGNIE

(k), but the model underestimates precipitation in the northwestern part of the catchment (l). Over the mountains a slight

lateral shift of this kind of precipitation pattern results in neighboring areas with under- and overestimation also found for

COSMO simulations coupled to its own TERRA land surface model (e.g., Dierer et al., 2009; Lindau and Simmer, 2013). In

fall, the difference pattern between simulations and REGNIE (i) is similar to the winter pattern, but has smaller contrasts. In

spring, the simulated precipitation is higher compared to REGNIE. In the summer (June to August), cloud bases are usually

higher and reduce  the patterns  caused by the luff-lee effects.  Moist  air  extends further  to the east  and south and gets

staunched by the alpine upland leading to enhanced precipitation there. The simulated summer precipitation pattern, which is

dominated by convective precipitation, resembles the REGNIE pattern but exceeds the latter by about 20% lower over large

parts of the catchment (Figure 4).

The mean seasonal diurnal precipitation cycles (Figure 5) reflect the dominating precipitation types. While observed and

simulated winter precipitation (Figure 5b) do not show a diurnal cycle, summer precipitation (Figure 5a) increases over the

afternoon reaching a maximum at about 7pm in accordance with the maximum of convective precipitation. The simulations

reproduce this pattern but exhibit  a weak second peak between 6am and 12am while the afternoon/evening increase is

delayed by about two hours. The simulated daily precipitation distribution fits the observations especially in late afternoon

and night while it overestimates precipitation during the late morning and underestimates it in early afternoon in summer. In

winter this effect  is  much less pronounced.  This behavior  is  related to the representation of  convective showers  in the

atmospheric model. The responsible parametrization was not designed for the km scale and  application at this resolution

results in a too early onset  of convective precipitation. While the simulated catchment has somewhat less dry and low

precipitation days than REGNIE, the number of days between 4 and 10 mm are higher than in REGNIE (not shown). The

simulated and observed seasonal precipitation cycles (Figure 6) compare very well and mean precipitation is nearly identical

between simulations and observations.  The model  reproduces  the  seasonal  cycle  of  maximum daily precipitation  well,

however with larger differences in the summer (see also Dierer et al. 2009).

4.3 Atmospheric State Variables and Surface Radiation

We compare the atmospheric boundary layer (ABL) of the simulated catchment to observations from the meteorological

tower at Karlsruhe Institute of Technology (KIT; Kalthoff and Vogel, 1992) and with DWD radiosonde observations in

Stuttgart (STG) (see Figure 1 for locations and Table A1 for details of observed quantities). To avoid a biased comparison

related to land-cover mismatches between the simulation and the actual land use at the observation sites, the simulation

results  are  averaged  over  five-by-five  atmospheric  grid  boxes  centered  around  the  observation  sites  thus  giving

approximately the same fractional land cover as is present at the observation location.

The 10m mean diurnal minimum temperatures in the catchment are between 0.5 K (January) and 2.5 K (August) higher than

observed  (Figure  7,  top)  and  are  reached  approximately  one  hour  later  than  observed  with  the  subsequent  morning

temperature rise shifted accordingly. The simulated diurnal temperature maxima are on average 0.7 K lower than in the
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observations and are reached 30 minutes later than measured. The morning temperature gradient in the simulation ranges

from 0.10 K/h in December to 0.31 K/h in April, which compares reasonably well with the observations (0.13/0.52 K/h in

January/April). The evening cooling, however, progresses too slowly and results in too high minimum temperatures. At 100

m above ground, diurnal maximum temperatures agree within 0.7 K while the warm bias of diurnal minimum temperatures

(0.9 K) is smaller than at 10m height (Figure 7, bottom). Also at 100 m a 1h shift between the diurnal minimum temperatures

and the morning temperature rise are found. In 200 m height, the simulated monthly mean diurnal cycles are practically

identical to the KIT observations (not shown). The simulated temperature standard deviations (mean absolute difference for

each time of day between the specific daily  value and the corresponding monthly mean, see appendix Formula  A1 for

details) are somewhat smaller than observed, especially in afternoons in the summer half year with underestimations of the

temperature standard deviation larger than 20%.

