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Abstract. The OpenSky Network is a non-profit association that crowdsources the global collection of live air traffic control

data broadcast by airplanes and makes it available to researchers.

OpenSky’s data has been used by over a hundred academic groups in the past five years, with popular research applications

ranging from improved weather forecasting to climate analysis. With the COVID-19 outbreak, the demand for live and his-

toric aircraft flight data has surged further. Researchers around the world use air traffic data to comprehend the spread of the5

pandemic and analyze the effects of the global containment measures on economies, climate and other systems.

With this work, we present a comprehensive air traffic dataset, derived and enriched from the full OpenSky data and made

publicly available for the first time (Olive et al. (2020), DOI: https://doi.org/10.5281/zenodo.3928564). It spans all flights seen

by the network’s more than 3000 members between 1 January 2019 and 1 July 2020. Overall, the archive includes 41,900,660

flights, from 160,737 aircraft, which were seen to frequent 13,934 airports in 127 countries.10

1 Introduction

In this paper, we present a dataset of global flight movements derived from crowdsourced air traffic control data collected by

the OpenSky Network (Schäfer et al. (2014)), which are widely used in many fields, including several areas pertaining to Earth

System Sciences. With the spread of COVID-19, they are furthermore widely used in the understanding of the pandemic and

its effects.15

OpenSky flight data has regularly been used in analyzing environmental issues such as noise emissions (Tengzelius and

Abom (2019)) or black carbon article emissions (Zhang et al. (2019)) to name but a few. In the wake of the pandemic, OpenSky

has received a surge of more than 70 requests for air traffic data specifically related to COVID-19. The research behind these

requests can be largely separated into two different areas, epidemiological modelling and understanding the systemic impact of

the pandemic.20

The first category, modeling of the possible spread of COVID-19, was of crucial interest early in the stages of the pandemic

and will again gain importance to estimate travel safety in the future. The utility of flight data for this purpose was illustrated for
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example in widely circulated studies such as Bogoch et al. (2020) but has been known to be useful in the context of pandemics

for much longer (e.g., Mao et al. (2015)).

The second main category comprises the analysis of the socio-ecological impact of COVID-19 and measures implemented25

to fight it. It uses flights for example as an indicator of economic activity (at a given airport, region, or globally) as illustrated

in Miller et al. (2020). Examples of such use of data provided by OpenSky can be found in Bank of England, Monetary Policy

Committee (2020), International Monetary Fund (2020) or United Nations Department of Economic and Social Affairs (2020).

Flight data can further be used to understand the impact of the sudden drop in air traffic on many global systems. For example,

Lecocq et al. (2020) employed OpenSky data recently in order to analyze the impact of COVID-19 mitigation measures on30

high-frequency seismic noise and we received several requests relating to research specifically on the xte impact of COVID-19.

This present dataset, available at https://doi.org/10.5281/zenodo.3928563, was created in order to make it easier for researchers

to access air traffic data for their own systemic analyses.

2 Background

Crowdsourced research projects are a form of ‘citizen science’ whereby members of the public can join larger scientific efforts35

by contributing to smaller tasks. In the past, such efforts have taken many forms including attempting to detect extra-terrestrial

signals (UC Berkley (2019)), or exploring protein folding for medical purposes (Pande (2019)). Typically, the projects form

distributed computing networks with results being fed to a central server.

In a parallel development, software-defined radios (SDRs) have become readily available and affordable over the past decade.

SDR devices present a significant change to traditional radios, in that wireless technologies can be implemented as separate40

pieces of software and run on the same hardware. This has greatly reduced the barriers to entry, so many more users can now

take part in wireless projects such as crowdsourced sensor networks with little cost. This development has given rise to several

global crowdsourced flight tracking efforts, from commercial to enthusiast and research use.

The concept of flight tracking itself is based on several radar technologies. Traditionally, these were expensive and inaccurate

non-cooperative radars developed for military purposes. With the explosive growth of global civil aviation, however, more45

accurate cooperative radar technologies have been deployed to ensure safety and efficiency of the airspace.

For this dataset of flight movements, we use the data broadcast by aircraft with the modern Automatic Dependent Surveil-

lance – Broadcast (ADS-B) protocol. This data includes position, velocity, identification and flight status information broadcast

up to twice a second (see Schäfer et al. (2014)). The protocol is being made mandatory in many airspaces as of 2020, resulting

in broad equipage among larger aircraft from industrialized countries and emerging economies as described by Schäfer et al.50

(2016).

