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1) Comment: The authors need to prove that SunDu Rs can add value to the 0.1 degree 

product, instead of cloud fraction data alone. I therefore suggest the authors perform a 

similar regression (GWR) analysis but using CERES data interpolated to 0.1 degree 

and 0.1 degree cloud, and compare the results with those using SunDu Rs. 

Reply: The authors would like to thank anonymous reviewers for their valuable and 

constructive comments, which help us to further improve the manuscript. According to 

the reviewers’ comments, we perform a similar GWR analysis but using CERES data 

interpolated to 0.1 degree and 0.1 degree cloud, and compare the results with those 

using SunDu Rs. As the subplots (c) and (d) of figure 1S shown, both data use same 0.1 

degree cloud as auxiliary data to perform the GWR analysis. The differences are that 

GWR CF Rs are based on SunDu derived Rs, while GWR CERES CF 0.1 degree are 

based on the CERES data which interpolated to 0.1 degree. This results suggest that 

SunDu Rs can add value to the 0.1 degree product, instead of cloud fraction data alone 

(Lines 469-476). 

“In order to prove that SunDu-derived Rs can add value to the 0.1 degree product, 

instead of cloud fraction data alone. We perform a similar GWR analysis but using 

CERES EBAF interpolated to 0.1 degree and 0.1 degree cloud, and compare the results 

with those using SunDu-derived Rs and 0.1 degree cloud (Fig .9). The results indicate 

that SunDu-derived Rs can add value to the 0.1 degree product and the merged Rs by 

using interpolated  CERES EBAF and 0.1 degree cloud product are also similarly to 



original CERES EBAF but not 0.1 degree cloud product.”  

 

Figure 9. Spatial distributions of monthly anomaly trends of surface solar radiation (Rs) 

from 2000 to 2017. The first line (a, b) shows the SunDu-derived Rs and CERES EBAF 

Rs; the Rs-derived GWR fusion methods are shown in the second line (c, d). Subplots 

(c) SunDu derived Rs incorporate only CF, and subplots (d) is the results of GWR 

analysis using CERES data interpolated to 0.1 degree and 0.1 degree cloud. The black 

dots on the maps represent significant trends (P<0.05).   
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Abstract 21 

Although great progress has been made in estimating surface solar radiation (Rs) 22 

from meteorological observations, satellite retrieval and reanalysis, getting best 23 

estimated long-term variations in Rs are sorely needed for climate studies. It has been 24 

shown that sunshine duration (SunDu)-derived Rs data can provide reliable long-term 25 

variability, but are avaliable at sparsely distributed weather stations. Here, we merge 26 

SunDu-derived Rs with satellite-derived cloud fraction and aerosol optical depth (AOD) 27 

to generate high spatial resolution (0.1) Rs over China from 2000 to 2017. The 28 

geographically weighted regression (GWR) and ordinary least squares regression (OLS) 29 

merging methods are compared, and GWR is found to perform better. Based on the 30 

SunDu-derived Rs from 97 meteorological observation stations, which are co-located 31 

with those that direct Rs measurement sites, the GWR incorporated with satellite cloud 32 

fraction and AOD data produces monthly Rs with R2 = 0.97 and standard deviation = 33 

11.14 W/m2, while GWR driven by only cloud fraction produces similar results with R2 34 

= 0.97 and standard deviation = 11.41 w/m2. This similarity is because SunDu-derived 35 

Rs has included the impact of aerosols. This finding can help to build long-term Rs 36 

variations based on cloud data, such as Advanced Very High Resolution Radiometer 37 

(AVHRR) cloud retrievals, especially before 2000, when satellite AOD retrievals are 38 

not unavailable. The merged Rs product at a spatial resolution of 0.1 in this study can 39 

be downloaded at https://doi.pangaea.de/10.1594/PANGAEA.921847 (Feng and Wang, 40 

2020).  41 
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Introduction 47 

A clear knowledge of variations in surface solar radiation (Rs) is vitally important 48 

for an improved understanding of the global climate system and its interaction with 49 

human activity (Jia et al., 2013; Myers, 2005; Schwarz et al., 2020; Wang and Dickinson, 50 

2013; Wild, 2009, 2017; Zell et al., 2015). Direct measurements have shown that Rs has 51 

significant decadal variability, namely, a decrease (global dimming) from the 1950s to 52 

the late 1980s and subsequent increase (global brightening) (Wild, 2009). The variation 53 

in Rs is closely related to the Earth’s water cycle, the whole biosphere, and the amount 54 

of available solar energy. This situation emphasizes the urgency to develop reliable Rs 55 

products to obtain the variability in Rs. 56 

Great progress has been made in the detection of variability in Rs by 57 

meteorological observations, satellite retrieval and radiation transfer model simulations 58 

or reanalysis Rs products in previous studies (Rahman and Zhang, 2019; Wang et al., 59 

2015). However, each estimation has its advantages and disadvantages. Direct observed 60 

data provide accurate Rs records at short time scales; however, careful calibration and 61 

instrument maintenance are needed to maintain its long-term homogeneity. Previous 62 

studies have reported that direct observed Rs over China may have major inhomogeneity 63 

problems due to sensitivity drift and instrument replacement (Wang, 2014; Wang et al., 64 

2015; Yang et al., 2018). Before 1990, the imitations of the USSR pyranometers had 65 

different degradation rates of the thermopile, resulting in an important sensitivity drift. 66 

To overcome radiometer ageing problem, China replaced its instruments from 1990 to 67 

1993. However, the new solar trackers failed frequently and introduced a high data 68 

missing rate for the direct radiation component of Rs (Lu and Bian, 2012; Mo et al., 69 

2008). After 1993, although the instruments were substantially improved, the Chinese-70 

developed pyranometers still had high thermal offset with directional response errors, 71 
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and the stability of these instruments was also worse than that of the World 72 

Meteorological Organization (WMO) recommended first-class pyranometers (Lu et al., 73 

2002; Lu and Bian, 2012; Yang et al., 2010). Yang et al. (2018) show that nearly half of 74 

observed Rs (60 out of the 119 Rs observed stations) have inhomogeneity issues. These 75 

artificial changes points in observed Rs are mainly caused by instrument change (42 76 

shifts), stations relocation (34 shifts), observation schedule change (20 shifts) and 77 

remaining 64 changepoints could not be identified. 78 

SunDu data are relatively widely distributed and have a long-term record 79 

(Sanchezlorenzo et al., 2009; Wild, 2009). Existing studies have also confirmed that 80 

SunDu-derived Rs data are reliable Rs data, which can capture long-term trends of Rs 81 

and reflect the impacts of both aerosols and clouds at time scales ranging from daily to 82 

decadal (Feng and Wang, 2019; Manara et al., 2015; Sanchezlorenzo et al., 2013; 83 