COSMO in TerrSysMP estimates  ABL heights  via the  bulk Richardson number criterion  with a  threshold of  0.22 for

unstable and 0.33 for stable conditions (Szintai and Kaufmann, 2008). Both seasonal and diurnal variations of the mean ABL

height at 0 and 12h local time agree well with the observations using the same criterion (Figure 8), but the simulation tends

to overestimate ABL heights at nighttime by up to 150 m and underestimate it at daytime by up to 200 m in March. Figure 9

compares  simulated  mean  vertical  profiles  of  temperature,  virtual  potential  temperature,  and  specific  humidity  with

radiosonde observations at 0 h and 12 h local time in Stuttgart (STG) including the mean differences (bias) and the standard

deviation of the differences. Simulations are up to 0.9 K warmer close to the surface at 0 h and up to 0.5 K colder at 12 h. At

larger  heights,  the simulations are up to 0.5 K warmer  depending on land cover.  Specific  humidity profiles  at  0 h are

approximately 0.2 g/kg too dry close to the surface and 0.2 g/kg too wet above 1500 m. At 12 h profiles are up to 0.3 g/kg

too wet throughout. The simulations have smaller virtual potential temperature gradients and are thus less stable close to the

surface at 0 h. At 12 h, the decreasing virtual potential temperature close to the surface is not captured and tends towards a

more neutral instead of unstable profile at low heights.

At KIT (STG) the land surface receives on average 20 W/m2 (5.3 W/m2) more incoming shortwave radiation and 18 W/m2 (8

W/m2)  less  incoming  longwave  radiation  indicating  a  somewhat  lower  cloud  cover  (or  lower  cloud  optical  depth)  as

observed. At daytime (6 h – 22 h), the mean outgoing longwave radiation matches the KIT observations, while at nighttime

(22 h – 6 h) values are 7.2 W/m2 larger than observed, which corresponds to a higher surface temperature of approximately

1.4 K.

Overall, the atmospheric profiles, including the ABL heights, are very close to observations during the day and at heights

above 10m. Noteworthy differences only occur close to the surface with too high nighttime temperatures (up to 2.5 K in

summer)  and  subsequently too  small  morning  temperature  gradients.  Somewhat  higher  incoming shortwave  and  lower

incoming longwave radiation  at  the surface  indicate  less  cloud cover  (or  lower  cloud optical  depths)  compared  to  the

observations. These results are in line with a previous evaluation of a 2.2 km COSMO simulation (Ban et al. 2014). In

addition, we note somewhat reduced unstable conditions at daytime close to the surface in the simulations.
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4.4 Passive Microwave Observations

The most direct area-covering observations of soil moisture are currently provided by L-Band (1.4 GHz) passive microwave

observations from satellites. The Community Microwave Emission Model (CMEM) is used as a forward operator to simulate

the brightness temperatures (TB) at this frequency in vertical and horizontal polarization (de Rosnay et al., 2009). CMEM

simulates brightness temperatures at the top of the atmosphere resulting from microwave emission and interaction by soil,

vegetation, and atmosphere based on the state variables of the simulated catchment. Input to CMEM are the percentages of

clay and sand in the soil, the coverage with open water surfaces, the profiles of soil moisture and soil temperature, vegetation

types, and leaf area index (LAI).  Satellite orbit geometry, antenna pattern,  foot-print and incidence angle are taken into

account following the ESA SMOS (Soil Moisture Ocean Salinity) instrument specifications, i.e. a full-width-half-maximum

field of view leading to a footprint of 40km across-orbit and 47km along-orbit at multiple incidence angles (Kerr 2001) is

applied. This antenna pattern weighs the grid-cell  simulated brightness temperatures  (Figure 11, left) in order to obtain

simulated  SMOS  observations.  Finally,  these  synthetic  observations  are  rendered  according  to  pixels  based  on  the

Icosahedral Snyder Equal Area (ISEA) projection at a spatial separation of about 15 km similar to the SMOS L1C TB data

product (Figure A4, right), which can then be compared with observations for an indirect evaluation of the simulation. Every

pixel corresponds to a fixed geo-location of the real SMOS L1C data product over the modeled area. Optionally, the satellite

observation operator in TerrSysMP is able to also replicate the NASA SMAP (Soil Moisture Active Passive) radiometer

(Saavedra et al., 2016) for years beyond 2015 since when SMAP data is available. 