Figure 2 illustrates the principle of OpenSky in the abstract: The data is broadcast by ADS-B-equipped aircraft and received

by crowdsourced receivers on the ground, which have typical ranges of 100-500 km in a line of sight environment. The data is

then sent to the OpenSky Network, where it is processed and stored in a Cloudera Impala database. In line with its mission as
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Figure 1. OpenSky message growth 2014-2020.

a non-profit organisation, OpenSky then grants researchers from academic and other institutions direct access to this database55

on request (Schäfer et al. (2014)).

Along with the global sensor coverage, the database has initially grown exponentially since its inception on 2014 (see

Fig. 1) and currently comprises over 23 trillion messages, taking up around 2 Petabytes. In peak pre-pandemic times, almost

100,000 flights were tracked per day. The raw data available in the Impala database has been used in more than 100 academic

publications as of July 2020. However, despite available application programming interfaces and third-party tools, the access60

to this data requires significant investment of time and resources to understand the availability and underlying structure of the

database. With this data set and its accompanying descriptor we want to address this accessibility issue and make a relevant

part of the OpenSky Network flight meta data accessible to all researchers.

3 Methods

3.1 Crowdsourced Collection65

The raw data used to generate the dataset was recorded more than 3000 crowdsourced sensors of the OpenSky Network. The

network records the payloads of all 1090 MHz secondary surveillance radar downlink transmissions of aircraft along with the

timestamps and signal strength indicators provided by each sensor on signal reception. Part of this data collection are the exact

aircraft locations broadcast at 2 Hz by transponders using the ADS-B technology.
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Figure 2. High-level illustration of the flight data crowdsourcing process, including map of active receivers on July 1, 2020. © OpenStreetMap

contributors 2020. Distributed under a Creative Commons BY-SA License.

As the data comes from a crowdsourced system of receivers, it is dealing with numerous challenges and difficulties found in70

such an organically-grown, non-controlled set of receivers. However, it is the only feasible option for the large-scale collection

of open research data as collecting data from a synchronized and controlled deployment would be less flexible and less widely

applicable, in particular for a non-profit research endeavour. Conversely, due to the high sensor density and high level of

redundancy in the OpenSky Network, many well-covered regions of this data achieve the quality of controlled deployments on

a nation-wide level in many countries.75

The true coverage of the network, i.e. actually received positions of airplanes, is illustrated in Fig. 3, both for 1 January

2019 and during the pandemic on 1 May 2020. Historic coverage for any given day is visible on https://opensky-network.org/

network/facts.

3.2 Derivation of Flights

We define a flight for the purpose of this dataset as the time between the first received ADS-B contact of one specific aircraft80

and the last. A flight must be of at least 15 minutes. If a flight leaves OpenSky’s coverage range for more than 10 minutes,

it is principally considered finished at the point of last contact. To prevent counting flights multiple times if they return into

the coverage range after more than 10 minutes (e.g., for any flight over the Atlantic Ocean), we apply a simple check: if time,
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Figure 3. Coverage of OpenSky on 1 January 2019 and 1 May 2020. © Google Maps

distance and reported velocity match, they will be considered segments of the same flight. If not, it is assumed that the aircraft

has landed at some point.85

The destination airport candidates are received from these identified flight trajectories as follows. If the last position seen

is above 2500 meters, no candidate is defined and the value is set to ‘NULL’. Else, the descending trajectory is extrapolated

towards the ground and the Cartesian distance to the closest airports is computed. If there is no airport within 10 kilometers, the

value is set to ‘NULL’. Else, the closest identified airport is listed as the destination airport. The procedure applies in reverse

for the origin airport candidates.90

We note that this approach is necessarily an extrapolation and airports may in some cases be wrongly identified if the contact

is lost before the ground, in particular where several airports are close by.

3.3 Data Cleaning

To make the data accessible and meet the requirements, complex pre-processing is needed to abstract from most system as-

pects, reduce the data volume, and to eliminate the need to understand all system aspects in order to use the data. Moreover, the95

information quality needs to be assessed and indicated, allowing researchers to choose subsets that match their own require-
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ments. Therefore, we performed the following processing steps to prepare the unstructured OpenSky Network data and create

a well-defined dataset for scientific analysis.

3.3.1 Decoding

Decoding ADS-B correctly is a complex task. Although libraries and tutorials such as Sun et al. (2019) exist, it remains a100

tedious task that requires a deep understanding of the underlying link layer technology Mode S. Moreover, the sheer volume

of data collected by OpenSky (about 120 GB of raw data per hour) makes this process challenging and resource-intensive.