Sanchezromero et al., 2014; Tang et al., 2011; Wang et al., 2012b; Wild, 2016). Even 84 

though, SunDu data do not provide a direct estimate of Rs and have the different 85 

sensitivity of atmospheric turbidity changes, compared with Rs observations, they are 86 

still a good proxy for variations of Rs (Manara et al., 2017).  87 

Sunshine duration observations collected at weather stations in China have been 88 

used to reconstruct long-term Rs (Che et al., 2005; Feng et al., 2019; He et al., 2018; He 89 

and Wang, 2020; Jin et al., 2005; Shi et al., 2008; Yang et al., 2006; Yang et al., 2020). 90 

Based on the global SunDu-derived Rs records, He et al. (2018) found that SunDu 91 

permitted a revisit of global dimming from the 1950s to the 1980s over China, Europe, 92 

and the USA, with brightening from 1980 to 2009 in Europe and a declining trend Rs 93 

from 1994 to 2010 in China. (Wang et al., 2015) found that the dimming trend from 94 

1961 to 1990 and nearly constant zero trend after 1990 over China, as calculated from 95 

the SunDu-derived Rs, was consistent with independent estimates of AOD (Luo et al., 96 
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2001); they also observed changes in the diurnal temperature range (Wang et al., 2012a; 97 

Wang and Dickinson, 2013) and the observed pan evaporation (Yang et al., 2015). 98 

Although direct observations and SunDu-derived Rs can provide accurate long-term 99 

variations in Rs, both direct observations and sunshine duration records are often 100 

sparsely spatially distributed. 101 

Satellite Rs retrievals and radiation transfer model simulations or reanalysis Rs 102 

products can provide Rs estimation with global coverage at high spatial resolution. 103 

However, model simulations and reanalysis Rs products have substantial biases due to 104 

the deficiency of simulating cloud and aerosol quantities (Feng and Wang, 2019; Zhao 105 

et al., 2013). Previous comparative studies have shown that the accuracies of Rs from 106 

reanalyses are lower than those of satellite products (Wang et al., 2015; Zhang et al., 107 

2016) due to the good capability of capturing the spatial distribution and dynamic 108 

evolution of clouds in satellite remote sensing data. 109 

Table 1 lists the current satellite-based Rs products, which have been widely 110 

validated in previous studies. Zhang et al. (2004) found that the monthly International 111 

Satellite Cloud Climatology Project-Flux Data (ISCCP-FD) Rs product had a positive 112 

bias of 8.8 w/m2 using Global Energy Balance Archive (GEBA) archived data as a 113 

reference. By comparing 1151 global sites, Zhang et al. (2015) evaluated four satellite-114 

based Rs products, including ISCCP-FD, the Global Energy and Water Cycle 115 

Experiment-Surface Radiation Budget (GEWEX-SRB), the University of 116 

Maryland/Shortwave Radiation Budget (UMD-SRB) and the Earth’s Radiant Energy 117 

System energy balanced and filled product (CERES EBAF), and concluded that CERES 118 

EBAF shows better agreement with observations than other products. A similar overall 119 

good performance of CERES EBAF can also be found (Feng and Wang, 2018; Ma et 120 

al., 2015). 121 
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Table 1. Current satellite-derived surface solar radiation (Rs) products 122 

Satellite Rs product Source 
Spatial 
resolution 

Time range 

ISCCP-FD ISCCP 2.5° 1983-2009 
GEWEX-SRB ISCCP-DX 1° 1983-2007 
UMD-SRB METEOSAT-5 0.5° 1983-2007 

GLASS-DSR 
Terra/Aqua, GOES, MSG, 
MTSAT 

0.05° 2008-2010 

CLARA-A2 AVHRR 0.25° 1982-2015 
MCD18A1 Terra/Aqua, MODIS 5.6 km 2001-present 
Himawari-8 SWSR Himawari-8 5 km 2015-present 
SSR-tang ISCCP-HXG, ERA5, MODIS 10 km 1982-2017 
Cloud_cci AVHRR-
PMv3 

AVHRR/CC4CL 0.05° 1982-2016 

 123 

Although CERES EBAF uses more accurate input data to provide Rs data, its 124 

spatial resolution is only 1° (Kato et al., 2018). Since 2010, new-generation 125 

geostationary satellites have provided opportunities for high temporal and spatial 126 

resolution Rs data, such as Himawari-8 (Hongrong et al., 2018; Letu et al., 2020). 127 

However, the time span of the new-generation satellite-based Rs product is short. The 128 

long-term AVHRR records provide the possibility of building long-term radiation 129 

datasets. The CLoud, Albedo and RAdiation dataset, the AVHRR-based data-second 130 

edition (CLARA-A2), covers a long time period, but the spatial resolution is only 0.25° 131 

(Karlsson et al., 2017). Recently, Tang et al. (2019) built a satellite-based Rs (SSR-tang) 132 

dataset using ISCCP-HXG cloud data. By using a variety of cloud properties derived 133 

from AVHRR, Stengel et al. (2020) presented the Cloud_cci AVHRR-PMv3 dataset 134 

generated within the Cloud_cci project.  135 

Validation against the BSRN data indicated that SSR-tang have the mean bias error 136 

(MBE) of -11.5 W/m2 and root mean square error (RMSE) of 113.5 W/m2 for the 137 

instantaneous Rs estimates at 10 km scale, but Tang et al. (2019) point out that care 138 

should be taken when using this dataset for trend analysis due to the absent of realistic 139 

aerosols input data. Stengel et al. (2020) also show that Rs derived from Cloud_cci 140 
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AVHRR-PMv3 reveals a very good agreement against BSRN stations, with low 141 

standard deviations of 13.8 W/m2 and correlation coefficients above 0.98. While the 142 

bias for shortwave fluxes is small (1.9 W/m2). However, default an aerosol optical depth 143 

of 0.05 or data from Aerosol cci Level-2 or NASA MODIS Level-2 aerosol data are 144 

used in BUGSrad model to calculate clear sky Rs, indicating that impact of aerosols is 145 

not perfect parameterized in Cloud_cci AVHRR-PMv3.  146 

On the other hand, the long-term cloud records also contain uncertainties. For 147 

example, ISCCP cloud products, which directly combine geostationary and polar 148 

orbiter satellite-based cloud data, have large inhomogeneity due to different amounts of 149 

data from polar orbit and geostationary satellites and their different capabilities for 150 

detecting low-level clouds (Dai et al., 2006; Evan et al., 2007). This inhomogeneity of 151 

the cloud products might introduce significant inhomogeneity to the Rs values 152 

calculated from the cloud products (Montero-Martín et al., 2020; Pfeifroth et al., 2018b), 153 

and Rs long-term variability estimation still needs improvement. 154 

Efforts have been made to further improve Rs products. Merging multisource data 155 

has become an effective empirical method for improving the quality of Rs products 156 