We evaluate the simulated brightness temperature distribution over the domain with real SMOS observations between April

2011 and September 2011. The SMOS observations are corrected from radio-frequency interference (RFI) effects over the

region following Saavedra et al. (2016). Initial results with CMEM adapted parameters for surface roughness and vegetation

optical  thickness  (which  needed to be increased  from its  standard  values  found in the literature),  lead to  a  systematic

underestimation of the brightness temperature of about -20K on average (see orange line in Figure A3, which compares real

SMOS observations with the simulated brightness temperatures) and maximum and minimum differences of -33K and -6K,

respectively, for an incidence angle of 30°. A similar underestimation of -14K resulted for the 40° incidence angle with

maximum and minimum values of -34K and +15K (lower plot in Figure 10). Those differences are mainly caused by the too

large near-surface soil moisture values in the simulated catchment. The cumulative distribution functions of the satellite-

derived soil moisture products and the simulated soil moisture suggests an about 63% higher near-surface soil moisture

compared to the satellite estimates (Saavedra et al. 2016, Figure 6) with extremes of 44% and 95%. With that, a daily

matching  of  the  cumulative  distribution  functions  of  the  simulated  catchment  and  satellite  retrieved  soil  moisture  is

performed to find a factor which then is assumed to be the soil-moisture bias of the simulation and is applied as a correction

factor. Figure 10 compares true SMOS observations with simulated brightness temperatures obtained without and with day-

to-day  correction  for  the  assumed  soil-moisture  bias  of  the  simulation.  The  correction  decreases  the  average  bias  in

brightness temperature from -20K(-14K) to about -3K (-2K) for the incidence angle of 30° (40°) at horizontal polarization.
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Similar results are found when the simulations were statistically compared with observations of later years from the NASA

SMAP (Fig.  3  in  Saavedra  et  al.  2016).  The remaining bias  can  probably be further  reduced  by fine tuning radiation

interaction parameters in CMEM, and by including orographic effects on the effective incidence angle.  These biases will be

addressed by an improved exploitation of the uncertainty of the radiation interaction parameters and by including in CMEM

a two-stream approximation to better simulate cases with dense vegetation in the future.

The  microwave  observations  retrieved  from  the  simulated  catchment  show  a  typical  situation  encountered  in  data

assimilation; more often than not there are biases between simulated and remote sensing observations. This discrepancy

usually has multiple causes, which can relate to the observations themselves, assumptions in the observation operator used to

simulate the observations, and in the model used to generate the systems state variables entering the observation operator.

Even if these differences cannot be removed, such observations can be highly valuable for data assimilation as long as

temporal tendencies are meaningful information. Usually, the bias is statistically corrected and thus only the information in

the temporal and (if meaningful) spatial variability of the observations is exploited for moving the model states towards the

true states.

4.5 Evaluation of River Discharge

We compare river discharge in the simulated catchment with observations made in the Neckar catchment at the gaging

stations Rockenau,  Lauffen,  and  Plochingen for  a  three-year  period from 2007 to 2009 (Figure  11).  The range of  the

hydrological responses to precipitation in the simulated catchment is similar to the observations and also during dry periods

the behavior is similar, which is noteworthy since no calibration to runoff data has been applied to the model. The simulated

discharge peaks are, however, higher and delayed by one to three days compared to the observations. A reason could be a too

large Manning´s coefficient and the model resolution. In the discussion we suggest a scaling of Mannings coefficient to

account for the mismatch between true river width and the model resolution in order  to better represent realistic flood

dynamics. In spring and summer, the response to precipitation is significantly smoother than observed and peak amplitudes

vary with respect  to peak amplitudes of the observations. The differences between observed and simulated precipitation

discussed above and the effects of the less predictable convective events during these seasons may also play a significant

role. Convective events will often be displaced in space and time compared to the observations and may even show different

individual life cycles including lifetime and amplitude. Finally, the base flow is much lower compared to the real catchment

during  dry  periods,  most  likely  because  the  grid  resolution  is  considerably  larger  than  the  actual  river  width  and  the

unresolved subsurface spatial heterogeneity. An increased hydraulic conductivity via an increased soil sand content may

reduce the base flow further as infiltration increases.