Therefore, we relieve researchers from this burden by providing readily decoded information such as position in WGS84

coordinates, altitude information in meters, and the unique aircraft identifier as a 24 bit hexadecimal number.

3.3.2 Timestamps105

Timestamps are provided in different resolutions and units, depending on the receiving sensor type. For purposes of this dataset,

we use the time when the messages where received at the server, with a second precision, which we deem more than sufficient

for the macro use cases intended.

3.3.3 Deduplication

OpenSky’s raw data is merely a long list of single measurements by single sensors. However, as most localization algorithms110

rely on signals being received by multiple receivers, we grouped multiple receptions belonging to the same transmission based

on their continuous timestamp and signal payload. This process is called deduplication. Note that although most position

reports are unique, a small number of falsely grouped measurements remains as noise in the data.

3.3.4 Quality Assurance

Crowdsourcing creates potential issues regarding the quality and integrity of location and timing information of certain aircraft115

and sensors. Such issues can range from faults in the transmission chain (i.e., aircraft transponder, ground station) to malicious

injection of falsified aircraft data. To allow researchers to ignore these effects while still preserving them as a potential subject

of research, OpenSky offers integrity checks to verify and judge the data correctness (see Schäfer et al. (2018)). We also note

that the abstracted nature of this dataset makes it more robust to any issues in the first place as low-quality data will be averaged

out over time by the many involved receivers.120

3.4 Data Enrichment

We use the OpenSky aircraft database to add aircraft types to our flight data, and access publicly available open application

programming interfaces (API) to match the commercial flight identifier, where available.
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The integration of aircraft types enables additional analysis such as gauging the popularity of different types and manu-

facturers across time, regions and use cases. Aircraft type designators follow the International Civil Aviation Organisation’s125

(ICAO) convention (International Civil Aviation Union (2020)).

The OpenSky aircraft database was created in 2017 as an additional crowdsourcing project. It joins different data sources,

official and unofficial ones. The official sources include the registration information from the flight authorities in the US, UK,

Ireland and Switzerland, which is downloaded and incorporated daily. Besides these, it relies on enthusiast knowledge based

on live observations and third-party sources. These are integrated opportunistically; the database is editable by any registered130

user of the OpenSky Network. A static snapshot of the database from June 2020 is provided with this record, regular updates

are made available at https://opensky-network.org/datasets/metadata/.

4 Data Records

Overall, the archive includes 41,900,660 flights, from 160,737 aircraft, which were seen to frequent 13,934 airports in 127

countries. One file per month is provided in the comma-separated values (CSV) format. Table 1 provides a breakdown of the135

included CSV files and their contents, broken down into size, number of flights, number of unique aircraft, unique origins and

destinations. Note the significant reduction in size and flights since the beginning of pandemic measures in March 2020.

We describe the columns of the dataset in the following:

1. callsign: The identifier of the flight used for display on the radar screens of air traffic controllers or communication140

over voice. For commercial flights, the first three letters are typically reserved for an airline, e.g. AFR for Air France,

DLH for Lufthansa. This is then typically followed by four digits. For non-airline flights this can often be chosen freely

or depending on the customs of the airspace of a country. It is broadcast by the airplane itself. For anonymity reasons,

the callsign is only provided for verified commercial airline flights.

2. number: The commercial number of the flight, if available through OpenSky. These flight numbers are typically used145

by the airlines for booking references or departure boards at airports.

3. aircraft_uid: A unique aircraft identification number randomly generated based on the transponder identification

number that is globally unique and specific to an aircraft (rather than a flight). Changes occur only if an aircraft changes

ownership, with exceptions for military aircraft, which may in some countries be able to change their identifier at will.

4. typecode: The aircraft model type if available through the aircraft database.150

5. origin: A four letter code for the origin airport of the flight, if the trajectory could be matched successfully.

6. destination: A four letter code for the destination airport of the flight, if the trajectory could be matched successfully.

7. firstseen: The UTC timestamp of the first message received by the OpenSky Network.
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Table 1. Overview of the dataset files and content metadata.