(Camargo and Dorner, 2016; Feng and Wang, 2018; Hakuba et al., 2014; Journée et al., 157 

2012; Lorenzo et al., 2017; Ruiz-Arias et al., 2015). For instance, to produce 158 

spatiotemporally consistent Rs data, multisource satellite data are used in Global LAnd 159 

Surface Satellite (GLASS) Rs products (Jin et al., 2013). By merging reanalysis and 160 

satellite Rs data by the probability density function-based method, the reanalysis Rs 161 

biases can be substantially reduced (Feng and Wang, 2018). This finding suggests that 162 

fusion methods are effective ways to improve the estimation of Rs, especially when Rs 163 

impact factors are considered (Feng and Wang, 2019). Although linear regression fusion 164 

methods can produce Rs data incorporated with Rs impact factors, the stable regression 165 
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parameters might have negative effects on the final fusion results due to the complex 166 

characteristics of Rs spatial-temporal variability. 167 

On the other hand, the spatial resolution of Rs data is crucial for regional 168 

meteorology studies, as the minimum requirement of the spatial resolution of Rs data, 169 

as suggested by the Observing Systems Capabilities Analysis and Review of WMO 170 

OSCAR), is 20 km (Huang et al., 2019). Interpolation methods are often included in Rs 171 

fusion methods to further improve the spatial resolutions of Rs data (Loghmari et al., 172 

2018). For example, Zou et al. (2016) estimated global solar radiation using an artificial 173 

neural network based on an interpolation technique in southeast China. By integrating 174 

Rs data from 13 ground stations with Meteosat Second Generation satellite Rs products, 175 

Journée and Bertrand (2010) found that kriging with the external drift interpolation 176 

method performed better than mean bias correction, interpolated bias correction and 177 

ordinary kriging with satellite-based correction. However, interpolation results have 178 

uncertainties due to the lack of detailed high spatial resolution information. Although 179 

traditional linear regression fusion methods can incorporate high spatial resolution data 180 

during the fusion process, the impacts of the stable regression parameters need further 181 

investigation. 182 

The performances of different machine learning methods have been evaluated in 183 

many previous studies, including simulation Rs at regional scale with support of satellite 184 

retrievals (Wei et al., 2019; Yeom et al., 2019) and site scale by using routine 185 

meteorological observations (Cornejo-Bueno et al., 2019; Hou et al., 2020). Whatever 186 

models or training data are selected, the impacts of spatial relationship are not taken 187 

into account in these machine learning based model and therefore large number of input 188 

data are required to ensure accuracy. 189 

Geographically weighted regression (GWR) is an extension of the traditional 190 
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regression model by allowing the relationships between dependent and explanatory 191 

variables to vary spatially. Researchers have examined and compared the applicability 192 

of GWR for the analysis of spatial data relative to that of other regression methods (Ali 193 

et al., 2007; Gao et al., 2006; Georganos et al., 2017; LeSage, 2004; Sheehan et al., 194 

2012; Zhou et al., 2019a). Due to the large spatial heterogeneity of Rs over China, the 195 

GWR method might produce accurate Rs variability estimations with an improved 196 

spatial resolution. 197 

This study is established to merge SunDu-derived Rs data with satellite-derived 198 

cloud fraction (CF) and AOD data to generate high spatial resolution (0.1°) Rs over 199 

China from 2000 to 2017. The GWR and ordinary least squares (OLS) regression 200 

merging methods are compared. CF and AOD are important Rs impact factors, however, 201 

many long-term Rs satellite products use climatology aerosols data as input. Whether 202 

much improvement is made in merging SunDu-derived Rs by incorporating AOD is also 203 

evaluated in this study, instead of evaluating direct merging current Rs products with 204 

SunDu-derived Rs. Since current Rs high quality Rs such as CERES EBAF have low 205 

spatial resolution, the output of this study provides a reliable high resolution grid Rs 206 

data to avoid the disadvantage of CERES EBAF for capturing the variability of Rs 207 

within a 1 degree box and provide guidance to merge multisource data to generate long-208 

term Rs data over China. 209 

1. Data and Methodology 210 

2.1. Ground-based observations 211 

2.2.1 Direct observations 212 

Rs direct observations from 2000 to 2017 are obtained from the China 213 

Meteorological Data Service Center (CMDC, http://data/cma/cn/) of the China 214 

Meteorological Administration (CMA). TBQ-2 pyranometers and DFY4 pyranometers 215 
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have been used to measure Rs since 1993. Daily Rs values from 97 Rs stations are 216 

collected, and we calculated monthly Rs values by averaging daily Rs values when daily 217 

observed data are available for more than 15 days for each month at each radiation 218 

station. These monthly Rs values from direct measurements and collocated SunDu-219 

derived Rs are used as independent reference data to investigate the performances of the 220 

fusion methods (Fig. 1). The whole area over China is further divided into nine zones 221 

by the K-mean cluster method based on geographic locations and multiyear mean Rs 222 

using 97 Rs direct observation sites, as shown in Figure 1. The download instructions 223 

of the Rs direct observations can be found in table 2. 224 

 225 

Figure 1. The 2,400 sunshine duration (SunDu) merging sites are shown as light brown 226 

points, and 97 independent validation sites, including Rs direct measurements and 227 

SunDu-derived Rs measurements, are shown as brown red points. The whole region is 228 

classified into nine subregions (I to IX) by the K-mean cluster method based on 229 

geographic locations and multiyear mean Rs using 97 Rs direct observation sites. The 230 
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base hillshade map was produced by an elevation map of China using the global digital 231 

elevation model (DEM) derived from the Shuttle Radar Topography Mission 30 232 

(SRTM30) dataset. 233 

 234 

 235 

Table 2. Summary of availability information for all source data used in this study. 236 

CMDC is the China Meteorological Data Service Center. SunDu is the sunshine 237 

duration data. Rs is surface solar radiation and AOD is the aerosols optical depth. 238 

2.2.2 SunDu-derived Rs 239 

Sunshine duration observations (SunDu) and other meteorological data (e.g., air 240 

temperature, relative humidity and surface pressure) from 1980 to 2017, which were 241 