The results  are  further  evaluated  comparing  the  flow duration  curve  and  the  monthly  run  off  coefficient.  The former

represents the statistical probability to exceed a specific discharge value within a given time period while the latter is the

ratio between runoff and precipitation over the catchment area. Figure A4 shows the lower exceedance probability compared
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to the observations,  in  particular  for  low discharge  rates,  a  behavior  attributed to  the lower  base flow component and

confirmed by the too low runoff coefficients in spring and summer but similar coefficients during the rest of the year (Figure

12). We hypothesize that in this period the simulation has a lower hydrological response also due to missing subsurface

heterogeneity. As stated above, we have neglected karst features, which are known to produce fast lateral subsurface flows.

Overall, the model captures the general statistical features of the catchment including the typical seasonal trends quite well,

while differences are noted related to hydrological extremes and base flow. These differences could be reduced by model

calibration from which we refrain because hydrological extremes are not primary the objective of this study. We discuss

options to improve the representation of river discharge further below.

4.6 Groundwater

A plausibility check of the groundwater levels is performed in two steps. First, we visually inspect the groundwater depth

map, shown in Figure 13a. Accordingly, the model shows a reasonable split between shallower and deeper (5 meter and

below) groundwater tables compared to expected values from observations with shallower levels overall. Furthermore, the

deeper sections are found in the mountainous areas of the model domain, which corresponds well with the real situation. It

has to be noted though that regions with shallow groundwater levels often show very small values, likely not to be found in

the real catchment where the unsaturated zone is usually thicker. In a second step, we compare simulated hydraulic heads

with available data. The environmental protection agency of the state of Baden-Württemberg (Landesanstalt für Umwelt,

Messungen und Naturschutz  – LUBW) operates  33 continuous  groundwater  observation  wells.  Comparing  those  point

measurements to simulation results of an uncalibrated model with 400m grid resolution makes little sense.  Instead, we

compare (1) the magnitude of the fluctuation in the groundwater table throughout the catchment during a year (calculated as

the groundwater observation minus its yearly mean, shown in Figure 13b) and (2) the average trend of the groundwater level

in the full model domain (calculated after subtracting the mean and scaling the fluctuations to have the same magnitude).

This means we are comparing standardized anomalies for the observed and simulated groundwater levels. According to

Figure 13b, the magnitude of the groundwater fluctuations is within similar ranges as the observations (Figure 13b), while a

few observation wells show larger fluctuations. Also, the fluctuations overall follow similar long-term patterns over the year

(Figure 13c). Hence, the groundwater,  given the coarse resolution of the model in comparison with the compared point

measurements, shows a reasonable behavior.

5 Discussion

The size of the catchment and resolution considered (400 m) pose an enormous challenge in terms of required CPU-time.

Still, the applicability of Darcy’s law with laboratory-based parameters can be debated as we have to resort to apparent

model parameters to produce realistic mass fluxes in the compartments.  By compromising these technical  and physical

aspects in the setup of the  virtual Neckar catchment, we experienced several challenges; three of them will be discussed
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which  we  believe  to  be  inherent  to  simulating  energy  and  mass  fluxes  across  compartment  boundaries  with  partial-

differential-equation-based, high-resolution coupled models. 