Filename Month Size Aircraft Flights

flightlist_20190101_20190131 Jan 2019 175.5MB 68,876 2,145,469

flightlist_20190201_20190228 Feb 2019 164.0MB 68,798 2,005,958

flightlist_20190301_20190331 Mar 2019 186.5MB 74,362 2,283,154

flightlist_20190401_20190430 Apr 2019 194.6MB 76,298 2,375,102

flightlist_20190501_20190531 May 2019 208.2MB 79,547 2,539,167

flightlist_20190601_20190630 Jun 2019 218.3MB 82,879 2,660,901

flightlist_20190701_20190731 Jul 2019 238.3MB 86,385 2,898,415

flightlist_20190801_20190831 Aug 2019 246.0MB 89,776 2,990,061

flightlist_20190901_20190930 Sep 2019 224.1MB 89,963 2,721,743

flightlist_20191001_20191031 Oct 2019 242.3MB 92,449 2,946,779

flightlist_20191101_20191130 Nov 2019 223.5MB 92,003 2,721,437

flightlist_20191201_20191231 Dec 2019 222.1MB 92,253 2,701,295

flightlist_20200101_20200131 Jan 2020 225.4MB 90,821 2,734,791

flightlist_20200201_20200229 Feb 2020 218.0MB 97,931 2,648,835

flightlist_20200301_20200331 Mar 2020 177.2MB 94,631 2,152,157

flightlist_20200401_20200430 Apr 2020 68.3MB 74,257 842,905

flightlist_20200501_20200531 May 2020 87.8MB 89,721 1,088,267

flightlist_20200601_20200630 Jun 2020 116.9MB 98,747 1,444,224

All files 17 months 3.4 GB 160,737 41,900,660

8. lastseen: The UTC timestamp of the last message received by the OpenSky Network.

9. day: The UTC day of the last message received by the OpenSky Network.155

10. latitude_1, longitude_1, altitude_1 The position of the aircraft at the firstseen timestamps. The

altitude is a barometric measurement based on a standard pressure of 1013 HPa.

11. latitude_2, longitude_2, altitude_2 The position of the aircraft at thelastseen timestamps. The alti-

tude is a barometric measurement based on a standard pressure of 1013 HPa.
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5 Technical Validation160

In the following, we provide some statistics showing that our flights dataset reflects the air traffic reality as different time series

showing the effect of the COVID-19 pandemic at different airports and for different airlines.

Table 2. Flight distribution in data set January 2020.

Manufacturer Model Typecode Flights

Airbus A320-neo A20N 77,018

Airbus A321-neo A21N 18,411

Airbus A319 A319 116,261

Airbus A-320 A320 365,901

Airbus A-321 A321 128,332

Airbus A330-200 A332 20,958

Airbus A330-300 A333 39,618

ATR ATR-72-600 AT76 35,788

Boeing 737-700 B737 109,362

Boeing 737-800 B738 378,424

Boeing 737-900 B739 44,131

Boeing 757-200 B752 29,318

Boeing 767-300 B763 28,916

Boeing 777-200 B772 17,147

Boeing 777-300/ER B77W 36,925

Boeing 787-9 Dreamliner B789 19,085

Bombardier CRJ200 CRJ2 46,930

Bombardier CRJ700 CRJ7 29,829

Bombardier CRJ900 CRJ9 49,293

De Havilland DHC-8-400 DH8D 34,487

Embraer ERJ 145 E145 27,150

Embraer ERJ 190 E190 27,871

Embraer ERJ 175 (long wing) E75L 43,891

Embraer ERJ 175 (short wing) E75S 21,251

Pilatus Eagle PC12 16,663

Table 2 shows the distribution of the top 25 aircraft types in the flight dataset over one month (January 2020). Overall, the

top models are dominated by the four largest commercial aircraft manufacturers: Boeing with 8 different types accounting

for 663,308 flights; Airbus with 7 models and 766,499 flights; Embraer with 4 models (120,163 flights) and Bombardier (3165

models, 126,052 flights). The 737-800 is the single most popular aircraft with 378,424 flights in January 2020 alone.
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Table 3. Top 20 airports based on recorded flight destinations in January 2020.