Data Source 

Derive
d 
Parame
ters  

Spatial 
resolution

Version 
Access 
Point 

Notes Reference 

Direct Rs 
measurement 
data from 
CMDC 

Rs - 
Version 
1.0 

http://data/
cma/cn/ 

Authenticatio
n is required 
for the China 
data use 
policy 

- 

SunDu 
observations 
and other 
meteorological 
data 

Rs - 
Version 
1.0 

http://data/
cma/cn/ 

Authenticatio
n is required 
for the China 
data use 
policy 

- 

CERES EBAF Rs 1 degree Ed4.1 

https://cer
es.larc.nas
a.gov/data
/#ebaf-
level-3b 

A email 
address to 
order the data 

(Kato et 
al., 2018)

CERES 
SYN1deg 

AOD 1 degree Ed4A 

https://cer
es.larc.nas
a.gov/data
/#syn1deg
-level-3 

A email 
address to 
order the data 

(Rutan et 
al., 2015) 

MODAL2 M 
CLD 

cloud 
fraction 

0.1 degree - 

https://neo
.sci.gsfc.n
asa.gov/vi
ew.php?da
tasetId=M
ODAL2_
M_CLD_
FR 

Directly 
download 

(Platnick et 
al., 2017) 
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collected from approximately 2,400 meteorological stations (http://data/cma/cn/) from 242 

the CMA, are used to calculate the SunDu-derived Rs (Fig. 1). Rs values are calculated 243 

following the method of the revised Ångström-Prescott equation (Eq. (1-2)) (He et al., 244 

2018; Wang, 2014; Wang et al., 2015; Yang et al., 2006). 245 

ோೞ

ோ
ൌ 𝑎  𝑎ଵ




 𝑎ଶሺ


ሻଶ                   (1) 246 

𝑅 ൌ ሺ𝜏_ௗ  𝜏_ௗሻ ൈ 𝐼𝑑௧              (2) 247 

where n represents the measured SunDu, and K represents the theoretical value of the 248 

SunDu. a0, a1, and a2 are the station-dependent parameters by tuning this equation with 249 

measurements of Rs and SunDu and then the method is applied regionally (Wang, 2014). 250 

Instead using observations from weather stations in Japan (Yang et al., 2006), 251 

observations in CMA are used (Wang, 2014). Rc is the daily total solar radiation at the 252 

surface under clear-sky conditions (Eq. 2). τc_dir and τc_dif represent the direct radiation 253 

transmittance and the diffuse radiation transmittance under clear-sky conditions. I0 is 254 

the solar irradiance at the top of the atmosphere (TOA). For the clear sky Rs, τc_dir and 255 

τc_dif are calculated using a modified a broadband radiative transfer model by 256 

simplifying Leckner’s spectral model (Leckner, 1978), which the effect of 257 

transmittance functions of permanent gas absorption, Rayleigh scattering, water vapour 258 

absorption, ozone absorption, and aerosol extinction are parameterized using the 259 

surface air temperature, surface pressure, precipitable water, the thickness of the ozone 260 

layer, turbidity, sunshine duration as inputs (Yang et al., 2006). Calculation of Rs also 261 

includes impacts of aerosols because SunDu is impacted by changes in both clouds and 262 

aerosols (Wang, 2014). 263 

Based on the classified subregions using 97 direct Rs observations in Figure 1, the 264 

intercomparison results in Figure 2 and Figure 3 show that the agreement between 265 

SunDu-derived Rs and CERES EBAF Rs estimates is better than that between the direct 266 
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observations and SunDu-derived Rs estimates, which is likely due to the inhomogeneity 267 

issue of direct Rs observations over China, as mentioned in many previous studies 268 

(Wang, 2014; Yang et al., 2018). The satellite Rs retrievals and SunDu derived Rs are 269 

totally independent, but the high agreements of these two datasets indicate that they 270 

both are of higher accuracy. Similar results are also reported by (Wang et al., 2015) that 271 

low agreement between SunDu derived Rs and direct Rs observation is likely due to the 272 

directional response errors of the direct observations of Rs.  273 

The SunDu-derived Rs observations, excluding SunDu observations located at 274 

direct observation sites, are used for merging. Ten percent merging observations are 275 

randomly selected for GWR parameter optimization. The download instructions of the 276 

SunDu observations can be found in table 2. 277 

 278 
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Figure 2. Statistical summary of annual anomaly Rs from direct observed Rs, SunDu-279 

derived Rs and CERES EBAF Rs estimates in different subregions. The statistics include 280 

the mean absolute bias (MAB), standard deviation (Std) and root mean square error 281 

(RMSE). We use MAB due to the cancelling out effect of positive bias and negative 282 

bias. Nine subregions (I to IX) over China are shown in Figure 1. S-D represent 283 

comparisons between SunDu-derived Rs and directly observed Rs. C-D represent 284 

comparison between CERES EBAF Rs and directly observed Rs. S-C represent 285 

comparisons between SunDu-derived Rs and CERES EBAF Rs. The unit of y-axis are 286 

w/m2
. 287 

 288 

Figure 3. Similar to Figure 2, but this statistical summary is for R2. 289 

 290 

2.2. Satellite data 291 

Rs data from the Clouds and Earth’s Radiant Energy System energy balanced and 292 
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filled product (CERES Synoptic (CERES) EBAF) surface product (edition 4.1) (Kato 293 

et al., 2018), cloud fraction from MODAL2 M CLD data product (Platnick et al., 2017) 294 

and AOD from the CERES SYN1deg) edition 4A product (Doelling et al., 2013) are 295 

collected in this study. CERES EBAF Rs data are used as reference data. AOD from 296 

CERES SYN1deg and cloud fraction from MODAL2 M CLD are used as input data for 297 

fusion methods. 298 

CERES is a 3-channel radiometer measuring three filtered radiances, including 299 

shortwave (0.3-5 µm), total (0.3-200 µm) and window (8-12 µm). Rs from CERES 300 

EBAF are adjusted using radiative kernels, including bias correction and Lagrange 301 

multiplier processes. The input data of CERES EBAF are adjusted during the product 302 

generating process constrained by CERES observations at the TOA. The biases in 303 

temperature and specific humidity from the Goddard Earth Observing System (GEOS) 304 

reanalysis are adjusted by atmospheric infrared sounder (AIRS) data. Cloud properties, 305 

such as optical thickness and emissivity, from MODIS and geostationary satellites are 306 

constrained by cloud profiling radar, Cloud-Aerosol Lidar, and Infrared Pathfinder 307 

Satellite Observations (CALIPSO) detectors and CloudSat. The uncertainties of 308 

CERES EBAF data, reported by (Kato et al., 2018), in all sky global annual mean Rs is 309 