Representation of rivers and surface roughness: River flow in the ParFlow module of TerrSysMP is simulated by an

overland flow module. Overland flow appears when hydraulic heads in the top cells are above the land surface. As there is

no discrimination between overland flow and river  flow, rivers  in the simulation have the width of the grid resolution

whereas the real rivers may be significantly narrower. Overland flow is represented in ParFlow with the kinematic wave

approximation  of  the  St.  Venant  equations  with  the  surface  friction  parameterized  by  Manning’s  coefficient.  Typical

Manning’s coefficients when assigned to e.g. to a 400 m grid cell while in fact the river is much narrower, would result in

too high discharge values during rain events and far too low ones during dry periods. In both cases the always too low water

levels caused by the too wide rivers result in a poor representation of river-subsurface exchange. Our current choice of

Manning’s coefficient in ParFlow (5.52×10-4 h/m1/3) results in realistic average discharge throughout the year, albeit at too

low flow velocities. In order to compensate for this inconsistency, the Manning's coefficient could be scaled such that the

overland flow velocity in river cells equals the river flow velocity as proposed by Schalge et al. (2019), which improves the

phasing between simulated and observed discharge and the discharge peak. Similarly, the hydraulic conductivity of the

model top layer for river cells could be scaled in order to reduce the loss of too much surface water to the subsurface caused

by the too wide river  cells.  These issues will  become even more severe when model resolutions are reduced,  e.g.,  for

ensemble-based data assimilation because of the even higher demands for computing efficiency.

Coarsening of topography: The still coarse topography of the simulation reduces the true hill slopes where lateral flow on

the surface and in the shallow subsurface takes place. This affects quick-flow components towards rivers. As shown by

Shrestha et al. (2015), coarse topography directly impacts the storage of water in the unsaturated zone because drainage

becomes less  effective.  This in  turn can lead  to  an overestimation of  latent  and underestimation of sensible heat  flux.

Additionally, coarse-resolution model runs result in delayed and stretched discharge peaks in the rivers. The severity of this

effect is proportional to the degree of topography smoothing, that is introduced by the coarser resolution; therefore,  any

change in subsurface parameters such as hydraulic conductivity will depend on the degree of coarsening and the location

within a  catchment.  Especially  in  narrow valleys  and  in  mountainous areas  this  will  lead to  an overestimation  of  soil

moisture,  which we have not yet  compensated by changing other parameters.  Recently a method has been proposed to

improve these issues by scaling horizontal hydraulic conductivity (Foster and Maxwell, 2019).

Soil parameters: As outlined in section 2, the soil hydraulic parameters were generated based on soil maps of the real

Neckar catchment. According to the maps, the soils in the catchment consist mainly of clay and silt, which have rather low

saturated hydraulic conductivities and small air entry pressure values. In large areas of the domain, the water content in our

first simulations was close to saturation, even for upper soil layers, and the infiltration velocities were unrealistically low.

Reasons are the soil parameters, which do not capture the true soil heterogeneity; moreover, real infiltration often takes place

in root channels, small fractures, and other small structures. Thus, infiltration is always underpredicted by models using

observed soil parameters assuming homogeneity. Infiltration processes may be better captured with dual domain approaches,
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which are, however, computationally demanding. A workaround would be to change the soil hydraulic parameters in order to

obtain stronger infiltration. Currently, we use an artificially increased sand percentage of the soils in order to stay consistent

with the concept of the pedotransfer functions used in CLM. We will also test known scaling rules (e.g., Ghanbarian et al.,

2015) to increase for example the saturated hydraulic conductivity for larger soil units. These rules should be applied on the

soil hydraulic parameters, estimated by the pedotransfer functions.

6 Conclusions and Outlook

In the present  study we show the development  and the data generated  based on an integrated  subsurface-land surface-

atmosphere system TSMP. Plausibility tests for the derived simulated reality which tries to mimic the Neckar catchment in

southwestern Germany, show that the  virtual Neckar catchment is able to reproduce realistic behavior when compared to

measurements.  Comparisons  of  simulated  precipitation  and  ABL  statistics  show  a  very  reasonable  agreement  with

observations.  However,  comparisons  with  observed  passive  microwave  measurements  by  satellites  shows  clearly  a

systematic bias which is probably related to a mixture of systematic errors in the latter, assumptions in the used forward

operator, parameterizations of land surface properties (soil parameters) in the simulation, and missing processes therein (e.g.,

preferential  flow,  hill-slope  processes).  The  analysis  also  shows a  realistic  connection  between  evapotranspiration  and