Country City ICAO Code Landings

United States Atlanta KATL 35,770

United States Chicago KORD 34,480

United States Dallas–Fort Worth KDFW 27,534

United States Los Angeles KLAX 23,659

United States Las Vegas KLAS 21,195

United States Phoenix KPHX 19,219

United States New York Newark KEWR 18,962

United Kingdom London Heathrow EGLL 18,340

United States San Francisco KSFO 17,824

United States New York JFK KJFK 17,653

United States Houston KIAH 17,626

India New Delhi VIDP 17,498

United States Miami KMIA 17,154

France Paris CDG LFPG 16,889

Malaysia Kuala Lumpur WMKK 16,726

United States Seattle KSEA 16,670

United Arab Emirates Dubai OMDB 16,049

Canada Toronto CYYZ 15,972

United States Boston KBOS 15,927

Germany Frankfurt am Main EDDF 15,904

Table 3 shows the distribution of the top 20 airports types in the flight dataset in January 2020 (based on recorded flight

destinations). Reflecting both global air traffic realities and OpenSky’s coverage focus, 13 of these airports are in the United

States, including the 7 busiest with regards to landings. Several of the major hubs in Europe (Frankfurt, London Heathrow,

Paris Charles de Gaulle) and Asia (Kuala Lumpur, Dubai and Delhi) make up the remaining six.170

Figure 4 shows a time series of airport activity (as measured by departures) on four different regions based on data from 1

January to 30 April 2020. The impact of the pandemic (or rather the measures to contain it) can be seen clearly in all four. For

example, the data shows:

– a slow decrease from February in several East-Asian airports (even earlier in Hong Kong);

– European airports decreasing sharply from early March onward;175

– America’s air traffic started dropping later by about two weeks;

– India stopping all air traffic sharply by mid-March (VABB, VIDP).
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Figure 4. Comparison of flight numbers at various airports as seen by the OpenSky Network during 2020.

In a similar fashion, Figure 5 shows COVID-19’s normalized impact on different airlines across the globe. Among noticeable

trends, we can identify:

– sharply decreasing patterns for all regular airlines in March, with stronger effects for European airlines compared to180

American and Asian airlines;

– almost all low-cost airlines practically stopped all business activities (with the exception of the Japanese Peach airlines);

– a very slow recovery for most airlines and regions beginning in May and June, with some rebounding more strongly, for

example Air New Zealand (ANZ);

– cargo airlines show no negative impact of the crisis, some may even find a slight upwards trend.185
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Figure 5. Comparison of flight numbers of various airlines as seen by the OpenSky Network during 2020. Flights are grouped by geographic

regions for legacy carriers. Cargo and low-cost airlines are shown separately.
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6 Usage Notes

This dataset may differ from other data sources due to limitations of ADS-B data. On the other hand, there are advantages as it

reflects all aircraft types rather than only commercial airlines.

It is important to note that ADS-B equipage has been increasing over time as existing aircraft have been retrofitted and older

aircraft have been replaced. This effectively means that the number of tracked aircraft in the dataset has been slowly increasing190

pre-pandemic, reflecting the reality of a dynamic global aviation industry.

Further, there are differences in ADS-B equipage across countries’ airspaces (depending on their regulatory approach) as

well as potentially between aircraft types. For example, small personal aircraft flying locally and below 18,000 feet are often

not required to use ADS-B. Similarly, military aircraft may have exceptions for operational reasons. It is not possible to track

and reflect these highly dynamic developments in a static dataset, however, this should be kept in mind for comparative analysis195

purposes.

Finally, as a recommendation for data handling and visualization, Figures 4 and 5 have been created with the open-source

Python package traffic (Olive (2019)), which offers dedicated methods for air traffic data and interfaces with OpenSky and

other data sources.

7 Conclusions200

Air traffic and flight data is needed for effective research in many areas of Earth Systems Science and related fields. We

presented an openly accessible, specifically crafted dataset based on crowdsourced data obtained through the OpenSky Network

and validated it successfully. From January 2019 to July 2020, the archive includes 41,900,660 flights, from 160,737 aircraft,

which were seen to frequent 13,934 airports in 127 countries. As it is updated monthly, this dataset will be growing significantly

and provide deeper insights into flight behaviour before, during, and after the COVID-19 pandemic.205

8 Code and data availability

The dataset is available under the CC-BY license at Zenodo (see Olive et al. (2020), DOI: https://doi.org/10.5281/zenodo.

3928564).

The code to generate and process the data is available in different components. The popular dump1090 package, used as

the basis to receive a large majority of crowdsourced information (ca. 80% in OpenSky), is available at Foster (2017). Other210

receiver software may include proprietary and closed source software such as Radarcape and SBS-3.

The OpenSky decoder is available in OpenSky’s GitHub repository at https://github.com/openskynetwork/java-adsb.

Code concerning data cleaning and processing is documented at https://traffic-viz.github.io/scenarios/covid19.html.
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