4 W m-2. Previous studies (Feng and Wang, 2019; Feng and Wang, 2018; Ma et al., 310 

2015; Wang et al., 2015) have shown that the CERES EBAF surface product provides 311 

reliable estimations of Rs. 312 

CERES SYN1deg AOD derived from an aerosol transport model, named 313 

Atmospheric Transport and Chemistry Modelling (MATCH) (Collins et al., 2001), 314 

which assimilates MODIS AOD data, is used to obtain spatiotemporally consistent 315 

AOD data. Different aerosol constituents, including small dust (<0.5 μm), large dust 316 

(>0.5 μm), stratosphere, sea salt, soot and soluble, are used to compute the optical 317 
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thickness for a given constituent optical thickness for a given constituent. We did not 318 

use AOD from MODIS, because MODIS AOD conation missing values and can't meet 319 

the requirements of spatiotemporal continuity of AOD input in this study. In addition, 320 

MODIS AOD is only available under clear sky conditions while AOD provided by the 321 

assimilation system is averaged under all conditions.  322 

Cloud fraction data from MODAL2 M CLD are collected as input cloud fraction 323 

data with a spatial resolution of 0.1° and time span from 2000 to 2017 (Platnick et al., 324 

2017). The MODAL2 M CLD data are synthesized based on the cloud data from 325 

MOD06. Cloud fraction data from MOD06 are generated by the cloud mask product of 326 

MOD35 with a spatial resolution of 1 km. The MOD35 cloud mask is determined by 327 

applying appropriate single field of view (FOV) spectral tests to each pixel with a series 328 

of visible and infrared threshold and consistency tests. Each land type has different 329 

algorithms and thresholds for the tests. For each pixel test, an individual confidence 330 

flag is determined and then combined to produce the final cloud mask flag. The three 331 

confidence levels included in the cloud mask flag output are (i) high confidence for 332 

cloudless pixels (Group confidence values > 0.95); (ii) low confidence for unobstructed 333 

views on the surface (Group confidence values Q ≤ 0.66); and (iii) values between 0.66 334 

and 0.95, and spatial and temporal continuity tests are further applied to determine 335 

whether the pixel is absolutely cloudless. Then, the cloud fraction is calculated from 336 

the 5 x 5-km cloud mask pixel groupings, i.e., given the 25 pixels in the group, the 337 

cloud fraction for the group equals the number of cloudy pixels divided by 25. 338 

2.3. Methods 339 

2.3.1 Fusion models 340 

OLS regression and GWR are used to build fusion methods for estimating Rs data. 341 

Clouds fraction and AOD have been important factors that affect variations in Rs. We 342 

compare different combinations of input data for  the fusion methods, which can be 343 
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classified into two types. The first type only contains cloud fraction data. The second 344 

type contains clouds fraction and AOD (Feng and Wang, 2020). 345 

The OLS regression model is a commonly used model to estimate dependent 346 

variables by to minimizing the sum of square differences between the independent and 347 

dependent variables. GWR is a regression model that allows the relationships between 348 

the independent and dependent variables to vary by locality (Brunsdon et al., 2010; 349 

Brunsdon et al., 1998). GWR deviates from the assumption of homoskedasticity or 350 

static variance but calculates a specific variance for data within a zone or search radius 351 

of each predictor variable (Brunsdon et al., 1998; Fotheringham et al., 1996; Sheehan 352 

et al., 2012). The regression coefficients in GWR are not based on global information; 353 

rather, they vary with location, which is generated by a local regression estimation using 354 

subsampled data from the nearest neighbouring observations. The principle of GWR is 355 

described as follows: 356 

𝑦 ൌ 𝛿ሺ𝑖ሻ   𝛿ሺ𝑖ሻ𝑥  𝜀



 (3) 

where yi is the value of Rs unit i; i=1,2,…,n, n denotes location i, xik indicates the value 357 

of the xik variable, such as cloud fraction and AOD, and ε denotes the residuals. δ（i） is 358 

the regression intercept. δk(i) is the vector of regression coefficients determined by 359 

spatial weighting function w(i), which is the weighting function quantifying the 360 

proximities of location i to its neighbouring observation sites; X is the variable matrix, 361 

and b is the bias vector. 362 

𝛿ሺ𝑖ሻ ൌ ሺ𝑋்𝑤ሺ𝑖ሻ𝑋ሻିଵ𝑋்𝑤ሺ𝑖ሻ𝑏 (4) 

The weighting functions are generally determined using the threshold method, 363 

inverse distance method, Gauss function method, and Bi-square method. Due to the 364 

irregular distribution of observation sites and computer ability, the adaptive Gaussian 365 
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function method is selected as a weighting function that varies in extent as a function 366 

of Rs observation site density. 367 

𝑤 ൌ expሺെሺ𝑑/𝑏ሻଶሻ (5) 

where wij is the weighting function for observation site j that refers to location i; dij 368 

denotes the Euclidian distance between j and i; and b is the size of the neighbourhood, 369 

the maximum distance away from regression location i, called “bandwidth”, which is 370 

determined by the number of nearest neighbour points (NNPs). 371 

2.3.2 GWR parameter comparison 372 

To perform the local regression for every local area, the numbers of NNPs are 373 

required to estimate spatially varying relationships between CF, AOD and Rs in the 374 

GWR-based fused method. To identify the best combination of parameter values, we 375 

test the numbers of NNPs ranging from 29 to 1000. Ten percent of merging SunDu-376 

derived Rs data are randomly selected to validate these GWR parameters (Fig. 1). The 377 

results show that R2 increases and bias decreases when the number of NNPs decreases. 378 

However, when the NNP is smaller than 30, the GWR-based fusion method produces 379 

spatially incomplete Rs data due to the local collinearity problem with large spatial 380 

variability. Therefore, 30 is selected as the NNP parameter (Table 3). 381 

 382 

Table 3. Statistical summary of GWR parameter optimization. NPP is the number of 383 

nearest neighbour points. GWR-CF presents the GWR-based fused method using only 384 

cloud fraction (CF) input, and GWR-CF-AOD presents that of using both CF and 385 

aerosol optical depth (AOD) as input. MAB is the mean absolute bias. Std is the 386 