distance to groundwater in the simulation, while larger deviations from reality are found for river discharge dynamics. The

deficiencies could be traced to the model resolution, which limits the often much smaller river widths to multiples of the

model  resolution,  and  to  the  way  river  discharge  is  handled  in  the  ParFlow  component  of  TerrSysMP.  A  new

parameterization scheme proposed by Schalge et al. (2019) will avoid such problems in future model simulations. The main

issues we face for the upper Neckar are too high soil moisture and shallow groundwater levels. Several ideas have been

proposed to improve the setup including scaling of the surface roughness and soil parameters in response to the results we

obtained here. While these changes would show improvements, they are likely marginal or very specific (river discharge

characteristics)  and  would  therefore  not  warrant  the  great  computational  cost  to  re-run  for  such  a  long  time.  Future

developments of TerrSysMP may enable this option and it would be interesting to compare resulting datasets and quantify

the increase of simulation speed by using GPU compute technologies.

Overall the results are encouraging regarding the viability of the simulated reality as key input parameters to the land surface

and subsurface show very good agreement with observations. For these reasons, the analysis show that the results can be

used  as  a  basis  for  the  community  for,  among  others,  exploring  feedbacks  between  compartments,  identify  in  which

conditions simplification of the models could be done (Baroni et al., 2019) or develop and test methods for assimilating

observations  across  compartments  .  We  encourage  the  scientific  community  to  explore  this  data  for  the  different

applications. Within the study we also highlighted some limitations mainly due to the still sever technical limitation and the

IT-requirements.  We  anticipate  however  that  more  sophisticated  versions  of  simulated  catchments  (higher  resolution,
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improved parameterization of sub-scale processes as discussed above) are already in progress that could be also compared to

this dataset in further study.

Finally, we want to address the applicability and usefulness of this dataset for various studies. As indicated, this dataset can

be valuable for data assimilation both for testing new methods or algorithms and as a standard set for synthetic observations

to pull from. It is thus possible to carry out data assimilation experiments with different conditioning datasets. Due to the

long timeseries we have covered almost any possible weather regime (with the exception of truly extreme events) which can

be a great advantage as some algorithms may work well for most conditions but may show weaknesses for  other specific

conditions (for instance the CMEM operator in combination with frozen soils). It also allows to investigate the impact of

simplifications such as using a fixed atmospheric forcing instead of a model and thus disregarding feedback mechanisms.

Next to data assimilation there are also model development and model analysis and comparison studies that can benefit from

this dataset. If specific changes to the model system are made, for example testing a new cloud parametrization, all of the

input files that are provided with this dataset can be used to quickly set up a working environment with known results to

compare to. Here the length of the simulation is again an advantage since any development can be tested for relevant time

slices. A detailed analysis of the dataset regarding compartment interactions is also of interest.  We have shown the overall

behavior of the system but we have not studied specific interesting events such as heatwaves, dry periods or floods in detail.

It would also be of interest to perform longer term simulations to analyze climate change and analyze better inter-annual

variability by considering yearly changes in the LAI cycle. Lastly,  this setup can also be considered as a  template for

ensemble-based setups in the future. Right now, reduced resolutions are needed in order to run many members of such a

coupled model system. As we have shown, even this higher resolved simulation still shows some biases that are directly

related to resolution so increasing resolution also in ensembles will be logical step in the future to obtain better results. When

this happens, the methods we used here to generate this simulation will be very useful as well as the analysis presented here

to decide how an ensemble should be set  up based on the goal (an ensemble for flood forecasts would  benefit  from a

different strategy than an ensemble for drought monitoring).

7 Data Availability

The presented dataset is available in the CERA database of the German Climate Computing Center (DKRZ: Deutsches

Klimarechenzentrum GmbH) (Schalge et al., 2020) at https://doi.org/10.26050/WDCC/Neckar_VCS_v1. The full nine-year

time  series  (2007-2015)  for  all  three  compartments  has  a  size  of  roughly  40TB  in  compressed  netCDF4  format.

Nevertheless, we encourage the use of this data set for investigations on data assimilation, but also the general functioning of

catchments  including  cross-environmental  interactions  and  predictability  studies  can  profit  from  such  complete  state

evolutions of the regional Earth system.

The TerrSysMP model is built in a modular way and users are supposed to get the component models by themselves while

the coupling interface is provided through a git repository (https://git.meteo.uni-bonn.de). As of now, registration is required

to access the TerrSysMP git and wiki page.
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Both ParFlow (https://parflow.org/) and CLM (http://www.cgd.ucar.edu/tss/clm/distribution/clm3.5/) are freely available for

download from their respective websites or repositories. COSMO is not available, but the DWD supplies it free of charge for

research purposes upon request. More information on this process can be found in the TerrSysMP wiki.
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Figure 1: Location of the Neckar catchment within SW Germany.
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Figure  2:  Land cover  in  the  simulated domain covering  the  entire  Neckar  catchment  and bounding areas.  KIT:  Karlsruhe
Institute of Technology (location of meteorological tower observations), STG: Stuttgart (location of radiosonde observations).
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Figure 3: Daily average evaporation simulated for 30th April (left) and 31st July 2007 in [mm/day]. The color indicates soil sand
percentage.
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Figure 4: Mean seasonal precipitation over the Neckar catchment between 2007-2013 in the simulated reality (VR, left column)
compared to the REGNIE data set (middle column). The difference between VR and REGNIE is shown in the right column.
Figure (a), (b), and (c) show the comparison for spring (March – May); (d), (e), and (f) for summer (June – August); (g), (h), and
(i) for fall (September – November); and (j), (k), and (l) for winter (December-February). 
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Figure 5: Mean diurnal precipitation cycle for the 71 DWD stations and the corresponding simulations for wet days (more than 1
[mm/day]) for June-August (a) and December-February (b) season. The upper and lower hinges correspond to the first and third
quartile, the center black line the median, the upper whisker (analog for lower whisker) extends from the hinge to the highest
value within 1.5*(interquartile range), and the black dots mark the outliers. 

Figure 6: (a) Daily precipitation distribution on a monthly basis as observed (black) and simulated (red). The gray and red lines
indicate the monthly mean precipitation. (b) Maximum daily precipitation for the given months for the 71 DWD stations and the
corresponding simulation. Box sizes as explained in the caption of Figure 10. 
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Figure 7: Monthly mean diurnal cycles (local time) and respective standard deviation (see text) for air temperature [°C] in 10 m
(top) and 100 m (bottom) height at the KIT tower and for the COSMO grid boxes around the KIT location.
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Figure 8: Monthly mean boundary layer height at 0 h and 12 h local time for different land covers diagnosed from radiosonde
observations at Stuttgart STG and from atmospheric profiles above grid boxes of CLM.
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Figure 9: Mean vertical profiles of temperature, virtual potential temperature, and specific humidity (top), and mean differences
between modelled and observed data including the standard deviation of the differences (bottom). The experimental data are from
the radiosonde data at STG and the simulated data from the grid boxes of the simulated catchment with different land cover (left:
0 h local time, right: 12 h local time).
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Figure 10: Area-averaged L-band brightness temperature the period from April to September 2011  for an incidence angle of 30°
(top) and 40° (bottom). The boxplots indicate the real SMOS observations averaged over the same domain. The black line is the
median of the observations simulated with CMEM. The dark-gray area corresponds to the inter-quartile range (IQR) while the
light-gray area encompasses the 3 to 97% range. The orange continuous line indicates the brightness temperature without taking
into account an assumed bias in surface soil moisture content (see text).
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Figure 11: Hourly values river discharge at the gauging stations Rockenau (P1), Lauffen (P2) and Plochingen (P3) for the year
2007. Blue: observed; red: simulated catchment.