standard deviation. RMSE is the root mean square error. 387 

NNP 
GWR-CF GWR-CF-AOD 

R2 Bias MAB Std RMSE R2 Bias MAB Std RMSE
29 0.91 -0.21 7.45 9.90 9.90 0.91 -0.13 7.47 9.93 9.92
30 0.91 -0.23 7.45 9.90 9.90 0.91 -0.14 7.47 9.92 9.91
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31 0.91 -0.24 7.45 9.90 9.90 0.91 -0.14 7.47 9.91 9.91
32 0.91 -0.25 7.46 9.91 9.91 0.91 -0.14 7.47 9.91 9.90
33 0.91 -0.26 7.47 9.92 9.92 0.91 -0.15 7.46 9.90 9.90
34 0.91 -0.27 7.47 9.93 9.93 0.91 -0.14 7.46 9.90 9.89
35 0.91 -0.28 7.48 9.94 9.94 0.91 -0.14 7.46 9.89 9.88
36 0.91 -0.28 7.49 9.94 9.94 0.91 -0.14 7.46 9.89 9.88
37 0.91 -0.29 7.49 9.95 9.95 0.91 -0.14 7.46 9.88 9.87
38 0.91 -0.30 7.50 9.96 9.96 0.91 -0.14 7.46 9.88 9.87
39 0.91 -0.31 7.51 9.98 9.98 0.91 -0.14 7.46 9.87 9.87
40 0.91 -0.32 7.52 9.99 9.99 0.91 -0.14 7.46 9.87 9.87
50 0.90 -0.38 7.62 10.12 10.12 0.91 -0.12 7.51 9.91 9.91
100 0.89 -0.57 8.20 10.90 10.91 0.90 -0.02 7.86 10.31 10.30
500 0.81 -1.08 10.89 14.50 14.54 0.86 0.20 9.55 12.45 12.45
1000 0.75 -1.13 12.60 16.57 16.61 0.82 0.26 10.68 13.84 13.85

 388 

3. Results 389 

3.1 Site validation 390 

Based on the independent SunDu validation sites, both the GWR and OLS 391 

methods explain 97%~86% of Rs variability (Fig. 4). The GWR method generally 392 

shows an improved performance compared with the OLS method due to the 393 

representativeness of the spatial heterogeneity relationship between Rs and its impact 394 

factors in GWR. Both the GWR and OLS methods produce better simulations of Rs if 395 

satellite and AOD data are incorporated. 396 

Direct observations from 2000 to 2016 are also used to further evaluate the 397 

performance of the fusion methods (Fig. 4). The comparative result shows that both 398 

fusion methods show slightly reduced performances when using direct Rs observations 399 

rather than the SunDu-derived Rs. Both the GWR and OLS methods explain 91%~82% 400 

of Rs variability by using direct observations as reference data. Similarly, the GWR 401 

method exhibits better performances than the OLS-based fusion method, with an R2 of 402 

0.91 and root mean square error (RMSE) ranging from 19.89 to 19.97 W/m2 at the 403 

monthly time scale (Table 4). 404 
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 405 

Figure 4. Comparison of surface solar radiation (Rs) derived from the GWR method 406 

and the OLS method. Subplots (a, c, e, g) represent validation results using SunDu-407 

derived Rs data as a reference, while that of subplots (b, d, f, h) use directly observed 408 

Rs data. Subplots (a, b, c, d) denote the GWR validation results, and subplots (e, f, g, h) 409 

denote the OLS validation results.  410 

 411 

Table 4. Validation of fusion methods driven by cloud fraction (CF) and AOD. GWR-412 

CF and OLS-CF represent the GWR fusion method and OLS fusion method driven only 413 

by CF. GWR-CF-AOD and OLS-CF-AOD represent GWR and OLS fusion methods 414 

driven by CF and AOD, respectively. 415 
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 Time scale Ref R2 Bias Std RMSE 
GWR-CF monthly SunDu Rs 0.97 -1.17 11.41 11.47 
GWR-CF-AOD monthly SunDu Rs 0.97 -0.82 11.14 11.17 
OLS-CF monthly SunDu Rs 0.86 -3.80 25.03 25.32 
OLS-CF-AOD monthly SunDu Rs 0.89 -1.37 22.10 22.15 
GWR-CF monthly Direct Obs 0.91 4.88 19.29 19.89 
GWR-CF-AOD monthly Direct Obs 0.91 5.24 19.27 19.97 
OLS-CF monthly Direct Obs 0.82 2.18 26.73 26.82 
OLS-CF-AOD monthly Direct Obs 0.85 4.64 24.71 25.15 
GWR-CF spring SunDu Rs 0.95 -1.3 11.5 11.57 
GWR-CF-AOD spring SunDu Rs 0.95 -0.86 11.2 11.23 
OLS-CF spring SunDu Rs 0.77 -4.97 23.65 24.16 
OLS-CF-AOD spring SunDu Rs 0.84 -1.35 19.85 19.9 
GWR-CF summer SunDu Rs 0.9 -2.09 14.08 14.23 
GWR-CF-AOD summer SunDu Rs 0.9 -1.38 13.76 13.82 
OLS-CF summer SunDu Rs 0.65 -6.49 26.18 26.97 
OLS-CF-AOD summer SunDu Rs 0.77 -1.37 21.17 21.22 
GWR-CF autumn SunDu Rs 0.95 -1.27 9.48 9.56 
GWR-CF-AOD autumn SunDu Rs 0.96 -1.04 9.17 9.23 
OLS-CF autumn SunDu Rs 0.67 -3.22 25.62 25.82 
OLS-CF-AOD autumn SunDu Rs 0.71 -1.97 23.79 23.87 
GWR-CF winter SunDu Rs 0.94 0.01 9.87 9.86 
GWR-CF-AOD winter SunDu Rs 0.94 0.04 9.78 9.78 
OLS-CF winter SunDu Rs 0.63 -0.37 24.16 24.16 
OLS-CF-AOD winter SunDu Rs 0.65 -0.78 23.41 23.42 
GWR-CF annual Direct Obs 0.37 5.62 4.73 10.42 
GWR-CF-AOD annual Direct Obs 0.37 5.98 4.79 10.53 
OLS-CF annual Direct Obs 0.30 3.06 5.01 15.01 
OLS-CF-AOD annual Direct Obs 0.33 5.45 4.89 13.34 
GWR-CF annual SunDu Rs 0.57 -1.19 4.30 6.76 
GWR-CF-AOD annual SunDu Rs 0.58 -0.84 4.30 6.68 
OLS-CF annual SunDu Rs 0.35 -3.58 5.63 15.17 
OLS-CF-AOD annual SunDu Rs 0.39 -1.23 5.44 13.40 
GWR-CF annual mean SunDu Rs 0.94 -1.50 6.63 6.76 
GWR-CF-AOD annual mean SunDu Rs 0.95 -1.15 6.41 6.47 
OLS-CF annual mean SunDu Rs 0.62 -3.90 17.11 17.46 
OLS-CF-AOD annual mean SunDu Rs 0.71 -1.58 14.90 14.90 
GWR-CF annual mean Direct Obs 0.89 5.08 9.85 11.03 
GWR-CF-AOD annual mean Direct Obs 0.89 5.43 9.75 11.11 
OLS-CF annual mean Direct Obs 0.70 2.57 16.31 16.42 
OLS-CF-AOD annual mean Direct Obs 0.77 4.88 14.00 14.75 