Figure 12: Differences between the run off coefficient calculated for the three stations for the year 2007 based on observations and
simulation.
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Figure 13:(a) Mean groundwater table depth of the entire domain for the year ranging from 01.02.11 to 01.02.12, (b) groundwater
fluctuations around a zero mean and (c) the total mean of all model cells and all real data points superimposed on top of each
other to show the annual average trend. Please note that for readability of the figure, subfigure (a) is limited to a maximum depth
of -5 m, while the underlying data ranged down to -88 m
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Appendix

7.1 Appendix Tables

Table A1: Values of porosity and hydraulic conductivity of rocks found in Baden-Wuerttemberg

Nr. rock type Ksat [m/h] porosity fraction

1 Quarternary 0.00100 0.3

2 Tertiary 0.00100 0.3

3 Upper Jura 0.00720 0.3

4 Middle Jura 10-7 0.3

5 Lower Jura 10-7 0.3

6 Upper Triassic (Keuper) 0.00036 0.3

7 Middle Triassic (Muschelkalk) 0.00180 0.3

8 Lower Triassic (Buntsandstein) 0.02160 0.4

9 Upper Permian (Rotliegendes) 0.00360 0.3

10 New Red Conglomerate 0.00100 0.3

11 Bedrock/Granite 10-7 0.3
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Table A2: Observed atmospheric variables at KIT and STG. Local time at STG is UTC+01.

dataset quantity temporal resolution height above ground data coverage

KIT

temperature 

10 min averages (resampled to 15 min)

10 m, 100 m

01/2007 – 12/2013Incoming  and  outgoing

shortwave radiation

-

Incoming  and  outgoing

longwave radiation

- 06/2011 – 12/2013

STG

temperature

12 h

(11:45 h and 23:45 h local time)

vertical  profiles

(interpolated  to  model

levels)

01/2007 – 12/2013

dew point temperature

pressure

incoming  shortwave

radiation
1 h averages

-

incoming  longwave

radiation

-

38

896

897

898

899

900

901



Table A3: Strengths and Weaknesses of our simulation regarding several variables

Variable Strength Weakness Other comment

River discharge Adequadely 

captures flood 

events

Underestimated base flow Could be improved by higher 

resolution of the river cells (ParFlow in

general)

ET Shows expected 

behavior

Little variability in forests 

as they are never water 

limited

-

Precipitation Good agreement 

with observations in

general

Some specific areas show 

larger differences

Could be fixed by larger simulation 

area and new parametrizations for the 

1km scale

ABL representation Good fit to tower 

and radiosonde 

observations, 

especially during 

the daytime in 

summer

Overestimated nighttime 

temperature, especially in 

the summer

Related to COSMO parametrization of 

near surface inversion at night

Groundwater dynamics Dynamics closely 

resembles measured

dynamics

Absolute values are biased Could be related to our simplification 

of not considering karst

Large-scale  soil  moisture

(satellite)

Dynamics 

throughout the year 

are captured well

Large bias in absolute 

values
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7.2 Appendix Figures

Figure A1: Stratigraphy in the state of Baden-Württemberg represented by its logarithmic conductivity. The left figure shows a 3-
D view of the 100 m deep geological model used in this work, where the elevation has been neglected for readability and the
transparent  regions  corresponds  to  low-permeable  material.  The  right  figure  shows  the  same  using  cross-sections  to  better
visualize the vertical heterogeneity. 
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Figure A2: Snapshot of the three dimensional distribution of cloud water/ice [g/kg] (greyscale), precipitation/rain water [g/kg]

(blue in foreground over cloud) and soil moisture [cm3/cm3] (colored) at a time point with a single rain cloud with light rain.
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Figure A3: Brightness temperature calculated by the application of CMEM (H-polarization) on the simulated-reality output on
July 2nd 2011 (left) and its aggregation on the spatial resolution of the L1C data-product SMOS passive microwave radiometer
(right).

Figure A4: Flow duration curve for the three stations for the three-year time period based on. Blue:  observations; red: simulated
catchment.

7.3 Appendix Equations

σ T ,t=
1
days∑ |T days, t−T t|

Equation A1:   σ  is  the temperature  standard  deviation and the  subscript  t  denotes  the time of  day.  This  is  calculated

separately for each month of the year to create the 12 profiles. The overbar for the temperature T denotes the monthly mean
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temperature value for each time of the day, while the subscript days,t indicates that this is the daily value for the respective

time of day.
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