 416 

3.2 Seasonal and annual variations in Rs 417 

To analyse the impacts of AOD on the GWR fusion results, the GWR driven with 418 

only CF (GWR-CF) and GWR driven with CF and AOD (GWR-CF-AOD) are 419 

compared. Two validation sites (Chang Chun, 43.87°N 125.33°E and Bei Hai, 21.72°N 420 
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109.08°E) are randomly selected to evaluate the seasonal and annual variations in Rs 421 

derived from the GWR method (Fig. 5). The multiyear mean of AOD from Changchun 422 

and BeiHai are 0.49 and 0.70, respectively. As shown in subplots (a and b), both GWR-423 

CF and GWR-CF-AOD produce similar seasonal variation patterns compared with 424 

SunDu-derived Rs and CERES EBAF Rs data. Small differences are found in the 425 

seasonal variation in Rs derived from GWR regardless of whether AOD was 426 

incorporated. Examination of the annual variation Rs from the GWR-CF and GWR-CF-427 

AOD are shown in subplots (c and d) of Figure 5. The two fusion methods also 428 

produce similar annual Rs variations. The similar performances of the GWR-CF and 429 

GWR-CF-AOD might suggest that the impacts of AOD have already been included in 430 

the SunDu-derived Rs site data. 431 

 432 
Figure 5. Seasonal and annual variations in Rs at two sites: Chang Chun (a and c, 433 

43.87°N and 125.33°E) and Bei Hai (b and d, 23.50°N, 99.72°E). SunDu Rs is the 434 

SunDu-derived Rs data, and GWR-CF Rs is Rs produced by the GWR method 435 
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incorporating only the cloud fraction. GWR-CF-AOD is Rs produced by the GWR 436 

method incorporating cloud fraction and AOD. The multiyear mean of AOD from 437 

Changchun and BeiHai are 0.49 and 0.70, respectively. 438 

We also analyse the performances of fusion methods for different seasons at all 439 

validation sites, as shown in Table 4. At seasonal scales, both the GWR-CF and GWR-440 

CF-AOD methods have high R2 values ranging from 0.94 to 0.96, compared with direct 441 

Rs measurement or SunDu-derived Rs. GWR-CF and GWR-CF-AOD show slight 442 

differences, indicating that both fusion methods produce consistent Rs seasonal 443 

variation patterns, which might be because the impacts of AOD have already been 444 

included in the SunDu-derived Rs site data at seasonal time scales. Comparatively, the 445 

GWR methods perform best in autumn, with RMSEs ranging from 9.23W/m2 to 9.56 446 

W/m2 followed by winter, spring and summer. Both the GWR-CF and GWR-CF-AOD 447 

methods produce similar annual variations in Rs from 2000 to 2016, with R2 values 448 

ranging from 0.57 to 0.58 (Table 4). The statistics indicate that the GWR can produce 449 

reasonable seasonal and annual variations in Rs. 450 

3.3 Multiyear mean and long-term variability in Rs 451 

Figure 6 shows the performance of GWR-CF and GWR-CF-AOD on simulating 452 

the multiyear mean Rs by using 97 direct Rs observation sites and independent SunDu-453 

derived Rs sites. Based on direct Rs measurements, both GWR-based methods show 454 

good performances with high R2 (0.89~0.95) and low RMSE (11.03~11.11 W/m2), and 455 

few differences are found for the GWR merging results, whether or not AOD is taken 456 

as input data (Table 4). 457 
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 458 

Figure 6. Comparison of multiyear mean surface solar radiation (Rs) derived from the 459 

GWR method. Subplots (a, c) represent validation results using SunDu-derived Rs data 460 

as a reference, while that of subplots (b, d) use direct observed Rs data. 461 

The spatial distributions of the multiyear means of Rs from 2000 to 2017 are shown 462 

in Figure 7. The SunDu sites show that Rs is high in northwest China, ranging from 180 463 

to 300 W/m2, and low in eastern China, ranging from 120 to 180 W/m2. Both the GWR-464 

CF and GWR-CF-AOD methods show consistent Rs spatial patterns with SunDu-465 

derived Rs observations and CERES EBAFs, indicating that the relationship between 466 

Rs and impact factors is not linearly stable and is closely related to spatial position. The 467 

spatial distribution of the Rs trend derived from the GWR method is also consistent with 468 

the SunDu-derived Rs trend, especially in western China (Fig. 8). In order to prove that 469 

SunDu-derived Rs can add value to the 0.1 degree product, instead of cloud fraction 470 

data alone. We perform a similar GWR analysis but using CERES EBAF interpolated 471 
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to 0.1 degree and 0.1 degree cloud, and compare the results with those using SunDu-472 

derived Rs and 0.1 degree cloud (Fig .9). The results indicate that SunDu-derived Rs 473 

can add value to the 0.1 degree product and the merged Rs by using interpolated  474 

CERES EBAF and 0.1 degree cloud product are also similarly to original CERES 475 

EBAF but not 0.1 degree cloud product.  476 

 477 

Figure 7. Spatial distribution of multiyear mean monthly surface solar radiation (Rs) 478 

from 2000 to 2017. The first line (a, b) shows the observed multiyear mean monthly Rs 479 

from SunDu and CERES EBAF; the multiyear mean monthly Rs derived from the GWR 480 

method are shown in the second line (c, d), respectively. 481 
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 482 

Figure 8. Spatial distributions of monthly anomaly trends of surface solar radiation (Rs) 483 

from 2000 to 2017. The first line (a, b) shows the SunDu-derived Rs and CERES EBAF 484 

Rs; the Rs-derived GWR fusion methods are shown in the second line (c, d). Subplots 485 

(c) incorporate only CF, and subplots (d) incorporate CF and AOD. The black dots on 486 

the maps represent significant trends (P<0.05). 487 

 488 
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 489 

Figure 9. Spatial distributions of monthly anomaly trends of surface solar radiation (Rs) 490 

from 2000 to 2017. The first line (a, b) shows the SunDu-derived Rs and CERES EBAF 491 

Rs; the Rs-derived GWR fusion methods are shown in the second line (c, d). Subplots 492 

(c) SunDu derived Rs incorporate only CF, and subplots (d) is the results of GWR 493 

analysis using CERES data interpolated to 0.1 degree and 0.1 degree cloud. The black 494 

dots on the maps represent significant trends (P<0.05). 495 

Based on the classified subregions using 97 direct Rs observations in Figure 1, the 496 

regional means of Rs annual anomaly variation from 2000 to 2016 are shown in Figure 497 

10. Compared with observations, both the GWR-CF and GWR-CF-AOD methods 498 

produce consistent long-term Rs trends with SunDu-derived Rs and CERES EBAF Rs 499 

(Figures 2, 3 and 10), indicating that the GWR-CF and GWR-CF-AOD methods can 500 

produce reasonable annual Rs variations over China. 501 

In zones I and II, located in northern arid/semiarid regions, the annual anomaly Rs 502 

variation shows small fluctuations ranging from -10 to 10 W/m2. In contrast, zones IV, 503 

V, VIII and IX covering the Sichuan Basin, Yunnan-Guizhu Plateau, Qinghai-Tibet 504 
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Plateau and North China Plain show large Rs variation trends. Li et al. (2018) found a 505 

sharply increasing Rs trend over East China, especially in the North China Plain, which 506 

is due to controlling air pollution and reducing aerosol loading. However, our results 507 

indicate that the increased surface solar radiation in North China is not confirmed by 508 

satellite retrieval (CERES) and SunDu-derived Rs. 509 

 510 

Figure 10. The regional mean of the annual anomaly of the surface solar radiation (Rs) 511 

for different subregions. Nine subregions (I to IX) over China are shown in Figure 1. 512 

Direct Rs observations, SunDu-derived Rs, and CERES EBAF are shown as black lines, 513 

green lines and red lines, respectively. Light and dark blue represent the Rs variation 514 

derived from the GWR-CF and the GWR-CF-AOD methods. 515 

 516 
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4. Discussion 517 

4.1 Impact factors of Rs 518 

In this study, we merged more than 2400 sunshine duration-derived Rs site data 519 

with MODIS CF and AOD data to generate high spatial resolution (0.1°) Rs over China 520 

from 2000 to 2017. The results show that the GWR method incorporated with CF and 521 

AOD (GWR-CF-AOD) performs best, indicating the non-neglected role of clouds and 522 

aerosols in regulating the variation in Rs over China. 523 

Clouds and aerosols impact the solar radiation reaching the surface by radiative 524 

absorption and scattering (Tang et al., 2017). Recent Rs trend studies over Europe 525 

suggest that CF may play a key role in the positive trend of Rs since the 1990s (Pfeifroth 526 

et al., 2018a). In terms of input data, our results also indicate that the cloud fraction 527 

might be a major factor affecting Rs, which is consistent with our previous studies (Feng 528 

and Wang, 2019). 529 

Changes in aerosol loading have also been reported to be an important impact 530 

factor (Che et al., 2005; Li et al., 2018; Liang and Xia, 2005; Qian et al., 2015; Xia, 531 

2010; Zhou et al., 2019b). The atmospheric visibility data show that the slope of the 532 

linear variation in surface solar radiation with respect to atmospheric visibility is 533 

distinctly different at different stations (Yang et al., 2017), implying that the relationship 534 

between Rs and aerosols varies with location. 535 

4.2 Performances of the fusion methods 536 

The good overall performances of the GWR model have been reported in many 537 

previous studies, including geography (Chao et al., 2018; Georganos et al., 2017), 538 

economics (Ma and Gopal, 2018), meteorology (Li and Meng, 2017; Zhou et al., 2019a), 539 

and epidemiology (Tsai and Teng, 2016). Chao et al. (2018) used the GWR method to 540 

merge satellite precipitation and gauge observations to correct biases in satellite 541 
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precipitation data and downscale satellite precipitation to a finer spatial resolution at 542 

the same time. Zhou et al. (2019a) used GWR to analyse haze pollution over China and 543 

found that the GWR estimate was better than the OLS estimate, with an improvement 544 

in correlation coefficient from 0.20 to 0.75. 545 

Compared with other traditional interpolation methods, such as optimal 546 

interpolation (OI), GWR can theoretically integrate geographical location and Rs impact 547 

factors for spatial Rs estimations  and reflect the non-stationary spatial relationship 548 

between Rs and its impact factors. The thin plate spline method can include CF and 549 

AOD as covariates to simulate the approximately linear dependence of these impact 550 

factors on Rs, but this linear function cannot fully describe the relationship among CF, 551 

AOD and Rs (Hong et al., 2005).  552 

Comparison results from (Wang et al., 2017) also indicate that the GWR method 553 

is better than the multiple linear regression method and spline interpolation method for 554 

near surface air temperature. By using spatial interpolation method, CERES EBAF Rs 555 

can also be downscaled to 1km or 30m. These interpolated CERES Rs data cannot 556 

represent the detailed Rs distributions at spatial resolution of 1km or 30m due to the 557 

variability of Rs within a 1 degree box. Without additional high spatial resolution data, 558 

interpolated cannot capture more detail variability of Rs.  559 

 560 

5. Data availability 561 

The merged Rs product by GWR methods with cloud fraction and AOD data as 562 

input in this study are available at https://doi.pangaea.de/10.1594/PANGAEA.921847 563 

(Feng and Wang, 2020). 564 
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6. Conclusions 565 

Accurate estimation of Rs variability is crucially important for regional energy 566 

budget, water cycle and climate change studies. Recent studies have shown that SunDu-567 

derived Rs data can provide reliable long-term Rs series. In this study, we merged 568 

SunDu-derived Rs data with satellite-derived cloud fraction (CF) and aerosol optical 569 

depth (AOD) data to generate high spatial resolution (0.1°) Rs over China from 2000 to 570 

2017 (Feng and Wang, 2020). The GWR and OLS merging methods were also 571 

compared. 572 

Our results show that the spatial resolutions of all fusion results are improved to 573 

0.1° by incorporating MODIS cloud fraction data. The GWR shows better performance 574 

than OLS, with increases in R2 by 9.21%~12.81% and RMSEs reduced by 575 

49.56%~54.68%, indicating that Rs has complex characteristics of spatial variability 576 

over China, which has also indicated the necessity of the high spatial resolution of Rs 577 

data. As clouds and aerosols play vital roles in the variability in Rs, apparent 578 

improvements in the results of SunDu-derived Rs data merging are found if both cloud 579 

fraction and AOD are incorporated. Based on the merging results incorporating only 580 

cloud fraction, cloud fraction is suggested to be the major factor impacting Rs, which 581 

explained approximately 86%~97% of Rs variability. Generally, SunDu-derived Rs data 582 

merging results derived from GWR show more consistent multiyear mean Rs and long-583 

term Rs trends compared with those from OLS. Our results show that the improvement 584 

in Rs variability estimation is closely related to Rs impact factors and Rs spatial 585 

heterogeneity. The merged Rs products derived from GWR-CF-AOD can be 586 

downloaded at https://doi.pangaea.de/10.1594/PANGAEA.921847.  587 
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